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a b s t r a c t

Drive-by Health Monitoring utilizes accelerometers mounted on vehicles to gather dynamic

response data that can be used to continuously evaluate the health of bridges faster and with

less equipment than traditional structural health monitoring practices. Because vehicles and

bridges create a coupled system, vehicle acceleration data contains information about bridge

frequencies that can be used as health indicators. However, for drive-by health monitoring

to be viable, variabilities in dynamic measurements caused by environmental and opera-

tional parameters, such as temperature, vehicle speed, traffic, and surface roughness need

to be considered. In this paper, a finite element model of a simply supported bridge is devel-

oped considering the aforementioned variabilities and various levels of structural damage.

Vehicle acceleration data obtained from the model is analyzed in the frequency domain and

processedusing a neural network architecture. This method is used to determine the relation-

ships between noise inducing variables and changes in vehicle dynamic response spectrum;

these relationships are leveraged to predict the overall health of the subject bridge. The results

from this study indicate that the proposed approach can serve as a viable health monitoring

strategy and should be further tested on physical bridge systems.

Reproducibility: our code and data are available at [https://github.com/JSybrandt/

HighPerformanceBridgeSim].

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Maintaining transportation networks is essential to supporting national security, the economy, and public safety. Because of

delayed maintenance and budget limitations, however, bridges that are critical to the U.S. transportation network are in a state

of disrepair [1,2]. Per the 2017 American Society of Civil Engineering report, approximately 240 thousand bridges in the United

States have exceeded their 50-year service life, and over 56 thousand bridges have been classified as structurally deficient [1].

The situation in other countries is not much different [3]. Further delays in the maintenance of this vital infrastructure system

poses a significant risk of bridge failures, which would threaten national security, cause further economic losses, and result in
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the loss of lives. As such, a more efficient and cost effective health monitoring and maintenance strategy would aid to improve

the state of this failing system by optimizing the allocation of funds and resources to where they are most needed.

Presently, time interval-based visual inspections are the accepted practice for monitoring bridge health in the United States.

The National Bridge Inspection Policy regulates the procedures for these inspections and dictates that bridge inspections should

be performed every two years [4]. Despite having been criticized for being both inefficient and ineffective, this policy has con-

tinued to be practiced nation wide. Firstly, it has been argued that using financial resources to inspect bridges less than ten years

old is inefficient as young bridges often exhibit little degradation [5]. Additionally, lack of financial resources may cause owners

to miss necessary inspections, with approximately 17000 bridges missing their deadline in 2006, of which approximately 2700

bridges were considered obsolete or deficient [6,7]. Secondly, visual inspections are ineffective as they not only fail to detect cer-

tain types of damage, but also rely on subjective assessments that often lead to inconsistent, unrepeatable observations [5,8–10].

Structural Health Monitoring (SHM) is an alternative approach that offers a solution to these issues.

SHM is the process of implementing a damage detection and characterization strategy for engineered systems. SHMhas been

adopted as an accepted practice in many engineering disciplines, and is gaining popularity for use in civil engineering [11]. The

inclusion of an SHM system as part of an asset monitoring strategy allows for more informed life-cycle management decisions

that can help extend the asset’s service life [12–14]. In bridge health monitoring, an effective strategy typically uses multiple

online sensors and intelligent diagnostics to continuously detect damage on a local and/or global scale [11,15]. However, these

types of SHM systems are not feasible for short to mid-span bridges because of associated costs [14,16–18]. For example, the

initial cost of installing a system on every short to mid-span bridge in the U.S. is estimated to be in the range of tens of billions

of dollars [19]. The methodology is made more expensive by essential sensor maintenance that requires significant time and

resources for site visits [17,18]. To overcome these limitations, a mobile health monitoring strategy known as Drive-by Health

Monitoring (DBHM) has been proposed [14].

DBHM, or indirect health monitoring as it has also been called, is the practice of using accelerometers attached to pass-

ing vehicles to detect damage induced changes in the dynamic response of bridges [14]. Because vehicles and bridges create a

coupled system, vehicle acceleration data contains information about bridge frequencies that can be used as health indicators.

This concept was first demonstrated by Yang et al. when they successfully detected bridge frequencies contained within vehi-

cle acceleration data generated from numerical finite element (FE) simulations [17]. Lin and Yang later validated the concept

experimentally when they successfully detected frequencies containedwithin the acceleration response of a cart as it was towed

across the Da-Wu-Lun bridge in Taiwan [20]. The goal of this strategy is to be able to continuously monitor bridges in a more

efficient, cost effective, and less labor-intensive manner than any other forms of SHM or inspection practice; however, before

this goal can be obtained, variabilities introduced by operational and environmental factors need to be addressed to ensure the

accuracy of the health assessment being reported.

Operational and environmental parameters, such as bridge deck surface roughness, vehicle speed, traffic, and temperature,

have been known to mask or shift bridge frequencies in such a way that accurately classifying damage becomes very difficult

[20–22]. Progressively rougher surface profiles introduce high amplitude noise that obscures the process of extracting bridge

frequencies from a vehicle’s dynamic response. Correspondingly, at higher vehicle speeds, surface roughness introduces high

frequency vibrations that further complicate bridge frequency detection [20,22]. Higher vehicle speeds also cause the spectral

resolution of sensors to decrease and the extracted frequencies to shift away from their actual values [17,20]. On-going traffic

has been demonstrated to actually aid in the drive-by health monitoring paradigm by increasing the acceleration amplitude

associated with extracted bridge frequencies [20,22], but others note that traffic can also cause these frequencies to fluctuate by

several percent as a result of vehicle masses altering the effective bridge mass [23–25]. Temperature has a similar effect, causing

frequencies to fluctuate by several percent over a 24-h period, and by an even larger magnitude throughout the year [21,26,27].

Researchers have aimed to address these issues in DBHM by employing an assortment of statistical processing and machine

learning techniques.

In a lab scale DBHM study, Cerda et al. employed support vector machines to classify bridge damage using spectral data col-

lected from multiple vehicle runs; they evaluated the accuracy of their methodology considering a variety of different damage

states, as well as individual sources of noise (e.g. surface roughness, temperature, and vehicle properties) [28]. Lederman et al.

later expanded on this procedure by incorporating kernal regression to identify a nonparametric regression model for mapping

vehicle acceleration to a bridge’s conditional state. The methodology was proven to provide finer resolution regarding dam-

age location and severity [29]. In a recent study, Malekjafarian et al. employed a “two-pass” machine learning approach that

levered an artificial neural network (NN) and a Gaussian Process (GP) to detect bridge damage using features extracted from

vehicle acceleration data [30]. Through their methodology, the researchers demonstrated that they could successfully detect

low levels of damage even when surface roughness and measurement noise were considered. The above mentioned method-

ologies demonstrate that statistical processing and machine learning techniques can successfully be employed under the DBHM

paradigm to identify damage when exposed to some sources of noise. An issue with the above-mentioned studies, however,

is that none of them take into consideration the cumulative effects of all the aforementioned environmental and operational

parameters; in fact, to our knowledge no such DBHM study has been conducted to date. To address this issue, we propose a

method for assessing bridge health, while considering the cumulative effects of all the aforementioned operational and envi-

ronmental factors.

To assess bridge health using DBHM while considering cumulative environmental and operational effects, we propose an

approach that first trains a NN to detect damage on realistic vehicle-bridge simulations, and then applies the trained network

towards detecting similar damage on physical systems. The novelty of this methodology is based on the development of a new
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approach to drive-by health monitoring that relies on detecting physical damage through the development of simplified yet

realistic vehicle-bridge simulations. To evaluate the feasibility of this approach, however, a study first needs to be performed to

determine if an actionable health assessment can reliably be obtained from simulations of vehicle-bridge systems exposed to

multiple sources of noise. Therefore, the novelty of this work is the development of vehicle-bridge simulations, which contain

realistic signal noise generated from temperature changes, road surface roughness, and other vehicle traffic, to train and test the

ability of a NN to make a reliable health assessment. Additionally, to ensure the levels of damage implemented in the simulation

are representative of possible damage states to a physical system, we implement a unique approach for relating levels of crack

damage to changes in moment of inertia (MoI) and, therefore, principle bridge frequency.

