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ABSTRACT

Plant growth, development, and nutritional quality depends upon amino acid homeostasis,
especially in seeds. However, our understanding of the underlying genetics influencing amino acid
content and composition remains limited, with only a few candidate genes and quantitative trait
loci identified to date. Improved knowledge of the genetics and biological processes that determine
amino acid levels will enable researchers to use this information for plant breeding and biological
discovery. Towards this goal, we used genomic prediction to identify biological processes that are
associated with, and therefore potentially influence, free amino acid (FAA) composition in seeds
of the model plant Arabidopsis thaliana. Markers were split into categories based on metabolic
pathway annotations and fit using a genomic partitioning model to evaluate the influence of each
pathway on heritability explained, model fit, and predictive ability. Selected pathways included
processes known to influence FAA composition, albeit to an unknown degree, and spanned four
categories: amino acid, core, specialized, and protein metabolism. Using this approach, we
identified associations for pathways containing known variants for FAA traits, in addition to
finding new trait-pathway associations. Markers related to amino acid metabolism, which are
directly involved in the FAA regulation, improved predictive ability for branched chain amino
acids and histidine. The use of genomic partitioning also revealed patterns across biochemical
families, in which serine-derived FAAs were associated with protein related annotations and
aromatic FAAs were associated with specialized metabolic pathways. Taken together, these
findings provide evidence that genomic partitioning is a viable strategy to uncover the relative
contributions of biological processes to FAA traits in seeds, offering a promising framework to

guide hypothesis testing and narrow the search space for candidate genes.
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INTRODUCTION

Amino acids play a central role in plant growth and development, as well as human and
animal nutrition. In addition to serving as the building blocks for proteins, amino acids are involved
in essential biological processes that include nitrogen assimilation, specialized metabolism,
osmotic adjustment, alternative energy, and signaling (Rai 2002; Araujo et al. 2010; Angelovici et
al. 2010, 2011; Wu and Messing 2014). Therefore, it is no surprise that the homeostasis for
absolute levels and relative composition of the free amino acid (FAA) pool is complex and
depends, at least in part, on various factors such as allosteric regulation, feedback loops of key
metabolic enzymes in amino acid synthesis pathways, and the rate of amino acid degradation (Less
and Galili 2008; Jander and Joshi 2010; Hildebrandt et al. 2015; Huang and Jander 2017; Amir et
al. 2018). Studies have also demonstrated that core metabolism has a significant impact on FAA
homeostasis. For example, alteration of the interconversion of pyruvate and malate in tomato fruits
caused a reduction in FAAs related to aspartate (Osorio ef al. 2013). In addition, processes related
to protein and specialized metabolism also influence FAA homeostasis, especially in vegetative
tissues (Hildebrandt et al. 2015; Barros et al. 2017; Huang and Jander 2017; Hirota et al. 2018;
Hildebrandt 2018). Together, these lines of evidence highlight that FAA homeostasis is likely
determined by orchestration of multiple processes. However, the relative contribution of each

process to FAA composition remains unclear.

The composition of the FAA pool is especially critical in dry seeds, since it ensures proper
desiccation, longevity, germination, and seed vigor (Angelovici ef al. 2011; Galili et al. 2014).
Despite this, very little is known about the function, genetic architecture, and regulation of FAAs.
The FAA pool comprises 1-10% of total seed amino acid content in maize (Muehlbauer et al.

1994; Amir et al. 2018) and ~7% in Arabidopsis thaliana (Cohen et al. 2014; Amir et al. 2018).
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Although the relative size of the FAA pool is small, manipulation of FAAs in seeds can have a
substantial contribution to crop seed nutritional biofortification (Galili and Amir 2013).
Nevertheless, several studies have also shown that manipulation of specific FAAs can have
pleiotropic effects on growth and germination, indicating their metabolism is intertwined with
other key metabolic processes in the seeds (Galili and Amir 2013; Amir et al. 2018). Thus,
uncovering more about the relative influence of these metabolic processes can help tailor a more

effective approach to FAA manipulation and biofortification.

Like many other primary metabolites in dry seeds, FAAs are complex traits with extensive
variability and high heritability across natural populations. Multiple genome-wide association
(GWA) studies have identified several candidate loci for amino acid traits, both independently
(Riedelsheimer ef al. 2012) and in conjunction with QTL studies (Angelovici et al. 2013, 2016).
However, the number and effect size of loci detected so far explained only a fraction of the
observed phenotypic variation for amino acid traits, with some traits proving harder to dissect than
others. For example, Angelovici et al. (2013, 2016) found the strongest associations for traits
related to histidine and branched-chain amino acids (BCAAs), but weak signals for most other
FAA traits. The findings that amino acid traits frequently have several associated loci and that
these loci explain a small proportion of the genetic variation suggest a highly polygenic
architecture with many loci of small effect (Korte and Farlow 2013). Additional evidence for
metabolic traits indicates that, although many genetic markers may contribute to overall genetic
variation, many of these markers are preferentially located in genes that are connected to a

biological pathway(s) (Lango Allen ef al. 2010).

While linkage mapping and GWA studies are typically underpowered to identify variants

that are rare and/or of small effect, genomic prediction methods perform well when traits are highly
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complex (Meuwissen et al. 2001; Goddard et al. 2009; de Los Campos et al. 2013). Genomic
prediction models are trained on a subset of individuals with genotypic and phenotypic data,
enabling researchers to predict breeding values for genotyped individuals that have an unknown
phenotype (Meuwissen et al. 2001; Heffner et al. 2009). Since its development nearly two decades
ago (Meuwissen et al. 2001), genomic prediction has dramatically altered the speed and scale of
applied genetic and breeding research (Daetwyler et al. 2013). The efficacy of genomic prediction
results from its simultaneous use of all genotyped markers and indifference to the statistical
significance of individual markers, in contrast to analyzing markers one-at-a-time for significance
as is done for linkage mapping and GWA studies (Heffner et al. 2009). This allows the inclusion
of information from all loci to make predictions, instead of basing conclusions only on loci that

achieve genome-wide significance, and therefore captures more of the additive genetic variance.

