Finding Bugs in File Systems with an Extensible
Fuzzing Framework

SEULBAE KIM, MENG XU, SANIDHYA KASHYAP, JUNGYEON YOON, WEN XU, and
TAESOO KIM, Georgia Institute of Technology

File systems are too large to be bug free. Although handwritten test suites have been widely used to stress
file systems, they can hardly keep up with the rapid increase in file system size and complexity, leading to
new bugs being introduced. These bugs come in various flavors: buffer overflows to complicated semantic
bugs. Although bug-specific checkers exist, they generally lack a way to explore file system states thoroughly.
More importantly, no turnkey solution exists that unifies the checking effort of various aspects of a file system
under one umbrella.

In this article, to highlight the potential of applying fuzzing to find any type of file system bugs in a generic
way, we propose HYDRA, an extensible fuzzing framework. HYDRA provides building blocks for file system
fuzzing, including input mutators, feedback engines, test executors, and bug post-processors. As a result,
developers only need to focus on building the core logic for finding bugs of their interests. We showcase the
effectiveness of Hypra with four checkers that hunt crash inconsistency, POSIX violations, logic assertion
failures, and memory errors. So far, HyDRA has discovered 157 new bugs in Linux file systems, including three
in verified file systems (FSCQ and Yxv6).

CCS Concepts: » Software and its engineering — Software testing and debugging; File systems man-
agement;

Additional Key Words and Phrases: File systems, fuzzing, bug finding, crash consistency

ACM Reference format:

Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo Kim. 2020. Finding Bugs
in File Systems with an Extensible Fuzzing Framework. ACM Trans. Storage 16, 2, Article 10 (May 2020), 35
pages.

https://doi.org/10.1145/3391202

1 INTRODUCTION

Designing and maintaining file systems are complicated. With the constant development for per-
formance optimizations and new features, popular file systems have grown too large to be bug free.
For example, ext4 [6] and Btrfs [50], with 50K and 130K lines of code, respectively, witnessed
54 [29] and 113 [28] bugs reported in 2018 alone. A bug in a file system can wreak havoc on the
user, as it not only results in reboots, deadlock, or corruption of the whole system [35] but also

This research was supported in part by NSF awards CNS-1563848, CNS-1704701, CRI-1629851, and CNS-1749711 ONR under
grants N00014-18-1-2662, N00014-15-1-2162, N00014-17-1-2895, DARPA AIMEE, and ETRI IITP/KEIT[2014-3-00035], and
gifts from Facebook, Mozilla, Intel, VMware, and Google.

Authors’ address: S. Kim, M. Xu, S. Kashyap, J. Yoon, W. Xu, and T. Kim, Georgia Institute of Technology, 756 West Peachtree
Street NW, Atlanta, GA 30308; emails: {seulbae, meng.xu, sanidhya, jungyeon, wen.xu, taesoo}@gatech.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1553-3077/2020/05-ART10 $15.00

https://doi.org/10.1145/3391202

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

https://doi.org/10.1145/3391202
mailto:permissions@acm.org
https://doi.org/10.1145/3391202

10:2 S. Kim et al.

poses severe security threats [38, 58, 60]. Thus, finding and fixing bugs is a constant yet essential
activity during the entire life cycle of any file system.

However, manually eliminating every bug in file systems with such massive codebases is chal-
lenging. For most file systems, the best effort in getting assurance that no obvious bugs are intro-
duced is to rely on known regression tests (e.g., xfstests [48]) and tools (fsck [56]). However,
these tools cannot handle the diverse types of bugs applicable to file systems. For example, we
found a case in Btrfs (Figure 1) that could cause irrecoverable data loss in the event of power loss
or system crashes, which can be disastrous for data centers. Both xfstests and fsck miss this
case. In fact, only 5% of tests in xfstests attempt to stress such scenarios, which is not sufficient.
Although specialized checkers can often complement manually written cases in capturing various
types of file system bugs [39, 49], they face the common problem of generating test cases that
thoroughly explore the file system codebase. More importantly, there is no turnkey solution that
packs different checkers seamlessly and fits into the continuous integration process of file systems.

Recently, the decades-old software testing technique—fuzzing [3, 47, 64]—has become the go-to
approach, with thousands of vulnerabilities in real-world software, including critical ones [63], as
its trophies. Without a doubt, file systems can be fuzzed, and existing OS fuzzers [20, 26, 41, 52] have
demonstrated this viability by focusing either on mutating images as ordinary binary inputs [52],
or generating random sets of file operation-specific system calls [20, 26, 41]. Unfortunately, they
all fail to efficiently and comprehensively test file systems mainly for two reasons.

First of all, there are innate challenges in a fuzzing file system. Since a disk image is a large bi-
nary blob that can be fairly larger than the preferred size of the mutation target of general fuzzers,
fuzzing throughput is critically degraded due to the heavy I/O involved in mutating images. In addi-
tion, generating context-aware workloads, such as considering the dependency that exists between
an image and file operations executed on it, is challenging, and existing system call fuzzers [20, 26,
41] fail to emit meaningful sequences of file operations and cover deep code paths of a file system.

Second, even after addressing the first challenge, most fuzzers forgo the opportunity to find
the dominant, diverse, and harder-to-catch category of file system bugs—semantic bugs [35]—
because they only focus on memory safety bugs. Semantic bugs in file systems come in various
flavors, including but not limited to violations of widely agreed properties (e.g., crash safety), non-
conformance to specifications (e.g., POSIX standard), and incorrect assumptions made by devel-
opers. Therefore, different types of semantic bugs often require specialized checkers to find them.
However, one shared feature among semantic bugs is that when triggered, they are unlikely to
cause a kernel panic or hang (i.e., no visible effects), at least in the short term. This contradicts
with memory errors (e.g., buffer overflow), which often lead to an immediate kernel panic once
triggered. In fact, the property of silent failure hinders semantic bugs from being discovered by
existing memory safety—oriented fuzzers.

Hence, it is crucial to first address the challenges in fuzzing file systems efficiently, and broaden
the spectrum of covered bug types to effectively and comprehensively find bugs in file systems.
We build HYDRA, an extensible fuzzing framework that is capable of discovering any type of file
system bugs (in theory) in various file systems with full automation. As a framework, HYDRA pro-
vides building blocks for file system fuzzing, including multi-dimensional input mutators, feed-
back engines, a test case executor, and a bug reproducer with test case minimization. HyDRA gains
the capability of checking specific types of file system bugs by plugging in specialized checkers,
which can be independently developed and integrated in different forms, such as an out-of-band
emulator (e.g., SibylFS oracle [49]) or inlined reference monitors (e.g., Btrfs extent tree reference
verifier [1]). In this way, bug checker developers may now focus on the core logic for hunting bugs
of their own interest while offloading file system state exploration and bug processing to HYDRA.

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

Finding Bugs in File Systems with an Extensible Fuzzing Framework 10:3

In this article, we demonstrate how HYDRA solves the prominent issues of existing file system
fuzzers and then goes beyond low-hanging memory errors to find three common types of seman-
tic bugs in file systems: crash inconsistency, POSIX violations, and file system-specific logic bugs.
These bugs are found by plugging into HYDRA an in-house crash consistency checker (see Sec-
tion 3.4.1), the SibylFS oracle [49], the existing file system—-specific assertions inside the codebase,
and the Kernel Address Sanitizer (KASan). As a result, HyDrA found 123 memory errors, eight
crash consistency bugs, four POSIX violations, and 23 logic bugs in popular and heavily tested
Linux file systems including ext4, Btrfs, and F2FS, and even three crash consistency bugs in
FSCQ and Yxv6, which have been proven to not have such bugs [10, 54].

Summary. This article makes the following contributions:

—To tackle diverse types of bugs in file systems, we propose to use fuzzing as a one-stop
solution that unifies existing and future bug checkers under one umbrella.

—To show this, we build HYDRA, a generic and extensible file system fuzzing framework that
provides the supporting services for file system bug hunting so that developers can focus
on writing core logic in checking bugs of their own interests. The implementation of HyprRA
is open sourced at https://github.com/sslab-gatech/hydra.

—Leveraging in-house developed and externally available bug checkers, HyprA has discov-
ered 157 new bugs of four different types in various file systems, out of which 125 bugs have
been acknowledged and 89 bugs have been fixed, which shows its worth.