In this study, we utilize a finite element methodology that represents the interaction between vehicles and a bridge as a

contact force to simulate a simply supported single-span bridge coupled with moving quarter-vehicle models [31]. A variety of

different vehicles are simulated to represent daily traffic flow; the number of different vehicles in this study represent a hypo-

thetical scenario in which almost all vehicles crossing a bridge are outfitted with sensors to allow for the continuous monitoring

of bridge health. Realistic representations of environmental and operational variabilities, along with bridge damage, are simu-

lated by the model. To represent long-term natural variations in bridge frequency, we evaluate our model across approximately

two years of operational and environmental observations. Then, we leverage a convolutional NN to capture a noise-tolerant

relationship between sensor observations and bridge health. Input to the NN model is projected across a number of layers, each

capturing an increasingly abstract representation of our input (e.g. frequencies, vehicle speed, temperature, etc.) when trained

using stochastic gradient decent [32]. These layers are then projected down into a small set of discrete “damage classes,” each

representing a different level of bridge health.

In order to explore the feasibility of this NN approach, sixteen different simulation scenarios are evaluated. Each represents

a unique combination of parameters, including the number of vehicles simultaneously present on the bridge, whether envi-

ronmental effects are accounted for, whether bridge damage is localized or expanding, and what weather data underpins the

simulated temperature. For each scenario independently, vehicle crossings are recorded as a series of measurements. These

include frequency-amplitude pairs corresponding to the upper and lower masses of the quarter-vehicle model, derived from

Fast Fourier Transforms (FFTs) applied to the vertical acceleration of each mass during the crossing. In addition, measurements

of time-of-day, temperature, estimated vehicle mass and speed are all associated with each crossing. This crossing data is ran-

domly shuffled and split into training, validation, and test sets for the purpose of constructing and evaluating the NN model.

The NN model then learns to associate patterns present in these measurements with each of the damage classes. The test-set

evaluate is comprised of two main metrics, accuracy, and “confidence”. Accuracy indicates how often a single vehicle correctly

predicts the bridge’s damage class given a single crossing. Confidence, a custommetric, pools the predictions of all test-set vehi-

cles that cross the bridge on the same simulated day, and assigns the bridge a damage class by a majority vote of the vehicle

predictions. Then, confidence indicates the fraction of vehicles that voted in the majority, and whether that majority was cor-

rect. Semantically, accuracy indicates generalized NN performance across all vehicles and damage classes, while confidence is

plotted in order to depict what damage classes or times of year are more challenging to predict.

It should be noted that the machine learning approach presented by Malekjafarian et al. in Ref. [30] is similar to that pre-

sented in this paper, however our approach differs in a few key ways. Their approach is a two-pass method that first identifies

the vehicle response using an ANN model and secondly identifies bridge damage via a GP model. This method identifies bridge

damage through the change in the distribution of the GP model. In contrast, the method proposed here could be described as

one-pass, meaning that our proposed model learns to predict bridge damage directly from the frequency response spectrum of

a passing vehicle. Our proposed model directly predicts damage through a more complex model architecture. While the model

proposed by Malekjafarian predicts vehicle response through a single non-linear combination of all observed signals, the model

proposed here first identifies patterns within the spectra through the use of convolutional filters. This approach allows the pro-

posed method to incorporate additional signals, such as high-resolution spectral measurements taken from both the upper and

lower mass, while still remaining computationally efficient.

This paper is organized as follows: Section 2 discusses the applied finite element method and includes parameter values for

the bridge and vehicle models. Section 3 addresses simulating operational, environmental, and damage effects on the subject

bridge; Section 4 discusses the NN and how it was applied towards the subject data; Section 5 discusses the outputs from the

NN and summarizes the results; Section 6 summarizes the findings of the study; and Section 7 provides suggestions for future

research.

2. Finite element method for vehicle-bridge interaction

2.1. FEM

In this study, vehicle-bridge interactions are modeled using a two dimensional finite element simulation based on the con-

cept of vehicle-bridge interaction elements [31]; see Fig. 1 for an example vehicle-bridge system. Because themajority of bridges

in the United States are short-spanned (i.e. less than 50 m (160 ft)), and because most steel and concrete bridge designs can be

employed using simply supported beams, the bridge in this study is modeled as a short-spanned simply supported beam that

is discretized into a number of Euler-Bernoulli beam elements [33–36]; the number of elements the beam is discretized into

depends on the damage condition being applied, see Section 3.3 formore details. Equation (1) represents the equation of motion
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Fig. 1. Quarter-vehicle model coupled with simply-supported bridge.

for an occupied beam element in the future time step (t +△t):

([mbi]{d̈bi} + [cbi]{ ̇dbi} + [kbi]{dbi})t+△t = ({fbi} − {fbci})t+△t, (1)

where [mbi], [cbi], and [kbi] represent the ith local element’s mass, damping, and stiffness matrices, respectively. The column

vectors {d̈bi}, { ̇dbi}, and {dbi} respectively indicate nodal acceleration, velocity, and displacement for the local element. The

column vector {f bi} contains nodal external forces, while {f bci} is a column vector containing the nodal forces resulting from

contact forces introduced by traversing vehicles.

Elemental matrices are pieced together to create the global structural matrices and external load vectors free of any vehicles.

For this study, a four degree-of-freedom stiffness matrix and a four degree-of-freedom continuous mass matrix are imple-

mented. Axial degrees-of-freedom are ignored because the modal frequencies associated with vertical degrees-of-freedom are

of primary interest, and because vehicles are assumed to travel at constant velocities (i.e. they do not introduce axial loads from

acceleration). Because it is difficult to derive the local dampingmatrix without having prior knowledge of the systems frequency

values, the global damping matrix is derived using the Rayleigh damping method outlined in Eqs. (2) and (3) [37]:

[Cb] = b0[Mb] + b1[Kb] (2)

b0 = 𝜉
2𝜔1𝜔2

𝜔1 + 𝜔2

b1 = 𝜉
2

𝜔1 + 𝜔2

, (3)

where [Mb], [Cb], and [Kb] represent a bridge’s globalmass, damping, and stiffness matrices, respectively. The parameters b0 and

b1 are numerical constants calculated using the damping ratio 𝜉 and the first two undamped modal frequencies w1 and w2. The

model frequencies are calculated using the eigen value function eig([Kb], [Mb]) in Matlab.