One of the most widely used methods for prediction of complex traits is genomic best linear
unbiased prediction (GBLUP) (Meuwissen et al. 2001), which assumes that all variants share a
common effect size distribution. Recent extensions of the GBLUP model, such as MultiBLUP
(Speed and Balding 2014), genomic feature BLUP (Edwards et al. 2015, 2016; Sarup et al. 2016;
Fang et al. 2017), and BayesRC (MacLeod et al. 2016), incorporate genomic partitions as multiple
random effects, allowing effect size weightings to vary across different categories of variants.
These partitions can be derived from prior biological information, such as physical position,
genic/nongenic regions, pathway annotations, and gene ontologies. Further, genomic partitioning
is most successful when a given partition is enriched for causal variant(s) (Sarup et al. 2016),
providing a framework for guided hypothesis testing. To this end, models that incorporate genomic
partitioning have enabled researchers to determine the relative influence of genomic features (e.g.

chromosome segments, exons) and/or biological pathways on the variance explained for complex
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traits. For example, annotations for several biological pathways were used to determine which
pathways were associated with udder health and milk production in dairy cattle (Edwards et al.
2015). Similarly, gene ontology categories were leveraged to explore the genetic basis of different
phenotypes in Drosophila melanogaster (Edwards et al. 2016). In maize, applications of genomic
partitioning models have revealed that SNPs located in exons explain a larger proportion of
phenotypic variance compared to other annotation categories (Li ef al. 2012) and that genomic
prediction is improved for multiple traits by incorporating information from gene annotations,
chromatin openness, recombination rate, and evolutionary features (Ramstein et al. 2020). The
inclusion of prior biological information from transcriptomics, GWA studies, and genes identified

in silico also improved predictions of root traits in cassava (Lozano ef al. 2017).

In this study, we evaluated genomic partitioning as a method to estimate the relative
contribution of metabolic pathway annotations to variation for FAA traits in dry seeds of
Arabidopsis thaliana. This approach enabled us to incorporate prior knowledge of FAA
biochemistry based on metabolic pathways and to identify annotation categories with a
disproportionate contribution to the genomic heritability of FAA content and composition. The
ultimate objective of this work was to discover metabolic pathway annotations that explained
significant variation and improved predictive ability, with the underlying assumption that the
corresponding genomic regions are important for determining seed metabolic associations and
constraints. These findings can then be considered in future designs to support seed amino acid

biofortification.
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MATERIALS AND METHODS

Plant materials and trait data

For this study, we reanalyzed data of the absolute levels (nmol/mg seed), relative compositions,
and biochemical ratios for FAAs in dry Arabidopsis thaliana seeds (see Table S1 for a list of
traits). These traits were previously measured by Angelovici et al. (2013, 2016) for 313 accessions
of the Regional Association Mapping panel (Nordborg et al. 2005; Platt et al. 2010). Seeds were

obtained from the Arabidopsis Biological Resource Center (ABRC, https://abrc.osu.edu/, see

Table S2 for stock numbers). The panel was grown in three independent replicates, each at 18°C
to 21°C (night/day) under long day conditions (16 h of light/8 h of dark). Following the desiccation
period, dry seeds were harvested and stored in a desiccator at room temperature for at least six

weeks prior to analysis to ensure full desiccation (Angelovici et al. 2013).

Absolute levels of FAAs (nmol/mg seed) were quantified using liquid chromatography—
tandem mass spectrometry multiple reaction monitoring (LC-MS/MS MRM; see Angelovici et al.
2013, 2016 for further details). Eighteen of the 20 proteinogenic amino acids were measured,
including composite phenotypes for the sum of all FAAs measured (total FAAs) and for each of
five biochemical families as determined by metabolic precursor (Figure S1, Table S1). This prior
knowledge of biochemical relationships among FA As was also used to determine metabolic ratios,
which can represent, for example, the proportion of a metabolite to a related biochemical family
or the ratio between two metabolites that share a metabolic precursor (Sauer et al. 1999;
Weckwerth et al. 2004; Wentzell et al. 2007). The inclusion of metabolic ratios was based on
evidence from multiple studies, which reported novel or more significant associations when using

metabolic ratios as compared to absolute levels of metabolites (Wentzell ef al. 2007; Harjes et al.
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2008; Vallabhaneni and Wurtzel 2009; Wurtzel ef al. 2012; Lipka et al. 2013; Gonzalez-Jorge et

al. 2013; Angelovici et al. 2013, 2016; Owens et al. 2014).

For each amino acid, relative composition was calculated as the absolute level over the
total. Additional ratio traits were determined based on biochemical family affiliation (Angelovici
et al. 2016). Traits and their respective abbreviations are described in Table S1. Overall, the 65
traits included 25 absolute FAA levels (individual amino acids and composite traits), 17 relative
levels (ratio of the absolute level for an amino acid compared to total FAA content), and 23 family-
derived traits (ratio of the absolute level for an amino acid to the total FAA content within a given

family).

Following the guidelines for multi-stage genomic prediction (Piepho et al. 2012), the best
linear unbiased estimates (BLUESs) for each accession were used as the phenotypic data in this
study and were calculated using the HAPPI-GWAS pipeline (Slaten ef al. 2020a) in R v3.6.0 (R
Core Team 2016). First, outlier removal was performed by fitting a mixed effects model using the
‘Imer’ function in the ‘Ime4’ package (v1.1-21, Bates et al. 2015), with the raw trait values as the
response variable, replicate included as a random effect, and accession included as a fixed effect.
Studentized deleted residuals were then used to identify outliers (Kutner ef al. 2004). Following
outlier removal, the Box-Cox transformation (Box and Cox 1964) was applied for each trait to
avoid violating model assumptions of normally distributed error terms and constant variance.
Finally, to remove phenotypic variability arising from environmental conditions, the BLUE for
each accession was obtained from the fitted mixed model described above, which was applied
across all three replicates. The BLUEs for each trait were used as the response variables in all

subsequent prediction models.
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Genetic data:

The accessions used in this study were previously genotyped using a 250k SNP panel
(v3.06, Atwell et al. 2010). The software PLINK (v1.9, Purcell et al. 2007) was used to filter for
minor allele frequency (MAF) > 0.05, reducing the number of SNPs from 214,051 to 199,452.
Principal component analysis was performed on this filtered SNP set using the ‘prcomp’ function
in R. The first two principal components explained 5.6% of the variance (Figure S2) and were

included as fixed covariates in the prediction models.

