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Abstract— The objective of the article is to present
an integrated True Random Number Generator
(TRNG) and Physically Unclonable Function (PUF)
architecture using Photovoltaic solar cells. We illus-
trate that the Photovoltaic (PV) solar cell sensor re-
sponse can be engineered into dynamic (TRNG) and
static responses (PUF). The proposed prototype uses
the iterative Von Neumann post-processing scheme
to produce random bits with 34% better throughput
compared to a single Von Neumann operation. The
random bit quality was checked by statistical test
suites from the National Institute of Science and
Technology (NIST) and achieves an average p-value
of 0.45 at all variations in light intensity. The PUF
response achieves 92.13% reliability and 50.91%
uniformity. The integrated TRNG-PUF architecture
is beneficial for resource-constrained Cyber-Physical
System (CPS).

I. INTRODUCTION

The Cyber-Physical System (CPS) integrates sen-
sors, computing platforms, and networking among
constituent blocks. The application space of CPS
includes many intelligent consumer electronics ap-
pliances such as in aerospace, smart-home, ve-
hicles, manufacturing plants, healthcare, real-time
traffic monitoring, chemical process control, envi-
ronmental monitoring, and smart-grid [1], [2]. The
inherently decentralized framework is a blend using
networking technology and subsequently provides
many vulnerable points to compromise security.
Therefore, it is challenging to ensure confidential-
ity, integrity, authenticity, and availability across
different physically integrated devices [3].

The use of renewable energy sources to fulfill
energy requirements is a convenient way in the
decentralized framework of CPS. The solar panels,
as shown in Figure 1, are preferred to supply the
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Fig. 1: Building security primitives from solar cells
and sensors in CPS.

energy need in many embedded apparatus in CPS.
To build hardware security primitives, e.g. True
Random Number Generator (TRNG) and Physi-
cally Unclonable Function (PUF) from sensors in
CPS, could be a novel research direction. TRNG
is useful to generate secret key, initialization vec-
tor, padding, nonce, and salt bits in cryptographic
framework [4]. On the other hand, PUF exploits
the manufacturing variation of the device to pro-
duce a reliable, unclonable unique ID that can be
used to authenticate sensors and generate a secret
key. The Photovoltaic (PV) solar cell panels are
preferred way to harvest solar energy in CPS and
thereby, PV solar sensors find commonplace in
many CPS [5]. Therefore, designing TRNG and
PUF using sensors (in our case PV solar cell sensor)
and microcontroller-based computing platform is a
novel research direction.

The integration of TRNG and PUF as inte-
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Fig. 2: Schematic of integrated TRNG-PUF architecture.

grated architecture is a challenging task because
of the fundamental difference of the PUF and
TRNG design. There are existing works that have
demonstrated the integrated TRNG-PUF architec-
ture based on Field Programmable Gate Array
(FPGA) [6] and CMOS [7], [8]. However, to the
best of our knowledge, there is no existing work
on integrated TRNG-PUF design based on Photo-
voltaic (PV) solar cells. Therefore, this article pro-
poses integrated TRNG-PUF architecture devised
around a common entropy source of Photovoltaic
(PV) solar cells. Further, the proposed architecture
does not require additional hardware and can be
ported across the existing framework.

II. INTEGRATED TRNG-PUF ARCHITECTURE

The proposed prototype shown in Figure 2 oper-

ates in two modes: (i) Training, and (ii) Run.

e The training mode learns the entropic nature
of PV solar cells. The mean value (©) and
Standard Deviation (SD) (o) of each solar cell
voltage histogram is recorded. Additionally,
the training mode sets an optimal sampling
interval, a vital step to set optimum TRNG
throughput. The detailed explanations are pre-
sented in the subsequent sections.

e The run mode segregates sensor response in
either dynamic (large variation) response to
produce TRNG output or static (stable) re-
sponse to generate PUF output. The proto-
type has an option to enter in training mode
before producing each TRNG/PUF response.
The updated training information can reflect
the change in response due to light intensity
variations.

A. TRNG BITS Generation

The TRNG transform randomness in entropic
source to generate random bits. The proposed pro-
totype produces initial binary streams by comparing
the successive voltage samples produced outside
one SD (o) around mean () in voltage histogram.
However, the natural random source has a high
correlation between the successive samples, and
post-processing becomes inevitable. There exist
many techniques for post-processing, and among
them, Von Neumann (VN) is particularly useful for
limited computing power and small memory size.
The proposed prototype implements the Iterative
Von Neumann (IVN) approach to reduce wastage
of initial binary streams (=~ 76%) [9] in single Von
Neumann block.

B. PUF BITS Generation

Over the years, many researchers have attempted
to design the PUF using sensors. The electrical
voltage of PV solar cells should have a predictable
relationship with environmental conditions, e.g. am-
bient light for PV solar cells. Further, the response
of many samples should settle to a static value. Ad-
ditionally, the algorithm chosen should require less
computing power and memory for IoT applications.
One such algorithm is proposed in our earlier works
[10] and the proposed prototypes in this research
adapt the same method. The prototype produces a
PUF response bit by calculating average voltage
over one standard deviation (o) around the mean
(p). This approach helps to reject outlier sample
voltage response that typically arises naturally and
thereby calculates a more stable voltage response.
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Fig. 3: An example electrical schematic.