Once the global bridge matrices have been formulated, the next step is to calculate the global contact forces; this is done

by first analyzing the equation of motion of the subject vehicle(s). For the purposes of developing and testing the feasibility of

the proposed DBHM approach, each vehicle is modeled as a simple two degree-of-freedom mass spring damper (i.e. quarter-

vehicle), as seen in Fig. 1. Quarter-vehicle models are considered suitable for this study because they have been shown to

accurately capture the vertical dynamic behavior of a motor vehicle suspension, and have been regularly employed, along with

single degree-of-freedommodels, for testing new concepts in the drive-by healthmonitoring field [14,17,30,34,38–40]. It known

that the quarter-vehicle model cannot capture certain physical vehicle behavior, such as rotational and torsional dynamics;

however, this is not a concern for this study as the primary interest is capturing the vertical dynamics associated with the first

few modes of the bridge. Equation (4) represents the equation of motion for a vehicle in the future time step (t +△t):([
Mv 0

0 Mw

]{
d̈v

d̈w

}
+

[
Cv −Cv

−Cv Cw + Cv

]{
ḋv
̇dw

}
+

[
Kv −Kv

−Kv Kw + Kv

]{
dv

dw

})
t+△t

=

({
fve

fwe

}
+

{
0

fwc

})
t+△t

, (4)

where Mv and Mw are the upper vehicle mass and wheel mass, respectively. Kv and Cv denote the stiffness and damping of the

upper suspension system, while Kw and Cw denote the stiffness and damping properties of the wheel. Vectors {d̈}, {ḋ}, and {d}

receptively represent the vehicle’s acceleration, velocity, and displacement. Vector {f e} contains external forces that act on both

the vehicle body and wheel, while fwc indicates the vertical contact force acting on the wheel. To calculate the contact force,

Newmark Beta numerical integration is leveraged to solve for the future acceleration, velocity, and displacement of the upper

vehicle body; these values are calculated using Eqs. (5)–(7):

d̈v,t+△t = a0 △ dv − a1ḋv,t − a2d̈v,t (5)
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ḋv,t+△t = ḋv,t + a3d̈v,t + a4d̈v,t+△t (6)

dv,t+△t = dv,t +△dv, (7)

where subscript t indicates values for acceleration, velocity, and displacement in the present time step. The change in the upper

vehicle displacement between the present and future time step is denoted by △dv. Constants a0 − a4 are used to perform the

numerical integration; these values, along with a5 − a7 employed later in the FEM process, are calculated in Eq. (8):

a0 = 1

𝛽 △ t2
a1 = 1

𝛽 △ t
a2 = 1

2𝛽
− 1 a3 = (1 − 𝛾)△ t

a4 = 𝛾 △ t a5 = 𝛾

t𝛽
a6 = 𝛾

𝛽
− 1 a7 = △t

2

(
𝛾

𝛽
− 2

)
,

(8)

where 𝛽 ( 1
4
) represent the variation in acceleration during the incremental time step △t, and 𝛾 ( 1

2
) represents numerical or

artificial damping introduced by discretization in the time domain [41]. In this study, the average acceleration method for

Newmark Beta is utilized with a time step of a thousandth of a second (i.e. △t = 0.001 s). Once the equations for the future

values are determined, they are entered into Eq. (4) to solve for the unknown change in upper vehicle body displacement△dv.

The calculated change in displacement is then entered into Eqs. (5)–(7) to solve for the future values.

After solving the equation of motion for the upper vehicle body in the future time step, the future contact force of the wheel

can be determined by solving the equation of motion for the wheel. Using Newmark Beta method, the resulting equation for the

wheel contact force is obtained:

fwc,t+△t = (Mcd̈w + Cc
̇dw + Kcdw + Pc)t+△t + Qc,t, (9)

where Mc , Cc, and Kc are respectively the contact mass, damping, and stiffness; while Pc,t+△t represents the effects of external

forces on the vehicle, and Qc,t represents the effects of the vehicle’s displacement vector at the beginning of the time step.

Equations (10)–(14) indicate how these parameters are calculated:

Mc = Mw (10)

Cc = (Cw + Cv) + ΨwΨ
−1
v

Cv (11)

Kc = (Kw + Kv) + ΨwΨ
−1
v

Kv (12)

Pc,t+△t = −ΨwΨ
−1
v

fve,t+△t − fwe,t+△t (13)

Qc,t = ΨwΨ
−1
v

qv,t − qw,t, (14)

where Ψv,Ψw , qv,t, and qw,t are representative parameters used to simplify Eqs. (10)–(14), and are derived during the Newmark

Beta integration; for more information on how these values are derived, please reference [31]. Equations (15)–(18) indicate how

these parameters are calculated:

Ψv = a0Mv + a5Cv + Kv (15)

Ψw = −Cva5 − Kv (16)

qv,t = Mv(a1 ̇dv,t + a2
̈dv,t) + Cv(a6 ̇dv,t + a7

̈dv,t) − Kvdv,t (17)

qw,t = −Cv(a6 ̇dv,t + a7
̈dv,t) + Kvdv,t. (18)

where a5 − a7 are Newmark Beta constants introduced in Eq. (8).

Using Eq. (19)–(21) below, the contact force in Eq. (9) is reformulated to be in terms of the occupied bridge element’s nodal

displacement, velocity, and acceleration:

dw = {N}T{dbi}t+△t (19)

̇dw = {Ṅ}T{dbi}t+△t + {N}T{ ̇dbi}t+△t (20)

d̈w = {N̈}T{dbi}t+△t + {Ṅ}T{ ̇dbi}t+△t + {N}T{d̈bi}t+△t, (21)
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where {N} is a column vector containing Cubic Hermitian polynomial shape functions (i.e. the same functions used to derive the

elemental stiffness matrix) [42]. Equation (22) indicates the vector of shape functions:

{N} =
{
1 − 3x2

b
+ 2x3

b
; xc(1 − 2xb + x2

b
); 3x2

b
− 2x3

b
; xc(x2b − xb)

}
, (22)

where xc is a vehicle’s local position on an element, and xb is the local coordinate on an element (i.e. xb =
xc
l
). To transform the

contact force to be in terms of the equivalent nodal forces ({f bci}), the previously reformulated contact force is multiplied by

the transpose of the aforementioned shape functions. Equation (23) shows the final equation of motion for an occupied bridge

element (VBI element) with the derived {f bci} included:

([mbi]{d̈bi} + [cbi]{ ̇dbi} + [kbi]{dbi})t+△t = ({fbi} − [M∗
c
]{d̈bi} − [C∗

c
]{ ̇dbi} − [K∗

c
]{dbi} − {P∗

c
})t+△t − {Q∗

c
}t, (23)

where the asteriskedmatrices and vectors are the parameters calculated in Eq. (10)–(14) that have beenmultiplied by the shape

functions in Eq. (22).

Having obtained the finalized equation of motion for the VBI element, the modified contact matrices are added into the ele-

mental matrices on the left, the local element matrices and vectors are then assembled into the previously assembled global

matrices at their respective global coordinates. Newmark Beta method is then utilized to solve for the global acceleration, veloc-

ity, and displacement vectors for the future time step (t + △t). The nodal acceleration, velocity, and displacement values for

occupied elements are then substituted into Eq. (19)–(21) to calculate the future values for the wheel(s); the resulting values are

then substituted into the vehicle’s equation of motion (Eq. (4)) to calculate the future acceleration, velocity, and displacement

values for the upper vehicle body. Once the future accelerations, velocities, and displacements are known for the vehicle(s)

occupying the bridge, the global and local positions for the vehicle(s) are updated for the next time step and the analysis is

performed again. This iterative process is repeated until the vehicle(s) reach the end of the bridge.

2.2. Bridge and vehicle properties

To obtain structural properties that are indicative of a real world bridge structure, an example cross section is designed using

AASHTO LRFD 2012 Design Specifications; see Fig. 2a for an illustration of the cross-section. The cross section has a 12.19 m

(40 ft) wide 203.2 mm (8 in) thick concrete deck composed of 27.6 MPa (4000 psi) concrete and reinforced with two layers of

number five rebar; the requirements for coverage, spacing, and minimum area are employed for each layer of reinforcement as

per the aforementioned specifications [43]. The reinforced deck rests on top of sixW24x250 steel girders spaced at 2.44m (8 ft)

on center; 76.2 mm (3 in) thick haunches are placed between the deck and girders to allow for the efficient transfer of moment

in the composite section [43]. The subject bridge has two 3.66 m (12 ft) wide lanes, two 0.61 m (2 ft) wide shoulders, two 1.2 m

(4 ft) wide sidewalks, and two reinforced concrete barrier rails with a basewidth of 0.61m (2 ft). Table 1 indicates the structural

properties for the subject bridge.