Selection of pathway SNPs

To examine specific metabolic pathways, SNPs were selected based on annotation
categories from the MapMan annotation software (Thimm et al. 2004) for the TAIR10 version of
Arabidopsis (Berardini et al. 2015). We focused broadly on 20 pathways, which spanned four
categories: amino acid metabolism (three pathways), core metabolism (three pathways),
specialized metabolism (five pathways), and protein metabolism (nine pathways) (Table 1), all of
which are known to be involved in FAA metabolism to some extent. The SNP positions were first
matched to the corresponding Ensembl gene id using the ‘biomaRt’ package (Durinck et al. 2005,
2009) in R. We then selected all SNPs within a 2.5 kb range of the start and stop position for each
gene, which is within the range of the estimated average intergenic distance in Arabidopsis (Zhan
et al. 2006) and includes upstream promoter regions. Relative SNP positions for each pathway are
provided in Figure S3. Pathways and MapMan annotation categories, including the number of
genes and SNPs represented, are described in Table 1. We used MapMan annotations for all genes

except BCAT2 (Atlgl0070), which was moved from the amino acid synthesis pathway to the

10
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amino acid degradation pathway along with other SNPs in the same haploblock (chromosome 1,
3274080 to 397645 bp). This decision was based on previous work, which showed that bcat2
mutants accumulate higher levels of branched-chain amino acids in seeds, thereby demonstrating

that BCAT?2 has catabolic activity (Angelovici et al. 2013).

Table 1. Summary of selected biological pathways.

Number of Number of MapMan

Pathway genes SNPs BINCODE
Amino Acid Metabolism

amino acid synthesis 376 2084 13.1

amino acid degradation 160 1094 13.2

amino acid transport 144 939 34.3
Core Metabolism

glycolysis 148 858

TCA cycle 167 926 8

ATP synthesis (alternative oxidase) 10 66 9.4
Specialized Metabolism

isoprenoids 269 1788 16.1

phenylpropanoids 161 845 16.2

nitrogen containing 39 229 16.4

sulfur containing 113 733 16.5

flavonoids 171 1062 16.8
Protein Metabolism

amino acid activation 203 1231 29.1

protein synthesis 1383 7290 29.2

protein targeting 624 3689 293

protein posttranslational modification 1407 8794 294

protein degradation 996 6405 29.5

ubiquitin 2691 16000 29.5.11

protein folding 138 814 29.6

protein glycolysis 87 459 29.7

protein assembly 44 312 29.8

Pathways include genes and SNPs within a 2.5 kb buffer before the start and after the stop
position of each gene.

11
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Prediction models

The Linkage Disequilibrium Adjusted Kinship (LDAK) software (v5.0, Speed et al. 2012,

http://dougspeed.com/Idak/) was used to implement two models for genomic prediction of each

trait: GBLUP, which uses a single marker-based additive genetic relatedness matrix, and
MultiBLUP, which incorporates multiple marker-based additive genetic relatedness matrices, each

calculated with different subsets of genome-wide markers (Speed and Balding 2014).

Genomic prediction was performed for all markers (p = 199,452) using a GBLUP model,
in which individuals were included as a random effect and the additive genetic relatedness matrix
was used as part of the variance-covariance matrix among the individuals (Whittaker et al. 2000;
Meuwissen et al. 2001). First, the pairwise genetic similarity between individuals was estimated
using a genomic similarity matrix (GSM), or kinship matrix (VanRaden 2008; Astle and Balding

2009):

K = XX'/p, (1)

where X is an n x p design matrix of SNP genotypes, X' is the transpose of X, n is the total number
of individuals, and p is the total number of markers. The GBLUP model was then fit with the

random effects model:;

Y =u+Zu+seg (2)

where Y is the vector of phenotypic values for n individuals, u is the overall mean, Z is a design
matrix connecting observations to genotypes, u is the vector of random genetic effects distributed

as u ~ N(0,Ka?), and ¢ is the random error term distributed as € ~ N(0,Ic2), where K is the

12
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GSM representing the correlation structure of u, Iis an X n identity matrix, and o and 62 are

variances.

The MultiBLUP model (Speed and Balding 2014) was used to incorporate biological
pathway information into genomic prediction. As an extension of the GBLUP model, MultiBLUP
is a multi-kernel model that subdivides genetic effects into at least two random effects, where
different subsets of markers are used to calculate GSMs for each random effect. In this study, the
MultiBLUP model included a random genetic effect corresponding to sets of markers within a
single biological pathway (m) and a second random genetic effect corresponding to the remaining
markers not included in the given pathway (¢ m). Using notation from equation (2) and Speed and

Balding (2014), the MultiBLUP model within the context of this work 1is:

Y =u+ Zu™ + Zu®™ + &, (3)

where u™ is the vector of random genetic effects distributed as u™ ~ N(0, K™o?), with K"
representing the kinship matrix calculated using markers within a given biological pathway and
0.2 denoting the corresponding variance component; u®™ is the vector of random genetic effects
distributed as u*™ ~ N (0, K¥™ag,,), with K®™ representing the kinship matrix calculated using
markers outside of the given biological pathway and g, denoting the corresponding variance

component; and Y, Z, u, and ¢ are as previously described.

For our purposes, kinship matrices were estimated using the LDAK software for either all

SNPs (GBLUP) or each SNP partition (MultiBLUP, i.e. separately for SNPs belonging to a single

13
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pathway and all other remaining SNPs). For each pathway, the extent of collinearity due to LD
was determined by examining Spearman’s rank correlation between the off-diagonal elements of
the kinship matrices for the pathway SNPs and remaining genomic SNPs. For estimates of genomic
heritability, values were constrained to be positive and less than one. Additionally, the parameter
o, which models the relationship between heritability and MAF, was set to a = 0 under the
assumption that SNPs with lower MAF contribute less to heritability than SNPs with higher MAF
(Speed et al. 2017). In relation to Eq. 2 and 3, the parameter a adjusts the expected contribution
of each SNP to heritability, with a value of o = -1 assuming that heritability does not depend on

MATF (see Speed et al. 2017 for details).

