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Abstract—The power distribution is facing increasing voltage
control problems due to the increasing penetration of intermittent
distributed energy sources. This study describes a method for
voltage optimization of a power distribution system that faces
this challenge. The study depends on the digital twin concept
to create a continually updated optimizer that uses the current
load measurements to provide optimum reactive power injection
set points to the smart inverters operating on the active nodes.
This method can be applied to control a distribution system in
an unknown and dynamic environment. The results for a basic
network show that system voltage can be significantly optimized
by using the proposed method.

Index Terms—Neural Networks, Optimization Voltage Control,
Particle Swarm Optimization, Power Distribution System.

I. INTRODUCTION

The amount of Distributed Energy Resources (DERs) con-

nected to the distribution system are expected to rise at

a increasing rate [1] resulting in increasing level of fast

voltage fluctuations. Unfortunately, the underlying distribution

infrastructure is not expected to change at a pace fast enough

to cope with this increase in generation, and help from the

base infrastructure to counter the expected power quality

degradation is expected to be minimal.

Both current experiences as well as the results from simu-

lations for future scenarios [2] show that a significant amount

of DERs will have to be curtailed if the system is operated

using the current state of the art technology, which is defined

in IEEE 1547 standard [3].

Even a small distribution grid of a few MVA capacity can

have hundreds of nodes with fast varying loads. Additionally,

if the DERs are Photovoltaics (PV) based, then there will be

significant changes in the system loading occurring in a second

time scale. Due to the large number of nodes and the fast

paced changes it is practically impossible to apply traditional

static optimization techniques to control the voltage of the

power distribution system. On the other hand, the local volt

var control (VVC), which is the state of the art, cannot provide
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control over the system. In some scenarios VVC could even

cause degradation of the system voltage.

Whereas the voltage could potentially degrade with increas-

ing penetration of DER, the voltage quality required to reliably

operate the loads are increasing, as a result of the increasing

penetration of power electronics in the demand side. Therefore,

decreasing voltage quality in the distribution system can have

severe ramifications.

It is crucial to find a solution that can modulate the

voltage to achieve a high voltage quality in a system which

has increasing DER penetration [4], [5], [6], [7]. There are

solutions presented in literature that solve this problem both in

centralized as well as distributed fashion. However, the models

used for the analysis are balanced, decoupled and linearized

models, that do not reflect the unbalanced and fast changing

nature of the distribution system.

The method presented in this paper is data-driven, which

means that a physics based model is not required. Additionally,

it has online optimization capability that helps to operate

the same voltage controls even when the system undergoes

significant structural changes. Therefore, it provides a robust

and efficient framework to solve the voltage control problem

in the distribution grid.

II. STATE OF THE ART

The current state of the art of voltage control in the

distribution grid is detailed in the IEEE 1547 standard. It

is a local voltage control method [8] where the reactive

power injection is used to control the local voltage to a given

bandwidth of control provided to the controller (as a Q-V

curve as shown in Fig. 1). Field performance has shown

that this is a very effective method when there is significant

impedance between the two active nodes. It is also more

reliable since it does not rely on external controllers or depend

on communication channels. However, the future distribution

grid is bound to have an abundance of local generation in

nodes that are electrically close to each other. Additionally, it

was proven in [9] that this method is not the optimum solution.

According to [9], for optimum voltage control, communication

is a necessary requirement.

In the bulk grid voltage control is carried in real time by

leveraging the inherent reactive power control capabilities of
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the PV buses. The voltage compliance and system security is

ensured by carrying out feed forward optimization based on

forecasted system load and generation. However, due to the

large number of nodes associated with the distribution grid,

coupled with the difficulty to forecast distribution system loads

at scale makes this approach infeasible to be applied to the

distribution system.

The other option for voltage control is to use commu-

nication. Many research studies in the past have looked at

this problem and used communication to improve voltage

control in the distribution system [9], [10]. However, most

of these studies use models that are balanced and use a

decoupled linearized power flow approach. Physics based

models require three phase unbalanced modeling supported

by many parameters that are not realistic to be approximated

or calculated. Therefore, using a physics based model and

applying traditional optimization techniques is not a practical

solution to the voltage control in the distribution grid. This is

the reason as to why we propose a data driven optimization

and control technique for voltage control in the distribution

grid.
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Fig. 1. State of the art for local voltage control [11].

III. PROBLEM STATEMENT

Consider the below system g that models the power flow

manifold, M, in the power distribution system.

x(k) = g(x(k), y(k), u(k)) (1)

Where, x is the state vector described by (2), y is the

independent variable vector described by (3), n is the number

of nodes, and u is the control vector described by (4).

x :=

[
|V |
δ

]
∈ R

2n (2)

y :=

[
P

Q

]
∈ R

2n (3)

u :=
[
QInverter

]
∈ R

m (4)

The function to be optimized, the utility function, U , is the

sum of mean squared voltages of the system nodes and is

shown below in (5).

