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ABSTRACT 23 

Plant growth, development, and nutritional quality depends upon amino acid homeostasis, 24 

especially in seeds. However, our understanding of the underlying genetics influencing amino acid 25 

content and composition remains limited, with only a few candidate genes and quantitative trait 26 

loci identified to date. Improved knowledge of the genetics and biological processes that determine 27 

amino acid levels will enable researchers to use this information for plant breeding and biological 28 

discovery. Towards this goal, we used genomic prediction to identify biological processes that are 29 

associated with, and therefore potentially influence, free amino acid (FAA) composition in seeds 30 

of the model plant Arabidopsis thaliana. Markers were split into categories based on metabolic 31 

pathway annotations and fit using a genomic partitioning model to evaluate the influence of each 32 

pathway on heritability explained, model fit, and predictive ability. Selected pathways included 33 

processes known to influence FAA composition, albeit to an unknown degree, and spanned four 34 

categories: amino acid, core, specialized, and protein metabolism. Using this approach, we 35 

identified associations for pathways containing known variants for FAA traits, in addition to 36 

finding new trait-pathway associations. Markers related to amino acid metabolism, which are 37 

directly involved in the FAA regulation, improved predictive ability for branched chain amino 38 

acids and histidine. The use of genomic partitioning also revealed patterns across biochemical 39 

families, in which serine-derived FAAs were associated with protein related annotations and 40 

aromatic FAAs were associated with specialized metabolic pathways. Taken together, these 41 

findings provide evidence that genomic partitioning is a viable strategy to uncover the relative 42 

contributions of biological processes to FAA traits in seeds, offering a promising framework to 43 

guide hypothesis testing and narrow the search space for candidate genes.   44 
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INTRODUCTION 45 

Amino acids play a central role in plant growth and development, as well as human and 46 

animal nutrition. In addition to serving as the building blocks for proteins, amino acids are involved 47 

in essential biological processes that include nitrogen assimilation, specialized metabolism, 48 

osmotic adjustment, alternative energy, and signaling (Rai 2002; Araújo et al. 2010; Angelovici et 49 

al. 2010, 2011; Wu and Messing 2014). Therefore, it is no surprise that the homeostasis for 50 

absolute levels and relative composition of the free amino acid (FAA) pool is complex and 51 

depends, at least in part, on various factors such as allosteric regulation, feedback loops of key 52 

metabolic enzymes in amino acid synthesis pathways, and the rate of amino acid degradation (Less 53 

and Galili 2008; Jander and Joshi 2010; Hildebrandt et al. 2015; Huang and Jander 2017; Amir et 54 

al. 2018). Studies have also demonstrated that core metabolism has a significant impact on FAA 55 

homeostasis. For example, alteration of the interconversion of pyruvate and malate in tomato fruits 56 

caused a reduction in FAAs related to aspartate (Osorio et al. 2013). In addition, processes related 57 

to protein and specialized metabolism also influence FAA homeostasis, especially in vegetative 58 

tissues (Hildebrandt et al. 2015; Barros et al. 2017; Huang and Jander 2017; Hirota et al. 2018; 59 

Hildebrandt 2018). Together, these lines of evidence highlight that FAA homeostasis is likely 60 

determined by orchestration of multiple processes. However, the relative contribution of each 61 

process to FAA composition remains unclear.   62 

The composition of the FAA pool is especially critical in dry seeds, since it ensures proper 63 

desiccation, longevity, germination, and seed vigor (Angelovici et al. 2011; Galili et al. 2014). 64 

Despite this, very little is known about the function, genetic architecture, and regulation of FAAs. 65 

The FAA pool comprises 1-10% of total seed amino acid content in maize (Muehlbauer et al. 66 

1994; Amir et al. 2018) and ~7% in Arabidopsis thaliana (Cohen et al. 2014; Amir et al. 2018). 67 
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Although the relative size of the FAA pool is small, manipulation of FAAs in seeds can have a 68 

substantial contribution to crop seed nutritional biofortification (Galili and Amir 2013). 69 

Nevertheless, several studies have also shown that manipulation of specific FAAs can have 70 

pleiotropic effects on growth and germination, indicating their metabolism is intertwined with 71 

other key metabolic processes in the seeds (Galili and Amir 2013; Amir et al. 2018). Thus, 72 

uncovering more about the relative influence of these metabolic processes can help tailor a more 73 

effective approach to FAA manipulation and biofortification.  74 

Like many other primary metabolites in dry seeds, FAAs are complex traits with extensive 75 

variability and high heritability across natural populations. Multiple genome-wide association 76 

(GWA) studies have identified several candidate loci for amino acid traits, both independently 77 

(Riedelsheimer et al. 2012) and in conjunction with QTL studies (Angelovici et al. 2013, 2016). 78 

However, the number and effect size of loci detected so far explained only a fraction of the 79 

observed phenotypic variation for amino acid traits, with some traits proving harder to dissect than 80 

others. For example, Angelovici et al. (2013, 2016) found the strongest associations for traits 81 

related to histidine and branched-chain amino acids (BCAAs), but weak signals for most other 82 

FAA traits. The findings that amino acid traits frequently have several associated loci and that 83 

these loci explain a small proportion of the genetic variation suggest a highly polygenic 84 

architecture with many loci of small effect (Korte and Farlow 2013). Additional evidence for 85 

metabolic traits indicates that, although many genetic markers may contribute to overall genetic 86 

variation, many of these markers are preferentially located in genes that are connected to a 87 

biological pathway(s) (Lango Allen et al. 2010). 88 

While linkage mapping and GWA studies are typically underpowered to identify variants 89 

that are rare and/or of small effect, genomic prediction methods perform well when traits are highly 90 
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complex (Meuwissen et al. 2001; Goddard et al. 2009; de Los Campos et al. 2013). Genomic 91 

prediction models are trained on a subset of individuals with genotypic and phenotypic data, 92 

enabling researchers to predict breeding values for genotyped individuals that have an unknown 93 

phenotype (Meuwissen et al. 2001; Heffner et al. 2009). Since its development nearly two decades 94 

ago (Meuwissen et al. 2001), genomic prediction has dramatically altered the speed and scale of 95 

applied genetic and breeding research (Daetwyler et al. 2013). The efficacy of genomic prediction 96 

results from its simultaneous use of all genotyped markers and indifference to the statistical 97 

significance of individual markers, in contrast to analyzing markers one-at-a-time for significance 98 

as is done for linkage mapping and GWA studies (Heffner et al. 2009). This allows the inclusion 99 

of information from all loci to make predictions, instead of basing conclusions only on loci that 100 

achieve genome-wide significance, and therefore captures more of the additive genetic variance.  101 

One of the most widely used methods for prediction of complex traits is genomic best linear 102 

unbiased prediction (GBLUP) (Meuwissen et al. 2001), which assumes that all variants share a 103 

common effect size distribution. Recent extensions of the GBLUP model, such as MultiBLUP 104 