Estimation of genomic heritability

For both GBLUP and MultiBLUP, average information restricted maximum likelihood
(REML, see Speed and Balding 2014 for details) was used to compute variance component
estimates for 62, 02y, and gZ. The maximum number of iterations to achieve convergence was
set to 500. This process was repeated for each trait and pathway combination. In the case of the
GBLUP model, 62 is the estimate of variance for all SNPs. These estimates were used to calculate
genomic heritability as the ratio of additive genomic variance explained for a given marker set

(0.2) over the total variance explained (the sum of 64, 6Z,,,and the residual variance, 62):

[ R N 4)
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For the MultiBLUP model, the proportion of genomic heritability explained was calculated as:

i )

hZ+hZ,)’

where h2, is the genomic heritability explained by SNPs in a given genomic partition and hg,, is

the genomic heritability explained by all other SNPs not included in the partition.

Assessing model performance

The performance of the prediction models was determined using ten-fold cross validation
with a one-fold holdout, with the same training and testing sets used for both the GBLUP and
MultiBLUP models. For each cross validation, the genomic estimated breeding value (GEBV) was
derived from marker data for the excluded individuals based on estimates of random genetic effects
for the individuals in the training set. This process was repeated five times for a total of 50 cross
validations per trait and pathway combination. Predictive ability was then calculated as r(g, g),

where g represents the GEBVs and g represents the BLUESs for each trait. Reliability, which is the
2
coefficient of determination (r2) scaled by heritability, was calculated as % (Rincent et al. 2012).

Bias was calculated as the simple linear regression slope estimate between the GEBVs and BLUEs
for each trait, with a slope estimate of one indicating no bias. Lastly, the overall root mean squared
error (RMSE), which measures prediction bias and variability, was calculated as the square root

of the mean for the squared difference between the BLUEs and GEBVs across all cross-
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validations, \/ (g g)1+k+(g g)", where k is the number of cross-validations. Predictive abilities for

the MultiBLUP and GBLUP models were compared using a one-sided, paired Welch’s t-test for

unequal variances.

Generation of an empirical null distribution

To test if a metabolic pathway explained more variation than expected by chance, we
generated an empirical null distribution for each trait and pathway combination. The null
hypothesis was that a given biological pathway will explain a similar amount of trait variance as
the same number of SNPs in randomly selected gene groups (Edwards et al. 2015). To establish a
null distribution, we first defined 1000 random gene groups for each pathway, where the target
number of SNPs in each random gene group was comparable to the size of the pathway. Ranges
for the number of genes and SNPs sampled for each pathway are provided in Table S3. For each
random subset, all SNPs within 2.5 kb of the start and stop positions of a randomly selected gene
were sampled. This process was repeated by randomly sampling genes one at a time until the target
number of SNPs for each subset was achieved. Genes within a given pathway were excluded from
the random sampling procedure for that pathway. As discussed in Edwards et al. (2015), this
approach does not explicitly model variation in other parameters (e.g., allele frequencies, LD), but

it is expected that these differences are captured to some extent by the sampling process.

Next, we used two metrics to test if SNPs in a given pathway explained more genomic
variance than expected by chance and increased model fit for each trait: (1) the proportion of
genomic heritability explained by a pathway compared to the random gene groups described

above, and (2) the likelihood ratio (LR) test statistic as a measure of pathway model fit compared

16
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to the model fit of random gene groups. The proportion of heritability explained was calculated as
described previously in equation (5) and the LR test statistic was calculated as twice the difference
between the log likelihood of the MultiBLUP model and the log likelihood of the GBLUP model.
For each pathway and trait combination, the values for proportion of heritability explained and the
LR test statistic were compared to the empirical cumulative distribution function for the
corresponding 1000 random gene groups using the ‘ecdf’ function in R. To determine if the
observed value was greater than the random values for each metric, P-values were computed with

a one-sided test using the ‘t_test’ function in the R package ‘rstatix’ (Kassambara 2020).

Correction for multiple testing

For each trait, the Benjamini-Hochberg procedure (Benjamini and Hochberg 1995) was
used to adjust for multiple testing across pathways (n = 20) at a 10% false discovery rate (FDR).
Multiple testing correction was performed with the ‘p.adjust’ function in R for the proportion of

heritability explained, the LR test statistic, and predictive ability.

Identifying biological pathways of interest

In summary, a pathway was considered of interest for a trait if the MultiBLUP model passed

all three of the following criteria:

1.) The proportion of heritability explained was significantly greater than empirical values for

random gene groups of the same size (FDR-adjusted P-value < .10),
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2.) The LR test statistic was significantly greater than empirical values for random gene groups
of the same size (FDR-adjusted P-value <.10),
3.) The MultiBLUP model significantly improved predictive ability compared to the GBLUP

model (FDR-adjusted P-value <.10).

Together, criteria (1) and (2) established that a given pathway improved model fit better than a
random set of SNPs. Criteria (3) was imposed to ensure that there was a meaningful difference in
predictive ability when pathway information was incorporated via MultiBLUP compared to the

naive GBLUP model that incorporated no pathway information.

Data availability statement

Genotype data were previously published (Atwell e al. 2010) and were accessed from

github.com/Gregor-Mendel-Institute/atpolydb/wiki. The scripts and phenotypic data supporting

the conclusions of this article are publicly available as a Snakemake workflow (v5.4.2, Koster and

Rahmann 2012) on GitHub at github.com/mishaploid/aa-genomicprediction (archived at

https://doi.org/10.5281/zenodo.4048850). Free amino acid traits and details on ratio calculations
are provided in Table S1. A list of ABRC stock names and accession numbers for each individual

1s in Table S2.

RESULTS AND DISCUSSION

In this study, we applied a genomic partitioning model to evaluate the contribution of

metabolic pathways to FAA traits in seeds. The combination of a genomic partitioning framework
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and the model system Arabidopsis allowed us both to test the feasibility of this approach and to
further examine the relative contribution of each pathway to the genetic basis of FAA traits in
seeds. Additionally, because FAA traits are part of core metabolism that is highly conserved, we
hypothesize that our findings can be used to develop hypotheses in crop systems, where there is

potential to contribute to the biofortification of essential amino acids.