U(x) =
n∑

i=1

0.5(|Vi| − |V0|)2 (5)

The objective is to find the reactive power injections, u,

such that U is minimized under the constraints C.

minimize
x∈M

U

subject to x ∈ C
(6)

We assume that the future distribution grid is populated by

either actual or virtual passive nodes that have a reasonable

internet connection (10Mbps), a voltage and load measurement

that can measure and transmit voltage and load measurements

at at least 1 Hz (could be a Micro PMU [12]). A typical

distribution node can include a combination of storage, re-

active power loads, active power loads and generation. The

most common generation source is Photovoltaics (PV). As

shown in [13] PV response time is, at maximum 100 ms and if

we estimate another 100 ms for measurement, communication

and computation, then the total time lag from measurement to

actuation is in the range of 200 ms. This is very fast when

compared to the fastest process in the distribution system,

which is the change in PV generation. All these assumptions

are reasonable for a residential neighborhood. An example

active node, H1, that shows the component level structure is

given in Fig. 2.

Fig. 2. A complete active node of the system.

IV. METHODOLOGY

In this section the proposed method for voltage control with

its constraints and requirements are explained in detail. In this

preliminary stage an OpenDSS [14] model of a system is used

to represent the actual system. Therefore, data captured by the
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simulator is assumed to be an accurate representation of the

response and performance of the system in real world.

A. Voltage Control Framework
The proposed framework shown in Fig. 3 consists of two

main components, a digital twin of the system and an op-

timizer. The digital twin uses a feedforward neural network

(Multi Layer Perceptron (MLP)) as its computational engine.

Data captured from the measuring systems encompassing a

reasonable period of time is used to tune the digital twin. A

tuned twin can accurately estimate the system voltages based

on the power injections from across the distribution system.

Based on infrastructure limitations as well as regulatory limi-

tations, application of this type of method could be constrained

to a limited area; for example, a neighborhood of around 100

houses is a reasonable and realistic scenario. Note that the

presented framework uses the resources that already exist in

the active nodes to operate optimally across the distribution

network.

Fig. 3. The proposed framework for voltage control.

B. Development of Digital Twin of the Distribution System
The development of digital twin of the distribution system

(DTDS) is shown in Fig. 4. It uses the gathered data from the

measurements over a time period of minimum 24 hours to train

the neural network. The digital twin estimates node voltages,

Vest, based on load measurements at each node, Smeas, and

reactive power injection, Qinj by the smart inverters at the

n active nodes in the system. The DTDS is tuned to ensure

that the difference between estimated and measured voltages

(ΔV ) is minimized. When the DTDS is tuned the algorithm

leads to a new tuning cycle of the optimizer.
1) Tuning: When implementing in a real system the digital

twin will be created based on historical data captured from

the measurement system. However, since we use a simulator

of the distribution system to generate the data, we initialize

and train the digital twin by applying random values for the

independent variables, within the given upper and lower limits

and use that to generate a dataset that emulates the system

response. This dataset is then used to train the digital twin.

The final output of the trained model estimator is shown in

Fig. 4. Here S
¯
= P +Qj and V

¯
= |V |∠δ. This is a 3×36×6

MLP network that has 3 inputs, 6 outputs and 36 neurons in

the hidden layer.

C. Voltage Control in Operation

The normal operation, which is an online optimization is

shown in the Online Optimizer block in Fig. 4. The optimizer

uses the measured power of the system nodes to generate

reactive power injection values at active nodes.

D. Re-tuning Online Optimizer

When the voltage estimate by the digital twin of the system

shows significant deviation from the measured voltage, the

optimization system is re-trained based on the process flow

shown in the Development of DTDS block in Fig. 4. This

necessitates retraining of the optimizer shown in the Develop-

ment of DTO block of Fig. 4.

In this process Particle Swarm Optimization (PSO) algo-

rithm generates a swarm of possible optimum reactive power

injections, Qswarm,i, which is moved through the solution

space iterating till convergence. For each iteration, PSO gen-

erates a better swarm of solutions ,Qswarm,i. The measured

apparent power and Qswarm,i is used to find the swarm of

system voltage vectors, Vswarm,i. This is used by the Fitness

function (U ) to evaluate the fitness of the swarm. The swarm of

fitness values are then used by the PSO algorithm to generate

a new set of solutions.

In the next stage the Qinj is compared against Qbest and

the resulting different ΔQ is used to update the weights of

the digital twin of the optimizer (DTO). The DTO uses Smeas

and Qinj to tune its weights. The Optimizer is then updated

by replacing its existing weights with the new tuned weights,

Wnew. This brings the system back to optimal operation.