—In this work, we extend the conference paper [31] to further discuss the motivation and
design in greater detail, include more bugs found from another verified file system, Yxv6,
and present in-depth analysis of bugs with test cases.

2 BACKGROUND

File systems are complex and ever-growing artifacts. A recent study reveals that about 40% of
patches in file system development are fixes for bugs of various kinds, reflecting both the diversity
and severity of bugs in file systems [35]. In this section, we briefly explain four common types
of file system bugs, introduce state-of-the-art bug-finding and elimination tools, and explain why
fuzzing can be a turnkey solution to all types of bugs by complementing existing tools.

2.1 A Broad Spectrum of File System Bugs

Software bugs can be broadly categorized into semantic bugs, memory bugs, and concurrency
bugs [36]. Memory bugs are caused by improper handling of memory objects. Concurrency bugs
are caused in a multi-threaded environment by missing or erroneous synchronization of shared
resources. Semantic bugs violate high-level rules or invariants, diverging from the programmer’s
intention and the original design. Bugs that are neither memory nor concurrency fall into the
category of semantic bugs.

Table 1 summarizes three different types of semantic bugs and a memory safety bug that are
often found in mainstream file systems, as well as related bug checkers that are specially designed
for each bug type.

Crash inconsistency. A file system is crash consistent if it always recovers to a correct state after
a system crash due to a power loss or a kernel panic. A correct state means that the internal data
structures are consistent and information that was explicitly persisted before the crash is neither
lost nor corrupted. As a counter-example, Figure 1, reported by HYDRA, is a case that violates the
crash consistency property because the size of the renamed inode is not persisted even after the
completion of the explicit fsync call. Such types of bugs lead to devastating consequences: loss or
corruption of persistent data and unmountable file systems, as well as duplicate/undeletable files.
Therefore, crash consistency is a fundamental property relied upon by data-sensitive applications,

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

https://github.com/sslab-gatech/hydra

10:4 S. Kim et al.

Table 1. List of Common Types of File System Bugs, Their Classes, Root Causes, and the
Corresponding Checkers That Can Be Plugged into HypRrA to Find These Bugs

Bug Type Class Description Bug Checker

Crash . Data not properly persisted SymC3 (Section 3.4.1)*,
. Semantic

Inconsistency upon system crash or power loss eXplode [59], B3 [39]

Specification Semantic Implementation not conforming SibylFS [49]*,

violation N to specifications (e.g., POSIX) EnvyFS [22], Recon [13]

Using wrong algorithms or

. . .y -
Logic bug Semantic making invalid assumptions Built-in checks (e.g., [1])
Memorv error Memor Out-of-bound accesses, use-after-free, KASan [15]*,

oty etto COY ninitialized read, etc KMSan [16], UBSan [51]

*Bug checkers integrated with HYDRA.

1 mkdir("./A");

2 syncQ);

3 fd = open("./A/x", O_CREAT | O_RDWR, 0666);
4 pwrite64(fd, buf, 4000, 4000); // size: 8000
5 fdatasync(£fd);

6 ftruncate(fd, 3000); // shrink size to 3000
7 rename("./A/x", "./y");

fsync(fd); // persist metadata (size: 3000)
(Crashing right after line 8, the expected size of y was 3000, but the size was 8000 after recovery)

oo

Fig. 1. A crash inconsistency bug in Btrfs that Hypra found. fsync() fails to persist the size of a renamed
inode. Data is corrupted as a consequence.

1 mkdir("./A", 511);
2 unlink("./A"); // fails to unlink

(expected to get EPERM in POSIX, but got EISDIR)

Fig. 2. Specification non-conformance in ext4. unlink() returns an error code that is not compliant with
POSIX but is acceptable to the Linux specification [49].

such as databases or servers. Unfortunately, there are very limited testing resources for this
property apart from a handful of regression tests and the recent work: eXplode [59] and B3 [39].
eXplode, an in situ model checking approach, requires users to pay heavy implementation cost
of modifying the file system code and writing system-specific checkers. B3, however, pursues an
easy-to-use systematic testing by exhaustively generating test cases within bounds and concretely
running them on the file system stack. With this design choice, B3 misses bugs that are beyond
the bounded test space.

Specification violation. File system specifications, such as POSIX standards or Linux man pages,
are bridges between file system developers and users. Thus, a robust program must abide by the
agreed-on specifications, which essentially are confined to what is allowed and not allowed out
of a file operation. As a counter-example, Figure 2 is a POSIX violation reported by HYDpRra, as
the only allowed error code from the unlink syscall is EPERM, whereas the actual implementation
returns EISDIR.! As in the example, if the file system does not conform with the specifications,

!Note that this does not violate the Linux specifications.

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

Finding Bugs in File Systems with an Extensible Fuzzing Framework 10:5

1 char buf®[8192] = { 0, };

2 fd = open("A/B/x", O_CREAT | O_RDWR, 0666);
3 fsync(£fd);

4 symlink("A/B/acl", "./z");

5 fallocate(fd, 1, 6588, 7065);

6 write(fd, buf®, 2325);

7 fdatasync(£fd);

8 link("A/B", "A/B/C/y");

9 rename("A/B/x", "A/B/C/y");

(failed to verify the extent tree refs)

Fig. 3. Logic bug in Btrfs. A crafted image with a combination of syscalls results in a corrupted file extent
tree.

chmod("A/B/x", 3072);

unlink("A/B/h1ln"); // hln hardlinks to file x (image setup)
open("A/y", O_CREAT | O_RDWR, 0666);

rename("A/y", "A/B/x");

W e

(a use-after-free error caught by KASan)

Fig. 4. Memory error in ext4. chmod brings x to dcache; unlink drops its i_nlink to 0 and moves it to
the orphan list; rename frees the inode, but its pointer is still in the orphan list; and when unmounting, a
use-after-free is detected.

the robustness and security of the software built and run on top of it can be critically affected
(e.g., by improper error handling). Nonetheless, similar to the crash inconsistency case, there are
limited testing tools for specification violation checking apart from regression tests and the recent
work, SibylES [49]. Unfortunately, The testing scope of SibylFS is limited to its synthesized test
suite, which covers a small fraction of the entire test space.

Logic bug. Unlike the other three bug types that can be defined independently of any specific
file system, logic bugs are tightly coupled with the specific file system implementation. For ex-
ample, the F2FS implementation requires its own notion of rb-tree consistency [62], which is not
commonly asserted by other file systems. In other words, no pattern, such as an inconsistent state,
deviation from POSIX standard, or simply crashes or hangs, exists to define a logic bug. However,
similar to crash inconsistencies and POSIX violations, most logic bugs simply fail silently. HyDrRA
found the case shown in Figure 3, which executes seemingly fine if the corresponding Btrf's ex-
tent check [1] is not enabled. However, such logic bugs not only lead to undefined behavior but
also affect performance and reliability in the long run. File system developers are often aware of
potential logic bugs and have placed extensive runtime assertions (e.g., invariant checks) in the
codebase to catch them. Unfortunately, such expensive checks are never enabled in production,
whereas existing file system test suites can rarely explore these corner states.

Memory error. Memory errors are common in file systems. Due to their high security im-
pact, such as enabling remote code execution, several runtime checkers have been proposed to
detect memory errors. The most prominent examples are the sanitizer series (i.e., KASan [15],
KMSan [16], and UBSan [51]) to address out-of-bound accesses and use-after-free, uninitialized
read, and undefined behaviors, respectively. Despite the scrutiny from sanitizers coupled with OS
fuzzers, HYpra still finds a significant number of memory errors. Figure 4 illustrates just an ex-
ample of triggering a use-after-free in the heavily checked ext4 file system with a crafted image
and as little as four syscalls.

Other types of bugs. File systems encounter even more types of bugs. For example, one ma-
jor category is concurrency bugs, such as sleeping in atomic context, data races, deadlocks, and

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

10:6 S. Kim et al.