(Speed and Balding 2014), genomic feature BLUP (Edwards et al. 2015, 2016; Sarup et al. 2016; 105 

Fang et al. 2017), and BayesRC (MacLeod et al. 2016), incorporate genomic partitions as multiple 106 

random effects, allowing effect size weightings to vary across different categories of variants. 107 

These partitions can be derived from prior biological information, such as physical position, 108 

genic/nongenic regions, pathway annotations, and gene ontologies. Further, genomic partitioning 109 

is most successful when a given partition is enriched for causal variant(s) (Sarup et al. 2016), 110 

providing a framework for guided hypothesis testing. To this end, models that incorporate genomic 111 

partitioning have enabled researchers to determine the relative influence of genomic features (e.g. 112 

chromosome segments, exons) and/or biological pathways on the variance explained for complex 113 
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traits. For example, annotations for several biological pathways were used to determine which 114 

pathways were associated with udder health and milk production in dairy cattle (Edwards et al. 115 

2015). Similarly, gene ontology categories were leveraged to explore the genetic basis of different 116 

phenotypes in Drosophila melanogaster (Edwards et al. 2016). In maize, applications of genomic 117 

partitioning models have revealed that SNPs located in exons explain a larger proportion of 118 

phenotypic variance compared to other annotation categories (Li et al. 2012) and that genomic 119 

prediction is improved for multiple traits by incorporating information from gene annotations, 120 

chromatin openness, recombination rate, and evolutionary features (Ramstein et al. 2020). The 121 

inclusion of prior biological information from transcriptomics, GWA studies, and genes identified 122 

in silico also improved predictions of root traits in cassava (Lozano et al. 2017).  123 

In this study, we evaluated genomic partitioning as a method to estimate the relative 124 

contribution of metabolic pathway annotations to variation for FAA traits in dry seeds of 125 

Arabidopsis thaliana. This approach enabled us to incorporate prior knowledge of FAA 126 

biochemistry based on metabolic pathways and to identify annotation categories with a 127 

disproportionate contribution to the genomic heritability of FAA content and composition. The 128 

ultimate objective of this work was to discover metabolic pathway annotations that explained 129 

significant variation and improved predictive ability, with the underlying assumption that the 130 

corresponding genomic regions are important for determining seed metabolic associations and 131 

constraints. These findings can then be considered in future designs to support seed amino acid 132 

biofortification.    133 
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MATERIALS AND METHODS 134 

Plant materials and trait data 135 

For this study, we reanalyzed data of the absolute levels (nmol/mg seed), relative compositions, 136 

and biochemical ratios for FAAs in dry Arabidopsis thaliana seeds (see Table S1 for a list of 137 

traits). These traits were previously measured by Angelovici et al. (2013, 2016) for 313 accessions 138 

of the Regional Association Mapping panel (Nordborg et al. 2005; Platt et al. 2010). Seeds were 139 

obtained from the Arabidopsis Biological Resource Center (ABRC, https://abrc.osu.edu/, see 140 

Table S2 for stock numbers). The panel was grown in three independent replicates, each at 18°C 141 

to 21°C (night/day) under long day conditions (16 h of light/8 h of dark). Following the desiccation 142 

period, dry seeds were harvested and stored in a desiccator at room temperature for at least six 143 

weeks prior to analysis to ensure full desiccation (Angelovici et al. 2013).   144 

Absolute levels of FAAs (nmol/mg seed) were quantified using liquid chromatography–145 

tandem mass spectrometry multiple reaction monitoring (LC-MS/MS MRM; see Angelovici et al. 146 

2013, 2016 for further details). Eighteen of the 20 proteinogenic amino acids were measured, 147 

including composite phenotypes for the sum of all FAAs measured (total FAAs) and for each of 148 

five biochemical families as determined by metabolic precursor (Figure S1, Table S1). This prior 149 

knowledge of biochemical relationships among FAAs was also used to determine metabolic ratios, 150 

which can represent, for example, the proportion of a metabolite to a related biochemical family 151 

or the ratio between two metabolites that share a metabolic precursor (Sauer et al. 1999; 152 

Weckwerth et al. 2004; Wentzell et al. 2007). The inclusion of metabolic ratios was based on 153 

evidence from multiple studies, which reported novel or more significant associations when using 154 

metabolic ratios as compared to absolute levels of metabolites (Wentzell et al. 2007; Harjes et al. 155 
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2008; Vallabhaneni and Wurtzel 2009; Wurtzel et al. 2012; Lipka et al. 2013; Gonzalez-Jorge et 156 

al. 2013; Angelovici et al. 2013, 2016; Owens et al. 2014).  157 

For each amino acid, relative composition was calculated as the absolute level over the 158 

total. Additional ratio traits were determined based on biochemical family affiliation (Angelovici 159 

et al. 2016). Traits and their respective abbreviations are described in Table S1. Overall, the 65 160 

traits included 25 absolute FAA levels (individual amino acids and composite traits), 17 relative 161 

levels (ratio of the absolute level for an amino acid compared to total FAA content), and 23 family-162 

derived traits (ratio of the absolute level for an amino acid to the total FAA content within a given 163 

family).  164 

Following the guidelines for multi-stage genomic prediction (Piepho et al. 2012), the best 165 

linear unbiased estimates (BLUEs) for each accession were used as the phenotypic data in this 166 

study and were calculated using the HAPPI-GWAS pipeline (Slaten et al. 2020a) in R v3.6.0 (R 167 

Core Team 2016). First, outlier removal was performed by fitting a mixed effects model using the 168 

‘lmer’ function in the ‘lme4’ package (v1.1-21, Bates et al. 2015), with the raw trait values as the 169 

response variable, replicate included as a random effect, and accession included as a fixed effect. 170 

Studentized deleted residuals were then used to identify outliers (Kutner et al. 2004).  Following 171 

outlier removal, the Box-Cox transformation (Box and Cox 1964) was applied for each trait to 172 

avoid violating model assumptions of normally distributed error terms and constant variance. 173 

Finally, to remove phenotypic variability arising from environmental conditions, the BLUE for 174 

each accession was obtained from the fitted mixed model described above, which was applied 175 

across all three replicates. The BLUEs for each trait were used as the response variables in all 176 

subsequent prediction models.   177 
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Genetic data: 178 

The accessions used in this study were previously genotyped using a 250k SNP panel 179 

(v3.06, Atwell et al. 2010). The software PLINK (v1.9, Purcell et al. 2007) was used to filter for 180 

minor allele frequency (MAF) > 0.05, reducing the number of SNPs from 214,051 to 199,452.  181 

Principal component analysis was performed on this filtered SNP set using the ‘prcomp’ function 182 

in R. The first two principal components explained 5.6% of the variance (Figure S2) and were 183 

included as fixed covariates in the prediction models. 184 

 185 

Selection of pathway SNPs 186 

To examine specific metabolic pathways, SNPs were selected based on annotation 187 

categories from the MapMan annotation software (Thimm et al. 2004) for the TAIR10 version of 188 