Genomic prediction was most effective for absolute levels of free amino acids

We first established the efficacy of standard GBLUP in a diversity panel of 313
Arabidopsis individuals, which represents a substantial proportion of the known genetic variability
present in Arabidopsis (Nordborg et al. 2005). Because this setting is distinct from the closed
breeding populations of dairy cattle, maize, and other agricultural species where genomic
prediction is often applied (e.g. Heffner ez al. 2009; Wolc et al. 2016; Weller et al. 2017), we were
interested in testing how well genomic prediction would work in this panel. We were also

interested in testing the utility of genomic prediction for FAA traits, which are highly conserved.

Using the GBLUP model, we observed low to moderate predictive ability for the amino
acid traits measured (Table 2). Of these 65 FAA traits, 30 had a predictive ability greater than 0.3
(Figure 1, Table 2). In general, prediction was effective for a greater number of absolute level
FAA traits, with 21 out of 25 absolute traits having a predictive ability > 0.3 (84%), compared to
relative levels (4 out of 17, 24%) and family-derived ratios (5 out of 23, 22%). The family ratio of
methionine (met AspFam) had the highest predictive ability (r = 0.47), while the relative level of
serine (ser_t) had the lowest predictive ability (r = 0.08) (Table 2). The observation of moderate

prediction accuracies for many of these traits (Figure 1, Table 2) suggests that there is linkage
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disequilibrium (LD) between markers and causal loci, providing evidence that genomic prediction

can be successfully applied in this system.
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Figure 1. Genomic prediction performed well for a higher proportion of absolute traits compared to relative
and family-based ratio traits.

Boxplots show free amino acid traits with predictive ability (r) > 0.3 based on genomic best linear unbiased prediction
(GBLUP). Black triangles indicate the genomic heritability for each trait. Colors indicate whether the trait is an

absolute level, relative level, or family-based ratio. Each point represents an individual cross-validation.
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Table 2. Genomic prediction results for 65 free amino acid (FAA) traits using a GBLUP model.

Predictive Reliability
ability (r) ?)
Trait type Metabolic family Trait mean SE mean SE  slope (bias) RMSE
asp 0.341 0.028 0.157 0.020 0.936 0.055
met 0.384 0.027 0.224 0.024 1.051 0.0243
aspartate
thr 0.099 0.022 0.075 0.013 0.756 0.1348
AspFam 0.327 0.031 0.159 0.022 1.042 0.0266
ala 0.317 0.022 0.178 0.021 1.119 0.249
ile 0.328 0.021 0.206 0.023 1.046 0.0583
leu 0.353 0.019 0.179 0.017 1.035 0.1261
BCAA pyruvate lys 0.270 0.024 0.122 0.017 0.921 0.4597
val 0.397 0.019 0.242 0.022 1.027 0.1007
BCAA 0.388 0.019 0.252 0.023 1.042 0.101
PyrFam 0.351 0.021 0.249 0.026 1.108 0.12
arg 0.323 0.029 0.146 0.023 0.923 0.0552
absolute gln 0.178 0.025 0.114 0.018 1.032 0.5348
glu 0.356 0.020 0.234 0.023 0.990 0.0072
glutamate )
his 0.359 0.020 0.149 0.014 0.880 1.0529
pro 0310 0.021 0.182 0.021 1.010 0.0405
GluFam 0.389 0.020 0.199 0.018 0.916 0.0297
gly 0.349 0.023 0.344 0.038 1.072 0.1086
serine ser 0.241 0.021 0.142 0.019 1.078 0.0016
SerFam 0.320 0.022 0.247 0.028 1.030 0.0112
phe 0326 0.021 0.178 0.019 1.084 0.0202
. trp 0.317 0.018 0.209 0.021 1.019 0.0877
aromatic
tyr 0.334 0.027 0.212 0.026 1.046 0.0266
ShikFam 0.411 0.015 0.229 0.016 1.023 0.0146
Total 0392 0.022 0.193 0.018 1.015 0.019
asp t 0.405 0.022 0.189 0.017 0.933 0.0386
aspartate
met_t 0313 0.025 0.157 0.017 1.021 0.0162
ala t 0.261 0.026 0.154 0.022 1.239 5.1795
ile t 0.218 0.021 0.127 0.017 1.085 0.0197
BCAA pyruvate leu t 0296 0.022 0.122 0.015 1.093 0.0957
lys t 0.196 0.023 0.125 0.019 1.112 0.8788
relative val t 0319 0.022 0.271 0.030 1.106 0.0138
arg t 0.276 0.037 0.220 0.042 1.056 0.0145
gln t 0.108 0.022 0.118 0.019 1.322 5.0853
glutamate glu t 0.264 0.021 0.168 0.020 1.008 0.0355
his t 0.259 0.024 0.123 0.016 1.076 37.6486
pro_t 0.253 0.019 0.134 0.017 1.022 0.0228
serine gly t 0.268 0.026 0.567 0.082 1.127 0.0155
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376

377

378

379

380

ser_t 0.076 0.023 0.118 0.019 1.452 0.0185

phe_t 0.355 0.016 0.169 0.014 1.047 0.0181
aromatic trp_t 0.205 0.024 0.110 0.015 0.940 0.0381
tyr t 0.116 0.027 0.146 0.018 1.112 0.0118

asp_AspFam  0.141 0.031 0.134 0.022 1.309 0.0782
ile_AspFam 0.165 0.029 0.139 0.021 1.197 0.0772
lys AspFam  0.358 0.027 0.164 0.021 0.933 0.0189

aspartate
met_AspFam  0.468 0.020 0.244 0.018 1.060 0.001
thr AspFam 0.118 0.024 0.090 0.013 1.049 0.0552
AspFam_Asp 0.171 0.022 0.052 0.007 1.042 0.027
ala PyrFam 0.216 0.019 0.092 0.013 0.905 0.0222
ile BCAA 0.250 0.020 0.083 0.011 0914 0.0348
leu BCAA 0.251 0.024 0.091 0.012 1.076 0.075
BCAA pyruvate -

