Model Inversion Attacks Against

Collaborative Inference

Zecheng He
zechengh@princeton.edu
Princeton University

ABSTRACT

The prevalence of deep learning has drawn attention to the
privacy protection of sensitive data. Various privacy threats
have been presented, where an adversary can steal model
owners’ private data. Meanwhile, countermeasures have also
been introduced to achieve privacy-preserving deep learning.
However, most studies only focused on data privacy during
training, and ignored privacy during inference.

In this paper, we devise a new set of attacks to compro-
mise the inference data privacy in collaborative deep learning
systems. Specifically, when a deep neural network and the
corresponding inference task are split and distributed to dif-
ferent participants, one malicious participant can accurately
recover an arbitrary input fed into this system, even if he has
no access to other participants’ data or computations, or to
prediction APIs to query this system. We evaluate our attacks
under different settings, models and datasets, to show their
effectiveness and generalization. We also study the charac-
teristics of deep learning models that make them susceptible
to such inference privacy threats. This provides insights and
guidelines to develop more privacy-preserving collaborative
systems and algorithms.

CCS CONCEPTS

«Security and privacy — Systems security; Distributed
systems security; - Computing methodologies — Arti-
ficial intelligence.

KEYWORDS

Deep Neural Network, Model Inversion Attack, Distributed
Computation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ACSAC ’19, December 9-13, 2019, San Juan, PR, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7628-0/19/12...$15.00
https://doi.org/10.1145/3359789.3359824

Tianwei Zhang
tianwei.zhang@ntu.edu.sg
Nanyang Technological University

148

Ruby B. Lee

rblee@princeton.edu
Princeton University

ACM Reference Format:

Zecheng He, Tianwei Zhang, and Ruby B. Lee. 2019. Model In-
version Attacks Against Collaborative Inference. In 2019 Annual
Computer Security Applications Conference (ACSAC ’19), December
9-13, 2019, San Fuan, PR, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3359789.3359824

1 INTRODUCTION

Deep learning technology has developed rapidly, especially
Deep Neural Networks (DNNs). Deep learning models out-
perform traditional machine learning approaches on various
artificial intelligence tasks, e.g., image recognition [19], natu-
ral language processing [31], speech recognition [16], anom-
aly detection [20] etc. Such high and reliable performance
is attributed to the models’ complex structures (i.e., a large
number of hidden layers and parameters), time and resource
consuming training process, and a significant amount of data.

To accelerate the learning and prediction processes, as
well as reduce overheads, collaborative deep learning sys-
tems have been designed. Typically there are two collabo-
rative modes. The first is collaborative training [6, 7]. The
training task is distributed to multiple participants. Each par-
ticipant trains an individual model over his private dataset,
and periodically exchanges model updates. The final model is
aggregated from each individual model. Collaborative train-
ing can significantly improve the training speed.

The second mode is collaborative inference [8, 17, 25, 27,
43]. The basic idea is to split a deep neural network into
multiple parts, with each part allocated to a different par-
ticipant. An input sequentially goes through each part of
the neural network on these participants to generate the
final output. Collaborative inference has gained popularity
in the edge-cloud scenario. As edge devices, e.g. IoT devices
and smartphones, have limited computation and storage ca-
pacities, it is difficult for a single device to host an entire
model, and conduct the inference within reasonable latencies.
Instead, the neural network can be divided into two parts.
The first few layers of the network are stored in the local
edge device, while the rest are offloaded to a remote cloud
server. Given an input, the edge device calculates the output

Code available: https://github.com/zechenghe/Inverse_Collaborative
Inference

https://www.acsac.org/2019/
https://doi.org/10.1145/3359789.3359824
https://doi.org/10.1145/3359789.3359824
https://github.com/zechenghe/Inverse_Collaborative_Inference
https://github.com/zechenghe/Inverse_Collaborative_Inference

of the first layers, sends it to the cloud, and retrieves the final
results. Collaboration between the edge device and cloud
server achieves higher inference speed and lower power con-
sumption than running the task solely on the local or remote
platform.

Privacy has become a big security concern in deep learn-
ing. Past work presented a variety of privacy threats against
training data, e.g., property inference attacks [3, 11], member-
ship inference attacks [18, 29, 30, 39, 41, 49], model inversion
attacks [9, 10]. These threats are also important in the con-
text of collaborative training. Since multiple participants
are involved in one task, but not all of them are necessar-
ily trusted, it is essential to prevent malicious participants
from stealing sensitive data. It has been shown that the pri-
vacy of training data is better protected if each participant
in the distributed system uses his own dataset and never
shares it with other participants [15, 40]. However, it is still
possible for an adversary participant to infer the sensitive
information and properties of other participants’ training
data indirectly via model updates. Distributed model inver-
sion attacks [22] and property inference attacks [32] were
designed and implemented.

In contrast, inference data privacy is less studied, either
in single-party or multi-party machine learning systems.
It is much more challenging to recover inference samples
than training samples due to the following reasons: (1) the
model parameters do not depend on the inference input. Thus
the inference process reveals less useful information about
inference samples to the adversary; (2) Training samples
usually follow certain distributions, enabling the adversary
to recover statistical information about such distributions.
Inference samples do not have this assumption, making it
hard to recover an individual sample. In single-party sys-
tems, Wei et al. [48] made an attempt towards inference data
recovery in DNN accelerators via power side channels. Their
attacks required the adversary to be able to hack into the
victim device and install trojans, and the input image needs
to be very simple, e.g. binary. These assumptions make the
attack less practical. To the best of our knowledge, there is no
work exploring the privacy issues in multi-party inference
systems.

This paper presents the first investigation of inference data
privacy in a collaborative ML system. Two key questions are
considered in this study. The first one is: if one intermediate
participant is compromised and controlled by an adversary, can
he recover an arbitrary input sample? To answer this question,
we design a set of novel attack techniques for different set-
tings. (1) In a white-box setting where the adversary knows
the target model on other participants, we propose regular-
ized Maximum Likelihood Estimation (rMLE), to recover the
input from the model parameters and intermediate output.
(2) In a black-box setting, the model parameters on other

149

participants are inaccessible to the adversary. We introduce
the Inverse-Network technique to identify the mapping from
the intermediate output to input. (3) We further consider the
query-free black-box setting, in which the adversary can-
not query the inference system. We design an approach to
reconstruct an alternative version of the target model and
then recover the input via rMLE. Our attack results indicate
that it is feasible for a compromised participant to accurately
recover the input data, even if he has no knowledge of the
target model, training data, or capability of querying the
system.

The second question is: Of the target system and model,
which characteristics make the inference process more vulnera-
ble to such privacy threats? Which can reduce privacy leakage?
To fully understand the impact of the model features and sys-
tem designs on the attacks, we conduct empirical evaluations
on different model partitioning strategies and adversary’s
capabilities. Through quantitative comparisons, we identify
the critical features and conditions that determine the suc-
cess of the model inversion attacks. We hope our findings
can guide machine learning researchers and practitioners to
design more secure collaborative inference systems.