Arabidopsis (Berardini et al. 2015). We focused broadly on 20 pathways, which spanned four 189 

categories: amino acid metabolism (three pathways), core metabolism (three pathways), 190 

specialized metabolism (five pathways), and protein metabolism (nine pathways) (Table 1), all of 191 

which are known to be involved in FAA metabolism to some extent. The SNP positions were first 192 

matched to the corresponding Ensembl gene id using the ‘biomaRt’ package (Durinck et al. 2005, 193 

2009) in R. We then selected all SNPs within a 2.5 kb range of the start and stop position for each 194 

gene, which is within the range of the estimated average intergenic distance in Arabidopsis (Zhan 195 

et al. 2006) and includes upstream promoter regions. Relative SNP positions for each pathway are 196 

provided in Figure S3. Pathways and MapMan annotation categories, including the number of 197 

genes and SNPs represented, are described in Table 1. We used MapMan annotations for all genes 198 

except BCAT2 (At1g10070), which was moved from the amino acid synthesis pathway to the 199 
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amino acid degradation pathway along with other SNPs in the same haploblock (chromosome 1, 200 

3274080 to 397645 bp). This decision was based on previous work, which showed that bcat2 201 

mutants accumulate higher levels of branched-chain amino acids in seeds, thereby demonstrating 202 

that BCAT2 has catabolic activity (Angelovici et al. 2013). 203 

 204 

Table 1. Summary of selected biological pathways.   

Pathway 
Number of 
genes 

Number of 
SNPs 

MapMan 
BINCODE 

Amino Acid Metabolism    

amino acid synthesis 376 2084 13.1 

amino acid degradation 160 1094 13.2 

amino acid transport 144 939 34.3 

Core Metabolism    

glycolysis 148 858 4 

TCA cycle 167 926 8 

ATP synthesis (alternative oxidase) 10 66 9.4 

Specialized Metabolism    

isoprenoids 269 1788 16.1 

phenylpropanoids 161 845 16.2 

nitrogen containing 39 229 16.4 

sulfur containing 113 733 16.5 

flavonoids 171 1062 16.8 

Protein Metabolism    

amino acid activation 203 1231 29.1 

protein synthesis 1383 7290 29.2 

protein targeting 624 3689 29.3 

protein posttranslational modification 1407 8794 29.4 

protein degradation 996 6405 29.5 

ubiquitin 2691 16000 29.5.11 

protein folding 138 814 29.6 

protein glycolysis 87 459 29.7 

protein assembly 44 312 29.8 

 
Pathways include genes and SNPs within a 2.5 kb buffer before the start and after the stop 
position of each gene.  
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Prediction models 205 

The Linkage Disequilibrium Adjusted Kinship (LDAK) software (v5.0, Speed et al. 2012, 206 

http://dougspeed.com/ldak/) was used to implement two models for genomic prediction of each 207 

trait: GBLUP, which uses a single marker-based additive genetic relatedness matrix, and 208 

MultiBLUP, which incorporates multiple marker-based additive genetic relatedness matrices, each 209 

calculated with different subsets of genome-wide markers (Speed and Balding 2014).  210 

Genomic prediction was performed for all markers (p = 199,452) using a GBLUP model, 211 

in which individuals were included as a random effect and the additive genetic relatedness matrix 212 

was used as part of the variance-covariance matrix among the individuals (Whittaker et al. 2000; 213 

Meuwissen et al. 2001). First, the pairwise genetic similarity between individuals was estimated 214 

using a genomic similarity matrix (GSM), or kinship matrix (VanRaden 2008; Astle and Balding 215 

2009): 216 

 ! = ##′/&, (1) 

where # is an n x p design matrix of SNP genotypes, #′ is the transpose of #, n is the total number 217 

of individuals, and & is the total number of markers. The GBLUP model was then fit with the 218 

random effects model: 219 

 '	 = 	) + +, + -,	 (2) 

where Y is the vector of phenotypic values for n individuals, ) is the overall mean, Z is a design 220 

matrix connecting observations to genotypes, u is the vector of random genetic effects distributed 221 

as , ∼ 0(0,!3!"), and - is the random error term distributed as - ∼ 0(0, 53#"), where K is the 222 



13 

GSM representing the correlation structure of u, I is a 6	 × 	6 identity matrix, and 3!" and 3#" are 223 

variances.  224 

The MultiBLUP model (Speed and Balding 2014) was used to incorporate biological 225 

pathway information into genomic prediction. As an extension of the GBLUP model, MultiBLUP 226 

is a multi-kernel model that subdivides genetic effects into at least two random effects, where 227 

different subsets of markers are used to calculate GSMs for each random effect. In this study, the 228 

MultiBLUP model included a random genetic effect corresponding to sets of markers within a 229 

single biological pathway (m) and a second random genetic effect corresponding to the remaining 230 

markers not included in the given pathway (∉ 9). Using notation from equation (2) and Speed and 231 

Balding (2014), the MultiBLUP model within the context of this work is: 232 

 233 

 '	 = ) + 	+,$ 	+ 	+,∉$ 	+ 	-, (3) 

 234 

where ,$ is the vector of random genetic effects distributed as ,$ ∼ 0(0,!$3$" ), with Km 235 

representing the kinship matrix calculated using markers within a given biological pathway and 236 

3$"  denoting the corresponding variance component; ,∉$ is the vector of random genetic effects 237 

distributed as ,∉$ ∼ 0(0,!∉$3∉$" ), with !∉$ representing the kinship matrix calculated using 238 

markers outside of the given biological pathway and 3∉$"  denoting the corresponding variance 239 

component; and ', Z, ), and - are as previously described.  240 

For our purposes, kinship matrices were estimated using the LDAK software for either all 241 

SNPs (GBLUP) or each SNP partition (MultiBLUP, i.e. separately for SNPs belonging to a single 242 
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pathway and all other remaining SNPs). For each pathway, the extent of collinearity due to LD 243 

was determined by examining Spearman’s rank correlation between the off-diagonal elements of 244 

the kinship matrices for the pathway SNPs and remaining genomic SNPs. For estimates of genomic 245 

heritability, values were constrained to be positive and less than one. Additionally, the parameter 246 

α, which models the relationship between heritability and MAF, was set to ⍺ = 0 under the 247 

assumption that SNPs with lower MAF contribute less to heritability than SNPs with higher MAF 248 

(Speed et al. 2017). In relation to Eq. 2 and 3, the parameter ⍺ adjusts the expected contribution 249 

of each SNP to heritability, with a value of ⍺ = -1 assuming that heritability does not depend on 250 

MAF (see Speed et al. 2017 for details).  251 

 252 

Estimation of genomic heritability 253 

For both GBLUP and MultiBLUP, average information restricted maximum likelihood 254 

(REML, see Speed and Balding 2014 for details) was used to compute variance component 255 

estimates for 3$" , 3∉$" , and 3#". The maximum number of iterations to achieve convergence was 256 

set to 500. This process was repeated for each trait and pathway combination. In the case of the 257 

GBLUP model, 3;$"  is the estimate of variance for all SNPs. These estimates were used to calculate 258 

genomic heritability as the ratio of additive genomic variance explained for a given marker set 259 

(3$" ) over the total variance explained (the sum of 3$" , 3∉$" ,and the residual variance, 3#"): 260 

 261 

 ℎ$" = &!"
&!" 	(	&∉!" 	(	&$"

 .  (4) 

 262 
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For the MultiBLUP model, the proportion of genomic heritability explained was calculated as: 263 

 264 

 	 )!"
)!" (	)∉!"