Fig. 2. Demonstrates an example where a typical bridge cross section is transformed into an equivalent square cross section for numerical modeling. (a): Cross section view

of the physical simply supported bridge structure. (b): Shows equivalent properties for steel girders that have been transformed into concrete. (c): Indicates equivalent

properties of the entire bridge cross section when represented numerically.

Table 1

Bridge structural properties.

Length m (ft) Mass per Length
kg

m
( kip

ft
) Elastic Modulus GPa (ksi) MoI m4 (ft4) Area m2 (ft2) Damping Ratio %

16 (52.5) 12000 (8.68) 26.40 (3829) 0.5152 (59.7) 5.12 (55.11) 2
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Table 2

Vehicle properties.

Sprung Mass

kg (kip)

Unsprung Mass

kg (kip)

Suspension Stiffness
kN

m
( kip

ft
)

Wheel Stiffness
kN

m
( kip

ft
)

Suspension Damping
N s

m
( kip s

ft
)

Wheel Damping
N s

m
( kip s

ft
)

V1 500 (1.10) 55 (.12) 37 (2.54) 350 (23.98) 2256 (.155) 25 (.0017)

V2 700 (1.54) 70 (.15) 60 (4.11) 350 (23.98) 3888 (.266) 40 (.0027)

V3 850 (1.87) 85 (.19) 80 (5.48) 600 (41.11) 5772 (.396) 60 (.0041)

V4 1000 (2.21) 100 (.22) 115 (7.88) 400 (27.41) 8579 (.588) 90 (.0062)

V5 2000 (4.41) 200 (.44) 300 (20.56) 1000 (68.52) 14679 (1.01) 150 (.0103)

V6 4000 (8.82) 400 (.88) 900 (61.67) 2000 (137.04) 30000 (2.06) 300 (.0206)

V7 8000 (17.64) 800 (1.76) 2500 (171.30) 4000 (274.09) 113137 (7.75) 1210 (.0829)

V8 9000 (19.84) 900 (1.98) 2850 (195.29) 4000 (274.09) 128125 (8.78) 1300 (.0891)

To obtain the elastic modulus, MoI, and area properties outlined in Table 1, the equivalent area method is employed towards

the steel girders and reinforcement in the subject cross section to create an equivalent cross section of concrete, see Fig. 2b

for an example. Only structural members are considered in the equivalent section (i.e. the reinforced concrete deck, haunches,

and steel girders). The mass per unit length is approximated based on typical values for density of steel 7800
kg

m3 (.487 kip

ft3
) and

concrete 2400
kg

m3 (.145 kip

ft3
); all elements of the subject cross section, along with members not depicted (e.g. diaphragms and

lateral reinforcement), are considered in this approximation. Damping is selected based on typical values for composite bridges

outlined in the specifications [43]. Having obtained the MoI and area for the equivalent cross section of concrete, a square cross

section is designed with the same equivalent properties to represent the system numerically, see Fig. 2c for more details.

The bridge is determined to be geographically located in Clemson, SC or Chicago, IL so that previously collected temperature

data from these areas can be utilized to model temperature effects, please see subsection 3.2 for more details. The monitoring

period for the bridge is 730 days, approximately two years. During this time, one or two vehicles (one traveling each direction)

make a crossing every minute of each day; this was done to ensure adequate data is available for the NN process in Section 4.

An inventory of eight separate vehicles is utilized for monitoring the health of the subject bridge; Table 2 indicates the

properties for each vehicle. Vehicles are designed in such a way to represent, in a general sense, the dynamic properties of

physical highway vehicles [40]. The resonant frequency for the upper and lower body of each vehicle is designed to fall between

1 Hz − 2 Hz and 10 Hz − 15 Hz, respectively. The suspension damping is designed to have a ratio between 20% and 40%, while the

wheel damping is designed to be approximately 1% of the suspension damping [40]. Variable traffic patterns are simulated by

randomizing the sequence used to determine which one or two vehicles are currently traversing the bridge. The order and time

history for each vehicle entering/exiting the bridge is randomized for the two vehicle case to prevent false relationships from

being learned by the NN. To introduce variations in the measured bridge frequency and spectral resolution, vehicle speeds are

randomized between 2
m

s
and 25

m

s
(4.5 mph − 56 mph). Lastly, to account for changes in passengers and cargo, vehicle masses

are allowed to vary by different degrees. For small vehicles (<1000 kg), the mass is allowed to vary by ± 50 kg (±0.11 kip); for

medium sized vehicles (<8000 kg), the mass is allowed to vary by ± 100 kg (±0.22 kip); and for large vehicles (≥8000 kg), the

mass is allowed to vary by ± 200 kg (±0.44 kip).

3. Modeling operational, environmental, and damage effects

3.1. Surface roughness profile

Surface roughness can alter the acceleration response of a vehicle in a manner that may mask all bridge frequencies. In

this paper, the bridge’s surface roughness profile is generated using power spectral density (PSD) functions defined by ISO-

8608:1995 standards. To use these standards, it is assumed the entire surface of the bridge deck falls under the same statistical

classification, meaning a single roughness class exists homogeneously across the entire deck [44]. There are eight classes used

to describe surface roughness; the first class (A) represents a smooth profile with minimal roughness, while the last class (H)

represents a poor profilewith high roughness [44]. In this project, the class A surface profile is applied to ensure that the selected

NN strategy is at least feasible for the most optimal surface conditions.

Surface profiles are classified based on their PSD of vertical displacement (GD), which is a function of spatial frequency

(n
cycles

m
). Equation (24) defines GD(n) for a simulated surface profile:

GD(nj) = GD(n0)(ni∕n0)−2, (24)

where nj represents the jth spatial frequency being considered within a predefined frequency band (.01
cycle

m
to 10

cycles

m
). The

spatial frequency is sampled in intervals of
1

L
, where L is the length of the bridge. GD(n0) represents the PSD of vertical displace-

ment calculated as a function of traditional values of spatial frequency (n0 = .1
cycles

m
) [44,45]. The ISO-8608 standard differenti-

ates between surface classes based on their lower and upper bounds for GD(n0); for surface class A, the lower and upper bounds

are 0 m3 and 32e−6 m3, respectively. In this study, the value for GD(n0) is selected to be 4e−6 m3. The surface amplitudes are
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calculated in Eq. (25), and then entered into Eq. (26) to determine elevations at locations along the bridge:

Aj =
2

√
2GD(nj)△ n (25)

h(x) =
N∑
j=0

(Aicos(njx + 𝜑j)), (26)

where 𝜑j is a random phase angle following a uniform probabilistic distribution between the values 0 and 2𝜋. Parameter x is

the global position within the range 0 to L, and△n represents the sampling interval of the spatial frequency (1/L) [44,45].

Vehicle velocity and modeling time-step govern the number of elevation points in a surface profile. For a fixed time step,

an increase in velocity decreases the number of elevation points, and a decrease in velocity increases the number of elevation

points. In this paper, velocity is varied between 2
m

s
and 25

m

s
(4.5 mph − 56 mph), making it difficult to simulate a homoge-

neous profile that has consistent global elevations across test runs. What’s more, the randomly assigned phase angle 𝜑j further

increases variability in elevations across simulations. Fig. 3 demonstrates this issue for two sample surface profiles. Fig. 3a

shows the PSD of the profiles and demonstrates that despite having different amplitudes for spatial frequencies, they both fol-

low a class A classification. Fig. 3b displays the change in elevation over bridge length, and demonstrates that the two profiles

differ significantly from one another despite being generated with the same vehicle speed and time step.

