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Abstract—Benefiting from the advance of Deep Learning tech-
nology, IoT devices and systems are becoming more intelligent
and multi-functional. They are expected to run various Deep
Learning inference tasks with high efficiency and performance.
This requirement is challenged by the mismatch between the
limited computing capability of edge devices and large-scale
Deep Neural Networks. Edge-cloud collaborative systems are then
introduced to mitigate this conflict, enabling resource-constrained
IoT devices to host arbitrary Deep Learning applications.

However, the introduction of third-party clouds can bring
potential privacy issues to edge computing. In this paper, we
conduct a systematic study about the opportunities of attacking
and protecting the privacy of edge-cloud collaborative systems.
Our contributions are twofold: (1) we first devise a set of new
attacks for an untrusted cloud to recover arbitrary inputs fed into
the system, even if the attacker has no access to the edge device’s
data or computations, or permissions to query this system. (2)
We empirically demonstrate that solutions that add noise fail to
defeat our proposed attacks, and then propose two more effective
defense methods. This provides insights and guidelines to develop
more privacy-preserving collaborative systems and algorithms.

Index Terms—Security and Privacy, Edge-Cloud Computing,
Artificial Intelligence, Collaborative Inference

I. INTRODUCTION

Recent years have witnessed the rapid development of Deep
Learning (DL) and Internet of Things (IoT) technologies. IoT
devices become appealing targets for DL applications. They
use various sensors (e.g., cameras, microphones, gyroscopes)
to collect data and information from environmental contexts,
run the DL applications to interpret sensory data, and make
control decisions. The integration of Al and IoT leads to
the era of Artificial Intelligence of Things (AloT), which
has significantly changed our daily life: small-scaled AloT
systems are introduced to build smart homes and increase the
comfort and quality of life; medium-scale AloT systems are
deployed in warehouses and factories for higher efficiency and
automation; large-scale AloT systems can contribute to the
establishment of smart cities.

Deploying deep learning inference applications on com-
modity edge devices has several challenges. On one hand, an
IoT device can collect streaming information at a very high
rate (e.g. vehicle detection [2], remote monitoring [3], scene
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analysis [4] and application trace analysis [5]). This requires
the device to run the DL models and analyze the data at a
high speed. On the other hand, state-of-the-art DL models
are becoming more complicated with larger sizes, making it
infeasible for resource-constrained IoT devices to satisfy the
performance requirements: the limited computation resources
of the device can cause significant latency; the limited storage
capacity makes it hard to store a large DNN model; the
limited battery capacity causes a critical energy consumption
constraint.

To overcome this challenge, one possible approach is to
offload the entire DL model and inference computation to
the cloud. The edge device sends the input data to the cloud
and receives the output. While this can resolve the afore-
mentioned limitations of edge devices, it incurs significant
communication costs when sending a large volume of raw
data. Besides, there can be privacy breaches of the inference
data [6], especially if the input data are highly sensitive like
patients’ records, and integrity breaches of the model [7], if
the cloud is not trusted.

An optimized strategy is to adopt collaborative inference
between the edge devices and the cloud [8], [9], [10], [11],
[12]. The DL model can be divided into two parts. The first
few layers of the network are stored in the local edge device,
while the rest are offloaded to a remote cloud. Given an input,
the edge device calculates the output of the first layers, sends it
to the cloud, and retrieves the final results. This approach can
reduce communication costs, as the intermediate output can be
designed to be much smaller than the raw input. Such low data
transfer bandwidth also achieves lower latency and smaller
energy consumption. Collaborative inference makes it feasible
and efficient to deploy large-scale intelligent workloads on
today’s edge platforms.

This paper presents an investigation of inference data pri-
vacy in edge-cloud collaborative systems, from the perspec-
tives of attacks and defenses. Prior works all aimed to improve
the performance and efficiency of such systems, while ignoring
potential security issues. To the best of our knowledge, we are
the first to demonstrate the feasibility of input data privacy
attacks against cloud-edge collaborative inference systems.
The data privacy considered in this paper is the condidentiality
of the raw inputs.

Two key questions are considered in this study. The first one
is: if the cloud is malicious or compromised, can the attacker
recover raw input data, otherwise available only to the edge
device? Past work claimed the edge-cloud collaborative infer-
ence can provide better privacy protection, as the cloud only
receives the intermediate values instead of the raw data [10].



We show that an untrusted cloud can still easily and accurately
recover the sensitive data from the intermediate values without
accessing the edge side model.