1 mkdir("./A")

2 fd_foo = open("./A/foo", O_CREAT | O_RDWR, 0666);
3 link("./A/foo", "./A/foo_lnk");

4 syncQ;

5 fd_root = open(".", O_DIRECTORY, 0);

6 rename("./A/foo", "./y");

7 fsync(fd_root);

s fd_x = open("./x", O_CREAT | O_RDWR, 0666);

9 fsync(fd_root);

10 pwrite64(fd_x, "aabbccdd", 8, 500); // size: 508
11 ftruncate(fd_x, 300); // shrink size to 300

12 unlink("./A/foo_1lnk");

13 fd_y = open("./y", O_RDWR, 0);

14 fdatasync(fd_y);

15 fsync(fd_x); // persist metadata (size: 300)

Fig. 5. Btrfs: fsync fails to persist the size of a truncated inode in the presence of metadata changes for
another inode. After a crash, Btrfs recovers file x to size 508, even though its truncated size, 300, should
have been persisted.

double unlocks. Concurrency bugs have attracted a fair amount of attention from both industry
and the research community. To discover such bugs, several dynamic checkers have been recently
proposed, ranging from kernel built-in support (e.g., LOCKDEP [40]) to industrial tools (e.g., KT-
San [18]) to research prototypes (e.g., SKI [12]). Although our current demonstration focuses on
the other four bug types (see Table 1), in theory, HYDRA can detect such bugs with appropriate
checkers, which we leave as future work. Some file system bugs stem from disk-level failures [2,
11]. Although these bugs can be systematically detected [45, 59, 61], the disk failures are beyond
the scope of this article, as we assume that a persistent storage is reliable. Alternatively, HyprA
tests the robustness of file systems by injecting corruptions in the file system images and checking
whether file systems lets the corruption lead to unexpected bugs in the uppermost layer of the
storage stack.

2.2 Toward Taming Bugs in File Systems

Past years have witnessed numerous efforts in hardening file systems, ranging from comprehen-
sive regression testing to bug-specific checkers and formal verification. Unfortunately, none of
them have solved the problem entirely.

Regression tests. As the state of the practice, file system developers often rely on regression tests
(e.g., 1tp [53] and xfstests [55]) and testing tools (e.g., fsck [56]) to gain assurance of their im-
plementation. Although this practice keeps growing, these test suites are still ad hoc collections of
tests that mostly focus on regression instead of systematic checking for file system semantics such
as crash consistency, POSIX conformance, or file system-specific invariants. Moreover, handwrit-
ten test cases are far from sufficient to cover huge input space in file system execution. In fact, all
of the bugs Hypra found are missed in all of the test suites.

Bug-specific checkers. Recently developed bug-specific checkers have been successful in tackling
hard-to-catch semantic bugs, such as B3 [39] in finding crash inconsistencies and SibylFS [49] in
finding POSIX violations. In fact, their effectiveness can be further boosted with a more efficient
test case generator, as shown in the example in Figure 5.

In Figure 5, all 15 operations collectively trigger a crash consistency bug—for instance, even
though files x and y have no explicit correlation to each other, fdatasync on y (line 14) causes
the metadata of x to be lost. B3 missed this bug due to an assumption in their workload generator:
“maximum number of core operations in a workload is three.” This assumption is established

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

Finding Bugs in File Systems with an Extensible Fuzzing Framework 10:7

under their observation of the previously known crash consistency bugs that most of them are
triggered by executing three or fewer core file operations. Given that, B3 enumerates all test cases
that have one (seq-1) or two (seq-2) core operations, and a subset of seq-3 workloads. However,
for B3’s input generator to reach this bug, the bound needs to be lifted to generate seq-5 test cases.
This not only contradicts B3’s design choice to reduce the space of possible workloads but also is
infeasible, requiring a considerable amount of time—for instance, more than a week if optimistic
(Section 5.6).

Formal verification. Formally verified file systems have been promising candidates to put the
bug-hunting war to an end given their attractive nature of being hassle free by proof. Prominent
examples include the FSCQ-family [9, 10, 24] and Yggdrasil (Yxv6) [54] with different guarantees
proved. Although we did not initially expect HYDRA to find bugs in verified file systems, to our
surprise, HYDRA found two bugs in FSCQ (one of them is reported by B3 [39] as well), as well
as two bugs in Yxv6, which cause the crash consistency property to be violated. There have also
been works regarding formally verifying user-level software running on top of a file system [32],
complementing the efforts of the formally verified file systems.

Motivations. Two components in a bug finding method affect the quantity and quality of bugs:
(1) definition of a bug and corresponding core checking logic, and (2) the test case generator and
the range of program states covered. Surveying existing approaches on file system bug finding
reveals a common theme: the need for an efficient and practical explorer that traverses file system
states in both breadth and depth, especially to reach corner cases that cannot be covered by test
cases contemplated by a human. With such an explorer, we could (1) harvest extensive invariant
checks in the codebase to detect file system-specific logic bugs; (2) improve and complement
existing bug detectors (e.g., SibylFS); and more importantly, (3) focus on the core bug-hunting
logic and totally decouple state exploration, as shown by the improvements of our in-house crash
consistency checker, SymC3, over B3 (Section 5.6).

2.3 Fuzzing as a Turnkey Solution

Fuzzing is a software testing method that repeatedly generates new inputs and injects them into a
target program to trigger bugs. It is one of the most effective approaches in finding security bugs
in modern software, as evidenced by the state-of-the-art fuzzer AFL [64] and its variants [3, 4,
14, 44]. Moreover, to apply fuzzing to the kernel, several frameworks [20, 41, 52] extend the AFL
approaches to trigger kernel bugs by invoking randomly generated syscalls. What makes fuzzing
unique over other bug-finding tools is its capability to generate interesting test cases with little
domain knowledge. Fuzzy input mutators, inspired by genetic programming, are especially good
at producing test cases that explore corner cases in program execution paths, which are otherwise
difficult for humans to even contemplate. The execution feedback further serves as the natural
selection force in the evolutional process and directs the fuzzing effort toward both unexplored
code paths and checker-desired states. Both properties are valued by bug checkers, as they boost
the quality of test cases, which directly correlates to the number of bugs that can be found. Fur-
thermore, given that test case generation often is not dependent on the core bug-checking logic,
it can be a perfect target to be offloaded to fuzzing.

2.4 Combining Efforts: Fuzzing Framework

This inspires us to design an extensible fuzzing framework that complements existing bug checkers
with a fuzzing-based file system states explorer. Besides merely putting bug checkers and fuzzy in-
put mutator together, our goal is to build a complete framework that provides a seamless workflow

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

10:8 S. Kim et al.

Input Hydra
[§3.3 Test case executor Y (- (img
- ~— N n N g', syscalls)
FUSE executor | LibOS executor [LIUUX ek .O‘ftP“t
|:| handl instrumented fs L D open —>(img/, syscalls)
andler program (e.g., extd) == write §3.6
ZAS | img | .b
83.4Checker lpfgcsésslilgg
Crash inconsistency|| Spec. violation dispatcher #
p executors
(e.g., B3, SymC3) (e.g., SibylFS) { cov. map VM-lbased
. replayer
Logic bug Memory safety §3\5)Cgliegcnlgi‘l‘ play
(e.g., F2FS_CHECK_FS) (e.g., KASan) ’ m'ge%'ca?g ,
§3.2 Input mutator [imzatio
i img syscall
Seed program Seed img 1m “ -
[(e.g., open-fsync) (e.g., mkfs.ext4) q pocgl mutator || mutator) Bug PoC

Fig. 6. Overview of HYDRA’s architecture and workflow.

of end-to-end bug detection, starting from input test case generation to buggy test case verifica-
tion. In addition, with a framework, we can exploit the synergy of fuzzy input mutator and quality
bug checkers. Instead of naively enumerating the test space, the input mutator explores the space
to find test cases that are likely to trigger bugs based on the guidance (i.e., feedback) given by
a precise checker of a certain type of bugs. In addition, further experience in fuzzing OS kernels
has shown unique challenges, such as reproducing bugs and creating proof-of-concepts (PoC) (i.e.,
reproducible test cases) of reasonable sizes. Traditional OS fuzzers use virtualized instances to test
file system functionalities. However, to avoid the expensive cost of rebooting a VM or reverting a
snapshot, they reuse an OS or file system instance across multiple runs, causing the bugs found
to carry the impact of thousands of syscalls and often become irreproducible. We would like to
address these concerns in the framework as well.

3 DESIGN

In the face of diverse file system bugs, we propose to build a comprehensive framework—HyprA
[31]—to tackle the challenges of applying fuzzing to file system, and to complement existing and
future bug checkers by providing a set of commonly required components, such as input muta-
tor, feedback engines, test case executors, and bug post-processors, all tailored to the file system
fuzzing. With proper checker plugins installed, HYDRA is capable of stressing various aspects of a
file system.