Figure 3 is one of the possible ways to implement
the proposed architecture and it can be explained in
three steps. In step 1, the Analog-to-Digital Con-
verter (ADC) samples eight PV solar cell sensors
and converts voltage value into an equivalent digital
reading. The next step implements training and run
mode. In addition to that, CPU also implements
an algorithm to produce 128-bit PUF response and
IVN technique to produce 128-true random bits. In
step 3, the TRNG and PUF response bits can be
communicated further to perform cryptographic co-
processor functions.

III. ENTROPY EXTRACTION LOGIC

The PV solar cell is a p-n junction diode, and its
output voltage depends on several variables. These
variables include manufacturing process variations
between sensors, the number of photons falling over
the p-n junction, lifetime of electron-hole, doping
of p and n-type material, area of the p-n junction
and mobility of the charge. As these variables are
random, we hypothesize that the photovoltaic solar
cells could be a good entropic source.

A PV solar cell was connected to the ADC
of the microcontroller. The output of the ADC is
processed for analysis. The experiment setup was
put under a light chamber that facilitates constant
light source and isolation from the external light
source. Figure 4 shows the histogram plot for the
PV solar cell sensor for a total of 100,000 samples.
The sensor follows the normal distribution. Impor-
tant observations from Figure 4 are summarized as
follow:
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Fig. 4: PV solar cell sensor voltage histogram.

o The PV solar cell follows near-normal distri-
bution for sampled voltages.

« The voltage samples within one SD (o) around
mean (y) value can be utilized to calculate the
average value, that would be relatively more
stable. Later, it can be useful to calculate PUF
response bits as per algorithm in [10].

« The successive voltage samples other than one
SD (o) around mean () value would be useful
to generate raw binary bits.

IV. ITERATIVE VON NEUMANN (IVN)
PROCESSING FOR TRNG

A practical entropic source produces random
bits 1 and O with unequal probability p and ¢
respectively with some bias n. The number of
unbiased bits is equal to npqg and is far less than
achievable entropy bound. The bias makes the ex-
traction of TRNG bits very difficult and depends
upon sampling interval between two samples and
environmental factors, such as external lighting,
temperature, or humidity. The following equation
originally described in [9] is used to calculate the
bias:

x 100%

(D

The bias among initially generated raw bits arises
due to a higher correlation between successive
samples. High bias leads to rejection of raw bits,
and therefore an optimum bias is desirable. The bias
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Fig. 5: Iterative Von Neumann (IVN) schematic [9].

Algorithm 1 Input bit stream bias adjustment

procedure BIAS-ADJUST(bits, S, §)
: bits[ ] < Array of initial bits
S < Set initial sampling Interval
0 < Set step value
while S # 10% do
Generate 1000 sample bits in bits[ ]
Calculate bias n
if N >10% then
S=5-6
else if N <10% then
S=85+96§

1:
2
3
4:
5:
6
7
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11:

value 10% is a good balance between throughput
and Shannon entropy per bit [9]. The Algorithm 1
is part of the training mode. It sets the bias value
equals to 10% by adjusting sample interval (time
difference between two successive samples). The
process begins with generating 1000 raw bits and
calculating the bias. Then, bias value is checked if
it is >10% then subtract step value ¢ else add step
value J in initial step interval.

After setting the bias value 10%, the prototype
switches to run mode to generate true random
bits [9]. The initial input raw bit sequence is
fed to the IVN tree structure realized using 7
Von Neumann blocks illustrated in Figure 5b. The
Von Neumann debiasing, shown in Figure 5a, is

a suitable technique for low-computing-power and
low-memory devices due to its simpler operation.
It rejects successive occurrence of bit sequence
"11" or "00" in output Von Neumann sequence and
accepts bit sequence "01" and "10" as a bit ’0’ and
"1’ respectively. However, a single Von Neumann
can extract throughput only up to 24%, a substantial
loss of the bits.

Therefore, it becomes important to process en-
tropy present in discarded bits. As implied in the
name IVN, we process the Ex-OR and residual
sequence to extract entropy present in them. We
made some design choices to accommodate proto-
type for computing resource constraint platforms.
First, we limit the structure up to 7 VN blocks
as additional VN blocks would not result in much
throughput improvement. Second, the residual se-
quence is processed only at two blocks, where the
bias in residual sequences is relatively higher. The
final TRNG outcome is produced by concatenating
the output from all Von Neumann sequences and
has ~ 33.69% better throughput than a single Von
Neumann block.

V. A SPECIFIC CASE STUDY

The TRNG and PUF are inherently orthogonal in
operation, therefore, the metrics to measure the per-
formance characteristic are quite different. Further,
the change in light intensity can alter the electrical



parameters of the photovoltaic solar cell. Thus, the
change in light intensity is a useful environmental
condition to vary to test the performance. An ideal
design should work well at every light intensity.
The experimental set up was placed inside a light
chamber that facilitates the change in light condi-
tion from light intensity 0 W/m? (extreme dark) to
90 W/m? (very bright sunlight).