We design a set of novel attack techniques to achieve this
goal under different settings. First, for a white-box attacker, we
propose using Regularized Maximum Likelihood Estimation
to recover the samples from the model parameters and inter-
mediate values. Second, for a black-box attacker, we propose
the Inverse Network attack to identify the reverse mapping
from the intermediate outputs to inputs without the knowledge
of model information. Third, we consider the most limited
adversarial capability where the cloud has no knowledge of
the target model, and is not allowed to query the model.
Conducting privacy attacks under this setting is extremely
difficult, and this threat model is rarely considered in past
work. For these query-free attacks, we introduce a new method
of Shadow Model Reconstruction to achieve this attack.

The second question we address in this paper is: how can
the edge devices mitigate privacy leakage from the untrusted
cloud? Past work adopted differential privacy to protect the
inference data [13]. We show that this approach is impractical
against our proposed attacks as it brings unacceptable per-
formance degradation to the DL models. Instead, we propose
two novel strategies that can better thwart the privacy attacks
while still maintaining good model performance. The first
one is the dropout defense: by deactivating random neurons
during the inference, the adversary is not able to precisely
generate the original images from the intermediate values.
Our second defense is privacy-aware DNN partitioning: we
comprehensively evaluate different factors that can affect the
attack results, and propose some guidelines to partition the
deep learning models for better privacy. We hope our findings
can guide machine learning researchers and practitioners to
design more secure collaborative inference systems.

The key contributions of this paper are:

e A systematic study of attacks and defenses for inference
data privacy in edge-cloud collaborative machine learning
systems.

e Three attack approaches to recover inference data under
different settings.

e Two new defense approaches to prevent inference data
leakage to the untrusted cloud.

The rest of the paper is organized as follows: Section II
presents the edge-cloud system model, threat model and ex-
perimental configurations. Section III describes attacks under
white-box, black-box and query-free settings, including attack
approaches, implementations and evaluation results. Section
IV discusses possible mitigation solutions. We give related
work in Section V and conclude in Section VI.

II. PRELIMINARIES

A deep neural network (DNN) is a parameterized function
fo : & — Y that maps an input tensor z € X to an output
tensor y € Y (Figure la). It consists of an input layer, an
output layer and a sequence of hidden layers between the input
and output layers. Each layer is a collection of units called
neurons, which are connected to other neurons in the previous

layer and the next layer. Each connection between the neurons
can transmit a signal to another neuron in the next layer. In this
way, a neural network transforms the inputs through hidden
layers to the outputs, by applying operations (e.g., a linear
function or element-wise nonlinear activation function) in each
layer.

A. System Model

In an edge-cloud collaborative inference system (Figure 1b),
a DNN is partitioned into two parts: fy = fg1 © fgo. Each part
contains several layers. The edge device hosts the first part fp;.
It collects inference data from the environment, generates the
intermediate value v = f4;(z), and sends it to the cloud. The
cloud hosts the second part of the model fy5. When receiving
the intermediate value v from the edge device, it calculates
the final output y = fy(v) and returns it to the edge device.

(a) DNN architecture

(b) Collaborative inference

Fig. 1: DNN model (a) deployed in Collaborative edge-cloud
system (b).

Determining a way to partition the DNN model is non-
trivial. Different factors must be considered to identify the
optimal strategy. (1) Latency: an optimal partition should give
the fastest inference speed. The latency is determined by
the inference time on the edge device, the cloud, as well
as the network transmission time. The cloud can process
the inference at a much faster speed. So it is preferable
to move more DNN layers to the cloud. However, this can
cause larger volumes of transmitted data, and longer network
latency. So the performance of edge devices, cloud servers
and network transmission must be balanced. (2) Power: an
optimal partition should be energy-efficient. This is particu-
larly important for edge devices which have limited power
capabilities. The energy consumed by the edge device consists
of the inference computation (determined by the number of
layers) and network communication (determined by the size
of transmitted data). Similar to latency optimization, energy
consumption of these two parts needs to be balanced. (3)
Memory size: when conducting inference, the device needs to
load the entire DNN fj; into the memory. Some edge devices
are equipped with limited memory resources, and incapable of
hosting too many network layers. This gives another constraint
when selecting the optimal split point.