3.1 HybrA Overview

Figure 6 shows the components and workflow of HyDRA. HYDRA initiates fuzzing by selecting a
seed from the seed pool. A seed is a pack of both a file system image to be mounted and a sequence
of syscalls to be executed on the mounted image. The input mutator subsequently mutates either
the image or the syscalls or both, and produces a batch of test cases (Section 3.2). The test cases are
sent to a test case executor that always starts in a clean-slate state, mounts the given image, and
executes the syscalls (Section 3.3). The visited code paths are profiled into a bitmap by the cov-
erage tracker instrumented when compiling the target file system. Meanwhile, the bug-checking
dispatcher (Section 3.4) invokes the necessary checks, such as runtime assertions or an out-of-
band emulation (Section 3.4.1, Section 3.4.2). The dispatcher later collects the checker’s feedback
and merges with the coverage bitmap into a fuzzing feedback report. If new coverage is reported
or the checker marks the test case as interesting, the test case is saved in the seed pool and more
exploration along this direction is expected; otherwise, the test case is discarded (Section 3.5). If

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

Finding Bugs in File Systems with an Extensible Fuzzing Framework 10:9

super | group data block| inode | inode data directory| data|eXtent data Jjournal

. dat;
block |descriptors bitmap | bitmap|tables entryj nodei block; a

Fig. 7. The on-disk layout of an ext4 image. The gray blocks show metadata in use, which occupies merely
1% of the image size. Some of them, including extent tree nodes, directory entries, and journal blocks, are
scattered in the image, whereas others (superblock, group descriptors, etc.) are located in the beginning.

a new bug is reported, the test case will be sent to a virtual machine for replay and confirmation.
Hypra also performs syscall sequence minimization to create a simplified test case for the ease of
analyzing and fixing the bug (Section 3.6).

3.2 Input Mutator

The input space of a file system consists of two major components: a file system image to mount,
and file operations that access, read from, and write to the mounted image. Thus, to trigger a
file system bug,? one needs to (1) mount a corrupted file system image or (2) execute a crafted
sequence of syscalls to access/modify the data/metadata stored on the mounted image, or most
likely, (3) combine both steps. Therefore, unlike traditional program fuzzers that only need to
mutate user input [19, 33, 64], or OS fuzzers that mutate syscall sequences without consulting
the dependency with the mounted image [20, 26, 41], a fuzzer tailored to file system needs to
synthesize both aspects when generating meaningful test cases. Considering this, HYDRA exploits
the synergy between mutating both file system images and syscall traces.

Image mutation. A file system disk image can be corrupted for many reasons. The storage me-
dia may fail due to electrical or mechanical issues, or the disk firmware or device drivers may
be buggy, resulting in an inconsistent disk image. In response to such failure, file systems imple-
ment their own mechanisms for error checking and recovery. Even though their philosophies and
corresponding approaches may differ, a robust file system should be capable of handling such cor-
ruption and reacting gracefully to failures to prevent unexpected errors. This is the aspect we aim
to test through the image mutation.

A naive approach would be to treat the whole image as a black box and mutate bytes at random
offsets in the image. However, this is neither practical nor efficient. HYDRA’s approach leverages
the fact that a file system image is highly structured into user data chunks (e.g., file content) and a
few management structures called metadata, as shown in Figure 7. For mounting and executing a
majority of file operations, only metadata is consumed, which constitutes merely 1% of the image
size, making it a feasible target for random mutation. Using these facts, HyDRA first maps the
entire image into a memory buffer. Then it scans the image to locate all metadata blobs. As the
image structure differs across file systems, a file system-specific image parser is required. Utilities
and libraries provided by file systems (e.g., e2f'sprogs of ext4) can be utilized for developing these
parsers. Once the metadata blobs are identified, it applies several common mutation strategies [64]
(bit flipping, arithmetic operation on random bytes, etc.) to randomly mutate the bytes of the
metadata as described in Figure 8.

After mutating the entire metadata blob, HYDRA reassembles each metadata block back to its
corresponding position inside the memory buffer, which stores the original full-size image. As a
result, HYDRA obtains a corrupt disk image that partially reflects the consequences of various disk-
failure scenarios. Here, to focus on testing the corner cases that are likely to trigger unexpected
bugs file systems fail to handle, HyDprA recalculates the checksum values of all metadata blocks,

2We refer to the unexpected errors that file systems fail to handle. For example, if mount syscall fails and returns a proper
error code, that is not a bug. However, if the kernel crashes after mount succeeds, that is considered a bug.

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

10:10 S. Kim et al.

1 # Class ImageMutator
2 def mutate_image(meta_buffer):

3 choice = Random.randint(0, 8)

4 if choice ==

5 return flip_bit_at_random_offset(meta_buffer)

6 elif choice ==

7 return set_interesting_byte_at_random_offset(meta_buffer)
8 elif choice ==

9 return set_interesting_word_at_random_offset(meta_buffer)
10 elif choice ==

11 return set_interesting_dword_at_random_offset(meta_buffer)
12 elif choice ==

13 return inc_random_byte_at_random_offset(meta_buffer)

14 elif choice ==

15 return inc_random_word_at_random_offset (meta_buffer)

16 elif choice ==

17 return inc_random_dword_at_random_offset(meta_buffer)

18 else:

19 return set_random_byte_at_random_offset(meta_buffer)

Fig. 8. Pseudo-code of how HyprA randomly mutates metadata blocks.

Class Hydra

1
2 def release_image(self, meta_buffer):

3 pos = 0

4 for meta_block in self.meta_blocks:

5 meta_block_buffer = meta_buffer[pos:pos + meta_block.size]

6 if meta_block.chksum_offset is not None:

7 self. fix_chksum(meta_block_buffer, meta_block.chksum_offset)
8 copy_buffer(self.image_buffer[meta_block.offset],

9 meta_block_buffer, meta_block.size)

10 pos += meta_block.size

Fig.9. Pseudo-code of how HYDRA releases the mutated metadata blocks back to a full-size image for testing.

by following the specific algorithm adopted by the target file system, and fills the value at the
recorded offset of the checksum field, as shown in Figure 9. This ensures that the tested mutated
images are corrupt but mostly valid (i.e., not being early rejected by sanity checks) so that they
enable HYDRA to reach deep code paths.

Syscall mutation. The goal of syscall mutation is to generate diverse, complex, and, more im-
portantly, image-aware file operations, which are likely to trigger deeper, possibly un-tested code
path of the file system when executed in a sequence. Similar to existing OS fuzzers [20, 26], HYyprA
mutates syscall sequences in two ways: (1) argument mutation (randomly selecting one of the ex-
isting syscalls in the sequence and mutating its argument(s)) and (2) syscall generation (appending
a new randomly chosen syscall to the end of the sequence) (Figure 10).

To generate mostly valid syscalls that explore deep into file system logic, instead of being early
rejected by an error checking routine, HYDRA leverages the semantics of the following syscall
argument types:

—For flags with a clearly defined set of possible values, HYDRA selects and combines these
values randomly (e.g., int flags for open()).

—For size-like integers, HYDRA generates random numbers within a certain range and also
tries sensitive values (e.g., page size or block size).

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

Finding Bugs in File Systems with an Extensible Fuzzing Framework 10:11

1 # Class SyscallMutator

2 def mutate_syscall(self):

3 new_program = Program(self.program)

4 syscall_index = Random.randint(®, len(self.program.syscalls))
5 syscall = self.program.syscalls[syscall_index]

6 args = [i for i in range(len(syscall.args)) \

7 if not may_effect_status(syscall, i)]

8 arg = Random.choice(args)

9 mutated_arg = self.generate_arg_by_status(syscall, arg)

10 new_program.syscalls[syscall_index].args[arg_index] = mutated_arg
11 return new_program

12

13 def generate_syscall(self, sysno=None, args=[]):

14 new_program = Program(self.program)

15 new_status = Status(self.status)

16 syscall = Syscall(Q)

17 if sysno is None:

18 syscall.sysno = Random.choice(FS_SYSNOS)

19 else:

20 syscall.sysno = sysno

21 for arg in args:

22 syscall.add_arg(arg)

23 for i in range(len(args), SYSCALL_ARG_NUM[syscall.sysno]):

24 syscall.add_arg(self.generate_arg_by_status(syscall, i))

25 new_program.add_syscall(syscall)

26 new_status.update(syscall)

27 if self.test_bug_type == "consistency" and syscall.sysno != sysno_of_fsync:
28 (new_program, new_status) = self.generate_syscall(sysno=sysno_of_fsync)
29 return (new_program, new_status)

Fig. 10. Pseudo-code of how HYDRA randomly mutates existing system calls and generates new ones given
a program.