leu_PyrFam 0.303 0.021 0.114 0.015 0.975 0.0244
val BCAA 0.268 0.020 0.091 0.011 0.848 0.0224
family val_PyrFam 0.298 0.019 0.232 0.024 0.858 0.0153
arg_GluFam  0.205 0.032 0.193 0.029 1.243 0.0659
gln_GluFam  0.167 0.034 0.195 0.039 1.076 0.0218
glu_GluFam  0.139 0.022 0.153 0.022 0.992 1.1693
GluFam_glu 0203 0.034 0.202 0.030 0.881 0.0665
his_ GluFam  0.186 0.023 0.102 0.015 1.012 24.2851
pro_GluFam  0.289 0.024 0.155 0.018 1.004 0.0329
gly_SerFam 0.305 0.025 0.351 0.048 1.172 0.0634
ser_SerFam 0.325 0.024 0.364 0.047 1.179 0.0461
phe_ShikFam 0.218 0.028 0.149 0.021 1.097 0.0607
aromatic trp_ShikFam  0.187 0.024 0.111 0.015 1.028 0.0658
tyr_ShikFam  0.257 0.028 0.144 0.022 0.945 0.0331

glutamate

serine

Traits are grouped by the type of trait (absolute level, relative to total FAA content, and family ratio) and metabolic

family based on shared precursor. SE, standard error; RMSE, root mean squared error.

Annotations for biological pathways explained significant variation and improved predictive
ability of free amino acid traits in seeds

We next applied a genomic partitioning approach, MultiBLUP, to investigate the
association of different metabolic annotation categories with FAA traits in dry Arabidopsis seeds.

The focus was specifically on categories which are thought to influence FAA homeostasis, but
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where the degree of this influence is unclear, especially in dry seeds (Skirycz et al. 2010, 2011;
Hildebrandt et al. 2015; Hildebrandt 2018).

The pathway annotations listed in Table 1 were used to subset SNPs and spanned the broad
categories of amino acid, core, specialized, and protein metabolism. When partitioning these
pathways in the MultiBLUP model, 18 trait-pathway combinations were flagged as potentially
related based on comparison to a null distribution (Figure 2A, Table 3). The observation that
specific pathways improved model fit based on the LR test statistic, explained a significant
proportion of genomic heritability, and improved predictive ability suggests that these pathway
annotations may have biological relevance for FAA traits.

For the trait-pathway combinations that passed the significance criteria, the MultiBLUP
model generally reduced bias and RMSE compared to the GBLUP model (Table 3). For six of
these trait-pathway combinations, the predictive ability for the MultiBLUP model was also over
5% higher than for the GBLUP model (Table 3, bold). This substantial increase in predictive
ability was observed in the pyruvate/BCAA family for absolute levels of leucine (leu, 5.3%) and
isoleucine (ile, 7%) when the model included SNPs in the amino acid synthesis pathway. The
highest increase in predictive ability was observed when incorporating the amino acid degradation
pathway for traits in the glutamate family, which included the relative level and family-based ratio
for histidine (his_t, 7.6%; his_GluFam, 9.7%). A similar increase in predictive ability was
observed when including SNPs related to phenylpropanoids for the family ratio of tyrosine
(tyr_ShikFam, 6.9%) and when including SNPs related to protein amino acid activation for the

family ratio of glycine (gly SerFam, 7.5%).
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Figure 2. Biological pathways explain significant variation and improve predictive ability for free amino acid
traits when incorporated into a MultiBLUP model.

(A) Venn diagram showing which trait-pathway combinations passed significance criteria (FDR adjusted P-value <
.10) for proportion of heritability explained (Prop. h?), likelihood ratio test statistic (LRT), and improved predictive
ability for MultiBLUP compared to GBLUP. The bottom right corner indicates the number of combinations that did
not pass any significance criteria. The Venn diagram was constructed using the ‘limma’ package in R (Smyth et al.
2005).

(B) Points indicate trait-pathway combinations that passed all three significance criteria. The diameter of each point
is proportional to the amount of genomic variance explained by pathway SNPs in the MultiBLUP model. Traits are
included on the y-axis and are grouped by metabolic family (aspartate, glutamate, pyruvate/BCAA, serine, aromatic).
Pathways are included on the x-axis and separated into amino acid, core, specialized, and protein metabolism

categories.
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Table 3. Free amino acid traits and pathway combinations for which the MultiBLUP model explains a significant proportion of heritability,

improves model fit relative to random gene groups of approximately the same size, and increases accuracy compared to GBLUP.

Prop. h? explained

Likelihood ratio

Predictive ability

Category Pathway Trait Prop.h?>  P-value FDR LR P-value FDR Ar P-value FDR Areliability ~ Aslope® ARMSE
aa_degradation his 0.202 0.001 0.020 13.000 <0.001  <0.001 0.039 <0.001 <0.001 0.026 -0.022 -1.46E-02
aa_degradation his_t 0.390 <0.001 <0.001  9.907 0.001 0.020 0.076 <0.001 <0.001 0.058 -0.036 -7.71E-01
aa_degradation ile_t 0.412 0.003 0.060 5.689 0.007 0.100 0.039 0.006 0.037 0.042 -0.045 -1.60E-04
aa_degradation met_t 0.268 0.003 0.060 6.382 0.004 0.080 0.027 0.003 0.012 0.015 -0.079 -1.57E-04