With these considerations, DNN partitioning is usually
formulated as an optimization problem [8], [9], [10], [11],
[12]. Figure 2 shows the comparisons of latency and energy
consumption between edge-cloud, cloud-only and edge-only
solutions (data are collected from [9]). We capture the results



from Figure 6 in Neurosurgeon [9]. In Neurosurgeon [9],
a detailed study of latency and power consumption in a
typical edge-cloud collaborative system was evaluated. An
AlexNet model is deployed between a mobile device and cloud
connected by WiFi. We observe that with an optimal split
point, an edge-cloud system can achieve lower latency and
energy than a cloud-only or an edge-only system: by offloading
some DNN layers to the cloud, the processing time and energy
consumed on the device is less than the edge-only system.
Meanwhile, as the size of the intermediate data is smaller than
the original input, the latency and energy costs of network
transmission in the edge-cloud system are also less than the
cloud-only system.

In practice, most layers (including all fully-connected lay-
ers) are commonly offloaded to the cloud, while the edge
device only computes a small number of convolutional layers
for feature extraction, due to power and resource constraints
[9]. This gives a chance for an untrusted cloud provider to
steal sensitive inference input, which we will discuss below.
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Fig. 2: Breakdown of inference latency (left) and energy
consumption (right) in edge-cloud systems. Data are from [9].

B. Threat Model

We consider a collaborative inference system between the
edge device E and cloud C. The target model is split into
two parts: fo = fyg © fo1. E performs the first few layers
fo1, while C performs the rest of the layers fy,. We consider
E is trusted: when an input is fed into fy;, E correctly
processes it and never leaks it to other parties. However,
C is untrusted, attempting to steal the input. We consider
confidentiality of an individual raw input when we use the
term “data privacy” throughout this paper. Other forms of data
privacy, e.g. membership or linkability, are not in our threat
model.

We assume C strictly follows the collaborative inference
protocol: receiving v = fp;(x) from E and generating
y = fp2(v). C cannot compromise the inference process
conducted by E, and has no knowledge of the input x, nor
any intermediate values inside E, except v. We consider
adversaries with different capabilities:

e White-box: C has the knowledge of the model at the edge
side fg;, including its network structure and parameters.

e Black-box: C does not have knowledge of fy;, but is able to
query the model fy;. The adversary does not need to know
the exact training data, but he can collect the same type of
samples as the training data. This assumption is reasonable
in practice, e.g., the adversary can collect arbitrary face

samples for a face recognition model or medical records
for a diagnostic system.

e Query-free: C does not have knowledge of fg;, or the
permission to query the model fy;. This type of attacks has
the minimum attacker capability. Similar to the black-box
attack, we assume the attacker can collect samples similar
in type to the training data.

C. Notations and Experimental Configurations

We summarize our notations in Table I. We show detailed
configurations of experiments in Table II.

Our attacks and defenses are generic and applicable to
various datasets. In this paper, we demonstrate the attack
results on the MNIST dataset and the defense results on
MNIST and CIFAR10. More details on the attacks can be
found in [1].

The first victim model we target is LeNet5. It consists
of 2 convolutional layer blocks (each block has a convo-
lutional layer, an activation layer and a pooling layer), 3
fully connected layers and 1 softmax layer. The model can
be split at either the first convolutional layer, or the second
convolutional layer after activation. These configurations are
realistic in edge-cloud scenarios, as the heavy-computational
layers (including all fully-connected layers) are offloaded to
the cloud.

We follow the standard MNIST and CIFARI10 split for
training and testing samples [14]. We set the learning rate to
10~% and choose ADAM as our optimizer. The target model,
all attack techniques and defense solutions are implemented
with Pytorch 1.0.1. We run our experiments on a server with
1 Nvidia 1080Ti GPU and 2 Intel Xeon E5-2667 CPUs.

To quantify the effectiveness of attacks and defenses, we
adopt two metrics, Peak Signal-to-Noise Ratio (PSNR) [15]
and Structural Similarity Index (SSIM) [16]. Larger values of
these two metrics indicate the recovered input is of higher
quality, and more similar to the original one.

III. ATTACK METHODOLOGIES
A. White-box Attack

We start from the white-box setting, where the adversarial
cloud knows the parameters of the initial layers fy; on the
edge device. Formally, the problem we consider is: how can
the adversary recover an input x, from the corresponding
intermediate value fy;(x), and the model parameters 012 We
propose regularized Maximum Likelihood Estimation (rMLE)
to solve this problem.

Regularized Maximum Likelihood Estimation. We treat the
attack as an optimization problem: given fq;(z), our goal is
to find a generated sample x, that satisfies two requirements:
(1) the intermediate output of this sample, fy;(x), is similar
to fg1(xg); (2) x is a natural sample, following the same
distribution as other inference samples.