The key contributions of this paper are:

e The first systematic study of inference data privacy in
collaborative machine learning systems.

e The regularized Maximum Likelihood Estimation tech-
nique to recover inference data under the white-box set-
ting;

o The Inverse-Network technique to recover inference data
under the black-box setting;

o The query-free shadow model reconstruction technique to
recover inference data under the query-free setting;

e Quantitative discussion about the impact of system and
model features on the attacks, and investigation of defense
strategies.

The rest of the paper is organized as follows: Section 2
gives the background of DNN and collaborative inference.
Section 3 presents the threat models in our consideration
and experimental configurations. Sections 4, 5 and 6 describe
attacks under white-box, black-box and query-free settings,
including attack approaches, implementations and evalua-
tion results. Section 7 compares different attack factors, and
discusses possible mitigation solutions. We give related work
in Section 8 and conclude in Section 9.

2 BACKGROUND

2.1 Deep Neural Networks

A DNN is a parameterized function fy : X + Y that maps an
input tensor x € X to an output tensor y € Y. Various neural
network architectures have been proposed, e.g., multilayer

Figure 2: Collaborative in-

DNN architecture
ference

Figure 1:

perceptrons [36], convolutional neural networks [28] and
recurrent neural networks [38].

Figure 1 shows the structure of a DNN. It usually con-
sists of an input layer, an output layer and a sequence of
hidden layers between the input and output. Each layer is
a collection of units called neurons, which are connected to
other neurons in the previous layer and the next layer. Each
connection between the neurons can transmit a signal to an-
other neuron in the next layer. In this way, a neural network
transforms the inputs through hidden layers to the outputs,
by applying operations (e.g., linear function or element-wise
nonlinear activation function) in each layer.

Model training. The training process of a neural network
is to find the optimal parameters 6 that can accurately reflect
the relationship between X and Y. To achieve this, a train-
ing dataset D'"9" = {x[r4in yfraimN with N samples is
needed, where x;"*" € X is the feature data and y!"*"" € Y
is the corresponding ground-truth label. Then a loss function
L is applied to measure the distance between the ground-
truth output y!"*" and the predicted output f,(x!"*""). The
goal of training a neural network is to minimize this loss
function (Eq. 1). Backward propagation [14] and stochastic
gradient descent [35] are commonly used methods to ap-
proximately achieve this goal. The optimal parameters 6"
together with the network topology form the deep learning

model.

N
6" = argmin() L(y;" " fyx""")) M
i=1
Model inference. After the model training is completed,
given an input x, the corresponding output can be calculated

asy = fi (x).

2.2 Collaborative Inference

In a collaborative inference system, a DNN is partitioned
into n parts: fy = fp1 * foz---fon- Each part fp; contains
several layers, and is distributed to a participant P;. Given
an input x, the first participant P; generates v; = fp,(x) and
sends it to P,. Each participant P; receives the intermediate

150

value v;_; from P;_;, calculates v; = fp;(v;), and passes it
to P;,;. The final participant P, generates the final output
Yy = fon(v,_1). Figure 2 shows an example of a collaborative
inference system with two participants.

A use case. With the growing proliferation of Internet of
Things (I0T), we need ways to deploy deep learning inference
applications on commodity resource-constrained edge de-
vices [50]. Running the entire application on the edge device
has several challenges: the limited computation resources of
the device can cause significant latency; the limited storage
capacity makes it hard to store a large DNN model; the lim-
ited battery capacity causes a critical energy consumption
constraint. An alternative is to offload the entire DNN model
and inference computation to the cloud. The edge device
sends the input data to the cloud and receives the output.
While this can resolve the limitations of edge devices, it can
incur significant communication costs when sending a large
volume of input data. Besides, there can be privacy issues of
the inference data and integrity issues of the model [21], if
the cloud is not trusted.

An optimized strategy is to adopt collaborative inference
between the edge device and the cloud [8, 17, 25, 27, 43].
The first few simple layers of the DNN model are deployed
on the edge device, while the remaining complex layers are
offloaded to the cloud. This approach can reduce communi-
cation costs, as the intermediate output can be designed to
be much smaller than the raw input. Such low data transfer
bandwidth can also achieve lower latency. Collaborative in-
ference makes it feasible and efficient to deploy large-scale
intelligent workloads on today’s edge platforms.

Collaborative inference can also provide better privacy
protection, as the cloud now only receives the intermediate
values instead of the raw data [43]. The raw data can cause
significant privacy issues, e.g. biosensor readings, medical
diagonosis and examination data, and facial images. In this
paper, however, we show that information leakage is still
possible in collaborative inference. An untrusted cloud can
easily and accurately recover the sensitive data from the
intermediate values without accesses to the edge device. The
existing ML privacy protection mechanisms include leverg-
ing data obfuscation, Trusted Execution Environment (TEE),
homomorphic encryption and differential privacy. We dis-
cuss their feasibility and potential drawbacks in Section 7.4.

3 PRELIMINARIES
3.1 Threat Model

Without loss of generality, we consider a collaborative infer-
ence system between two participants, P, and P,. The target
model is split into two parts: fy = fy, - fo;. P; performs
the earlier layers fy;, while P, performs the later layers fp,.
We consider P; is trusted: when an input is fed into fp;,

P, correctly processes it and never leaks it to other parties.
However, P, is untrusted, attempting to steal the input. This
assumption is reasonable in the edge-cloud scenario: the
model owner configures and operates the local device (P;)
to ensure the computation is trusted. But he does not have
control over the cloud server (P,), which may be untrusted.

Our threat model can also be applied to systems with more
than two participants. As most real systems are split into two
parties, without loss of generality, for the rest of this paper,
we use a two-participant system to describe and evaluate
our attacks. Multi-participant attacks can be achieved in a
similar way. P, can be defined by all consecutive adversarial
participants from an intermediate layer to the last layer. P,
can be defined as the initial layers to that intermediate layer.

Adversary’s capabilities. We assume the untrusted partic-
ipant P, strictly follows the collaborative inference protocols:
receiving v = fp;(x) from P, and generating y = fy,(v). He
cannot compromise the inference process conducted by P;,
and he has no knowledge of the input x, nor any intermediate
values inside P;, except v.

We consider the adversary with different capabilities, sum-
marized in Table 1. These capabilities include knowledge of
the target model fp,, knowledge of training data, and access
to the target system for a query. Based on these, we consider
three types of settings:

In the white-box setting (Section 4), P, obtains knowl-
edge of the DNN layers fp; controlled by P;, including the
network structure and parameters. Then the adversary can
use the model parameters to recover input data, without the
requirements of knowing training data or querying models.

In the black-box setting (Section 5), we relax the assump-
tion about the knowledge of the target model. The adversary
can only learn information about the model fy, indirectly
through querying the inference system. We demonstrate that
the adversary can recover the sensitive input when he knows
the values, or distribution of the original training dataset, or
neither.

We further consider the query-free setting (Section 6),
which is a special case of the black-box scenario without
the capability of model query. This type of attacks needs
the lowest requirements. We show that the adversary can
recover the data even when he has no knowledge of the edge
model and cannot query the model.

3.2 Experimental Configurations

In the rest of this paper, we evaluate our attacks on two
standard DNN benchmark datasets: MNIST and CIFAR10.
The target models we try to find inverses are convolu-
tional neural networks (CNN). Specifically, we adopt LeNet
(2 convolutional layers and 3 fully connected layers) on the
MNIST dataset, and a CNN with 6 convolutional layers and

151

Table 1: Adversary’s capability in our consideration (v:
the adversary needs this capability; —: this capability is
not necessary.)