,  (5) 

 265 

where ℎ$"  is the genomic heritability explained by SNPs in a given genomic partition and ℎ∉$"  is 266 

the genomic heritability explained by all other SNPs not included in the partition. 267 

 268 

Assessing model performance 269 

The performance of the prediction models was determined using ten-fold cross validation 270 

with a one-fold holdout, with the same training and testing sets used for both the GBLUP and 271 

MultiBLUP models. For each cross validation, the genomic estimated breeding value (GEBV) was 272 

derived from marker data for the excluded individuals based on estimates of random genetic effects 273 

for the individuals in the training set. This process was repeated five times for a total of 50 cross 274 

validations per trait and pathway combination. Predictive ability was then calculated as =(>;, >), 275 

where >; represents the GEBVs and > represents the BLUEs for each trait. Reliability, which is the 276 

coefficient of determination (=") scaled by heritability, was calculated as *")" (Rincent et al. 2012). 277 

Bias was calculated as the simple linear regression slope estimate between the GEBVs and BLUEs 278 

for each trait, with a slope estimate of one indicating no bias. Lastly, the overall root mean squared 279 

error (RMSE), which measures prediction bias and variability, was calculated as the square root 280 

of the mean for the squared difference between the BLUEs and GEBVs across all cross-281 
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validations, ?(,-,.)%"(⋅⋅⋅((,-,.)&"
1 , where k is the number of cross-validations. Predictive abilities for 282 

the MultiBLUP and GBLUP models were compared using a one-sided, paired Welch’s t-test for 283 

unequal variances.  284 

 285 

Generation of an empirical null distribution 286 

To test if a metabolic pathway explained more variation than expected by chance, we 287 

generated an empirical null distribution for each trait and pathway combination. The null 288 

hypothesis was that a given biological pathway will explain a similar amount of trait variance as 289 

the same number of SNPs in randomly selected gene groups (Edwards et al. 2015). To establish a 290 

null distribution, we first defined 1000 random gene groups for each pathway, where the target 291 

number of SNPs in each random gene group was comparable to the size of the pathway. Ranges 292 

for the number of genes and SNPs sampled for each pathway are provided in Table S3. For each 293 

random subset, all SNPs within 2.5 kb of the start and stop positions of a randomly selected gene 294 

were sampled. This process was repeated by randomly sampling genes one at a time until the target 295 

number of SNPs for each subset was achieved. Genes within a given pathway were excluded from 296 

the random sampling procedure for that pathway. As discussed in Edwards et al. (2015), this 297 

approach does not explicitly model variation in other parameters (e.g., allele frequencies, LD), but 298 

it is expected that these differences are captured to some extent by the sampling process.  299 

 Next, we used two metrics to test if SNPs in a given pathway explained more genomic 300 

variance than expected by chance and increased model fit for each trait: (1) the proportion of 301 

genomic heritability explained by a pathway compared to the random gene groups described 302 

above, and (2) the likelihood ratio (LR) test statistic as a measure of pathway model fit compared 303 



17 

to the model fit of random gene groups. The proportion of heritability explained was calculated as 304 

described previously in equation (5) and the LR test statistic was calculated as twice the difference 305 

between the log likelihood of the MultiBLUP model and the log likelihood of the GBLUP model. 306 

For each pathway and trait combination, the values for proportion of heritability explained and the 307 

LR test statistic were compared to the empirical cumulative distribution function for the 308 

corresponding 1000 random gene groups using the ‘ecdf’ function in R. To determine if the 309 

observed value was greater than the random values for each metric, P-values were computed with 310 

a one-sided test using the ‘t_test’ function in the R package ‘rstatix’ (Kassambara 2020).  311 

 312 

Correction for multiple testing 313 

For each trait, the Benjamini-Hochberg procedure (Benjamini and Hochberg 1995) was 314 

used to adjust for multiple testing across pathways (n = 20) at a 10% false discovery rate (FDR). 315 

Multiple testing correction was performed with the ‘p.adjust’ function in R for the proportion of 316 

heritability explained, the LR test statistic, and predictive ability.  317 

 318 

Identifying biological pathways of interest 319 

In summary, a pathway was considered of interest for a trait if the MultiBLUP model passed 320 

all three of the following criteria:  321 

1.) The proportion of heritability explained was significantly greater than empirical values for 322 

random gene groups of the same size (FDR-adjusted P-value < .10),  323 
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2.) The LR test statistic was significantly greater than empirical values for random gene groups 324 

of the same size (FDR-adjusted P-value < .10),  325 

3.) The MultiBLUP model significantly improved predictive ability compared to the GBLUP 326 

model (FDR-adjusted P-value < .10).  327 

Together, criteria (1) and (2) established that a given pathway improved model fit better than a 328 

random set of SNPs. Criteria (3) was imposed to ensure that there was a meaningful difference in 329 

predictive ability when pathway information was incorporated via MultiBLUP compared to the 330 

naive GBLUP model that incorporated no pathway information. 331 

 332 

Data availability statement  333 

Genotype data were previously published (Atwell et al. 2010) and were accessed from 334 

github.com/Gregor-Mendel-Institute/atpolydb/wiki. The scripts and phenotypic data supporting 335 

the conclusions of this article are publicly available as a Snakemake workflow (v5.4.2, Köster and 336 

Rahmann 2012) on GitHub at github.com/mishaploid/aa-genomicprediction (archived at 337 

https://doi.org/10.5281/zenodo.4048850). Free amino acid traits and details on ratio calculations 338 

are provided in Table S1. A list of ABRC stock names and accession numbers for each individual 339 

is in Table S2.  340 

 341 

RESULTS AND DISCUSSION 342 

In this study, we applied a genomic partitioning model to evaluate the contribution of 343 

metabolic pathways to FAA traits in seeds. The combination of a genomic partitioning framework 344 
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and the model system Arabidopsis allowed us both to test the feasibility of this approach and to 345 

further examine the relative contribution of each pathway to the genetic basis of FAA traits in 346 

seeds. Additionally, because FAA traits are part of core metabolism that is highly conserved, we 347 

hypothesize that our findings can be used to develop hypotheses in crop systems, where there is 348 

potential to contribute to the biofortification of essential amino acids.  349 

 350 

Genomic prediction was most effective for absolute levels of free amino acids 351 