To prevent surface profiles from continuously changing across simulations, a single surface profile is generated that can be

applied towards all test runs regardless of vehicle speed. This is done by employing a velocity of 1
m

s
(2.24 mph) and amodeling

time step of .001 s to obtain surface elevations for every thousandth of a meter along the subject bridge’s surface. By having such

a fine surface mesh, the precise elevation corresponding to any vehicle’s global coordinate on a bridge can be extracted for each

time step. If Profile 1 from Fig. 3 is re-sampled at a velocity of 10
m

s
(22.4 mph), it is observed, in Fig. 4, that the spatial frequency

content and the elevation magnitudes now remain constant.

Surface roughness effects are integrated into the finite element model by altering the equations for wheel displacement,

velocity, and acceleration (Eq. (19)–(21)), and by altering the finalized equation of motion for the VBI element (Eq. (23)). Equa-

tions (27)–(30) show these new calculations:

dw = {N}T{dbi}t+△t + h(x) (27)

Fig. 3. An example demonstrating the variability in elevations that can occur when generating surface profiles for individual vehicle runs. (a): Power Spectral Density of

class A surface profiles. (b): Elevations of class A surface profiles.

Fig. 4. An example demonstrating how surface profile elevations remain constant despite changes in vehicle speed. (a): Power Spectral Density of class A surface profiles.

(b): Elevations of class A surface profiles.
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̇dw = {Ṅ}T{dbi}t+△t + {N}T{ ̇dbi}t+△t + vh′(x) (28)

d̈w = {N̈}T{dbi}t+△t + {Ṅ}T{ ̇dbi}t+△t + {N}T{d̈bi}t+△t + v2h′(x) (29)

(
[mbi]{d̈bi} + [cbi]{ ̇dbi} + [kbi]{dbi}

)
t+△t

=
(
{fbi} − [M∗

c
]{d̈bi} − [C∗

c
]{ ̇dbi} − [K∗

c
]{dbi} − {P∗

c
} + {H∗

c
}
)
t+△t

− {Q∗
c
}t (30)

where v is the velocity of the vehicle(s), and h′(x) is the derivative of the surface amplitude with respect to x. Vector {H∗
c
}

represents the effect of surface roughness in the contact force between the vehicle(s) and bridge, and is calculated using Eq. (31)

below:

{H∗
c
}t+△t = {N}

(
v2Mch

′′(x) + vCch
′(x) + Kch(x)

)
. (31)

3.2. Temperature effects

In this section, focus is placed on modeling temperature induced variations in DBHM data. Thermodynamics indicate that a

linear correlation exists between temperature and bridge elastic modulus and natural frequency [46], a trend that researchers

have found holds true for many reinforced concrete decks [47,48]. However, bi-linear relationships have also been observed for

bridges where an asphalt wearing surface causes different rates of softening and stiffening, such as the case of the Z-24 bridge in

Switzerland, or where interior moisture freezing causes deck stiffness to increase at a linear rate different than softening, such

as the case of the Dowling Hall Footbridge at Tuffs University [26,27]. Thus the relationship between temperature and bridge

modulus or frequency can be linear or nonlinear in nature, and is dependent upon a bridge’s environmental and operational

conditions.

Because the constitutive equations required to simulate the governing relationship between temperature and a bridge’s

dynamic characteristics are mostly unknown, and the number of parameters that must be considered is vast, simulating ther-

modynamic effects is a difficult task [49,50]. To get around this, models based on measurements from real structures can be

leveraged to portray the relationship between temperature and variations in a bridge’s dynamic response [50]. In this paper,

we employ bi-linear equations for bridge elastic modulus developed for the Dowling Hall Footbridge [51]. Equation (32) calcu-

lates the modification factor for a subject bridge’s elastic modulus, which is then multiplied to the bridge modulus to obtain the

temperature shifted modulus value [51]:

Θ = Q + STt + R

(
1 − erf

(
Tt − 𝜅

𝜏

))
(32)

Em = ΘE0, (33)

where Q and STt are hyperparameters that represent the linear behavior of the bridge above freezing, while R(1 − erf( Tt−𝜅
𝜏

))
represents the approximate linear behavior at or below freezing. Because the behavior between frequency and temperature

has more variability at lower temperatures, the Matlab error function (erf) is employed to introduce higher variance at these

temperature settings. Tt is the temperature in degrees Celsius at time t, while variables 𝜅 and 𝜏 are hyperparameters that

represent the area for transitioning from below freezing to above freezing. E0 is the nominal bridge elastic modulus, while Em
is the modified elastic modulus. Table 3 shows the mean and standard deviation values for each of the hyperparameters above

[51]. Although these equations were developed for a specific bridge, they are deemed appropriate for this study as the deck of

the Dowling Hall Footbridge is constructed using a traditional reinforced concrete design with no wearing surface, analogous to

most highway bridges in the United States.

In this study, hourly temperature data, provided by the National Centers for Environmental Information for the cities of Clem-

son, SC and Chicago, IL, is used to create realistic daily and yearly oscillation patterns in bridge elastic modulus and frequency

[52]. In the Clemson data set, there are little to no hourly temperature values that fall below zero; meaning, the Clemson data

set represents a scenario where only above freezing temperatures are present year round (i.e. only a linear relationship exists

between bridge frequency and temperature). In the Chicago data set, temperatures fluctuate between freezing and above freez-

ing year round (i.e. the bi-linear relationship between bridge frequency and temperature exists). By employing the two different

sets of temperature data, we are able to test if the accuracy of the health monitoring approach is affected by the complexity of

the temperature-frequency relationship. Linear interpolation provides temperature values for simulations occurring between

the top and bottom of each hour. Because the bridge is short-spanned, it is assumed to have consistent exposure conditions

Table 3

Mean and standard deviation for temperature variables.

Q S R 𝛾 𝜏

Mean 1.0129 −0.0048 0.1977 −1.1012 3.1466

STDV 0.003 0.0001 0.0027 0.0513 0.0861
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Table 4

Studies demonstrating the percent change in bridge like structure frequencies caused by crack damage.

Reference Crack Depth mm (in) Percent Reduction in MoI % Percent Impact Length % Percent Reduction in Frequency %

[55] N.A. 28 2.5 .7

28 10 2.85

[56] 3.2 (.125) 19 N.A. .95

25.4 (1) 32 4.2

49.5 (1.95) 33 10

[57] 11.2 (.44) 40 1 4.1

11.2 (.44) 40 17 12

[58] 5 (.196)-Half Flange Width 10 N.A. 1.2

5 (.196)-Full Flange 50 5.6

Table 5

Depth of cracking in relation to percent change in moment of inertia and principle frequency.

Crack Depth mm (in) Percent Girder Depth % Reduced MoI m4 (ft4) Percent Reduction in MoI % Percent Frequency Change %

D1 11.2 (.44) 1.65 .4652 (49.54) 9.70 .50

D2 19.63 (.77) 2.90 .4276 (42.20) 17.00 1.00

D3 28.24 (1.11) 4.17 .3890 (36.59) 24.50 1.50

D4 33.80 (1.33) 4.99 .3642 (32.20) 29.30 2.00

D5 40.88 (1.61) 6.03 .3328 (28.71) 35.40 2.50

and, therefore, uniform temperatures throughout. It is also assumed that temperature does not affect the dynamic properties of

vehicles, and that damage does not cause a change in the bi-linear relationship between temperature and bridge modulus.