—For buffer objects that are used to communicate bulk information with the kernel, HyDrA
uses pre-allocated buffers filled with random data.

—For file descriptors, HYDRA maintains the list of open file descriptors in the runtime and
randomly picks one if required by the mutation.

—For paths, HYDRA maintains the list of available and stale paths on the mounted image and
randomly picks one if required by the mutation. If the path is used to create a new file or
directory, HyDRA randomly generates a valid new path that is located under an existing
directory.

—For extended attributes, HYyDRA randomly picks a recorded attribute name available in the
file system (e.g., user.mime_type or system.posix_acl_access).

For a newly generated syscall, HYDRA appends it to the program and summarizes the potential
changes to the file system caused by the syscall and updates the speculated status of the image
correspondingly. For instance, open(), mkdir (), link(), or symlink() may create a new file or
directory, whereas open() also introduces an active file descriptor; rmdir () or unlink() removes
a file or a directory from the image; rename() updates the path of a file; and setxattr() or
removexattr() updates a particular extended attribute.

Exploiting the synergy. To fuzz file system image and syscalls together, HyDRrA schedules the two
mutators in order. Specifically, given a test case, HYDRA first tries the image mutator for certain
rounds. If no interesting test cases are reported—in other words, no new code path is discovered—
HyDRA then invokes the syscall mutator to alter arguments of the existing syscalls. If still no

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

10:12 S. Kim et al.

interesting test cases are found after certain rounds, HYDRA eventually generates and appends
new syscalls.

Scheduling image and syscall mutation in such an order is effective for the following two rea-
sons. First, conceptually, the metadata represents the initial image state, whose impact on the
executions of file operations gradually decreases when the state of the image is altered by syscalls.
Hence, HYDRA always tries to mutate metadata first. Second, introducing new file operations expo-
nentially increases the mutation space for later rounds and may also offset the changes from past
operations of the image. Therefore, HYDRA prioritizes mutating existing syscalls over generating
new ones.

Assisting bug checkers. On top of the generic strategy, HyDrA further assists bug checkers by
adopting checker-specific strategies. For example, when generating test cases for crash consistency
testing, a valid fsync syscall is appended to generate a persistence point, as shown in lines 27 and
28 of Figure 10.

3.3 Test Case Executor

HYDRA’s test case executor is the module where the generated test cases are concretely executed
on the targeted file system. In general, the executor serves as (1) a fuzzing target, which mounts
the given image and executes the syscall trace while collecting code coverage, and (2) a bridge to
the checker dispatcher (Section 3.4), which calls a checker, collects results, and then provides an
additional dimension of feedbacks to the feedback engine (Section 3.5). HYDRA supports both in-
kernel file systems (e.g., ext4), and FUSE (Filesystem in Userspace) file systems (e.g., FSCQ), and as
their properties differ greatly, two different types of executors are provided: (1) a library OS-based
executor for supporting in-kernel file systems and (2) a FUSE-based executor for supporting those
that run in userspace.

Library OS-based executor. For the sake of performance, the traditional OS fuzzers [20, 41, 52]
reuse virtualized instances (KVM, QEMU, etc.) to run a target OS without reloading a fresh copy
of the kernel or file system image for fuzzing different test cases. Because of the accumulated non-
deterministic OS states, this approach, unfortunately, impedes the stable PoC generation, which
developers can reproduce and debug [17]. Although rejuvenating OS solves this issue, it can be
as slow as a couple of seconds. Hence, HYDRA utilizes a library OS-based executor, which incurs
negligible time (tens of milliseconds) to run kernel and file system logic, and forks a fresh instance
of the executor for every test case, while consuming far fewer computing resources than VMs,
enabling potentially large-scale and distributed deployment of HYDRA.

FUSE-based executor. Unlike in-kernel file systems, a typical FUSE-based file system is imple-
mented as a stand-alone application, a so-called handler program, which includes a top-level in-
terface that handles requests (e.g., mount operation) through the 1ibfuse library. The FUSE-based
executor launches the registered handler program of the file system and lets it mount the given
image. Once the executor detects the mount, it then executes the syscalls and consults the checker
dispatcher to check for the existence of bugs.

Since both (i.e., library OS- and FUSE-based) executors assure that each test case is executed
on a clean-slate internal state, HYDRA guarantees a high reproducibility of detected bugs, without
having to compromise the performance, because the executors can be relaunched with negligible
overhead.

3.4 Checker Dispatcher

Invoked by the test case executor, the checker dispatcher launches a checker plugin that corre-
sponds to the targeted bug type. In theory, any type of bug checker can be plugged into HYDRA,
but the checkers may have different interfaces. For example, SibylFS, a POSIX compliance checker,

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

Finding Bugs in File Systems with an Extensible Fuzzing Framework 10:13

is available as a stand-alone binary, which takes as input a specifically formatted test case that is
different from what HYDRA’s input mutator generates. Meanwhile, another example, KASan, is
integrated into the kernel and can be enabled by configuring a flag when compiling the kernel.
Hybpra’s checker dispatcher takes these differences into consideration and provides a unified inter-
face, which abstracts away how a test case is consumed by different checkers, and how test results
are transferred from them. In the end, from the framework’s perspective, the checker dispatcher
takes the test case as is and returns a binary result: interesting (bug) or not interesting (no bug).
In addition, to make the integration of new checkers to HYDRA as straightforward as possible, an
APl is provided, which helps developers write HyDRA-compatible checkers. The following sections
discuss how our in-house-developed checker SYmMC3 and other checkers are plugged in to expose
various types of file system bugs.

3.4.1 Crash Consistency Checker (SymC3). For various reasons (e.g., performance), most file
systems stage the effects of file and directory operations in memory first and flush the changes to
persistent, non-volatile storage only when the time is right (e.g., when the system load is light).
However, this optimization is not tolerable for applications that need to save critical data as quickly
as possible. As a result, persistence operations, namely sync, fsync, and fdatasync, are used to
force the in-memory states to reach the disk immediately. As a guarantee provided by file systems,
any information that is flushed should be consistent even after a crash and recovery. Unfortunately,
experience has revealed cases where this guarantee is violated [21, 27].

In light of this, we develop SYMC3 to vet file systems for crash consistency. Given an initial
image and a syscall trace, SYMC3 emulates the syscalls to derive a symbolic representation of all
allowed post-crash states according to the file system-specific notion of crash consistency and
checks whether the recovered image falls into one of the states.

Syscall emulation. Table 2 presents a running example of how SymC3 emulates syscalls using
the bug shown in Figure 1. Mimicking the inode data structure in Linux file systems, SymC3 also
symbolically represents files and directories in c3_inodes with basic properties, such as names,
type, size, link count, and attributes, as well as type-specific properties like directory entries (if
directory), link target (if symbolic link), and data (if regular file). However, different from the
Linux inode, which only keeps the current state, the c3_inode also records the history of changes
in the properties before the changes are committed to disk.

For syscalls that create an inode, such as mkdir (line 1) and open with O_CREAT (line 3), SymC3
creates a c3_inode accordingly and initializes it with proper properties, as in the case of i1 and i2
in the example. SYMC3 also creates a snapshot of the c3_inode tree, indicating that . /A and . /A/x
might exist on disk if the crash occurs after the execution. Similarly, for syscalls that manipulate
the tree structure, such as rename (line 7), a snapshot is created to reflect the fact that the ./y
might exist on disk if the effect of rename has reached the disk. However, no snapshot allows the
existence of both . /A/x and . /y. Furthermore, regardless of whether x or y is persisted, it should
map to i2.

According to the POSIX standard, among syscalls that persist inode, sync and fsync commit
the entire c3_inode (i.e., both data and metadata) to disk (lines 2 and 8, respectively), whereas
fdatasync only commits data and those metadata that are related to data (e.g., size, checksum) to
disk (line 5). Other syscalls (lines 4 and 6) modify either data or metadata of the c3_inode, and
the changes are piled and versioned in memory until reaching a persistence point. For example,
after fdatasync in line 5, changes in the i2 data and size are committed to disk and their prior
versions (i.e., empty file with zero size) can be safely discarded, as from now on the disk is no
longer allowed to recover to the previous state. In other words, SYMC3 keeps track of the change
history for each c3_inode property until they are persisted.