Settin. Target model Training Data Inference
& Parameters | Structure | Values | Distribution Query
Section 4
White-box v v N N
Section 5 : : — ; ;
Black-box — — — — 7
- v v v -
Section 6 - - v v -
Query-free - v - v
- - - v

2 fully connected layers on the CIFAR10 dataset. We split
each model at different layers (mainly convolutional layers).
Table 2 lists the detailed experimental configurations. These
configurations are realistic in the case of edge-cloud scenar-
ios, as the most heavy-computational layers (including all
fully-connected layers) are offloaded to the cloud. We will
explore the cases that the model is split at fully-connected
layers in Section 7.1.

Table 2: Experiment Configurations

Dataset MNIST CIFAR10
LeNet-5
Target Model @ conv + 3 fo) 6 conv + 2 fc CNN

« 1st conv layer (conv11)
« 4th conv layer after
activation (ReLU22)

« 6th conv layer after
activation (ReLU32)

« 1st conv layer (conv1)
« 2nd conv layer after
activation (ReLU2)

Split point

We follow the standard MNIST and CIFAR split for training
and testing samples [1]. We set the learning rate to 107> and
choose ADAM as our optimizer. The target models and all
attacks are implemented with Pytorch 1.0.1. We run our
experiments on a server with 1 Nvidia 1080Ti GPU, 2 Intel
Xeon E5-2667 CPUs, 32MB cache, 64GB memory and 2TB
hard-disk.

3.3 Evaluation Metrics

To quantify the attack results, we adopt two metrics, Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSIM) [47]. PSNR mathematically measures the pixel level
recovery quality of the image. It is defined in Equation 2,
where MAXT is the maximum possible intensity of a signal
(255.0 for images), and I(i, j) refers to the intensity at posi-
tion (i, j) of image I. SSIM measures the human perceptual
similarity of two images. It considers luminance, contrast
and structure of two images. SSIM is a single value between
0 and 1, where 0 represents least similar and 1.0 indicates
most similar.

MAXT?
PONRULL) = 1009 s sty —) @

4 WHITE-BOX ATTACKS

We start from the white-box setting, where the adversary
participant knows the parameters of the initial layers fy; on
the trusted participant. As deep learning frameworks and
tools become prevalent and mature, many trained models
are published online for free use, covering various prediction
tasks. It is a common practice for model owners to directly
download and deploy these models. In this case, the adver-
sary participant has white-box access to the target model.

Formally, the model inversion problem is: how can the
adversary recovers an input x,, from the corresponding in-
termediate value fy,(x,), and the model parameters 01? We
propose regularized Maximum Likelihood Estimation (rMSE)
to solve this problem.

4.1 Regularized Maximum Likelihood
Estimation

We treat the model inversion as an optimization problem:
given fy,(x,), our goal is to find a generated sample x, that
satisfies two requirements: (1) the intermediate output of
this sample, fy,(x), is similar to fy,(x,); (2) x is a natural
sample, following the same distribution as other inference
samples.

For requirement (1), we use the Euclidean Distance (ED)
to measure the similarity between fy;(x) and fp,(x,) (Eq.
3(a)). Note that fy,(x) can be interpreted as the mapping
from the input space (unobservable to the adversary) to the
feature space (observable to the adversary). Then this Eu-
clidean Distance represents the posteriori information from
the adversary’s intermediate-level observation. Our goal is
to find the optimal sample x that minimizes this distance.

For requirement (2), we adopt the Total Variation [37] to
represent the prior information of an input sample. The total
variation of a 2D image x is defined in Equation 3(b), where
x; ; represents the pixel at position (i, j). The total variation
encourages the generated image x to be piece-wise smooth,
i.e. avoiding drastic variations inside regions but allowing
large changes along the region boundaries, controlled by £.

ED(x,x0) = |l fo1(x) - fel(xo)H% (3a)
TV(x) = Z(lel,j - xi,jlz + 1% a1 — xi,jlz)ﬁ/z (3b)

iJj
x* = argmin, ED(x,x,) + ATV (x) (3¢c)

The total objective function of the model inversion prob-
lem is a combination of feature space similarity and natural-
input a priori, as shown in Eq. 3c. In this equation, A is a
hyperparameter to balance the effects of the two terms. If the
feature space fp,(x) is far from the input space, i.e. a lot of
network layers are computed on the trusted participant P,, a
large A is required because less posterior information about
the input can be recovered from the feature space and the
adversary needs to rely on the prior information. In contrast,
if only a small number of layers are deployed on P;, then
the adversary only needs to select a small A. We perform
gradient descent (GD) to solve Eq. 3¢ and recover the image.

Algorithm 1 White-box model inversion attack

1: Function WhiteboxAttack(fy, fo1(x0), T, A, €)

2: /* fp;: the target model */

3: /™ fp1(x,): the intermediate output of sensitive input x;
*/

/* T: maximum number of iterations */

: /™ A: tradeoff between prior and posteriori information
: /* €: step size in GD */

: L(x)=l1 for (%) = for (xo)ll3 + ATV (x)
=0

10 x9= ConstantInit()

11: while (t < T) do

R A A S

(t)
12: X(Hl) = x(t) — € % ZJL(x([))
ox
13: t+=1
14: end for

15: return x(T)

Algorithm 1 shows the detailed white-box attack. The in-
put image is initialized with constant gray, i.e. 0.5 for all RGB
channels. We choose ADAM [26] to accelerate the optimiza-
tion. We observe that ADAM converges more stably when
performing model inversion from shallow layers. Therefore,
we choose a large step size (107%) and a small iteration num-
ber (500) for shallow layers, and a small step size (107%) and
a large iteration number (5000) for deep layers. We choose
B = 1.0 and observe this is enough to generate good results.

4.2 Evaluation

Figure 3 shows the white-box attack results on MNIST and
CIFAR10 datasets. For each dataset, the first row shows the
target inference samples, and the remaining rows are the
recovered images when the split point is at different layers.
For MNIST, we observe that the adversary can accurately
recover the images with high fidelity, when the split point is
either in the first (conv1) or last (ReLU2) convolutional layer.
For CIFAR10, when the split layer is in the first (conv11) or
fourth (ReLU22) convolutional layer, the recovered images

maintain high quality. When the neural network is split after
the last convolutional layer (ReLU32), the recovered images
are hardly recognizable.

Ret EIIIIIIIEI

Convli

BaE

ReLU

EEESENEY

(b) CIFAR10.

Figure 3: Recovered inputs in white-box attacks

Table 3 shows the PSNR and SSIM metrics for each exper-
iment. We observe that when the split point is in a deeper
layer, the quality and similarity of recovered images become
worse. For CIFAR10, there is a significant drop in SSIM from
ReLU22 to ReLU32. These conclusions are consistent with
the visual assessments in Figure 3. We set the threshold of
SSIM as 0.3: a recovered image with an SSIM value below
this threshold (shaded entries in Table 3, and other tables in
the following sections) is regarded as being unrecognizable.