We first established the efficacy of standard GBLUP in a diversity panel of 313 352 

Arabidopsis individuals, which represents a substantial proportion of the known genetic variability 353 

present in Arabidopsis (Nordborg et al. 2005). Because this setting is distinct from the closed 354 

breeding populations of dairy cattle, maize, and other agricultural species where genomic 355 

prediction is often applied (e.g. Heffner et al. 2009; Wolc et al. 2016; Weller et al. 2017), we were 356 

interested in testing how well genomic prediction would work in this panel. We were also 357 

interested in testing the utility of genomic prediction for FAA traits, which are highly conserved.  358 

Using the GBLUP model, we observed low to moderate predictive ability for the amino 359 

acid traits measured (Table 2). Of these 65 FAA traits, 30 had a predictive ability greater than 0.3 360 

(Figure 1, Table 2). In general, prediction was effective for a greater number of absolute level 361 

FAA traits, with 21 out of 25 absolute traits having a predictive ability > 0.3 (84%), compared to 362 

relative levels (4 out of 17, 24%) and family-derived ratios (5 out of 23, 22%). The family ratio of 363 

methionine (met_AspFam) had the highest predictive ability (r = 0.47), while the relative level of 364 

serine (ser_t) had the lowest predictive ability (r = 0.08) (Table 2). The observation of moderate 365 

prediction accuracies for many of these traits (Figure 1, Table 2) suggests that there is linkage 366 
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disequilibrium (LD) between markers and causal loci, providing evidence that genomic prediction 367 

can be successfully applied in this system.  368 

 369 

 

Figure 1. Genomic prediction performed well for a higher proportion of absolute traits compared to relative 370 

and family-based ratio traits.  371 

Boxplots show free amino acid traits with predictive ability (r) > 0.3 based on genomic best linear unbiased prediction 372 

(GBLUP). Black triangles indicate the genomic heritability for each trait. Colors indicate whether the trait is an 373 

absolute level, relative level, or family-based ratio. Each point represents an individual cross-validation.  374 
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Table 2. Genomic prediction results for 65 free amino acid (FAA) traits using a GBLUP model.  
 
   Predictive 

ability (r) 
Reliability 
(r2) 

  

Trait type Metabolic family Trait mean SE mean SE slope (bias) RMSE 

absolute 

aspartate 

asp 0.341 0.028 0.157 0.020 0.936 0.055 
met 0.384 0.027 0.224 0.024 1.051 0.0243 
thr 0.099 0.022 0.075 0.013 0.756 0.1348 
AspFam 0.327 0.031 0.159 0.022 1.042 0.0266 

BCAA_pyruvate 

ala 0.317 0.022 0.178 0.021 1.119 0.249 
ile 0.328 0.021 0.206 0.023 1.046 0.0583 
leu 0.353 0.019 0.179 0.017 1.035 0.1261 
lys 0.270 0.024 0.122 0.017 0.921 0.4597 
val 0.397 0.019 0.242 0.022 1.027 0.1007 
BCAA 0.388 0.019 0.252 0.023 1.042 0.101 
PyrFam 0.351 0.021 0.249 0.026 1.108 0.12 

glutamate 

arg 0.323 0.029 0.146 0.023 0.923 0.0552 
gln 0.178 0.025 0.114 0.018 1.032 0.5348 
glu 0.356 0.020 0.234 0.023 0.990 0.0072 
his 0.359 0.020 0.149 0.014 0.880 1.0529 
pro 0.310 0.021 0.182 0.021 1.010 0.0405 
GluFam 0.389 0.020 0.199 0.018 0.916 0.0297 

serine 
gly 0.349 0.023 0.344 0.038 1.072 0.1086 
ser 0.241 0.021 0.142 0.019 1.078 0.0016 
SerFam 0.320 0.022 0.247 0.028 1.030 0.0112 

aromatic 

phe 0.326 0.021 0.178 0.019 1.084 0.0202 
trp 0.317 0.018 0.209 0.021 1.019 0.0877 
tyr 0.334 0.027 0.212 0.026 1.046 0.0266 
ShikFam 0.411 0.015 0.229 0.016 1.023 0.0146 

  Total 0.392 0.022 0.193 0.018 1.015 0.019 

relative 

aspartate 
asp_t 0.405 0.022 0.189 0.017 0.933 0.0386 
met_t 0.313 0.025 0.157 0.017 1.021 0.0162 

BCAA_pyruvate 

ala_t 0.261 0.026 0.154 0.022 1.239 5.1795 
ile_t 0.218 0.021 0.127 0.017 1.085 0.0197 
leu_t 0.296 0.022 0.122 0.015 1.093 0.0957 
lys_t 0.196 0.023 0.125 0.019 1.112 0.8788 
val_t 0.319 0.022 0.271 0.030 1.106 0.0138 

glutamate 

arg_t 0.276 0.037 0.220 0.042 1.056 0.0145 
gln_t 0.108 0.022 0.118 0.019 1.322 5.0853 
glu_t 0.264 0.021 0.168 0.020 1.008 0.0355 
his_t 0.259 0.024 0.123 0.016 1.076 37.6486 
pro_t 0.253 0.019 0.134 0.017 1.022 0.0228 

serine gly_t 0.268 0.026 0.567 0.082 1.127 0.0155 
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ser_t 0.076 0.023 0.118 0.019 1.452 0.0185 

aromatic 
phe_t 0.355 0.016 0.169 0.014 1.047 0.0181 
trp_t 0.205 0.024 0.110 0.015 0.940 0.0381 
tyr_t 0.116 0.027 0.146 0.018 1.112 0.0118 

family 

aspartate 

asp_AspFam 0.141 0.031 0.134 0.022 1.309 0.0782 
ile_AspFam 0.165 0.029 0.139 0.021 1.197 0.0772 
lys_AspFam 0.358 0.027 0.164 0.021 0.933 0.0189 
met_AspFam 0.468 0.020 0.244 0.018 1.060 0.001 
thr_AspFam 0.118 0.024 0.090 0.013 1.049 0.0552 
AspFam_Asp 0.171 0.022 0.052 0.007 1.042 0.027 