3.3. Modeling damage

In this study, damage is introduced in the form of various levels of cracking. Research has shown that the impact of crack

damage on the resonant frequencies of a bridge can range from insignificant to very noticeable, and is dependent on the location

of damage, length of the impacted area, and crack depth [53,54]. A variety of studies have attempted to determine if the magni-

tude of change in the principle frequency can be used to identify the severity of damagewithin a structure, Table 4 demonstrates

the findings from studies conducted on FE models and lab systems. In a study conducted on a full scale three-span simply sup-

ported bridge, Salane et al. found that the principle frequency decreased by 7.3%, 8%, and 16.7% for respective fatigue test cycles

of 9.5e+ 4, 2.15e+ 5, and 3.735e+ 5. In the aforementioned study, information regarding the severity of cracking was not pro-

vided; however, it was stated that the stiffness of the structure changed on average by 20% and by a max of 24%, with the max

reduction being associated with a completely fractured girder [59,60]. Other studies conducted on full scale bridge structures

have demonstrated crack damage causing noticeable changes in the principle frequency of bridges; these studies, however, also

demonstrate the effect temperature can have on masking changes caused by damage, therefore making it difficult to associate a

level of cracking with a percent change in frequency [21,26,61,62].

As indicated by the studies above, the relationship between severity of crack damage and changes in principle frequency vary

from structure to structure, implying that the relationship is dependent on the boundary conditions, geometry, and material

properties of a structure. This appears to hold true as, to our knowledge, no generally accepted metric has been established

for identifying the relationship between levels of crack damage and changes in the principle frequencies of highway bridges.

Because of this, we assume a relationship where an approximately 50% reduction inMoI, applied on the central 5% of the bridge’s

length, results in a 5% change in principle frequency; this relationship is in the family of the magnitude of frequency change and

MoI reduction observed from the studies listed in Table 4. For this relationship to hold true, the equivalent beam section has to

be discretized into 21 finite elements (i.e. each element is 0.76 m (2.5 ft)). Note that damage is not introduced in the form of a

50% reduction in MoI, this level of damage is just to establish the relationship between damage and reduction in frequency.

In this study, damage is represented using two different cases. In the first case, damage is introduced as five instantaneous

decreases inMoI on the central element of the structure. Each level of damage corresponds to a 0.5% change in natural frequency.

The initial level of damage represents a situation where minor localized damage has occurred, while the final level represents

a situation where the bridge has sustained severe localized damage and safety has become an issue. Damage is considered

localized as it only affects the central element of the structure, correlating to an impact length of 4.75% of the total length. The

initial decrease in moment capacity corresponds to tension cracks forming in the lower flange of the four interior girders, while

each decrease thereafter corresponds to the tension cracks continuing to propagate through the flanges. Table 5 shows the depth

of cracking required on each of the four interior girders in order to cause each respective decrease in moment capacity; Fig. 5

provides a visual depiction of this process. Each level of damage respectively occurs at 25%, 33%, 50%, 66%, and 75% of the way

through the approximately two year monitoring period. These ranges of time were selected so that an adequate amount of data
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Fig. 5. Levels of damage in cross section of four interior girders.

Table 6

Length of damage in relation to percent change in principle frequency.

Crack Depth mm (in) Reduced MoI m4 (ft4) Length of Damage m (ft) Percent of Total Length % Percent Frequency Change %

D1 19.63 (.77) .4276 (42.20) .76 (2.5) 4.75 1.00

D2 19.63 (.77) .4276 (42.20) 1.52 (5) 9.5 1.96

D3 19.63 (.77) .4276 (42.20) 2.28 (7.5) 14.5 2.88

D4 19.63 (.77) .4276 (42.20) 3.04 (10) 19 3.74

D5 19.63 (.77) .4276 (42.20) 3.8 (12.5) 23.75 4.53

could be collected for each level of damage. It should be noted that temperature effects are still considered for the damaged

bridge element.

For the second damage case, cracking no longer occurs locally on the central element, but rather expands outward from the

central node along the length of the structure. Damage is still introduced as five instantaneous decreased in MoI, but now each

instance of damage is associated with a 4.75% increase in impact length instead of an increase in crack depth. To allow damage

to expand evenly outward from the central node, while only causing a roughly 5% increase in impact length, the structure is

discretized into 40 elements; meaning, the length of each element is now 0.38 m (1.25 ft) and accounts for 2.375% of the total

length. The initial level of damage occurs on the central two elements in the form of damage level two outlined in Table 5;

thereafter, the same level of cracking spreads to the adjacent two elements to cause the percent length of impact to increase.

The final level of damage represents a situation where approximately a quarter of the bridge’s length has been affected by

cracking. Table 6 shows the length of the structure impacted for each level of damage; Fig. 6 provides a visual depiction of this

process. Each level of damage respectively occurs at 25%, 33%, 50%, 66%, and 75% of the way through the approximately two year

monitoring period. Again, temperature effects are still considered for the damaged bridge elements.

4. Machine learningmodeling and implementation details

4.1. Machine learning problem formulation

Despite being one of the most popular indicators for bridge damage, changes in natural frequencies caused by damage tend

to be small and are often masked by operational and environmental noise [14]. These limitations suggest that NNs, which can

provide fast inferences as well as noise-tolerant approximate results, could be an effective solution strategy. In many other

application areas, neural networks have been shown to effectively approximate complex simulations [63,64]. In these cases, a

computationally expensive routine has been replaced by a reasonably high-quality approximation, which reduces the overall

time-to-solution by multiple orders of magnitude. Similar networks are also noise-resilient across a number of tasks, such as

computer vision [65]. Convolutional models, those that simplify their input by pooling iterative convolutional filters, are a key

component of many such computer vision tasks [66].

One such model, VGG19 [67], is able to effectively classify images in the ImageNet dataset by applying multiple “block” of

two convolutional layers followed by one pooling layer. The model presented here, and depicted in Fig. 8 follows the same

Fig. 6. Levels of damage along percent length of subject bridge.
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Fig. 7. Example of how vehicle frequencies dominate frequency spectrum, and how band-pass filtering can be employed to remove vehicle frequencies from response

spectrum. (a): Raw frequency spectrum for sprung body (top) and unsprung axle (bottom) masses (i.e. no band-pass filtering has been applied) (b): Filtered frequency

spectrum for sprung body (top) and unsprung axle (bottom) masses (i.e. band-pass filtered has been applied).

Fig. 8. The above depicts the neural architecture that predicts bridge damage classes given features corresponding to a single vehicle’s crossing. Information flows left

to right, starting with the sequence containing FFT observations for both upper and lower masses in the quarter vehicle model. The size of this input layer is derived

from the sampling rate and band-pass filter width of our FFT. Each white box then indicates a 1-dimensional convolutional filter, while each yellow box corresponds to a

max-pooling operation. Towards the end, we flatten our convolutional layer and apply two fully connected layers of size 512, before finally predicting one of six damage

classes. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

pattern as VGG19, but reformulates the model architecture to better understand the vibration data gathered from vehicles

crossing bridges. The main difference arises from our choice of one-dimensional convolutional filters, as they better map to the

frequency-amplitude domain. However, similar to VGG19, we apply blocks of two layers of convolutional filters, with a filter

width of 3, followed by a max-pooling layer that reduces the effective size of the data by half each operation. Subsequent blocks

double the number of convolutional filters, progressively moving from a “tall” input, to a “wide” intermediate representation.

This representation is then “flattened” so that we may apply two fully connected layers that are capable of learning a non-linear

relationship between the intermediate representation and the six damage classes. The process of applying filters and pooling

results introduces significant redundancy into the neural architecture, which improves the overall resiliency of the NN model,

and leads to high performance results.

4.2. Feature engineering

Inmachine learning, a “feature” refers to an observable characteristic of something to bemodeled [68]. Ultimately, amachine

learning model must learn the relationship between these observable characteristics and some resulting characteristic of inter-

est. In this study, features must be selected that foster the estimation of bridge health; however, the drive-by monitoring

paradigm limits the number of features to just those that can be observed via sensors placed on a moving vehicle. It is assumed

a monitoring vehicle will have accelerometers on both the sprung and unsprung masses that are capable of capturing verti-

cal acceleration, a thermometer to capture ambient temperature, and a speedometer to measure average speed. Additionally,

because the exact mass of each vehicle is unknown due to variable cargo and passengers, vehicle masses are approximated

according to the values provided in Table 2. This is equivalent to the real-world scenario where vehicle mass could be approxi-

mated as the value provided by a vehicle’s manufacturer.