For requirement (1), we use the Euclidean Distance (ED) to
measure the similarity between fq, () and fq;(z¢) (Eq. 1(a)).
Note that fg;(z) can be interpreted as the mapping from the
input space (unobservable to the adversary) to the feature space



TABLE I: Table of Notations

[ Symbol | Description | Symbol | Description
C Untrusted cloud provider S Training set of fy
E Edge device g Original input
fo Original DNN model T Pixel at position (i,j) in image =
for Partial model at the edge side ED(-) Euclidean distance
foa Partial model at the cloud side TV() Total variation of an image
for' Inversed network of fy; y ~ foa(for(x)) | Output generated from the edge-cloud collaboration
o Standard deviation of Gaussian noise || /3 Smoothness parameter of TV
b Scale of Laplacian noise A Balancing parameter of ED and TV
T Dropout rate m Number of training samples

TABLE II: Experiment Configurations

MNIST
LeNet-5
(2 conv + 3 fc)

Dataset CIFAR10

Target Model

6 conv + 2 fc CNN

e 2nd conv layer (conv12)

e st pooling layer (pooll)

e 4th conv layer before and after
activation (conv22 and ReLU22)
e 2nd pooling layer (pool2)

e st conv layer (convl)
e 2nd conv layer after
activation (ReLU2)

Split points considered

(observable to the adversary). Then this Euclidean Distance
represents the posteriori information from the adversary’s
intermediate-level observation. Our goal is to find the optimal
sample = that minimizes this distance.

For requirement (2), we adopt the Total Variation [17] to
represent the prior information of an input sample. The total
variation of a 2D image x is defined in Equation 1(b), where
x; ; represents the pixel at position (7,7). 3 is a parameter
that controls the smoothness of the image. Larger S results in
more piecewise-smoothed images. We set 5 = 1.0 throughout
our experiments. Minimization of this metric can guarantee the
generated image x is piece-wise smooth, i.e. avoiding drastic
variations inside regions but allowing large changes along the
region boundaries.

ED(x,20) = || fo1(2) — far(z0)][3 (1a)
TV(x) = Z(|%‘+1,j - fCi,j|2 + | 1 — l‘i,j|2)6/2 (1b)

ij

" = argmin, ED(z,zq)+ TV (z) (lc)

The total objective function of the model inversion prob-
lem is a combination of feature space similarity and input
smoothness, as shown in Eq. lc. In this equation, A is a
hyperparameter to balance the effects of the two terms. If the
feature space fyq(x) is far from the input space, i.e. a lot of
network layers are computed on the trusted participant E, a
large A is required because less posterior information about
the input can be recovered from the feature space and the
adversary needs to rely on the prior information. In contrast,
if only a small number of layers are deployed on E, then the
adversary only needs to select a small A. We set A=0 when
getting the inverse from layers before the first fully connected
layer, and A=0.1 when getting the inverse from layers after the
first fully connected layer. We perform gradient descent (GD)
to solve Eq. 1c and recover the image.

Evaluation. Figure 3 shows the white-box attack results.
The first row shows the original inference samples, and the

remaining rows are the recovered images when the split point
is at different layers. We observe that the adversary can
accurately recover the images with high fidelity, when the split
point is either at the first (conv1) or last (ReLU2) convolutional
layer. At the first split layer, PSNR is 39.69dB and SSIM is
1.00. At the last split layer, PSNR is 15.10dB and SSIM is
0.60. ' This indicates that when the split point is at a deeper
layer, the quality and similarity of recovered images become
worse.
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Fig. 3: Recovered inputs in white-box attacks
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B. Black-box Attacks

Next, we consider the black-box setting, where the adver-
sary does not have knowledge of the structure or parameters
of fy;. We assume that the adversary can query the black-box
model: he can send an arbitrary input x to E, and observe the
corresponding output fy; ().

Data privacy attacks under the black-box setting are more
challenging, because without the knowledge of model pa-
rameters, the adversary cannot directly perform a gradient
descent on fy; to solve the optimization problem in Equation
I(c). One solution is to first recover the model structure
and parameters by querying the model, and then recover the
inference samples. The possibility of model re-construction
has been demonstrated in [18], [19], [20].