BCAA_pyruvate 

ala_PyrFam 0.216 0.019 0.092 0.013 0.905 0.0222 
ile_BCAA 0.250 0.020 0.083 0.011 0.914 0.0348 
leu_BCAA 0.251 0.024 0.091 0.012 1.076 0.075 
leu_PyrFam 0.303 0.021 0.114 0.015 0.975 0.0244 
val_BCAA 0.268 0.020 0.091 0.011 0.848 0.0224 
val_PyrFam 0.298 0.019 0.232 0.024 0.858 0.0153 

glutamate 

arg_GluFam 0.205 0.032 0.193 0.029 1.243 0.0659 
gln_GluFam 0.167 0.034 0.195 0.039 1.076 0.0218 
glu_GluFam 0.139 0.022 0.153 0.022 0.992 1.1693 
GluFam_glu 0.203 0.034 0.202 0.030 0.881 0.0665 
his_GluFam 0.186 0.023 0.102 0.015 1.012 24.2851 
pro_GluFam 0.289 0.024 0.155 0.018 1.004 0.0329 

serine 
gly_SerFam 0.305 0.025 0.351 0.048 1.172 0.0634 
ser_SerFam 0.325 0.024 0.364 0.047 1.179 0.0461 

aromatic 
phe_ShikFam 0.218 0.028 0.149 0.021 1.097 0.0607 
trp_ShikFam 0.187 0.024 0.111 0.015 1.028 0.0658 
tyr_ShikFam 0.257 0.028 0.144 0.022 0.945 0.0331 

       
Traits are grouped by the type of trait (absolute level, relative to total FAA content, and family ratio) and metabolic 

family based on shared precursor. SE, standard error; RMSE, root mean squared error. 

 375 

Annotations for biological pathways explained significant variation and improved predictive 376 

ability of free amino acid traits in seeds 377 

We next applied a genomic partitioning approach, MultiBLUP, to investigate the 378 

association of different metabolic annotation categories with FAA traits in dry Arabidopsis seeds. 379 

The focus was specifically on categories which are thought to influence FAA homeostasis, but 380 
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where the degree of this influence is unclear, especially in dry seeds (Skirycz et al. 2010, 2011; 381 

Hildebrandt et al. 2015; Hildebrandt 2018).  382 

The pathway annotations listed in Table 1 were used to subset SNPs and spanned the broad 383 

categories of amino acid, core, specialized, and protein metabolism. When partitioning these 384 

pathways in the MultiBLUP model, 18 trait-pathway combinations were flagged as potentially 385 

related based on comparison to a null distribution (Figure 2A, Table 3). The observation that 386 

specific pathways improved model fit based on the LR test statistic, explained a significant 387 

proportion of genomic heritability, and improved predictive ability suggests that these pathway 388 

annotations may have biological relevance for FAA traits. 389 

For the trait-pathway combinations that passed the significance criteria, the MultiBLUP 390 

model generally reduced bias and RMSE compared to the GBLUP model (Table 3). For six of 391 

these trait-pathway combinations, the predictive ability for the MultiBLUP model was also over 392 

5% higher than for the GBLUP model (Table 3, bold). This substantial increase in predictive 393 

ability was observed in the pyruvate/BCAA family for absolute levels of leucine (leu, 5.3%) and 394 

isoleucine (ile, 7%) when the model included SNPs in the amino acid synthesis pathway. The 395 

highest increase in predictive ability was observed when incorporating the amino acid degradation 396 

pathway for traits in the glutamate family, which included the relative level and family-based ratio 397 

for histidine (his_t, 7.6%; his_GluFam, 9.7%). A similar increase in predictive ability was 398 

observed when including SNPs related to phenylpropanoids for the family ratio of tyrosine 399 

(tyr_ShikFam, 6.9%) and when including SNPs related to protein amino acid activation for the 400 

family ratio of glycine (gly_SerFam, 7.5%).  401 
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Figure 2. Biological pathways explain significant variation and improve predictive ability for free amino acid 402 

traits when incorporated into a MultiBLUP model.  403 

(A) Venn diagram showing which trait-pathway combinations passed significance criteria (FDR adjusted P-value < 404 

.10) for proportion of heritability explained (Prop. h2), likelihood ratio test statistic (LRT), and improved predictive 405 

ability for MultiBLUP compared to GBLUP. The bottom right corner indicates the number of combinations that did 406 

not pass any significance criteria. The Venn diagram was constructed using the ‘limma’ package in R (Smyth et al. 407 

2005).  408 

(B) Points indicate trait-pathway combinations that passed all three significance criteria. The diameter of each point 409 

is proportional to the amount of genomic variance explained by pathway SNPs in the MultiBLUP model. Traits are 410 

included on the y-axis and are grouped by metabolic family (aspartate, glutamate, pyruvate/BCAA, serine, aromatic). 411 

Pathways are included on the x-axis and separated into amino acid, core, specialized, and protein metabolism 412 

categories.  413 

170

2

4

3

6

5

18

1092

Prop. h2 LRT predictive ability

A

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

amino acid specialized protein
aspartate

glutamate

pyruvate
(BCAA)

serine

aromatic

total

aa
_d
eg
rad
ati
on

aa
_s
yn
the
sis

iso
pre
no
ids

ph
en
ylp
rop
an
oid
s

S_
co
nta
inin

g

pro
tei
n_
aa
_a
ctiv
ati
on

pro
tei
n_
fol
din
g

pro
tei
n_
syn

the
sis

met_t

his_GluFam
his_t
his

val_BCAA
ile_t
val
PyrFam
leu
ile
BCAA

gly_SerFam
SerFam

tyr_ShikFam
ShikFam

total

Pathway

Trait
Prop. h2 ● ● ● ●0.25 0.50 0.75 1.00

B



25 

Table 3. Free amino acid traits and pathway combinations for which the MultiBLUP model explains a significant proportion of heritability, 414 

improves model fit relative to random gene groups of approximately the same size, and increases accuracy compared to GBLUP. 415 

   Prop. h2 explained Likelihood ratio Predictive ability 
 

  

Category Pathway Trait Prop. h2 P-value FDR  LR P-value FDR  Δr P-value FDR  Δreliability Δslopea ΔRMSE 

am
in
o 
ac
id
 

aa_degradation his 0.202 0.001 0.020 13.000 <0.001 <0.001 0.039 <0.001 <0.001 0.026 -0.022 -1.46E-02 

aa_degradation his_t 0.390 <0.001 <0.001 9.907 0.001 0.020 0.076 <0.001 <0.001 0.058 -0.036 -7.71E-01 

aa_degradation ile_t 0.412 0.003 0.060 5.689 0.007 0.100 0.039 0.006 0.037 0.042 -0.045 -1.60E-04 

aa_degradation met_t 0.268 0.003 0.060 6.382 0.004 0.080 0.027 0.003 0.012 0.015 -0.079 -1.57E-04 

aa_degradation val_BCAA 0.218 0.002 0.040 8.024 0.004 0.080 0.042 0.001 0.006 0.027 0.003 -4.67E-04 

aa_degradation his_GluFam 0.468 0.002 0.040 11.780 <0.001 <0.001 0.097 <0.001 <0.001 0.076 -0.081 -4.59E-01 

aa_synthesis ile 0.529 0.003 0.060 11.790 <0.001 <0.001 0.070 <0.001 <0.001 0.073 -0.101 -1.73E-03 

aa_synthesis leu 0.339 0.004 0.080 9.529 <0.001 <0.001 0.053 <0.001 <0.001 0.050 -0.040 -2.86E-03 

aa_synthesis val 0.336 0.003 0.030 4.507 0.007 0.067 0.017 0.006 0.064 0.016 -0.036 -8.14E-04 

aa_synthesis BCAA 0.439 0.002 0.040 8.823 0.001 0.020 0.044 <0.001 <0.001 0.050 -0.064 -2.16E-03 

sp
ec
ia
liz
ed
 isoprenoids ile_t 0.429 0.008 0.080 4.575 0.010 0.100 0.044 0.001 0.005 0.032 -0.078 -2.04E-04 

phenylpropanoids tyr_ShikFam 0.332 <0.001 <0.001 8.811 <0.001 <0.001 0.069 <0.001 0.001 0.035 -0.301 -7.71E-04 