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

10:14

Table 2. Symbolic Representation of the c3_inode Tree and the Emulated
In-Memory and On-Disk States of c3_inodes During
the Execution of SYMC3 on the Test Case in Figure 1

Operation Tree In-memory On-disk

0 [begin] . i0.dents=[.] i9.dents=[.]

1 mkdir lig] - i0.dents=[., A] i0.dents=[.]

A igA il.dents=[.]

2 sync i0.dents=[., A] iQ.dents=[., A]

il.dents=[.] il.dents=[.]

3 open i®.dents=[., A] i®.dents=[., A]
A/x, il.dents=[., x] il.dents=[.]
O_CREAT | i2.names=[x]

O_RDWR, i2.data=[0"]

0.86 i2.size=[0]

4 pwrite i0.dents=[., A] i®.dents=[., A]
A/x, il.dents=[., x] il.dents=[.]
"a...", i2.names=[x]

4000, i2.data=[0% 0*Ka*K]

4000 i2.size=[85 8000]

5 fdatasync i®.dents=[., A] i®.dents=[., A]
A/x il.dents=[., x] il.dents=[.]

i2.names=[x] -
i2.data=[0*Ka*K] i2.data=[0*Kq*K]
i2.size=[8000] i2.size=[8000]

6 ftruncate i®.dents=[., A] i®.dents=[., A]
A/x, il.dents=[., x] il.dents=[.]
3000 i2.names=[x] -

i2.data=[04KaK 03K] i2.data=[0*Ka*K]
i2.size=[86865 3000] i2.size=[8000]

7 rename [i9] - i®.dents=[., A, y] i®.dents=[., A]
A/x, il.dents=[.+=x] il.dents=[.]

y ALY i2.names=[%5 y] -
i2.data=[04KaK . 03K] i2.data=[0*Ka*K]
i2.size=[8686; 3000] i2.size=[8000]

8 fsync [ig] - i0.dents=[., A, y] i®.dents=[., A]
y il.dents=[.5=x] il.dents=[.]

ALY i2.names=[%; y] -
i2.data=[0°K] i2.data=[0°K]
i2.size=[3000] i2.size=[3000]

Allowed post-crash states (POSIX):
$1)i0: .,il: A (i2 becomes an orphan as i0 is not synced)

$2)i0: .,il: A, i2: x, data: 03K,
$3)i0: .,il: A, i2: y, data: 03K,

Allowed post-crash states (Btrfs):

$3)i0: .,il: A, i2: y, data: 03K,

size: 3000
size: 3000
size: 3000

Boxed region represents the snapshots taken and strikethrough text maintains the
history of data and metadata changes before synced.

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

S. Kim et al.

Finding Bugs in File Systems with an Extensible Fuzzing Framework 10:15

Test Test Case | ©mount img, execute syscalls _ y: Crash-recovered
case Executor & crash concrete state

@invoke @ False Bug

Checker | | SymC3 emulate X: Set of legit. states True
Dispatcher {statel, state2, ...} Not bug

(states contain symbols)

Fig. 11. Overview of how HYDRA utilizes SYMC3 for detecting crash consistency bugs. @and @are pipelined.

Enumerating crash states. At any stage, SYMC3 is capable of generating the set of legitimate post-
crash states by enumerating the snapshots along with on-disk and in-memory c3_inodes. For each
c3_inode tree snapshot, SYMC3 checks whether it meets the requirement that if a c3_inode is
known to be persisted, (i.e., directory entry exists on disk), the snapshot must contain it. With this
constraint, SYMC3 rules out invalid snapshots. In Table 2, among the four snapshots, the first tree,
which has 10 only, is dropped because of the constraint: 1@ and i1 are known to be persisted, but
i1 is not in the snapshot. The other three do not violate any constraint.

With the valid sets of snapshots, SYMC3 further multiplexes them with the allowed states per
each c3_inode property to generate all crash-safe states. In the running example, all c3_inodes in
each valid snapshot are persisted, leading to one possible state per snapshot and making the total
allowed states to be three (states S1, S2, and S3).

Checking crash consistency. For crash consistency testing only, HYDRA appends a persistence op-
eration (i.e., fsync) to the generated syscall sequence of the test case (see Figure 10). The process
of checking crash consistency is illustrated in Figure 11. Given a test case, the test case executor
(Section 3.3) pipelines the crash consistency testing: (1) it invokes SymC3 for the crash state emu-
lation, and (2) it simulates a crash and a recovery process by mounting the given image, concretely
executing syscalls, and remounting the copy of the mounted image at a separate mount point right
after executing the last syscall (fsync). SYMC3 compares this crash-recovered image with the em-
ulated legitimate states. If SYMC3 finds that the image does not match any of the legitimate states,
a bug is reported. SYMC3 reported the running case because, after the crash, Btrfs recovered the
image to the state where the size of file y was 8,000, which is not one of the legitimate states.

The example test case is particularly interesting in that when running the case on the patched
kernel, Btrfs and F2FS yield different crash states. Btrfs recovers to S3, whereas F2FS recovers to
S2. Since SYMC3 considers both as legal states, neither is considered a bug. This is in contrast to the
design choice made by B3 where it only considers the final snapshot before the crash, namely S3,
as a correct oracle state, which is in fact only a subset of all possible states. As further supported
by our experiment in Section 5.6, this could be the main reason B3 incurs a high false-positive rate.

Extending consistency semantics. POSIX specification itself is “loose,” leaving much room for
implementation-specific behaviors in handling crash consistency. As a remedy, HYDRA implements
various file system—specific consistency semantics to conservatively handle stronger crash guar-
antees. For example, although not mandated by POSIX, Btrf's persists the directory entry as well as
metadata when an inode is fsynced. This is why the renamed file y is persisted without explicitly
fsyncing its parent directory in the example case. In addition, ext4, Btrfs, and F2FS resolve the
symbolic path to the original file/directory if it is provided as an argument, although the POSIX
entry for link states that the behavior is implementation defined.

Apart from the extensions, another aspect to consider is that not all file systems implement
POSIX fully. For example, the FSCQ’s specification regarding unlink deviates from the POSIX
standard because FSCQ relies on the FUSE driver; it does not allow unlink to be conducted on an
open file, even though POSIX states that “if one or more processes have the file open when the

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

10:16 S. Kim et al.

last link is removed, the link shall be removed before unlink() returns.” Handling such deviation in
SyMmC3 is not difficult, because we only need to enforce these additional rules on top of the generic
file system layer that is emulated. These extensions require only a few lines of changes (Table 3).

3.4.2 Other Checker Plugins. Besides the homegrown consistency checker SymC3, we further
show that three independently developed checkers—each of which targets a different type of file
system bug and is not originally designed for fuzzing—can be seamlessly plug-and-played in HyDrA
with little or no engineering effort.

POSIX conformance. We integrate SibylFS [49] in HYDRA to find POSIX violations in file sys-
tems. SibylFS formalizes the range of POSIX-allowed behaviors of a file system for any sequence
of syscalls within its scope. Based on these formalizations, SibylFS serves as an oracle to decide
whether each syscall in an observed trace yields correct return value as POSIX specification de-
fines, given the initial image and the sequence of syscalls. To bridge Hypra with SibylFS, we run
the SibylFS oracle in a stand-alone process and connect it with the bug-checking dispatcher via
a dedicated channel. Whenever the executor receives a test case, the dispatcher forwards the test
case to the SibylFS process, which handles test case unpacking and oracle checking, and eventually
replies with a signal on whether it detects any violations of the POSIX standard.

Logic checking. As noted in Section 2.1, most logic bugs cause silent failures, and finding such
bugs often requires hooking the file system at runtime with domain-specific invariant checks. Al-
though file system developers are often aware of this issue and have placed precautionary checks
in the codebase, the checks are rarely enabled for performance reasons. This makes them a per-
fect match for fuzzing, as HyDprA aims to find ways to trigger these assertions that are otherwise
missed in normal workloads. Most developer-annotated checks can be conveniently integrated
with HYDRA by specifying the corresponding CONFIG_* options when compiling the target file
system, such as CONFIG_BTRFS_FS_REF_VERIFY for the Btrfs extent tree reference verifier [1].
The dispatcher monitors any warnings or errors raised from these checks and accordingly marks
the test case as interesting.