In this study, vertical acceleration data from both the upper and lower masses of a passing quarter-vehicle model are cap-

tured over time. The sequence of vertical acceleration data obtained from the vehicles is pre-processed by first applying a sharp

low-pass filter at 100 Hz to prevent aliasing and reduce high frequency noise effects. An FFT with a band-pass filter is then

applied to identify the frequency spectrum of the crossing vehicle(s) within the range of 3 Hz − 10 Hz; the length of each vehi-

cle’s transformed signal is modified such that the spectral resolution equals 0.1 Hz. This process results in 140 observations

of frequency and amplitude for both upper and lower masses. Appended to each observation is the time of day the crossing

occurred (out of 24 h) and the vehicle’s mass provided in Table 2; again, the appended mass and the actual mass used in sim-

ulation are different. These six features, frequency (shared by both masses), upper amplitude, lower amplitude, vehicle mass
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estimate, vehicle speed, and time of day, form the base of each observation. However, in the simulation scenarios wherein envi-

ronmental effects are introduced, a seventh feature is also added: the observed ambient temperature. These six or seven features

are then placed in a sequence for each recorded vehicle crossing. It is these sequences that form the inputs of the NN model. It

is important to note that the NNmodel has no direct notion of time-of-year, and that during training we randomize the order of

observed vehicles. The ability to learn an indirect relationship between temperature and time-of-year is obfuscated by running

the simulation for approximately two years. This is an important detail as any trivial model could learn a simple relationship

between damage and time. In contrast, we ensure the model must learn to detect signals present in vehicle frequency spectra.

The previously mentioned band-pass filter is employed to prevent dominate vehicle frequencies from affecting the health

monitoring results. As can be seen in Fig. 7a, the amplitudes associated with vehicle modes dominate the frequency spectrum,

potentially affecting the learned relationships within the NNmodel. To prevent any issues with vehicle frequencies affecting the

NN, the range for the band-pass filter is selected such that all modes associated with vehicles are excluded from the frequency

spectrum. The frequency range for the filter is not solely selected based on vehicle frequencies, but rather is also selected consid-

ering initial estimates for bridge frequency and variations in frequency causedby operational and environmental effects. Because

we have prior knowledge of the subject bridge’s cross section and material properties, we are able to determine its principle

frequency. However, an empirical formula has been developed that allows the principle frequency of a simply supported bridge

to be approximated when it is unknown, see Eq. (34) below [69]:

f1 = 100∕L. (34)

For this study, the estimated principle frequency falls around 6.25 Hz, which is close to the FE model value of 6.53 Hz. In their

study, Haywood et al. also provide upper and lower bounds to demonstrate the approximate range the principle bridge fre-

quency may fall within for a select span length; for the span length provided in Table 1, the lower and upper bounds are approx-

imately 5 Hz and 8 Hz, respectively [69]. This range is expanded to 3 Hz − 10 Hz to account for large variations in observed

principle frequency caused by temperature effects and vehicle speed. As can be seen in Fig. 7b, the selected width for the band-

pass filter excludes sprung and unsprung vehicle frequencies, and provides a sufficient enough range for capturing the subject

bridge’s principle frequency. Fig. 7b also demonstrates, however, that noise is still present within the captured frequency band,

making it difficult to discernwhich peak is related to the bridge frequency. Because of this, the amplitude value of all frequencies

within the 3 Hz − 10 Hz band are collected and observed.

Additionally, there are a number of potential features omitted in order to ensure a model that can generalize to different

vehicle and bridge configurations. These features can be grouped into two classes, those that are observable but not helpful,

and those that are helpful but not observable. The former group consists of features such as the time of day or year a vehicle

is present on a bridge. If time were included, the NN model would most likely learn a linear inverse correlation between time

and health, and in doing so would discard all other information. Clearly, this would not be a preferable model. The latter group

of features, those that cannot be observed, include bridge properties such as mass and surface elevations. While these features

would certainly improve the model, we do not assume they are detectable from a vehicle outfitted with the aforementioned

health monitoring sensors.

Fig. 8 depicts the neural architecture used to determine bridge health for each simulated vehicle. As previously mentioned,

the architecture follows the paradigm established by VGG19. In this figure, the red bands represent a section of values read by

a single application of a convolutional filter. The blue dots indicate that a single value in the downstream layers is derived from

the entire set of values highlighted in red. The yellow layers represent the max-pooling operation, where adjacent values are

compared and the higher is selected to participate in the following layers. The final yellow block is “flattened”, meaning it is

reshaped to be accepted by the following fully connected layers.

The size of each layer is deterministic based on the size of the input. Each convolutional layer reduces the “height” of the

intermediate sequence by two (because of convolutional filters of size three). Each pooling layer reduces the height by half,

because pooling compares disjoint sets of adjacent features. By convention, following each pooling operation, the number of

convolutional filters is doubled (in this case, the “width” of a layer). The only exception to this is the first layer, which expands

the input from six or seven features to 16.

The size of the two fully connected layers is determined experimentally.While VGG19 uses two layers of size 4096, it is prone

to overfitting. Using smaller fully connected layers drastically reduces this problem by limiting the solution space of the overall

model to simpler combinations of intermediate values. Additionally, because the problem uses fewer input features (140x7 vs

244x244x3), simpler underlying relationships between input to output are expected.

The NNmodel uses ReLU as the activation function for every layer, except the final layer which applies softmax. The model is

fit using the Adam optimizer, a batch size of 128, and has an early stopping criteria of ten epochs to prevent overfitting (model

training stops if the validation performance does not improve for ten iterations of the training set). The weights of the NN

model are updated through back-propagation of the categorical cross-entropy loss function. The resulting mode that is used for

evaluation is whichever version best minimizes the loss function on the validation set following an iteration of the training set

[32].

4.3. Evaluation strategy

The models are evaluated by the ability of the proposed machine learning solution to detect bridge damage levels using a

20% holdout experiment across an array of simulation scenarios. Each scenario represents a different configuration of simulation
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parameters. The parameters considered are: the number of vehicles (1 or 2) simultaneously present on the bridge, the damage

pattern (expanding or localized), whether or not environmental effects are considered (on or off), and two different weather

models (real data from either Clemson SC or Chicago IL) corresponding to different temperate zones in the continental United

States. Overall this evaluation spans all 16 scenarios.

First two years of bridge crossings are simulated at different times of day across all scenarios. Data from each individual

crossing is randomly shuffled and divided into training, validation, and testing sets by a 70% – 10% − 20% split. Test-set perfor-

mance is calculated in two ways, both per-vehicle and per-day. The per-vehicle evaluationmetric is accuracy, which determines

whether an arbitrary vehicle can predict bridge health provided a single crossing. The per-day evaluation metric is “confidence”,

which aggregates the total crossings for a single day and determines whether the model’s damage predictions are correct across

a majority of trials. In this case, the prediction of the model for a single day is equal to the damage class receiving a majority

vote from that day’s simulated crossings.

Confidence evaluates how significant is the majority vote of damage class from a single day, and whether that vote results

in an accurate bridge health estimate. This metric ranges from one, where all vehicles predict the correct class, to negative one,

where all vehicles predict the same incorrect class. A confidence of zero indicates that the vote was tied. However, in the results

presented here all confidence values are positive as the NN solution always produced correct per-day predictions. Formally, this

metric is defined as:

Cz = P(Tz, z) − max
d∈D−Tz

P(d, z). (35)

where Tz is the true damage class of the considered bridge on day z, P(d, z) be the proportion of vehicles on day z that predict

damage class d, and D is the set of damage classes. Put plainly, Cz is equal to one if every vehicle predicts the damage class accu-

rately. Cz is equal to zero if the number of vehicles predicting the correct damage class equal the number of vehicles predicting

some incorrect class. Cz is only less than zero if some other class is preferred to the true damage class. In our later analysis, we

plot daily confidence over the course of our two simulated years to show the model’s ability to detect bridge damage in different

conditions.