S_containing ShikFam 0.301 0.001 0.020 10.810 0.001 0.020 0.032 <0.001 0.001 0.036 -0.024 -2.39E-04 

pr
ot
ei
n 

aa_activation gly_SerFam 0.700 0.003 0.060 13.810 <0.001 <0.001 0.075 <0.001 <0.001 0.147 -0.076 -1.89E-03 

protein_folding his 0.146 0.009 0.090 11.520 0.002 0.020 0.021 0.011 0.055 0.013 -0.009 -8.36E-03 

protein_folding SerFam 0.303 0.005 0.100 6.487 0.001 0.020 0.032 0.001 0.008 0.042 -0.033 -1.11E-04 

protein_synthesis total 0.535 0.002 0.040 6.418 <0.001 <0.001 0.024 0.001 0.006 0.018 -0.025 -2.00E-04 

protein_synthesis PyrFam 0.809 0.005 0.100 5.298 0.003 0.060 0.026 0.003 0.029 0.032 -0.030 -1.50E-03 

Bolded rows indicate trait and pathway combinations that increased predictive ability by more than 5% compared to a GBLUP model. The difference in 

slope between the MultiBLUP and GBLUP models was computed as |"#$%&!"#$%&'() − 1| − |"#$%&*&'() − 1|. RMSE, root mean squared error. 
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Amino acid synthesis and degradation pathways were significantly associated with several 416 

FAA traits 417 

The homeostasis of FAAs is regulated by multiple allosteric enzymes and feedback loops 418 

(Less and Galili 2008; Jander and Joshi 2010; Hildebrandt et al. 2015; Huang and Jander 2017; 419 

Amir et al. 2018). However, the homeostasis of some FAAs, such as proline, can also be 420 

determined by environmental conditions. For example, proline may serve as either an 421 

osmoprotectant under stress or an energy source during development, and its elevation is mostly 422 

from active synthesis (Szabados and Savouré 2010; Hayat et al. 2012). In addition, previous work 423 

has suggested that an overarching metabolic switch occurs during late maturation to desiccation, 424 

when amino acid synthesis is active (Fait et al. 2006). Hence, our initial hypothesis was that FAA 425 

traits would be strongly associated with pathway annotations within core and amino acid 426 

metabolism. 427 

For amino acid metabolism, our initial hypothesis was supported by significant 428 

associations between the amino acid degradation pathway and with six traits, which spanned the 429 

aspartate, glutamate, and pyruvate/BCAA families (Figure 2B). Two BCAA traits, ile_t and 430 

val_BCAA, were associated with amino acid degradation, consistent with previous work which 431 

identified a large effect QTL that explained 12-19% of the variance for BCAA traits (Angelovici 432 

et al. 2013). Based on this previous work, the causal gene was identified as the catabolic branched-433 

chain amino acid transferase 2 (BCAT2; At1g10070) (Angelovici et al. 2013). Our results 434 

recapitulate this finding, showing that the amino acid degradation pathway, which contains the 435 

BCAT2 haploblock, explained both a significant proportion of heritability (41%) and improved 436 

predictive ability for BCAA traits (e.g. by 3.9% for ile_t) (Table 3). In contrast, the only additional 437 

associations that were identified were between amino acid synthesis and BCAA traits, despite no 438 
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prior evidence that QTLs for BCAAs contain genes related to amino acid synthesis (Angelovici et 439 

al. 2013). Surprisingly, these were also the only associations that were identified for amino acids 440 

synthesis, despite evidence that levels of several FAAs and transcription of their biosynthetic genes 441 

are elevated toward desiccation (Fait et al. 2006). This observation could arise from one of several 442 

reasons: 1) the elevation of transcription for amino acid biosynthetic genes does not lead to a 443 

corresponding elevation in metabolic pathway products, 2) our sample size and statistical approach 444 

was unable to resolve other traits associated with amino acid synthesis, or 3) we are unable to 445 

cleanly partition pathway SNPs from background genome wide markers. Nonetheless, our results 446 

imply that amino acids synthesis may be more important for BCAAs than for other FAA traits at 447 

this stage of development.  448 

 We also observed that annotations for amino acid degradation were associated with 449 

histidine and methionine FAA traits (Figure 2B, Table 3), which, to our knowledge, has not been 450 

reported in previous QTL studies for seed FAAs. Both histidine and methionine are essential amino 451 

acids, which are deficient in most crop seeds, and therefore of special interest for biofortification 452 

and crop improvement (Galili and Amir 2013). Notably, very little is currently known about the 453 

pathway for histidine degradation in plants. Taken together, these findings suggest that the 454 

MultiBLUP approach can not only recapture previous observations for FAA traits, but can also 455 

generate new insights into their genetic regulation. 456 

Both amino acid and core (or primary) metabolism are tightly interconnected. For example, 457 

amino acids in the glutamate family are known to play a central role in core metabolism, mainly 458 

by functioning as precursors for energy generation via glycolysis, amino acid metabolism, and the 459 

TCA cycle. However, we found no associations for any FAA traits with the core/primary metabolic 460 
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pathways tested in this study, which included glycolysis, the TCA cycle, and ATP synthesis via 461 

alternative oxidase (Figure 2B, Table 3).    462 

 463 

Gene annotations for specialized metabolism are associated with FAA precursors  464 

The synthesis of specialized metabolites involves many FAAs. For example, methionine 465 

and aromatic amino acids (i.e. phenylalanine, tryptophan, and tyrosine) are precursors for 466 

alkaloids, phenylpropanoids, and glucosinolates. Levels of these specialized metabolites are often 467 

dependent on the availability of their FAA precursors (Tzin and Galili 2010; Maeda and Dudareva 468 

2012). However, less is known regarding whether the extensive natural variation of these 469 

specialized metabolites produces a feedback effect on FAA precursors, especially in seeds. 470 

Previous work in vegetative tissues has found that perturbation of the synthesis for secondary 471 

metabolites produces a pleiotropic effect on other types of metabolism, including FAAs (Chen et 472 

al. 2012; Slaten et al. 2020b), but the nature of such interactions is not well understood.  473 

Consistent with knowledge of precursors for specialized metabolites, we observed that 474 

aromatic FAAs were associated with categories belonging to specialized metabolism (Figure 2). 475 