Table 3: PSNR (db) and SSIM for white-box attacks

MNIST CIFAR10
convl | ReLU2 | convll | ReLU22 | ReLU32
PSNR | 39.69 | 1510 | 37.59 19.47 13.38
[SSIM [0.9969 | 05998 | 0.9960 | 0.6940 0.1625

5 BLACK-BOX ATTACKS

Next, we consider the black-box setting, where the adversary
does not have knowledge of the structure or parameters of
fo1- We assume that the adversary can query the black-box
model: he can send an arbitrary input x to P;, and observe
the corresponding output fy,(x). This assumption applies
to the case where the model owner releases prediction APIs
to end users as an inference service. We further relax this
assumption in Section 6.

153

Model inversion attacks under the black-box setting are
more challenging, because without the knowledge of model
parameters, the adversary cannot directly perform a gradient
descent operation on fp; to solve the optimization problem
in Equation 3(c). One solution is to first recover the model
structure and parameters by querying the model, and then
recover the inference samples. The possibility of model re-
construction has been demonstrated in [33, 44, 46]. We prove
that the model inversion attacks can be achieved based on
the reconstructed model in Section 7.3.

We propose a more efficient approach, Inverse-Network,
to directly identify the inversed mapping from output to
input, without the need to obtain the model information.
Our solution is easier to implement, and can recover inputs
with higher fidelity. We describe this approach and evaluate
it in this section. Quantitative comparisons between these
two solutions are presented in Section 7.3.

5.1 Inverse-Network

Conceptually, the Inverse-Network is the approximated in-
verse function of fy,, trained with v = fy,(x) as input, and
x as output. We show the detailed description of Inverse-
Network approach in Algorithm 2. The attack consists of
three phases: @ generating a training set for the Inverse-
Network; @ training the Inverse-Network; and @ recovering
the input sample by querying the Inverse-Network.

First, the adversary generates a bag of samples X = (x;, x;,

X,,) to query the target system, and observes the cor-
responding intermediate outputs V = (fp;(x), fp1(x3),
fo1(x,,,)) (Lines 10-17 in Algorithm 2). We consider three
cases for selecting X: (1) the adversary has access to the orig-
inal dataset used for training fy, and adopts it as X; (2) the
adversary does not have the original training set. Instead, he
has a different set following the same distribution; (3) the
adversary has neither the original dataset or its distribution.
He has to randomly generate some samples. In our exper-
iment, we generate pure noise sampled from the standard
Gaussian distribution (zeros mean, unit variance) to form X.

Next, the adversary can directly train an Inverse-Network
fa_l1 using V as the training input and X as the training target
(Lines 19-29). We initialize the Inverse-Network with Xavier
initialization [13]. We leverage I, norm in the pixel space as
the loss function (Equation 4), and stochastic gradient de-
scent (SGD) to train the Inverse-Network. It is worth noting
that the architecture of the Inverse-Network is not necessar-
ily related to the target model fp,. In our experiment, we use
an entirely different architecture.

for = argmin, —an fax) —x)IF @

Algorithm 2 Black-box model inversion attack

Function BlackBoxAttack(fp;, fp1(x))

/* fp;: the target model */

/* x,: the target sensitive input to recover */
/™ fo1(x): the intermediate layer output */
X=GenerateTrainingSet()
g=TrainInverseNet(X, fp)

Xo = Inverse(g, fy:(x))
return X,

b A A

-
<

Function GenerateTrainingSet()

. if known training set then
X=data TrainingSet

else if Known training distribution then
X= NewSet ~ data.TrainingSet

else
X=GaussianNoise

return X

L S S S O U =Y
R A U SR o A v

- Function TrainInverseNet(X, f3,)

/* k: BatchSize */

. /* e: StepSize */

: g©=Init()

: while (t < T) do

Randomly sample x;, x,...x; from X
L(g"“=f Sia lg(for () = xil13
g+ = 40 L")

6g(t)
t+=1

end while
return g(T)

NN NN

26: — € *
27:
28:
29:
30:
31:
32:
33:

Function Inverse(g, f;(x,))
Xo=9(fo1(x0))

return X,

Once the Inverse-Network fe_ll is obtained, the adversary
can recover any inference sample from the intermediate-
level value: x = fe_l1 (v). This approach is more efficient than
rMLE: (1) for each target sample, the adversary only needs
to pass through the Inverse-Network once, while in rMLE,
an iterative process is required to solve the optimization
problem; (2) calculating the inversed input is parameter-free,
while rMLE requires tuning the parameters (4, § in Eq. 3).

5.2 Evaluation

Figures 4, 5 and 6 show the recovered images of two datasets
under three different circumstances. Table 4 shows the PSNR
and SSIM metrics of these attacks. From these recovery re-
sults, we draw some conclusions.

154

First, the adversary can recover the input with black-box
access for most cases. The quality of the recovered images
in MNIST is very high when the split point is in conv1 or
ReLU2. For CIFAR10, the recovered images still maintain high
quality when the split point is in a shallow layer (conv11).
They become relatively vague and lose certain details when
the split point is in a deeper layer, e.g. layer ReLU32 for the
CIFAR10 dataset.

Second, we observe that there is no significant difference
between the cases where the adversary uses the same train-
ing set, or a different set with the same distribution to train
the Inverse-Network. For MNIST, the attack with a different
set are even slightly better than the ones with the same set.
However, when the adversary does not know the training
data distribution, and adopts randomly generated samples,
the attack effects drop significantly. This is especially promi-
nent in the case of the CIFAR10 split in the ReLU22 layer. We
conclude that the knowledge of the training data distribution
is important to recover samples from deep layers.

0| /[Z]5]y|S|b7]2[a
CWEIIIIIIIE

ReLU

(b) CIFAR10.

Figure 4: Recovered inputs in black-box attacks (same
training data)

6 OQUERY-FREE ATTACKS

The Inverse-Network approach requires the adversary to
be able to query the target model, to generate the data set
for training f, ! In this section, we consider the query-free
setting, where the adversary cannot query the system, and
does not know the client-side model information. The basic
idea is that the adversary first reconstructs a shadow model,
which can imitate the target model’s behavior, and then uses

ReLU32
(b) CIFAR10.

Figure 5: Recovered inputs in black-box attacks (dif-
ferent training data, same distribution).

Ret E==IIIIEI

{"«J
il
a0
Slolo
S
S0E

(b) CIFAR10.

Figure 6: Recovered inputs in black-box attacks (dif-
ferent distributions).

rMLE over this shadow model to recover the sensitive input
samples.

6.1 Shadow Model Reconstruction

The problem in our consideration is: how can the adversary
reconstruct a shadow model of the former model layers, fy;,

155

Table 4: PSNR (db) and SSIM for black-box attacks

Dataset MNIST CIFAR10
convl | ReLU2 | conv1l | ReLU22 | ReLU32

same set | 39.64 20.35 49.88 19.81 15.42
PSNR | same dist | 40.72 20.81 49.02 19.36 13.95

rand set 14.76 7.72 48.59 12.79 12.37

same set | 0.9887 | 0.7334 | 0.9993 0.6939 0.3124
SSIM | same dist | 0.9950 | 0.8046 | 0.9992 0.6802 0.2196

rand set | 0.7188 | 0.4310 | 0.9996 0.2930 0.0440

only with the knowledge of the latter layers fy, and a dataset
S drawn from the same distribution as the original training
set? He cannot query the model with specified samples to
get the intermediate values.