5. Results

For each of the 16 simulation scenarios described above we generate approximately two years (730 days) worth of bridge

crossings, split the set of crossings into training, validation, and testing sets, train a convolutional NN model, and evaluate the

test set in terms of per-vehicle accuracy and per-day confidence. These results are presented across all scenarios in Table 7.

Results are compared using accuracy to judge the overall performance of a NNmodel. Many of the results achieve an accuracy

of one, indicating that every vehicle in the test set is able to correctly identify bridge damage. As accuracy decreases, so too does

confidence. The provided confidence plots indicate the sorts of bridge damage that a model is better or worse at detecting. The

confidence plot is a dense bar plot, depicting confidence from zero to one on the vertical axis, and the day from 1 to 730 across

the horizontal. The color of each region indicates the bridge damage class, from healthy (green) to maximum damage (red). If

the height of the colored region decreases, that indicates that more vehicles incorrectly detected the current damage class for

some common incorrect class.

Of the parameters varied across simulation scenarios, the number of vehicles simultaneously present on the bridge is the

most impactful. All models trained on datawhere only one vehicle is present per crossing achieve an accuracy of over 0.99, while

none of the scenarios with simultaneous crossings reach that same accuracy. The decrease in accuracy as a result of multiple

simultaneous vehicles is expected. Data is only recorded from a single vehicle per-crossing, and so there is no way to detect

the unobserved vehicle in the NN model. In addition, the unobserved vehicle’s crossing has no relationship to the observed

vehicle — it may cross before or after, or not at all. Therefore, the performance gap between the single- and double-crossing

scenarios is indicative of the performance difference made by noisy training data. The results demonstrate that the average

decrease in accuracy is 0.111 when comparing a one vehicle trail to its reciprocal two vehicle counterpart. When comparing

confidence plots, it is observed that this decrease in performance is least seen when the bridge is healthy, and in many trials is

most prevalent for the intermediate damage classes.

When comparing the simulation scenarios across the damage pattern parameter, it is observed that the expanding damage

pattern is slightly easier for the NN model to capture. While this effect is less pronounced than the number of simultaneous

vehicles, Table 7 indicates that the model accuracy is 0.0693 less when comparing a scenario with localized damage to its

corresponding expanding simulation. However, this difference primarily almost entirely derives from the noisy two vehicle

case, where differences in performance are more pronounced (average absolute difference among the single-vehicle trials is

only 0.00275). Again, the largest difference in quality is observed to occur in the intermediate damage classes.

When evaluating the effect that environmental factors such as temperate have on the NN model, there is diminished impact

again. Now, the average decrease in accuracy is only 0.0115 when comparing a simulation with no environmental effects to one

with environmental effects enabled. Because the NN model receives temperature as an input per-crossing, it is able to better

compensate for its effect, as compared to the other simulation parameters. Additionally, in contrast to parameters such as the

number of simultaneous vehicles, the recorded temperature has a more predictable, and therefore discoverable, relationship.

However, the NN does appear to have overfit on temperature in some areas, such as the “dip” in the final damage class or at the
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Table 7

Accuracy and confidence for each simulation scenario.

The column of confidence plots graphically describes model performance as a dense bar chart over the two-years of simulation time. The

vertical dimension represents confidence between 0 and 1 and the horizontal dimension represents time. Additionally, the color of the

segment indicates damage class, where green indicates the undamaged bridge, and progressing colors indicate damage levels, ending at

the highest damage case in red.

end of the healthy class, which are only observed when environmental effects are enabled. This effect is due to an incorrectly

learned relationship between temperate and health, although its effect is minimal.

Lastly it does not appear that the location of weather data has much impact on simulation results. When comparing trials

with environmental effects enabled, Clemson weather data leads to an average of 0.00125 higher accuracy, which is negligible.

Interestingly, many of the same weather-related overfitting behaviors are observed across similar date ranges and related trials

with different underlying weather data. This is likely due to the normalization applied to all of the training data, which stan-

dardizes all input features to the zero to one interval. Therefore, the two cities yearly weather patterns indicate similar signals,

despite existing in very different ranges.

Across all trials, the NNmodel is able to capture relevant relationships between the vehicle’s measurements and the bridge’s

health. While there are mild variances in model accuracy for a single vehicle, the fact that every day exhibits a positive con-

fidence value indicates that when a simple majority vote pooling method is applied, the NN model is always able to correctly

predict bridge health in the simulation.

6. Conclusion

The purpose of this study was to demonstrate the feasibility of a new DBHM approach (i.e. training neural networks on

vehicle-bridge simulations to detect damage on physical bridge systems) by determining if an actionable health assessment

could first be obtained from generalized yet realistic numerical models of vehicle-bridge systems exposed to environmental

and operational noise. A finite element methodology based on the concept of vehicle-bridge interactions was used to simu-

late a simply supported bridge subjected to dynamic loads introduced by moving quarter-vehicle models. Environmental and

operational noise were represented by vehicle traffic, surface roughness, and temperature induced changes in bridge elastic

modulus. Damage was introduced as instantaneous decreases in moment of inertia for either a single bridge element (local-

ized) or multiple elements (expanded). As damage is known to cause variations in bridge frequencies, the frequency content

contained within the acceleration response of each vehicle was extracted. Because operational and environmental effects can

introduce high amplitude noise or shifts in the frequency response spectrum, it was difficult to distinguish between what was

a bridge’s modal frequency or noise. To account for this, amplitude values for frequencies within the 3 Hz − 10 Hz range were

extracted from the frequency response data. Other data, such as ambient temperature, speed, and approximate vehicle mass,
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was appended to the extracted frequency data. A multi-layer convolution neural network was then leveraged to analyze the

aforementioned data and provide a noise-tolerant relationship between observations and bridge health. To test the NN’s ability

to generalize and provide insight into the methodologies performance, a multi-class system study was conducted that assessed

the structural condition of the subject bridge based on its level of theorized damage. The multi-class study was conducted for a

series of 16 different simulation scenarios, with each scenario representing a different configuration of simulation parameters.

The results from themulti-class study demonstrate the ability of the convolutional NN to detect bridge damage across a range

of real-world noise signals. When comparing idyllic simulation scenarios, wherein NN modeling can perfectly uncover bridge

damage, to similar scenarios that incorporate real-world noise signals, this study findsmarginal performance differences. While

other unmeasured vehicles pose the greatest challenge, it and other complicating factors, such as different climates, tempera-

tures, and damage patters, can be automatically discarded by a convolutional model. Although this study cannot directly eval-

uate whether a similar approach could counteract every source of real-world noise, its results do highlight the noise-canceling

ability of machine learning models across a number of important factors. Furthermore, simple temporal pooling, such a daily

voting mechanism, allows for the proposed machine learning approach to overcome all considered noise sources and discover

the true bridge health state.

7. Future work

The results from this study indicate that the proposed DBHM approach is feasible and should be further explored as a viable

health monitoring strategy. Before being able to apply this approach towards physical structures, however, studies need to be

conducted to demonstrate the ability of simplified vehicle-bridge models to reliably capture the dynamic response of physical

structures. More importantly, focus should be placed on identifying and validating methods for modeling the various types of

damage that can occur in bridge structures (e.g. breathing cracks and changes in boundary conditions). Finally, studies should

be conducted to ascertain the maximum level of surface roughness and the minimum level of daily traffic that will allow for

accurate damage classification.
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