This included associations for the combined absolute levels of FAAs in the shikimate family 476 

(ShikFam) with the pathway for sulfur-containing compounds and between the family ratio of 477 

tyrosine (tyr_ShikFam) with the phenylpropanoid pathway. When partitioning SNPs from the 478 

phenylpropanoid pathway in the MultiBLUP model, we observed a 6.9% increase in predictive 479 

ability for tyr_ShikFam (Table 3), suggesting SNPs in this pathway have a substantial contribution 480 

to the variation for Tyr_ShikFam or are in strong LD with one or more causal variants. We also 481 

found an unexpected association between isoprenoid metabolism and the relative ratio of 482 

isoleucine (ile_t), which is part of the BCAA family (Figure 2B). The metabolic relationship is 483 
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less clear in this case, as isoleucine is not directly involved in phenylpropanoid metabolism, and 484 

provides an avenue for further investigation. 485 

A recent metabolic GWA study identified an unanticipated association between 486 

glucosinolate biosynthesis and levels of free glutamine in seeds of Arabidopsis (Slaten et al. 487 

2020b). This finding was further validated by evidence that elimination of seed glucosinolates 488 

significantly impacted levels of glutamine during early seed development (Slaten et al. 2020b). 489 

Notably, when partitioning SNPs for sulfur-related metabolism, the family-based ratio for 490 

glutamine (GluFam_glu) passed significance criteria for proportion of heritability explained 491 

(40.5%, FDR corrected P-value = .10) and predictive ability (3.7% increase compared to GBLUP, 492 

FDR corrected P-value = .006), but not for the LR test statistic (5.48, FDR corrected P-value = 493 

.12). This observation reinforces that additional studies, especially with greater statistical power, 494 

may identify more connections with biological relevance. 495 

 496 

Annotations for protein metabolism are associated with serine family FAAs 497 

It stands to reason that FAA homeostasis will be influenced by protein metabolism since 498 

FAAs serve as the building blocks for proteins. Consistent with this expectation, significant 499 

increases in FAAs are observed under many abiotic stresses and suggested to result from protein 500 

autophagy and turnover (Hildebrandt et al. 2015; Barros et al. 2017; Huang and Jander 2017; 501 

Hirota et al. 2018; Hildebrandt 2018). In contrast, the opaque2 null mutant in maize exhibits a 502 

reduction in the most abundant seed storage proteins and a significant elevation of many FAAs, 503 

despite an unchanged composition of protein-bound amino acids (Wang and Larkins 2001; 504 

Schmidt et al. 2011), indicating a complex relationship between the free and bound amino acid 505 
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pools for protein metabolism. Hence, it is unclear to what extent protein metabolism affects FAAs, 506 

particularly in seeds where protein composition is critical for nutritional quality.  507 

Interestingly, we find that protein metabolism annotations are associated with five FAA 508 

traits, which spanned the glutamate, pyruvate/BCAA, and serine families, and included the 509 

composite trait for total FAA content (Figure 2, Table 3). Notably, no aromatic FAA traits were 510 

associated with protein metabolic annotation categories, while the serine family FAA traits were 511 

exclusively associated with this group of pathways. Further, the family-based ratio for glycine 512 

(Gly_SerFam) showed an increase in predictive ability of 7.5% when partitioning SNPs related to 513 

amino acid activation in the MultiBLUP model (Table 3). This suggests that genes related to amino 514 

acid activation, such as tRNA synthetases, may contribute to the homeostasis of glycine and serine. 515 

Overall, even though most protein metabolism occurs at seed maturation, we found evidence that 516 

annotations for protein metabolism influence FAAs in dry seeds, suggesting that FAA levels at 517 

this stage may reflect prior events occurring earlier in seed development.   518 

 519 

Pathway size influences proportion of heritability explained, model fit, and predictive ability 520 

To examine the relationship between pathway size, LD, and variance partitioning, we 521 

compared off-diagonal elements of the kinship matrices for pathway SNPs and remaining genomic 522 

SNPs (Figure 3A). Spearman’s correlations ranged from 0.17 for the ATP synthesis via alternative 523 

oxidase category (e_alt_oxidases, 66 SNPs, 0.03% of total SNPs) to 0.85 for the protein 524 

degradation by ubiquitin category (degradation_ubiquitin, 16000 SNPs, 8.02% of total SNPs) 525 

(Figure 3A). In general, pathways containing a greater number of SNPs displayed more 526 

collinearity with SNPs not contained in the pathway. Similar to observations for genomic 527 

partitioning based on gene ontology terms for locomotor activity in Drosophila (Rohde et al. 528 
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2018), we observe that pathways which increased predictive ability also explained a large 529 

proportion of genomic heritability, whereas pathways with a greater number of SNPs explained 530 

less genomic heritability and did not improve predictive ability (Figure 3B). Further, as suggested 531 

by Rohde et al. (2018), pathways which explained all of the genomic heritability likely represent 532 

an overestimation caused by high similarity between the relationship matrices for the pathway and 533 

background genomic SNPs.    534 

 535 

 

Figure 3. Pathway size influences the proportion of heritability explained and predictive ability when using a 536 

MultiBLUP model.  537 

(A) Spearman’s rank correlations between off-diagonal elements of the kinship matrices for each pathway and the 538 

remaining genomic SNPs. Pathways are sorted from top to bottom by increasing size (number of SNPs).  539 

(B) Difference in predictive ability between the MultiBLUP and GBLUP models compared to the proportion of 540 

heritability explained by each pathway for all 1300 trait-pathway combinations (65 traits, 20 pathways). The diameter 541 

of the points is proportional to the number of SNPs in the pathway and color indicates whether or not a trait-pathway 542 

combination passed significance for proportion of heritability explained, likelihood ratio test statistic, and predictive 543 

ability.   544 
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Conclusions 545 

Overall, we find that predictive ability for FAA traits was improved by incorporating prior 546 

knowledge from metabolic pathway annotations for several FAA traits, adding to a growing body 547 

of literature that demonstrates the utility of genomic partitioning in the study and prediction of 548 

complex traits. This study further highlights that specific metabolic pathways are associated with 549 

natural variation of FAA traits across amino acid families. The amino acid degradation pathway 550 

was significantly associated with traits in the BCAA/pyruvate, glutamate, and aspartate families, 551 

while specialized metabolism was associated with traits in the aromatic family and protein 552 

metabolism was associated with traits in the serine, pyruvate/BCAA, and glutamate families. Thus, 553 

although the FAA metabolic network is tightly connected, the predominant genetic architecture 554 

underlying variation for specific FAA traits varies, at least for this stage of seed development. 555 

Overall, this study furthers our understanding of the contribution from specific metabolic pathway 556 

genes to amino acid trait variation and offers an additional strategy to investigate other complex 557 

metabolic traits, both in Arabidopsis and other species.  558 
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