We propose a more efficient approach, Inverse-Network, to
directly identify the inversed mapping from output to input,
without the model information. Our solution is easier to
implement, and can recover inputs with higher fidelity.
Inverse-Network. Conceptually, the Inverse-Network is the
approximated inverse function of fg;, trained with v = fg; ()
as input, and x as output. The attack consists of three phases:
@ generating a training set for the Inverse-Network; @ training
the Inverse-Network; and @ recovering the input sample by
querying the Inverse-Network.

IIn our experiments, we observe that PSNR>10dB or SSIM>0.3 are con-
sidered as good quality, because the inversed images are visually recognizable
by the adversary.



First, the adversary generates a bag of samples X = (z, x4,
.y T,,) Of the same type as the training data to query the
target system, and observes the corresponding intermediate
outputs V' = (fp1(x1), for(z2), -, fo1(x,,)). Next, he can
directly train an Inverse-Network fj;” using V' as the training
input and X as the training output. We initialize the Inverse-
Network with Xavier initialization [21], to avoid the neuron
activations in the saturated or dead regions in the beginning.
We leverage [, norm in the pixel space as the loss function
(Eq. 2), and stochastic gradient descent (SGD) to train the
Inverse-Network:

. 1\
for' = ngi”ga Z llg(for () — z)I? )
i=1

where g is the Inverse-Network to be optimized. Note that
the architecture of the Inverse-Network need not be related to
the target model fy;. In our experiment, we use an entirely
different network architecture.

Once the Inverse-Network f;ll is obtained, the adversary
can recover any inference sample from the intermediate layer
output: z = f(;ll(v). This approach is more efficient than
rMLE: (1) for each target sample, the adversary only needs
to pass through the Inverse-Network once, while in rMLE, an
iterative process is required to solve the optimization problem;
(2) calculating the inversed input is parameter-free, while
rMLE requires tuning the parameters (A, § in Eq. 1).
Evaluation. Figure 4 shows the recovered images of MNIST.
We can observe that the adversary can recover the input under
the black-box setting with very high quality (PSNR is 40.72dB
and 20.81dB for the two split points) and similarity (SSIM is
0.99 and 0.80 for the two points).
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Fig. 4: Recovered inputs in black-box attacks
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C. Query-Free Attacks

The Inverse-Network approach requires the adversary to
be able to query the target model, and generate the data set
for training f, ' In this section, we consider the query-free
setting, where the adversary cannot query the model at the
edge side, and does not know the model information. The basic
idea is that the adversary first reconstructs a shadow model,
which imitates the target model’s behavior, and then uses
rMLE over this shadow model to recover the input samples.

Shadow Model Reconstruction. The problem at the first step
is: how can the adversary reconstruct a shadow model of the
former model layers, fj;, with only the knowledge of the latter
layers fgo, and the same type of training data as S? He cannot
query the model with specified samples to get the intermediate
values.

The key insight of our approach is that, if the shadow model
is reconstructed as fg;, it should be able to classify the input
with high accuracy when combined with the later layers fgo:

Yi ~ foa(for(x;)) ~ faa(for(xi)),for (z;,y,) €S (3)

Then the task of model reconstruction can be translated into
minimizing the classification error of the composition of the
two models: fyo(fg:1(;)) versus y;. Eq. 4 shows the loss func-
tion for training the model, where m is the number of samples
in S, CrossEntropy is the cross-entropy loss. Equivalently,
this means the training process of fg; is supervised at the
output layer of fy,. Once the model fy; is reconstructed, the
adversary can perform data recovery attacks using the rMLE
technique in Section III-A.

1 &
for = argming — ZCmssEntmpy(fez(g(wi)),yi) “4)
=1

c
CrossEntropy(j,y) = — Z ylog (i) )
c=1

where C' is the number of classes of the task.

There are two phases in our approach: @ offline shadow
model reconstruction and @ online model inversion. The
shadow model reconstruction only needs to be performed once.
Then all the input samples can be recovered using the same
shadow model, by only one inference for each input. In the
shadow model reconstruction phase, the adversary can adopt
the same type of samples as the training data. He may not
know the original network structure fy;, but he can use an
alternative one for the shadow model. We assume that both the
target model and the shadow model are convolutional neural
networks, but with different numbers of layers and filters, as
well as filter sizes.

After the training set and network structure are determined,
the adversary can adopt SGD to optimize the loss function
of the composition of the two models. We choose the cross-
entropy loss because it performs well on image classification
tasks. Other loss functions can be leveraged, if the adversary
aims to find inverses of the DNN for different tasks. Once
the shadow model is obtained, the adversary can use rMLE to
recover the inputs.