The optimizer uses the digital twin to find the optimum

reactive power set points across the full range of passive

nodes by applying the particle swarm optimization algorithm

as shown in the ’Development of DTO’ block of Fig. 4. The

generated Qgbest) dataset will consist of measured loads and

corresponding optimum reactive power injection calculated

by PSO for a dataset that spans at least one day of system

operation.

This dataset is then used to train the optimizer, which is

also another feed forward neural network structured as a Multi

Layer Perceptron. The first step is to tune the digital twin to

reflect the new input output relationship of the system. The

second step is to replace the old digital twin in the PSO loop

in the optimizer with the new digital twin of the system. Then

the optimizer re-tuning is triggered. In this step PSO runs to

generate a data set of load apparent power and corresponding

optimum reactive power injection. Next, this generated dataset

is used to retrain the optimizer. Finally, the retrained optimizer

replaces the old optimizer and the system returns back to

optimal operation.

The estimator also requires to be re-tuned when the esti-

mator changes, since the optimization uses the digital twin to

generate the training data-set for the optimizer.

In normal operation, the framework relaxes to the set up

shown in Fig. 3.
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Fig. 4. System process flow and overview diagram. The three subsystems required for this method, Development of DTO, Development of DTDS, and Online
Optimizer, are shown inside red, green and blue dotted frames.

V. RESULTS

A. Case Study

The framework is tested on the IEEE 4 bus test system [15]

shown in Fig. 5. Here, the load at bus 4 is changing randomly

and the reactive power injections at buses 3 and 4 are operating

to control the system voltage.

B. Utility Function

The utility function for optimization for this case study is

the sum of the mean squared error of the node voltage (based

on V0 = 1pu).

U = 0.5[(|V3| − |V0|)2 + (|V4| − |V0|)2] (7)

Fig. 5. System under study.

C. Digital Twin of the Distribution System (DTDS)

The performance of the DTDS is at a high level since the

estimated voltage at bus 4 closely matches the values that

were obtained from the OpenDSS simulator, as shown in Fig.

6. The maximum Mean Absolute Percentage Error (MAPE)
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that is observed is less than 0.6%.

D. Digital Twin of the Optimizer (DTO)

The PSO output is shown in Fig. 7. These results show that

PSO can find the control vector to optimize voltages at both

bus 3 and 4, successfully satisfying the optimization objective

defined in (7).

The system performance when operated with a tuned DTO

is given in Fig. 8. The results are for a 1000 second dataset

in which the loads have large variations across their full

operating range. This shows that both buses have significant

improvement in voltage quality and that smart inverters at both

bus 3 and 4 contribute in a coordinated manner to improve

system voltage in varying operating conditions. The voltage

quality improvement can be clearly observed by comparing

the utility before and after this method was applied.

E. Discussion

The results of this study show that system performance can

be enhanced by using the proposed voltage control framework.

If local voltage control is applied there will be degradement

of performance because the two injections will be adversely

affecting each other. That is because the largest impact on the

U (which is a function of V3 and V4) is by the remote end

voltage, which is the weakest bus in the system. This provides

the basis for why a coordinated voltage control scheme will be

of greater value to ensure better overall voltage control. The

voltage at each bus is still maintained between the required

limits, but using coordinated control the voltage at Bus 4 is

brought from over-limit to within the standard of +/-3% . It

is clear that without this strategy (by only using local control)

the overall system voltage quality is deficient.

We assume zero delay between measurement, computation

and action. For a system with above solar irradiation based

variation, simulations show that even a 1 second (1 step) delay,

does not impact the system operation. This is because the

changes observed in the independent variable (Solar Irradi-

ation) changes in a slow and smooth way when measured in

a second basis.

VI. CONCLUSION

The framework proposed in this study can successfully

optimize in a non real-time simulation environment for a small

power system. The next stage of this study will look at a real

time simulation, since a big challenge in this domain is the

requirement to ensure that the computation time required for

the control method stays within reasonable bounds. This will

assist to generate and implement control actions before the

system operating state changes significantly. Additionally, the

case study will need to be expanded to reflect a more realistic

power distribution system with respect to size and topology

as well as load and generation dynamics.
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Fig. 6. DTDS Validation: The top plot compares voltage estimation from the digital twin with the actual values for bus 4 over a period of 100 seconds. The
bottom figure shows the MAPE values for the same dataset.

Fig. 7. PSO results [16]: The top 4 plots compare the system performance with and without optimization. The bottom plots compare the Utility before and
after applying the optimization.
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Fig. 8. Optimization results operating under proposed method: The top 2 plots compare the voltage performance of bus 3 and 4, before and after optimization.
The middle 2 plots show the variation of reactive power injection of bus 3 and 4 when participating in voltage control. The bottom plots compare the utility
and function after and before applying voltage optimization over a period of 1000 seconds.
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