E aa_degradation val BCAA 0.218 0.002 0.040 8.024 0.004 0.080 0.042 0.001 0.006 0.027 0.003 -4.67E-04
'é aa_degradation his_GluFam 0.468 0.002 0.040 11.780 <0.001  <0.001 0.097 <0.001 <0.001 0.076 -0.081 -4.59E-01
; aa_synthesis ile 0.529 0.003 0.060 11.790 <0.001  <0.001 0.070 <0.001 <0.001 0.073 -0.101 -1.73E-03
aa_synthesis leu 0.339 0.004 0.080 9.529 <0.001  <0.001 0.053 <0.001 <0.001 0.050 -0.040 -2.86E-03
aa_synthesis val 0.336 0.003 0.030 4.507 0.007 0.067 0.017 0.006 0.064 0.016 -0.036 -8.14E-04
aa_synthesis BCAA 0.439 0.002 0.040 8.823 0.001 0.020 0.044 <0.001 <0.001 0.050 -0.064 -2.16E-03
'E isoprenoids ile_t 0.429 0.008 0.080 4.575 0.010 0.100 0.044 0.001 0.005 0.032 -0.078 -2.04E-04
E phenylpropanoids  tyr_ShikFam 0.332 <0.001 <0.001  8.811 <0.001  <0.001 0.069 <0.001 0.001 0.035 -0.301 -7.71E-04
§ S_containing ShikFam 0.301 0.001 0.020 10.810 0.001 0.020 0.032 <0.001 0.001 0.036 -0.024 -2.39E-04
aa_activation gly_SerFam 0.700 0.003 0.060 13.810 <0.001  <0.001 0.075 <0.001 <0.001 0.147 -0.076 -1.89E-03
- protein_folding his 0.146 0.009 0.090 11.520 0.002 0.020 0.021 0.011 0.055 0.013 -0.009 -8.36E-03
g protein_folding SerFam 0.303 0.005 0.100 6.487 0.001 0.020 0.032 0.001 0.008 0.042 -0.033 -1.11E-04
= protein_synthesis total 0.535 0.002 0.040 6.418 <0.001  <0.001 0.024 0.001 0.006 0.018 -0.025 -2.00E-04
protein_synthesis PyrFam 0.809 0.005 0.100 5.298 0.003 0.060 0.026 0.003 0.029 0.032 -0.030 -1.50E-03

Bolded rows indicate trait and pathway combinations that increased predictive ability by more than 5% compared to a GBLUP model. The difference in

slope between the MultiBLUP and GBLUP models was computed as |slopeyirisrup — 1| — |Slopeggryp — 1|. RMSE, root mean squared error.
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Amino acid synthesis and degradation pathways were significantly associated with several
FAA traits

The homeostasis of FAAs is regulated by multiple allosteric enzymes and feedback loops
(Less and Galili 2008; Jander and Joshi 2010; Hildebrandt et al. 2015; Huang and Jander 2017;
Amir et al. 2018). However, the homeostasis of some FAAs, such as proline, can also be
determined by environmental conditions. For example, proline may serve as either an
osmoprotectant under stress or an energy source during development, and its elevation is mostly
from active synthesis (Szabados and Savouré 2010; Hayat et al. 2012). In addition, previous work
has suggested that an overarching metabolic switch occurs during late maturation to desiccation,
when amino acid synthesis is active (Fait ef al. 2006). Hence, our initial hypothesis was that FAA
traits would be strongly associated with pathway annotations within core and amino acid
metabolism.

For amino acid metabolism, our initial hypothesis was supported by significant
associations between the amino acid degradation pathway and with six traits, which spanned the
aspartate, glutamate, and pyruvate/BCAA families (Figure 2B). Two BCAA traits, ile t and
val BCAA, were associated with amino acid degradation, consistent with previous work which
identified a large effect QTL that explained 12-19% of the variance for BCAA traits (Angelovici
et al. 2013). Based on this previous work, the causal gene was identified as the catabolic branched-
chain amino acid transferase 2 (BCAT2; Atlgl0070) (Angelovici et al. 2013). Our results
recapitulate this finding, showing that the amino acid degradation pathway, which contains the
BCAT?2 haploblock, explained both a significant proportion of heritability (41%) and improved
predictive ability for BCAA traits (e.g. by 3.9% for ile_t) (Table 3). In contrast, the only additional

associations that were identified were between amino acid synthesis and BCAA traits, despite no
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prior evidence that QTLs for BCAAs contain genes related to amino acid synthesis (Angelovici et
al. 2013). Surprisingly, these were also the only associations that were identified for amino acids
synthesis, despite evidence that levels of several FAAs and transcription of their biosynthetic genes
are elevated toward desiccation (Fait ef al. 2006). This observation could arise from one of several
reasons: 1) the elevation of transcription for amino acid biosynthetic genes does not lead to a
corresponding elevation in metabolic pathway products, 2) our sample size and statistical approach
was unable to resolve other traits associated with amino acid synthesis, or 3) we are unable to
cleanly partition pathway SNPs from background genome wide markers. Nonetheless, our results
imply that amino acids synthesis may be more important for BCAAs than for other FAA traits at
this stage of development.

We also observed that annotations for amino acid degradation were associated with
histidine and methionine FAA traits (Figure 2B, Table 3), which, to our knowledge, has not been
reported in previous QTL studies for seed FAAs. Both histidine and methionine are essential amino
acids, which are deficient in most crop seeds, and therefore of special interest for biofortification
and crop improvement (Galili and Amir 2013). Notably, very little is currently known about the
pathway for histidine degradation in plants. Taken together, these findings suggest that the
MultiBLUP approach can not only recapture previous observations for FAA traits, but can also
generate new insights into their genetic regulation.

Both amino acid and core (or primary) metabolism are tightly interconnected. For example,
amino acids in the glutamate family are known to play a central role in core metabolism, mainly
by functioning as precursors for energy generation via glycolysis, amino acid metabolism, and the

TCA cycle. However, we found no associations for any FAA traits with the core/primary metabolic
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pathways tested in this study, which included glycolysis, the TCA cycle, and ATP synthesis via

alternative oxidase (Figure 2B, Table 3).

Gene annotations for specialized metabolism are associated with FAA precursors

The synthesis of specialized metabolites involves many FAAs. For example, methionine
and aromatic amino acids (i.e. phenylalanine, tryptophan, and tyrosine) are precursors for
alkaloids, phenylpropanoids, and glucosinolates. Levels of these specialized metabolites are often
dependent on the availability of their FAA precursors (Tzin and Galili 2010; Maeda and Dudareva
2012). However, less is known regarding whether the extensive natural variation of these
specialized metabolites produces a feedback effect on FAA precursors, especially in seeds.
Previous work in vegetative tissues has found that perturbation of the synthesis for secondary
metabolites produces a pleiotropic effect on other types of metabolism, including FAAs (Chen et
al. 2012; Slaten et al. 2020b), but the nature of such interactions is not well understood.