Evaluation We illustrate the recovered images under the
query-free setting in Figure 5. The adversary can still recover
the input images from convl and ReLU2 layers. The PSNRs
for these two split points are 17.86dB and 8.03dB, while the
SSIMs are 0.64 and 0.38, respectively. The quality of the
images is relatively lower than the ones in the white-box or
black-box setting, indicating the query-free attacks are harder
to achieve. This is straightforward, as the adversary now has
smaller capabilities. Also, more layers on the edge device can
also increase the difficulty of image recovery.

IV. DEFENSE METHODOLOGIES

Given the severity of inference privacy attacks in edge-cloud
collaborative systems, we aim to explore defense methods in
this section. We first empirically evaluate one common method
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proposed in past work (though it did not specifically target
the edge-cloud privacy attacks), viz., noise obfruscation. We
show its ineffectiveness in defeating our inference data privacy
attacks. Then we introduce two new strategies that can better
prevent the privacy leakage with small impact to the system’s
performance and functionalities.

A. Obfuscation with Random Noise

Differential privacy has been proposed to protect model
inference [22], [23] through adding random noise to the input.
In the edge-cloud scenario, we can either add noise to the
original input: v = fy;(z 4 €), or add noise directly to the
intermediate value before sending it to the untrusted cloud
C: v = fg1(x) + €. There is a trade-off between usability
and privacy: as a higher level of noise is added, the model
accuracy will drop. Whether this trade-off can be balanced
is critical for the effectiveness of this approach. Below we
measure the attack effects as well as the model accuracy using
noise obfuscation.
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Fig. 6: Examples of adding Gaussian noise to defend
against white-box attack on MNIST (ReLU2) and CIFARI10
(ReLLU22). ¢ is the standard deviation of the Gaussian noise.

We consider Gaussian and Laplacian noise in our exper-
iments. Figures 6a, 6b (Gaussian) and 7a, 7b (Laplacian)
visually show the recovered images on the MNIST and CI-
FAR10 datasets, when we add different levels of noise to the
input (first two rows in each figure) or the intermediate layer
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Fig. 7: Examples of adding Laplacian noise to defend
against white-box attack on MNIST (ReLU2) and CIFARI10
(ReLU22). b is the standard deviation of the Laplacian noise.

output (last two rows). We observe that adding enough noise
can indeed provide better privacy and decrease the quality of
recovered images. Besides, noise at the original input is more
effective than noise at the intermediate layer.

We provide a quantitative analysis of model accuracy
(usability, y-axis) and inversed image quality (privacy, X-
axis) in Figures 9 and 10 on MNIST and CIFARI10 dataset,
repsectively. The Gaussian and Laplacian noise are represented
as blue and orange lines, respectively. Adding noise to the
input and intermediate layer are represented as solid and
dotted lines, respectively. The top-left region of the graph
is the best. When fixing the recovered image quality (SSIM
or PSNR), the model accuracy drops more if the noise is
added to the input (blue and orange solid lines) than to the
intermediate layer (blue and orange dotted lines). This is
consistent with the visual observations in Figure 6a and 7a.
Different characteristics of noise distributions, e.g. Gaussian
or Laplacian, do not show significant difference in model
accuracy.

On the MNIST dataset (Figure 9), to maintain a good model
accuracy (i.e., >95%), the noise level must be restricted to
0<0.8 and b<0.5. At this level, the attacker is still able to
recover images with high quality (SSIM>0.4 and PSNR>8.5
dB). Similar results are shown on CIFAR10 dataset in Figure
10. While recent work [13], [6] proposed special algorithms
for designing noise to protect inference data privacy, they
still may not work for our new attacks, or need extra special
training of the noise generator. Hence, we propose new defense
methods below that are not based on adding noise, and are
more practical in that they protect the inference data privacy
with much smaller performance degradation.



B. Dropout Defense

Since noise obfuscation may not be secure, we propose
another randomization-based solution, dropout, to defeat the
proposed attacks. Dropout deactivates random neurons in one
layer by setting their output to zero. Formally, it calculates:

P (z) = fla) o M (6)

where M is a mask, where each element of M is randomly
assigned a value of 0 with probability r and a value of 1
with probability 1-r. ® denotes element-wise multiplication.
Intuitively, dropout leverages the redundancy feature of neural
networks [24], such that removing partial information in
the inference does not degrade the model performance but
obfuscates the input data.