Memory safety. HYDRrA also looks for memory errors leveraging KASan [15], especially out-of-
bound and use-after-free bugs in file system implementations. Specifically, KASan tracks kernel
object life cycles by hooking the SLAB and SLUB memory allocators and further uses compile-time
instrumentations to insert sanity checks before every memory access. To integrate KASan with
HyDRA, we enabled the CONFIG_KASAN=y option and additionally allow KASan to instrument the
target file system for memory access sanity checks. Whenever KASan reports an error at runtime,
the bug-checking dispatcher of HyDRA crashes the kernel execution and marks the input test case
as interesting.

3.5 Feedback Engine

In HYDRA, a test case execution is summarized in the feedback report, which essentially measures
the “novelty” of a test case and decides whether it deserves further mutation. HyprA considers
two types of feedback: branch coverage and checker-defined signal.

Branch coverage. Like traditional fuzzers, for HYDRA, a file system is represented as a control-
flow graph where vertices are basic blocks and edges are branches from one basic block to another.
While executing a test case, HYDRA keeps track of the set of edges visited, and the novelty of the test
case is measured by the number of new branches and unique combination of branches triggered.
By default, branch coverage forms the primary coverage metric, which Hypra leverages to find
bugs of any type.

Checker-defined signal. As a generic fuzzing framework, HyprA’s feedback engine additionally
allows each checker to register its own feedback formats. In its simplest form, as used by all

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

Finding Bugs in File Systems with an Extensible Fuzzing Framework 10:17

checkers in HYDRa, the feedback is just a Boolean variable indicating whether or not this test
case triggers a buggy condition (i.e., 1 for buggy, 0 otherwise). For a more sophisticated example,
a checker that tries to uncover specification violations may provide a feedback format that tracks
the number of rules that have already been asserted by prior runs in the given specification.
This will penalize input mutators for generating test cases that cover the asserted parts and will
eventually drive HYDRA toward the yet-to-be-tested part of the specification.

3.6 Post-Bug Processing

Most fuzzers stop at finding an erroneous state without worrying about reproducibility and the
size of the test case. The assumption is that debug information (e.g., KASan reports or stack traces)
can help locate the bug. This assumption might be valid for small applications. However, for file
systems, in most cases, the debug information reveals only the direct symptom instead of the
root cause, and even the file system maintainers need to spend a day or two navigating through
hundreds of syscalls to pinpoint the root cause, as shown in the piled-up bugs in syzbot [17]. In
light of this, HyDRA takes the extra steps to reproduce each found bug in a VM with realistic kernel
and file system settings and minimize the corresponding test case into a suitable-sized bug PoC,
which is a reproducible test case.

VM-based replay. A library OS running in user space typically has its own implementation
of scheduling, memory management, and interrupt handling, which are largely different from
those of the original Linux kernel. For example, some library OSes (e.g., the Linux kernel library
(LKL) [46]) only support single threading, and the execution order of the kernel code in such a li-
brary OS differs from that of a machine that supports multi-threading. Therefore, HyDRA relies on
real VM instances to verify that every found bug does indeed affect the end users of the tested file
system. When a bug is found, HYDRA replays the corresponding test case on a fresh VM instance,
which is installed with the same kernel and file system used by Hypra’s 1ibOS-based executor.
The bug is confirmed when the replays result in the same runtime violations captured by Hypra
during the fuzzing process.

Test case minimizer. For file system developers, an ideal bug PoC should be minimal—that is,
the syscall sequence should only include the necessary operations that trigger the bug. Unfortu-
nately, the raw bug-triggering test cases generated by HYDRA are far from minimal, with excessive
mutations on the syscall sequence that have no effect in bug manifestation. To reduce a raw PoC
into a minimal PoC, HYDRA uses the Delta Debugging technique [65]. To be specific, with the
given syscall sequence, HYDRA tries to remove one syscall and retest until a minimal syscall trace
is reached (i.e., removing any syscall in the trace voids the bug). Although this approach is still
sub-optimal compared with synthesizing test cases from scratch, it is highly effective in practice
and can be further improved by advanced syscall distillation techniques [23, 42].

3.7 Summary

In a nutshell, HYDRA, as a full-fledged framework, provides an automated process of revealing, in
theory, any developer-defined buggy situation. It represents an important design point that cleanly
separates the concerns of developers: HYDRA takes charge of automated input exploration, checker
incorporation, and validation of found bugs on behalf of developers, whereas the developers can
solely focus on writing a reliable checker for a bug. Such separation of concerns drastically im-
proves the quality of bug finding in terms of both accuracy and efficiency (Section 5).

4 IMPLEMENTATION

Hypra adopts the basic fuzzing infrastructure from AFL 2.52b [64], including the fork server,
code coverage bitmap, and test case scheduling, but replaces a few key components, including

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

10:18 S. Kim et al.

Table 3. Implementation Complexity of HYpbrA and SymC3, and of
Integrating SibylFS, KASan, and File System-Specific Built-In Checks

Component LoC Language
Hypra Framework
Input mutators 8,507 C++/Python
LKL-based executor 2,190 C++
FUSE-based executor 176 C++
Glues to checkers 233 C/C++/Python
Feedback engine (as AFL changes) 497 C
Bug post-processing 274 Python/Bash

Crash Consistency Checker (SymC3)
Syscall emulator & violation checker 3,585 Python

ext4 extension 3 Python
F2FS extension 3 Python
Btrfs extension 35 Python
FSCQ extension 4 Python
Yxv6 extension 19 Python
SibylFS Integration
Test case parser 188 Python
Converter 271 Python
Logger and extra 138 Python
KASan Integration
Kconfig change 1 —

File System Built-in Checks

Kconfig change (total) 7 -
ext4 2 =
F2FS 1 —
Btrfs 4 —

an input explorer that mutates both file system images and syscalls. We leverage the file system-
specific utilities (e.g., mkf's and f'sck) available in development packages (e.g., e2fsprogs) to iden-
tify the metadata chunks of each file system. We also use these utilities to inspect the image after
mutation—that is, to iterate files and directories on the image and feed information for the syscall
mutator to generate image-aware syscall sequences (see Table 3).

We choose the LKL [46] as the library OS for the library OS-based executor. The official LKL
is based on Linux kernel v4.16, and we ported it to v5.0. When compiling the LKL, we restrict
instrumentation (e.g., code coverage tracking for AFL) to the tested file system only; therefore, we
can focus only on the exploration of the file system instead of on the whole kernel. The LKL is
statically linked into the executor, which takes the input from the mutator, mounts the image, and
runs the syscalls by calling LKL functions.

Despite the large shared codebase on syscall emulation and violation checker, SYmMC3 is ex-
tremely flexible in incorporating customized notions of crash consistency or non-POSIX-compliant
operations in various file systems. For example, the crash consistency property in Btrfs requires
it to persist the directory entry as well as metadata when an inode is fsync-ed. This deviation
from the standard behavior can be modeled in as small as 35 LoC (see Table 3).

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

Finding Bugs in File Systems with an Extensible Fuzzing Framework 10:19

1 // MutationStage.cpp
2 KnownSyscalls: :KnownSyscalls(){
3 add(SYS_read);

4 add(SYS_write);

5 add(SYS_open) ;

6 add(SYS_rename) ;

7 // add(SYS_gendents64) ;
8 /) ..

9 }

Fig. 12. A snippet from HYDRA’s input mutator code, where developers register syscalls to generate and mu-
tate. With this configuration, HyprA will generate test cases tcomprise only read, write, open, and rename
syscalls.

1 @type script

2 # creating a file without providing a mode is
3 # unspecified in Posix. For Linux, the

4 # default mode is 00101

5 open "f2.txt" [O_CREAT;O_WRONLY]

6 close (FD 3)
7 stat "f2.txt"

Fig. 13. file_descriptors/adhoc_open_creat_no_mode-int.trace from SibylFS’s test suite.

Customizing test case generation. By default, HYDRA generates 27 system calls® that are specific
to file systems. When generating test cases for testing memory safety bugs, all of them are utilized.
However, there are cases where developers can utilize the domain-specific knowledge and focus
on generating/mutating a smaller set of syscalls to increase the chance to hit bugs. For example,
syscalls that affect the metadata, such as chmod, are more likely to trigger crash consistency bugs
than syscalls that simply read metadata, such as stat. The input mutator of HYyprA handles this by
making the list of syscalls configurable; developers can place restrictions on the syscall sequences
by simply adding the syscall numbers they want to have in the test cases, as shown in Figure 12.