Consistent with knowledge of precursors for specialized metabolites, we observed that
aromatic FAAs were associated with categories belonging to specialized metabolism (Figure 2).
This included associations for the combined absolute levels of FAAs in the shikimate family
(ShikFam) with the pathway for sulfur-containing compounds and between the family ratio of
tyrosine (tyr ShikFam) with the phenylpropanoid pathway. When partitioning SNPs from the
phenylpropanoid pathway in the MultiBLUP model, we observed a 6.9% increase in predictive
ability for tyr ShikFam (Table 3), suggesting SNPs in this pathway have a substantial contribution
to the variation for Tyr ShikFam or are in strong LD with one or more causal variants. We also
found an unexpected association between isoprenoid metabolism and the relative ratio of

isoleucine (ile t), which is part of the BCAA family (Figure 2B). The metabolic relationship is
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less clear in this case, as isoleucine is not directly involved in phenylpropanoid metabolism, and
provides an avenue for further investigation.

A recent metabolic GWA study identified an unanticipated association between
glucosinolate biosynthesis and levels of free glutamine in seeds of Arabidopsis (Slaten et al.
2020b). This finding was further validated by evidence that elimination of seed glucosinolates
significantly impacted levels of glutamine during early seed development (Slaten et al. 2020b).
Notably, when partitioning SNPs for sulfur-related metabolism, the family-based ratio for
glutamine (GluFam glu) passed significance criteria for proportion of heritability explained
(40.5%, FDR corrected P-value = .10) and predictive ability (3.7% increase compared to GBLUP,
FDR corrected P-value = .006), but not for the LR test statistic (5.48, FDR corrected P-value =
.12). This observation reinforces that additional studies, especially with greater statistical power,

may identify more connections with biological relevance.

Annotations for protein metabolism are associated with serine family FAAs

It stands to reason that FAA homeostasis will be influenced by protein metabolism since
FAAs serve as the building blocks for proteins. Consistent with this expectation, significant
increases in FAAs are observed under many abiotic stresses and suggested to result from protein
autophagy and turnover (Hildebrandt et al. 2015; Barros ef al. 2017; Huang and Jander 2017;
Hirota et al. 2018; Hildebrandt 2018). In contrast, the opaque2 null mutant in maize exhibits a
reduction in the most abundant seed storage proteins and a significant elevation of many FAAs,
despite an unchanged composition of protein-bound amino acids (Wang and Larkins 2001;

Schmidt et al. 2011), indicating a complex relationship between the free and bound amino acid
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pools for protein metabolism. Hence, it is unclear to what extent protein metabolism affects FAAs,
particularly in seeds where protein composition is critical for nutritional quality.

Interestingly, we find that protein metabolism annotations are associated with five FAA
traits, which spanned the glutamate, pyruvate/BCAA, and serine families, and included the
composite trait for total FAA content (Figure 2, Table 3). Notably, no aromatic FAA traits were
associated with protein metabolic annotation categories, while the serine family FAA traits were
exclusively associated with this group of pathways. Further, the family-based ratio for glycine
(Gly_SerFam) showed an increase in predictive ability of 7.5% when partitioning SNPs related to
amino acid activation in the MultiBLUP model (Table 3). This suggests that genes related to amino
acid activation, such as tRNA synthetases, may contribute to the homeostasis of glycine and serine.
Overall, even though most protein metabolism occurs at seed maturation, we found evidence that
annotations for protein metabolism influence FAAs in dry seeds, suggesting that FAA levels at

this stage may reflect prior events occurring earlier in seed development.

Pathway size influences proportion of heritability explained, model fit, and predictive ability

To examine the relationship between pathway size, LD, and variance partitioning, we
compared off-diagonal elements of the kinship matrices for pathway SNPs and remaining genomic
SNPs (Figure 3A). Spearman’s correlations ranged from 0.17 for the ATP synthesis via alternative
oxidase category (e alt oxidases, 66 SNPs, 0.03% of total SNPs) to 0.85 for the protein
degradation by ubiquitin category (degradation ubiquitin, 16000 SNPs, 8.02% of total SNPs)
(Figure 3A). In general, pathways containing a greater number of SNPs displayed more
collinearity with SNPs not contained in the pathway. Similar to observations for genomic

partitioning based on gene ontology terms for locomotor activity in Drosophila (Rohde et al.
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2018), we observe that pathways which increased predictive ability also explained a large

proportion of genomic heritability, whereas pathways with a greater number of SNPs explained

less genomic heritability and did not improve predictive ability (Figure 3B). Further, as suggested

by Rohde et al. (2018), pathways which explained all of the genomic heritability likely represent

an overestimation caused by high similarity between the relationship matrices for the pathway and

background genomic SNPs.
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Figure 3. Pathway size influences the proportion of heritability explained and predictive ability when using a

MultiBLUP model.

(A) Spearman’s rank correlations between off-diagonal elements of the kinship matrices for each pathway and the

remaining genomic SNPs. Pathways are sorted from top to bottom by increasing size (number of SNPs).

(B) Difference in predictive ability between the MultiBLUP and GBLUP models compared to the proportion of

heritability explained by each pathway for all 1300 trait-pathway combinations (65 traits, 20 pathways). The diameter

of the points is proportional to the number of SNPs in the pathway and color indicates whether or not a trait-pathway

combination passed significance for proportion of heritability explained, likelihood ratio test statistic, and predictive

ability.
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Conclusions

Overall, we find that predictive ability for FAA traits was improved by incorporating prior
knowledge from metabolic pathway annotations for several FAA traits, adding to a growing body
of literature that demonstrates the utility of genomic partitioning in the study and prediction of
complex traits. This study further highlights that specific metabolic pathways are associated with
natural variation of FAA traits across amino acid families. The amino acid degradation pathway
was significantly associated with traits in the BCAA/pyruvate, glutamate, and aspartate families,
while specialized metabolism was associated with traits in the aromatic family and protein
metabolism was associated with traits in the serine, pyruvate/BCAA, and glutamate families. Thus,
although the FAA metabolic network is tightly connected, the predominant genetic architecture
underlying variation for specific FAA traits varies, at least for this stage of seed development.
Overall, this study furthers our understanding of the contribution from specific metabolic pathway
genes to amino acid trait variation and offers an additional strategy to investigate other complex

metabolic traits, both in Arabidopsis and other species.
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