Similar to noise obfuscation, dropout can also be applied to
the input or the intermediate layer output. We show examples
of the images recovered from layer ReLU2 (MNIST) in Figure
8a. The top two rows represent the effect of dropout on input,
while the bottom two rows represent that on intermediate
output. We observe that increasing the dropout rate r decreases
the quality of inversed images. No useful information can be
obtained by the attacker when r reaches 0.6. We show reversed
images from ReLU22 (CIFAR10) in Figure 8b. Similarly, no
useful information can be obtained when 7 reaches 0.6.

IL‘IF‘.&EE=
il

Input

A S5 B
%E%

ReLU22

BER QAEG
BER QEE
BHER QRGN
2 B gﬂﬁ

"{H

&
£
Z
%)
~

Input

ReLU2

UEE E@E

&

o R W3
fln s B
e
o odl

(b) CIFARIO
00 01 02 03 04 05 06 07 08 09
Fig. 8: Examples of dropout to defend against white-box attack
on MNIST (ReLU2) and CIFAR10 (ReLU22). r is the dropout
ratio.

We further measure the usability-privacy trade-off of
dropout, and compare it with the noise obfuscation approach
(Figure 9 on MNIST and Figure 10 on CIFARI10). Higher
accuracy represents better usability, while smaller SSIM and
PSNR represent better privacy. Lines that are closer to the top
left region have a better trade-off. We observe that dropout
(green lines) significantly outperforms all the noise obfusca-
tion solutions (blue and orange lines). This is because dropout
leverages DNN model redundancy to hide partial information

and maintain model accuracy, while adding random noise
introduces obfuscation on all neurons which degrade model
accuracy. Besides, dropout on the intermediate layer (green
dotted line) is slightly better than dropout on the input (green
solid line): it can fully protect the inference data privacy
(SSIM<0.25) with accuracy>95%. On CIFARI0 dataset,
dropout on the intermediate layer significantly overperforms
the other approaches, fully protecting inference data privacy
(SSIM<0.25) with <0.8% drop in accuracy.
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Fig. 9: Model accuracy versus the SSIM (top) and PSNR
(bottom) of inversed images on MNIST dataset.

To fully evaluate the effectiveness of this dropout mecha-
nism, we consider splitting the model at different layers on the
MNIST dataset. We conduct dropout on the intermediate layer
(i.e., split layer) since it is better than that on the input. Figure
11 shows the recovered images from shallow to deep layers:
ReLUl, pooll, conv2, ReLU2, pool2. We observe that, as the
split layer becomes deeper, a smaller dropout rate is sufficient
to prevent privacy leakage. For example, to fully obfuscate the
input,  can be set as 0.9 when the model is split at ReLU1
layer (first row), and 0.2 when the model is split at pool2
layer (last row). This can be better illustrated in the usability-
privacy curves in Figure 13: dropout on deeper layers is more
effective (closer to top left regions) than that on shallow
layers. For both SSIM and PSNR, we have from worse to
better: pooll(blue), then conv2 (green), then ReLU2 (orange),
then pool2 (grey). There is only one exception: ReLUI1 layer,
which does better than expected. It is the best for SSIM and
better than conv2 for PSNR. One possible reason is that the
recovered image maintains visually recognizable structure but
degrades illumination in ReLU1 layer, which contributes more
significantly to PSNR and SSIM than human recognition.
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C. Privacy-aware DNN partitioning

Section III shows that different split points yield different
attack effects. This observation leads to another possible
defense strategy: privacy-aware model partitioning. We raise
an important question: how fo split the neural network in
the collaborative system, to make the inference data more
secure? We use the query-free attack as an example to explore
this question. We select the split point at each layer, and
perform inference privacy attacks. Figures 14 and 15 show
the recovered images, and PSNR/SSIM metrics respectively.

Generally, we observe that the quality of recovered im-
ages decreases when the split layer becomes deeper. This is
straightforward as the relationship between input and output
becomes more complicated and harder to revert when there
are more layers. Besides, we also observe that the image
quality drops significantly, both qualitatively (Figure 14) and
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Fig. 13: Model accuracy versus the SSIM (left) and PSNR
(right) of inversed image.

quantitatively (Figure 15), on the fully-connected layer (fcl),
indicating that model inversion with fully-connected layers is
much harder than that with convolutional layers. The reason is
that a convolutional layer only operates on local elements (the
locality depends on the kernel size), while a fully-connected
layer entirely mixes up the patterns from the previous layer.
Besides, the number of output neurons in a fully-connected
layer is typically much smaller than input neurons. So it is
relatively harder to find the reversed relationship from the
output of the fully-connected layer to the input.