A. PUF Performance Testing

The reliability and uniformity metrics are used to
measure the performance of the proposed PUF pro-
totype. The PV solar sensors and microcontroller
set up were put inside the light chamber and PUF
output bits were recorded in PC.

1) Reliability: The reliability metric is the mea-
sure of the deviation of the PUF bit response with
the reference response. It uses the hamming dis-
tance and is a measure of the reproducibility of PUF
response with reference response. The following
equation was first used to calculate reliability, R
of n-bit PUF response

1 i HD (Ryef, Ryny)

R =100% — Vi - x 100%

2
The light intensity at 50 W/m? (corresponding
to normal room light intensity) was considered as
the reference point. The Hamming Distance (HD)
measures that how many bits are different between
reference response, R.s and response generated
at different light condition Ry;. Figure 6 shows
the measured reliability at different light intensity.
The proposed design has worst-case reliability of
92.13% at light intensity 90 W/m? and average
reliability of 92.13% for light intensity variation
from 50 W/m? to at 90 W/m?.
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Fig. 6: Reliability and Uniformity as a measure of
PUF performance metric.

2) Uniformity: The uniformity measures the
proportion of 0 and 1 in PUF response. The ideal
PUF response should have 50% uniformity, i.e. in
128-bit PUF response, the number of 0-bits and 1-
bits should be 64.

The light intensity 50 W/m? was considered as
reference and 12 different readings were taken at
an interval of 1 hour. The worst-case uniformity is
47.66% and the best case uniformity is 50%. The
average uniformity was measured at 50.91%, i.e.
very close to the ideal value.

B. TRNG Performance Testing

The ideal TRNG should work independently of
ambient light conditions. The quality of a random
number is measured by different tests, e.g. NIST
STS, DieHard, AIS, and TestUO1. Among, them
NIST STS is most widely used by researchers [4],
[7], thus we preferred it in our work. The NIST
STS is a collection of 15 tests that a true random
sequence should satisfy.

The different tests in NIST STS check the num-
ber of occurrences of bits 1 and O, find the run
length, i.e. the number of consecutive occurrences
of bit 1 or zero, checking linear dependence among
the sub-string of, periodicity of occurrence in given
length and ability to compress the sequence. Each
test is measured by calculating "p-value", which
indicates the confidence of randomness. A test with
a p-value of > 0.01 indicates the test is passed and
with 99% confidence. The nature of each random
test is different and hence, the criteria for each
test are also different. We collected a total of 100
random number sequences, where each sequence
consists of 1 million random bits with light varied
at the random interval to simulate the real-world
scenario. Further, we exposed some sensors to light
and some sensors were blocked during the data
collection procedure. The minimum pass rate for
each test other than random excursion and random
excursion variant is 96 out of 100. The criteria to
pass the random excursion and random excursion
variant test are 65 out of 69 random bit sequences.

Table I lists the results of each NIST test in terms
of the p-value, the proportion of the test passed and
the result of the test as either pass/fail. The number
in the bracket next to each test denotes, number
of sub-tests. The proportion simply indicates how



TABLE I: NIST STS for TRNG performance eval-
uation. Result is ’pass’, if p-value > 0.01.

Exhaustive Test

Test name

p-value  Proportion Result
Frequency 0.845629 0.9900 Pass
Block frequency 0.451279 1.0000 Pass
Cumulative sums (forward) 0.152695 0.9900 Pass
Cumulative sums (reverse) 0.847926 0.9900 Pass
Runs 0.562478 1.0000 Pass
Longest run 0.384567 0.9900 Pass
Rank 0.747956 1.0000 Pass
FFT 0.859674 1.0000 Pass
Non-overlapping template (148) 0.501324 0.9937 Pass
Overlapping template 0.569541 0.9800 Pass
Universal 0.659841 0.9900 Pass
Approximate entropy 0.356947 1.0000 Pass
Random excursions (8) 0.846259 0.9927 Pass
Random excursions variant (18) 0.395846 0.9943 Pass
Serial-1 0.756185 0.9900 Pass
Serial-2 0.869416 1.0000 Pass
Linear complexity 0.231567 1.0000 Pass

many random sequences passed for the test, with 1
indicating all 100 or 69 random bit sequences have
cleared the test. The proposed prototype passes all
tests with a very high p-value, with the lowest
0.231567 and the highest 0.845629. The average
p-value for all the tests is 0.45.

VI. CONCLUSION

The research work in this article proposes an
integrated design of TRNG and PUF using PV
solar cells and microcontroller. We have shown
that the voltage response of PV solar cells can
be engineered in static (stable) and dynamic (large
variation) response. The segregation is based on
dividing the PV solar cell histogram within or
outside one SD (o) around the mean voltage value
(). The proposed prototype uses Iterative Von
Neumann (IVN) structure which has =~ 33.69%
better throughput to generate true random bits. The
proposed prototype achieves an average 92.13%
reliability and 50.91% uniformity in PUF response.
The integrated TRNG-PUF architecture can be ben-
eficial in space-limited CPS.
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