The key insight of our approach is that, if the shadow
model is reconstructed as fél, it should be able to classify
the input with high accuracy when combined with the later

layers fy,:

~ fo2(for(x:)) ~ foo(fo (x;)). for (x;,y;,) €S (5)

Then the task of model reconstruction can be translated
into minimizing the classification error of the composition
of the two models: fy,(fy,(x;)) versus y;. Equation 6 shows
the loss function for training the model, where m is the
number of samples in S, CrossEntropy is the cross-entropy
loss. Equivalently, this means the training process of fy, is
supervised at the output layer of fy,. Once the model fj, is
reconstructed, the adversary can perform model inversion
attacks using the rMLE technique in Section 4.

m
fi: = argming=- " CrossEntropy(fun(g(x)).y) (6)
i=1

Algorithm 3 describes the query-free attacks. There are
two phases: @ offline shadow model reconstruction (Lines
10-21) and @ online model inversion (Line 7). The shadow
model reconstruction only needs to be performed once. Then
all the input samples can be recovered using the same shadow
model, by inferencing only once for each input .

In the shadow model reconstruction phase, a training set
and an initial network are required (Lines 13-14). We con-
sider four cases with different adversary’s capabilities in two
dimensions, i.e. training set and network structure: (1) the
adversary’s dataset S is the same as the original set used
for training f,. He also knows the network structure of fp;;
(2) the adversary has a different dataset S from the original
training set, but follows the same distribution. This assump-
tion is reasonable, because there exist various public datasets
for different tasks. He knows the network structure of fy;;
(3) the adversary has the same training set. But he does not
know the structure of fp;. He has to use an alternative one

Algorithm 3 Query-free model inversion attack

: Function QueryFreeAttack(fp;, fo2, fo1(x0))
: /* fpy: the target model */

: /* fpo: the known model */

. /™ x,: the target sensitive input to recover */
I fo1(x) the intermediate layer output */

: f;l=ModelReconstruction(S, fo2)

. %, = WhiteboxAttack(fyy, fp1(xo), T, A, €)

: return X,

© O N G A w o

[
(=3

: Function ModelReconstruction(fy,)
. /™ k: BatchSize */
. /* e: StepSize */
: S=GenerateTrainingSet()
: go=InitArchitecture()
: while (t < T) do
Randomly sample x;, x,...x; and labels y;,y,...y;
from S
L(9")=1 T yi(faa (9" (x)) + (1=y:) (1= fo (9" (x1))
g(t+1) =4 . LY

dag"
t+=1
end while
return g(T)

e e e
AN U s W N =

17:

18: —€
19:
20:

21:

for the shadow model. We assume that both the target model
and the shadow model are convolutional neural networks,
but with different numbers of layers and filters, as well as
filter sizes. Table 5 shows the network structure configura-
tions used in our experiments; (4) the adversary does not
know the training set nor the network structure.

After the training set and network structure are deter-
mined, the adversary can adopt SGD to optimize the loss
function of the composition of the two models. We choose
the cross-entropy loss because it performs well on image
classification tasks. Other loss functions can be leveraged, if
the adversary aims to find inverses of the DNN for different
tasks. Once the shadow model is obtained, the adversary can
use rMLE (Algorithm 1) to recover the inputs.

Table 5: Neural network configurations for query-free
attacks.

Dataset | Layer Target Model Shadow Model
MNIST convl One 5X5 conv layer Two 3X3 conv layers
ReLU2 Two 5X5 conv layers Four 3X3 conv layers
conv1l One 3X3 64 filters layer One 3X3 16 filters layer +
CIFAR10 one 3X3 64 filters layer
ReLU22 Two 3X3 64 filters layers + | One 5X5 filters layer +
two 3X3 128 filters layers | one 5X5 128 filters layer

156

Conv11

ReLU22

ReLU32

(b) CIFAR10.

Figure 7: Recovered input in query-free attacks (same
training data, same network structure).

6.2 Evaluation

We illustrate the recovered images under the four adversary’s
capability settings in Figures 7, 8, 9 and 10 respectively. The
corresponding quantitative results are listed in Table 6.

For MNIST, the adversary can still recover the input im-
ages from conv1 and RelU2 layers. The quality of the images
is relatively lower than the ones in the white-box or black-
box setting. For CIFAR10, attacks are successful only from
the shallow conv11 layer with the knowledge of training set
or network structure. These results indicate that query-free
attacks are harder to achieve than white-box or black-box
attacks. This is straightforward, as the adversary now has
smaller capabilities. Besides, more layers on the trusted par-
ticipant can also increase the difficulty of image recovery.

We also observe that a different training set with the same
distribution has similar effects on model inversion attacks.
So the adversary does not need to know the exact training
set for attacks. This is also observed in the black-box setting
(Section 5). However, if the adversary has no knowledge of
the network structure, then an alternative network has worse
performance. This emphasizes the importance of knowledge
of network structure for a model inversion attack.

7 DISCUSSIONS

In this section, we review, summarize and compare the attack
results under different settings. We explore the impacts of
system features and adversary’s capabilities on the model
inversion attacks. We also discuss possible defense solutions.

NN
] %[%
9]0 2

i

P
P
i
i

EEn

(b) CIFAR10.

Figure 8: Recovered input in query-free attacks (differ-
ent training data, same network structure).

W o) /[Z]3]y]S6[7]9[a

Conv1l

210

RelLU

R
=
%
B

(b) CIFAR10.

Figure 9: Recovered input in query-free attacks (same
training data, different structures.)

7.1 Impact of System Configurations

From the results in previous sections, we observe that differ-
ent split points can yield different attack effects. This raises
an important question: how to split the neural network in the
collaborative system, to make the inference data more secure?

157

Ref

(b) CIFAR10.

Figure 10: Recovered input in query-free attacks (dif-
ferent training data, different structures.)

Table 6: PSNR (db) and SSIM for query-free attacks

Dataset MNIST CIFAR10
Net Structure convl | ReLU2 | conv1l | ReLU22 | ReLU32
same set, same net | 17.60 9.61 21.16 12.74 11.09
PSNR diff sets, same net | 21.53 9.27 21.45 11.51 11.98
same sets, diff nets | 12.59 8.05 17.55 12.46 10.68
diff sets, diff nets 17.86 8.03 13.06 11.30 11.47
same set, same net | 0.7423 | 0.4981 0.9104 0.1752 0.0419
SSIM | diff sets, same net | 0.9121 | 0.4652 | 0.9145 0.1723 0.0102
same sets, diff nets | 0.6430 | 0.3790 | 0.6344 0.2714 0.0247
diff sets, diff nets | 0.6952 | 0.3226 0.1553 0.0467 0.0793

We use the query-free attack over the LeNet model (MNIST
dataset) as an example to explore this question. We select
the split point at each layer, and perform model inversion
attacks. Figures 11 and 12 show the recovered images, and
PSNR/SSIM metrics respectively.