Privacy-aware partitioning strategy: When selecting the
split point in a collaborative inference system, privacy should
also be considered, in addition to latency and power con-
straints. We recommend placing at least one fully-connected
layer on the edge device to hide the information of sensitive
input samples.

V. RELATED WORK
A. Machine Learning Privacy Attacks

Training data privacy attacks. There are different types of
privacy attacks against the training data. The first type are
property inference attacks, which try to infer some properties
of the training data from the model parameters. Attacks were
demonstrated in traditional machine learning classifiers [25]
and fully-connected neural networks [26].

A special case of property inference attacks are membership
inference attacks, which infer whether one individual sample is
included in the training set. This attack was first presented in
[27]. The following work explored the feasibility of attacks
with different adversary’s capabilities [28], model features
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[29], [30], in Generative Adversarial Networks [31], [32], and
collaborative training systems [33].

The second type of attacks against the training data’s privacy
are model inversion attacks [34]: given a machine learning
model, and part of the training samples’ features, the adversary
can recover the rest of the features of the samples. Advanced
model inversion attacks were designed to recover images
from deep neural networks in single-party systems [35], and
collaborative learning systems [36].

The third type are model encoding attacks [37]: the adver-
sary with direct access to the training data can encode the
sensitive data into the model for a receiver entity to retrieve.

Model privacy attacks. The adversary attempts to steal the
model parameters [18], hyperparameters [20] or structures
[19], [38], via prediction APIs, memory side channels, etc.

Inference data privacy attacks. Closer to our study is the
work [39], which trains an inverse network on the output
probability distribution to get the inversed inference data.
However, they only consider the model inversion attack from

the softmax layer in the black-box scenario. We show that
the attacker can successfully inverse the model from different
layers, even in a stricter query-free scenario. We also provide
defense strategies which are not discussed in their paper.
Wei et al. [40] adopted a power side channel to recover
inference data. However, this attack required the adversary
to compromise the victim device for side-channel information
collection, and it could only recover simple images (single
pixel). Our work can recover any arbitrary complex data
without access to, or knowledge of, the victim’s device and
computation.

B. Machine Learning Privacy Solutions

Enhancing the algorithms. Distributed training was intro-
duced to protect the training data [41], [42], as different
participants can use their own data for model training. The
SGX security enclaves in Intel processors were used to protect
the training tasks against privileged adversaries [43], [44]. Cao
et al. [45] proposed a methodology to remove the effects of
sensitive training samples on the models. Abadi et al. [46]
applied differential privacy to add noise in the stochastic gra-
dient descent process to eliminate the parameters’ dependency
on the training data.

Enhancing the training dataset. Bost et al. [47] proposed
to encrypt the data before feeding them into the training algo-
rithm. They designed machine learning operators which can
operate on the encrypted data. Zhang et al. [48] showed that
adding noise to the training dataset is effective in protecting
training data privacy. Generating artificial data [49], [50], [51]
has been proposed for training DNN models while removing
sensitive information from the original data.

Obfruscating the inference input. Differential privacy has
been proposed to protect model inference [22], [23] through
adding random noise to the input. We show that just adding
noise cannot defend against our attacks, and hence we also
propose two defenses that may be more practical for our
attacks in this paper. Recent work [6] proposed to add specially
designed noise and provided a theoretical analysis on the input
data privacy leakage. However, it did not consider the model
inversion attacks that we propose and requires extra training
of the noise generator.

Homomorphic encryption. This allows the inference appli-
cation on the untrusted participant to directly perform DNN
computations on encrypted input [52], [53], so the sensitive
information will not be leaked. A drawback of homomorphic
encryption is that it suffers from huge inefficiency and is not
applicable for all DNN operations.

VI. CONCLUSIONS

In this paper, we explore the inference data privacy threats
in edge-cloud collaborative systems. We discover that, an
untrusted cloud can easily recover the inference samples from
intermediate values. We propose a set of new attack techniques
to compromise the inference data privacy under different attack
settings. We demonstrate that the adversary can successfully
and reliably recover the inputs with very few prerequisites.



We also propose several methods to protect the inference
data privacy for edge computing. Previous work all focus
on the performance, efficiency and functionalities of Artifi-
cial Intelligence of Things, while ignoring privacy. We hope
that this study can raise awareness about the importance of
inference data privacy protection in edge-cloud systems, and
encourage the balancing of privacy protection with usability
when designing or implementing such systems.
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