Generally, we observe that the quality of recovered images
decreases when the split layer goes deeper. This is straightfor-
ward as the relationship between input and output becomes
more complicated and harder to revert when there are more
layers. Besides, we also observe that the image quality drops
significantly, both qualitatively (Figure 11) and quantitatively
(Figure 12), on the fully-connected layer (fc1), indicating that
model inversion with fully-connected layers is much harder
than for convolutional layers. The reason is that a convo-
lutional layer only operates on local elements (the locality
depends on the kernel size), while a fully-connected layer en-
tirely mixes up the patterns from the previous layer. Besides,
the number of output neurons in a fully-connected layer is

typically much smaller than input neurons. So it is relatively
harder to find the reversed relationship from the output of
the fully-connected layer to the input.

Unfortunately, privacy is usually not considered when
selecting the optimal split point in a collaborative system. In
the case of an edge-cloud scenario, most layers (including
all fully-connected layers) are commonly offloaded to the
cloud, while the edge device only computes a small number
of convolutional layers for feature extraction, due to power
and resource constraints [25]. This gives a chance for an
untrusted cloud provider to steal sensitive inference input.

Takeaway: When selecting the split point in a collabora-
tive inference system, privacy should also be considered, in
addition to latency and power constraints. We recommend
placing at least one fully-connected layer on the trusted par-
ticipant to hide the information of sensitive input samples.

o) /(213]4]516[2]9(7
4 B

B
B
BE

A3
6,
o)

"y

&ﬂﬂﬂ!
mmﬂﬁm

IIIHHHH
IIIIEEEEE
HEEEESSSERNN

A A

cconc I I N

Figure 11: Recovered images in query-free attacks

7.2 Impact of Adversary’s Capabilities

In addition to the selection of split point, the adversary’s
capability can also have an impact on the attack results. The
question we consider is: which capabilities are critical for
model inversion attacks?

Knowledge of target model. If the adversary can query
the system, then it is not necessary for him to know the
parameters or network structure on the trusted participant.
Comparing Tables 3 and 4, we find that the effects of black-
box attacks using our Inverse-Network technique are as good
as the white-box attacks using rMLE technique. However,
if the adversary does not have access to the model query

158

25

20

15

10

5

0
&

Figure 12: PSNR and SSIM in query-free attacks.

APIs and model parameters (the query-free setting), then the
knowledge of network structure plays a relatively important
role in recovering inputs, as discussed in Section 6.2 and
Table 6.

Knowledge of the training set. The adversary does not
need to know the exact training set. Using a different set
following the same distribution, the adversary can recover
the input images with similar quality in the black-box set-
ting (Table 4), or the query-free setting (Table 6). However,
the knowledge of training data distribution is very critical:
without such information, the adversary has to use randomly
generated samples to reverse the network in the black-box
attacks, whose performance drops significantly (Table 4). In
the query-free case, the adversary cannot reconstruct the
model without knowing the training data distribution.

Capability of model query. This is also a critical require-
ment for model inversion attacks. If the adversary is not
able to query the model in a black-box setting, he has to
reconstruct the model before recovering the input. It takes
more effort to implement the attacks, and the performance
is lower (comparing Tables 4 and 6).

Takeaway: We recommend the model owner trains the tar-
get model using a training set whose distribution is unknown
to the adversary. Restricting the query APIs from untrusted
participants can also make the attacks harder.

7.3 Comparisons of Attack Techniques

We propose three different attack techniques under different
threat models. We summarize and compare these techniques.

Table 7: Applicability of techniques under different
settings.

Inverse | Shadow
MLE Network | Model
White-box v v v
Black-box - v v
Query-free - - v

Applicability. Table 7 lists the effectiveness of each tech-
nique under different settings. The white-box scenario is the
most basic setting: since the adversary knows all the details
about the target model, other techniques without such an
assumption can also be applied here, although some of them
may not be efficient (e.g., reconstructing the shadow model).
For the black-box setting, since the adversary does not know
the model parameters, he cannot use the rMLE technique.
He can either adopt the Inverse-Network approach, or recon-
struct the shadow model and then use rMLE to recover the
input. For the query-free scenario, since the adversary does
not know the model parameters, and has no access to query
the model, he can only use the shadow model reconstruction
with rMLE to recover the image.

Table 8: Comparison of Inverse-Network and shadow
model reconstruction in the black-box setting.

Technique MNIST CIFAR10
convl | ReLU2 | conv1l | ReLU22 | ReLU32
PSNR | Inverse-network [3964 | 2035 | 4987 | 19.81 15.41
Model reconstruction | 39.67 15.41 28.67 18.02 12.61
ssIm | nverse-network [0.9887 | 07334 | 0.9993 | 06939 | 03124
| Model reconstruction | 0.9968 | 0.6103 [0.9766 | 0.6893 0.1145

Performance. We first compare the attack performance
of the rMLE (Table 3) and Inverse-Network * (Table 4) ap-
proaches in the white-box setting, respectively. We observe
that when the adversary knows either the training data or
its distribution, the recovered images from Inverse-Network
maintain higher quality than the ones from rMLE. Otherwise,
rMLE performs better than Inverse-Network with randomly
generated samples.

We then compare the performance of Inverse-Network
and shadow model reconstruction solutions in the black-
box setting. As introduced in Section 5, the adversary can
query the model to get pairs of input and corresponding
intermediate values, based on which he can reconstruct a
shadow model. We implement this approach and show the
quantitative comparisons with Inverse-Network in Table 8.
We find that Inverse-Network has better results than shadow
model reconstruction for most datasets and split points.

Takeaway: For the white-box setting, if the adversary has
no knowledge of the training set or distribution, he can
use rMLE for better performance. Otherwise, he can select
Inverse-Network, as it has better results, and takes less effort
to implement and perform. For the black-box setting, Inverse-
Network is recommended over shadow model reconstruction.
For the query-free setting, shadow model reconstruction is
the only applicable method.

Inverse-Network gives the same results for both white-box and black-
box settings.

159

7.4 Defenses

Since current privacy-preserving algorithms and systems all
focus on training data, we provide some possible defense
strategies to mitigate the inference privacy attacks discussed
in this paper.

Running fully-connected layers before sending out re-
sults. As shown in Section 7.1, a fully-connected layer can
mix up inputs, and hide information about the inference sam-
ples. So a model owner can deploy at least one such layer
on the first trusted participant. This makes it very difficult
for the adversary to recover the input. Typically, the fully-
connected layers follow convolutional layers in a DNN. This
requires computing all convolutional layers on the client-
side, which can be heavy for an edge device.

Make the client-side network deeper. As illustrated in
Figures 11 and 12, both qualitative and quantitative measure-
ments of the inversed images become worse as the network
becomes deeper. Therefore, making the client-side network
deeper can help mitigate the attacks. On the other hand,
deeper networks increase the compution on the client-side.
The client device or IoT device may not have sufficient com-
putation, storage or battery resources for this, nor for the
above mitigation strategy.

Trusted Execution on untrusted participants. The hard-
ware support for a Trusted Execution Environment (TEE),
e.g., Intel SGX, ARM TrustZone, is effective at secure remote
computation and data confidentiality protection against priv-
ileged adversaries. In the case of collaborative DNN compu-
tation, the inference application can be deployed inside a
TEE (or secure enclave) on the untrusted participants, and
the intermediate values are encrypted against the adversary
during transmission between participants. This can provide
privacy protection for the inference data. However, this re-
quires special architecture support on the cloud side, and
careful crypto key management.

Differential privacy. We can use differential privacy to
add noise and obfuscate sensitive information. Specifically,
we can add noise to the inference input, and the intermediate
value becomes v = fy,(x + €). We can also add noise directly
to the intermediate value before sending it to the untrusted
participant: v = fp,(x)+e€. In these two cases € is the random
noise that satisfies differential privacy. It is obvious that there
exists a trade-off between usability and privacy: as a higher
level of noise is added, the model accuracy may drop.

Homomorphic encryption. This allows the inference ap-
plication on the untrusted participant to directly perform
DNN computations on encrypted input, so the sensitive in-
formation will not be leaked. A drawback of homomorphic
encryption is that it suffers from huge inefficiency and is not
applicable for all DNN operations.

8 RELATED WORK
8.1 Machine Learning Privacy Attacks

Training data privacy attacks. There are different types
of privacy attacks against the training data. The first type is
property inference attacks, which tries to infer some proper-
ties of the training data from the model parameters. Attacks
were demonstrated in traditional machine learning classifiers
[3] and fully-connected neural networks [12].

A special case of property inference attacks is membership
inference attacks, which infers whether one individual sample
is included in the training set. This attack was first presented
in [41]. The following work explored the feasibility of attacks
with different adversary’s capabilities [39], model features
[30, 49], in Generative Adversarial Networks [18, 29], and
collaborative training systems [32].

The second type are model inversion attacks [10]: given a
machine learning model, and part of the training samples’ fea-
tures, the adversary can recover the rest of the features of the
samples. Advanced model inversion attacks were designed
to recover images from deep neural networks in single-party
systems [9], and collaborative learning systems [22].

The third type are model encoding attacks [42]: the adver-
sary with direct access to the training data can encode the
sensitive data into the model for a receiver entity to retrieve.

Model privacy attacks. The adversary attempts to steal the
model parameters [44], hyperparameters [46] or structures
[23, 33], via prediction APIs, memory access side channels,
etc.

Inference data privacy attacks. Closer to our study is the
work [48], which adopted a power side channel to recover
inference data. However, this attack required the adversary to
compromise the victim device for side-channel information
collection, and it could only recover simple images (single
pixel). Our attack is applied to the collaborative systems, and
can recover any arbitrary complex data without access or
knowledge of the victim’s computation and data.

8.2 Machine Learning Privacy Solutions
Current solutions only focus on training data protection:
Enhancing the algorithms. Distributed training was in-
troduced to protect the training data [15, 40], as different
participants can use their own data for model training. The
SGX security enclaves in Intel processors were used to pro-
tect the training tasks against privileged adversaries [24, 34].
Cao et al. [5] proposed a methodology to remove the effects
of sensitive training samples on the models. Abadi et al. [2]
applied differential privacy to add noise in the stochastic
gradient descent process to eliminate the parameters’ depen-
dency on the training data.

160

Enhancing the dataset. Bost et al. [4] proposed to encrypt
the data before feeding them into the training algorithm.
They designed machine learning operators which can op-
erate on the encrypted data. Zhang et al. [51] showed that
adding noise to the training dataset is effective in protect-
ing training data privacy. Generative Adversarial Network
with differential-privacy is adopted [45, 52] to generate arti-
ficial data for training DNN models while removing sensitive
information from the original data.

9 CONCLUSIONS

While the privacy threat of training data in deep learning is
well studied, and defenses have been investigated, the pri-
vacy of inference data is less studied. In this paper, we explore
the feasibility of recovering sensitive data in the deep learn-
ing inference process. We discover that in a collaborative
inference system, an adversary who controls one participant
can easily recover the inference samples from intermedi-
ate values. We propose a new set of attack techniques to
compromise the inference data privacy in collaborative deep
learning systems, under different attack settings. We system-
atically compare these different techniques, demonstrating
that the adversary can successfully and reliably recover the
inputs with very few prerequisites.

We hope that the importance of inference data privacy
protection can be addressed through this study. For instance,
when selecting the split point for edge-cloud offloading, pre-
vious work only considered the power and performance
requirements. With the feasibility of stealing the inference
data, privacy should also be an important factor for partition-
ing the neural network. Future work could include the study
of the trade-off among power, performance and security for
edge-cloud offloading, exploration of more powerful attacks,
and realization of possible defense mechanisms.

REFERENCES

[1] 2018. https://pytorch.org/docs/0.4.0/torchvision/datasets.html.

[2] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya

Mironov, Kunal Talwar, and Li Zhang. 2016. Deep learning with differ-

ential privacy. In ACM Conference on Computer and Communications

Security.

Giuseppe Ateniese, Luigi V Mancini, Angelo Spognardi, Antonio Vil-

lani, Domenico Vitali, and Giovanni Felici. 2015. Hacking smart ma-

chines with smarter ones: How to extract meaningful data from ma-

chine learning classifiers. International Journal of Security and Networks

(2015).

Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser.

2015. Machine learning classification over encrypted data.. In Network

and Distributed System Security Symposium.

[5] Yinzhi Cao and Junfeng Yang. 2015. Towards Making Systems Forget
with Machine Unlearning. In IEEE Symposium on Security and Privacy.

[6] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalya-
naraman. 2014. Project adam: Building an efficient and scalable deep
learning training system. In USENIX Symposium on Operating Systems

E

—

[4

—

https://pytorch.org/docs/0.4.0/torchvision/datasets.html

[t

—

—

=

Design and Implementation.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al.
2012. Large scale distributed deep networks. In Advances in neural
information processing systems.

Amir Erfan Eshratifar, Mohammad Saeed Abrishami, and Massoud
Pedram. 2018. JointDNN: an efficient training and inference en-
gine for intelligent mobile cloud computing services. arXiv preprint
arXiv:1801.08618 (2018).

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model
inversion attacks that exploit confidence information and basic coun-
termeasures. In ACM Conference on Computer and Communications
Security.

Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page,
and Thomas Ristenpart. 2014. Privacy in Pharmacogenetics: An End-to-
End Case Study of Personalized Warfarin Dosing.. In USENIX Security
Symposium.

Karan Ganju, Qi Wang, Wei Yang, Carl A. Gunter, and Nikita Borisov.
2018. Property Inference A acks on Fully Connected Neural Networks
using Permutation Invariant Representations. In ACM Conference on
Computer and Communications Security.

Karan Ganju, Qi Wang, Wei Yang, Carl A. Gunter, and Nikita Borisov.
2018. Property Inference Attacks on Fully Connected Neural Networks
using Permutation Invariant Representations. In ACM conference on
computer and communications security. 619-633.

Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty
of training deep feedforward neural networks. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics.
249-256.

Security.

Weizhe Hua, Zhiru Zhang, and G Edward Suh. 2018. Reverse engineer-
ing convolutional neural networks through side-channel information
leaks. In ACM/ESDA/IEEE Design Automation Conference.

Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and
Emmett Witchel. 2018. Chiron: Privacy-preserving Machine Learning
as a Service. arXiv preprint arXiv:1803.05961 (2018).

Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor
Mudge, Jason Mars, and Lingjia Tang. 2017. Neurosurgeon: Collabo-
rative intelligence between the cloud and mobile edge. Acm Sigplan
Notices 52, 4 (2017), 615-629.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980 (2014).

Jong Hwan Ko, Taesik Na, Mohammad Faisal Amir, and Saibal
Mukhopadhyay. 2018. Edge-host partitioning of deep neural net-
works with feature space encoding for resource-constrained internet-
of-things platforms. In IEEE International Conference on Advanced Video
and Signal Based Surveillance.

Yann Le Cun, LD Jackel, B Boser, JS Denker, HP Graf, I Guyon, D
Henderson, RE Howard, and W Hubbard. 1989. Handwritten Digit
Recognition: Applications of Neural Network Chips and Automatic
Learning. IEEE Communications Magazine 27, 11 (1989), 41-46.

Kin Sum Liu, Bo Li, and Jie Gao. 2018. Generative Model: Membership
Attack, Generalization and Diversity. arXiv preprint arXiv:1805.09898
(2018).

Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue Bu, Xiaofeng
Wang, Haixu Tang, Carl A Gunter, and Kai Chen. 2018. Understanding
Membership Inferences on Well-Generalized Learning Models. arXiv
preprint arXiv:1802.04889 (2018).

(14

[l

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. [31] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. 2015.
2016. Deep learning. Vol. 1. MIT press Cambridge. Effective Approaches to Attention-based Neural Machine Translation.
[15] Jihun Hamm, Adam C Champion, Guoxing Chen, Mikhail Belkin, and CoRR abs/1508.04025 (2015). arXiv:1508.04025 http://arxiv.org/abs/
Dong Xuan. 2015. Crowd-ml: A privacy-preserving learning frame- 1508.04025
work for a crowd of smart devices. In IEEE International Conference on [32] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly
Distributed Computing Systems. Shmatikov. 2019. Exploiting unintended feature leakage in collab-
[16] Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg orative learning. In IEEE Symposium on Security and Privacy.
Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sen- [33] Seong Joon Oh, Max Augustin, Mario Fritz, and Bernt Schiele. 2018. To-

—

=

—

gupta, Adam Coates, and Andrew Y. Ng. 2014. Deep Speech: Scal-
ing Up End-to-end Speech Recognition. CoRR abs/1412.5567 (2014).
arXiv:1412.5567 http://arxiv.org/abs/1412.5567

[17] Johann Hauswald, Thomas Manville, Qi Zheng, Ronald Dreslinski,

Chaitali Chakrabarti, and Trevor Mudge. 2014. A hybrid approach
to offloading mobile image classification. In 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
8375-8379.

Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristofaro.
2017. LOGAN: evaluating privacy leakage of generative models us-
ing generative adversarial networks. arXiv preprint arXiv:1705.07663
(2017).

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2015. Deep
Residual Learning for Image Recognition. CoRR abs/1512.03385 (2015).
arXiv:1512.03385 http://arxiv.org/abs/1512.03385

Zecheng He, Aswin Raghavan, Guangyuan Hu, Sek Chai, and Ruby
Lee. 2019. Power-Grid Controller Anomaly Detection with Enhanced
Temporal Deep Learning. In 18th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications.
Zecheng He, Tianwei Zhang, and Ruby Lee. 2019. Sensitive-Sample
Fingerprinting of Deep Neural Networks. In Proceedings of the IEEE

wards reverse-engineering black-box neural networks. In INternational
Conference on Learning Representations.

Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Se-
bastian Nowozin, Kapil Vaswani, and Manuel Costa. 2016. Oblivious
Multi-Party Machine Learning on Trusted Processors.. In USENIX Se-
curity Symposium.

Herbert Robbins and Sutton Monro. 1951. A stochastic approximation
method. The annals of mathematical statistics (1951), 400-407.

Frank Rosenblatt. 1958. The Perceptron: A Probabilistic Model for
Information Storage and Organization in the Brain. Psychological
review 65, 6 (1958), 386.

Leonid I Rudin, Stanley Osher, and Emad Fatemi. 1992. Nonlinear
total variation based noise removal algorithms. Physica D: nonlinear
phenomena 60, 1-4 (1992), 259-268.

David E Rumelhart, Geoffrey E Hinton, and Ronald] Williams. 1986.
Learning Representations by Back-propagating Errors. nature 323,
6088 (1986), 533.

Ahmed Salem, Yang Zhang, Mathias Humbert, Mario Fritz, and Michael
Backes. 2018. ML-Leaks: Model and Data Independent Membership In-
ference Attacks and Defenses on Machine Learning Models. In Network
and Distributed System Security Symposium.

Conference on Computer Vision and Pattern Recognition. 4729-4737. [40] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-preserving deep
[22] Briland Hitaj, Giuseppe Ateniese, and Fernando Pérez-Cruz. 2017. learning. In ACM conference on computer and communications security.
Deep models under the GAN: information leakage from collaborative [41] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.

deep learning. In ACM Conference on Computer and Communications 2017. Membership inference attacks against machine learning models.

161

http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025

—

[42

[43

—_

[44

[l

[45

=

[46

—

(47]

In IEEE Symposium on Security and Privacy.

Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. 2017. Ma-
chine Learning Models that Remember Too Much. In ACM Conference
on Computer and Communications Security.

Surat Teerapittayanon, Bradley McDanel, and HT Kung. 2017. Dis-
tributed deep neural networks over the cloud, the edge and end devices.
In IEEE International Conference on Distributed Computing Systems.
Florian Tramer, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas
Ristenpart. 2016. Stealing Machine Learning Models via Prediction
APIs.. In USENIX Security Symposium.

Aleksei Triastcyn and Boi Faltings. 2018. Generating Artificial Data
for Private Deep Learning. arXiv preprint arXiv:1803.03148 (2018).
Binghui Wang and Neil Zhenqgiang Gong. 2018. Stealing Hyperpa-
rameters in Machine Learning. In IEEE Symposium on Security and
Privacy.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simoncelli, et al.
2004. Image quality assessment: from error visibility to structural

162

[48]

[49]

[50]

[51]

[52]

similarity. IEEE transactions on image processing 13, 4 (2004), 600-612.
Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang Xu. 2018. I
know what you see: Power side-channel attack on convolutional neu-
ral network accelerators. In Annual Computer Security Applications
Conference.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha.
2018. Privacy Risk in Machine Learning: Analyzing the Connection to
Overfitting. In IEEE Computer Security Foundations Symposium.
Hongxu Yin, Zeyu Wang, and Niraj K Jha. 2018. A hierarchical infer-
ence model for internet-of-things. IEEE Transactions on Multi-Scale
Computing Systems 4, 3 (2018), 260-271.

Tianwei Zhang, Zecheng He, and Ruby B Lee. 2018. Privacy-
preserving machine learning through data obfuscation. arXiv preprint
arXiv:1807.01860 (2018).

Xinyang Zhang, Shouling Ji, and Ting Wang. 2018. Differentially
Private Releasing via Deep Generative Model (Technical Report). arXiv
preprint arXiv:1801.01594 (2018).