Integrating existing checkers. The modularized structure of Hypra allows developers to readily
integrate existing checkers with a minimum implementation effort. As described in Section 3.3, the
test case executor receives the generated test case, executes it, and dispatches a checker. In case of
the in-kernel checkers, such as KASan for memory safety bugs and file system-specific checks for
logic bugs, there is no implementation cost, because these checkers can be enabled when compiling
LKL and are automatically invoked by LKL while executing test cases. For external checkers, a
developer has to convert the HyDRA-style test case into the form that the utilized checker favors.
For example, the SibylFS oracle requires an input to be formatted as a custom trace file, as shown in
Figure 13. We wrote a test case parser and converter to convert a HYDRA’s test case, which consists
of a file system image and a full-fledged C code, into a trace that is compatible with SibylFS. Overall,
including the code for a logging functionality, we wrote less than 600 lines of Python code (see
Table 3) for a seamless integration of SibylFS. Please note that SibylFS is written in more than
10,000 lines of OCaml code.

Writing a new checker. The minimum requirement for writing a compatible checker is that it
needs to take a HYDRA test case as input and return the test result as a binary value. On top of that,
developers can optionally provide supplementary diagnosis results, such as an error message and

3open, read, pread64, write, pwrite64, rename, mkdir, rmdir, 1ink, symlink, unlink, readlink, chmod, stat, 1stat,
lseek, access, getdents64, fallocate, truncate, ftruncate, setxattr, listxattr, removexattr, utimes, fsync, and
fdatasync.

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

10:20 S. Kim et al.

logs to assist further analysis of bugs. If the requirement is met, the rest, including the checking
logic, can remain completely black box to the HyDprA framework.

5 EVALUATION

We evaluate HYDRA by fuzzing popular, heavily tested (even formally verified) Linux file systems.
In particular, we show the effectiveness of Hypra with the number of new bugs discovered by
various checkers in HYDRA (Section 5.1). The effectiveness can be explained from three aspects:
(1) a high fuzzing speed allows HYDRA to explore file system states quickly (Section 5.2), (2) the
dual-aspect input mutation allows HYDRA to explore more execution paths than both existing
OS fuzzers and specialized bug checkers (Section 5.3), and (3) the addition of checker feedbacks
allows HYDRA to further lean its fuzzing effort toward checker-defined states besides greedy path
exploration (Section 5.4). Beyond hitting more bugs, we further evaluate HyprA’s performance in
bug reproducibility and test case minimization (Section 5.5). Evaluations on the in-house developed
crash consistency checker are performed to support how it fares against prior works (Section 5.6),
and an additional evaluation on the merit of having a comprehensive fuzzing framework besides
regression tests is performed by analyzing the lifespan of the bugs HYprA detected (Section 5.7).

Experimental setup. We run HYDRA on a 2-socket, 24-core machine running Ubuntu 16.04 with
Intel Xeon E5-2670 and 256 GB of RAM. We tested ext4, Btrfs, F2FS, and XFS in Linux kernel
v5.0, and two verified file systems: FSCQ (sosp17 branch) and Yxv6. We also tested GFS2, HFS+,
ReiserFS, and VFAT, but found only memory safety bugs. Unless otherwise stated, we use a min-
imal seed disk image that contains seven different types of files and directories (hard/soft links,
FIFO, xattr, etc.) in all fuzzing runs. We compare HyDRA with the latest version of two state-of-
the-art OS fuzzers: Syzkaller and KAFL. Syzkaller runs with the KVM instances, each of which has
two cores and 2 GB of RAM.

5.1 Bug Hunting in Popular File Systems

Across intermittent runs during a 10-month period of development, HyDRA discovered 157 new
bugs in total, of which 125 have been confirmed and 89 bugs fixed (Table 4). Note that we also
found four POSIX violations. The results show that as a fuzzer tailored to file systems, HYDRA,
together with the checker plugins, helps us discover and patch a diverse set of bugs in various file
systems. More importantly, among all bugs found, 34 are semantic bugs that do not cause kernel
panics when triggered and hence cannot be found by prior OS fuzzers. Even though the memory
bugs found seem to outnumber the semantic bugs, in fact, the ability of HYDRA to find rare, hard-
to-detect semantic bugs, such as crash consistency bugs in verified file systems, is invaluable. This
sheds light on how to stress not only memory errors but also the semantic parts in file systems by
integrating specialized checkers into the HyDRA fuzzing framework. Please note that even though
these checker plugins existed before HYDRA, they did not reveal any of the found bugs without
being assisted by HYDRA's input space exploration.

To see how deeply HYDRA explores the input spaces of a file system, we further measure the
minimal trace of syscalls (obtained from the test case minimizer) required to trigger these bugs.
The result is shown in Figure 14, and we make the following several observations.

Dual-aspect input mutation. Seventy-five percent of found bugs require both mounting a crafted
file system image and subsequently executing a dedicated sequence of syscalls to trigger. This
shows the importance of exploiting the synergy of two types of mutations. The rest of the bugs
(seven logic bugs and 10 memory errors) can be triggered by merely mounting a corrupted image,
which shows the importance of image mutations. Please note that we do not count a mount fail-
ure as a bug, because such a case shows that a file system is properly handling a corrupt image

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

Finding Bugs in File Systems with an Extensible Fuzzing Framework 10:21

Table 4. Hypra Found 157 New Bugs Along with Four POSIX Violations

Crash Logic Spec. Memory

FS Inconsistency Bug Violation Error

#A/#R/H#F T #A/#R/#F T #R T #A/#R/#F T
ext4 1/1/0 4w 0/0/0 1w 1 1w 19/22/19 4w
Btrfs 1/4/1 8w 7/7/3 1w 2 1w 30/30/20 1w
F2FS 2/3%/2% 4w 16/16/16 1w 1 1w 19/19/19 1w
XFS 0/0/0 — 0/0/0 1w 4 1w 11/17/7 1w
GFS2 —/—/— — —/—/— — - — 0/14/0 1w
HF S+ —/—/— - —/=/—= - - - 7/8/1 1w
ReiserFsS —/—/= - —/=/= - = - 8/13/0 1w
VFAT —/=/—= — —/—/— — - - 0/0/0 1w
FSCQ 1/1/1 1w —/—=/— - = - —/=/= -
Yxv6 2/2/0 1w —/—/— - - — —/—/— —
Total 7/11%/4* 18w 23/23/19 3w 4 3w 94/123/66 11w

A: Acknowledged, R:Reported, F:Fixed, T: Tested time (in weeks).

Hypra successfully reproduced all cases except four on VM. We acknowledge that the found POSIX vio-
lations are known to the Linux communities, so they remain unfixed. *One of the crash consistency bugs
we found in F2FS was fixed before we reported. Tested time (T) includes the time spent for developing
(or integrating) and debugging each checker. For example, it required a total of 8 weeks for us to develop
SymC3 and run HyprA with it to find four bugs in Btrfs.

20 ~
Memory errors ==
Semantic bugs E=xz=z® oo
15 - : : ‘ e
190 %%
KR
$96%690%%%
IR
1% IRRRKL
b:,ﬂ 10 | 12022 %%
/M
HH
0 pCCICX XXPCOXIX XX BRI |

1 2 3

N
wt

6 7 8 9 10 10+ mount-only
#Syscalls

Fig. 14. The number of syscalls required to trigger each file system bug found by Hypra after minimization.

by refusing to mount. We only consider the cases that triggers bugs after the mutated image is
successfully mounted (i.e., mount returns zero) as mount-only bugs.

Bug complexity. A file system bug can be triggered by as little as one syscall* or as many as 32
syscalls after minimization. Although there is no rule of thumb for how many syscalls are enough
to reach a file system bug of a specific type, we do observe that semantic bugs tend to require a
longer sequence of syscalls to be triggered compared with memory errors. In fact, among all of the
bugs that require file operations to manifest, 57% of memory errors can be triggered with just one
or two syscalls, whereas the ratio is only 21% for semantic bugs. In contrast, nearly 50% of semantic
bugs require at least five syscalls to reach. Therefore, it might not always be valid to assume that

4A bug in ext4 can be triggered with only one syscall: removexattr("A/B/acl", "system.posix_acl_access").

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

10:22 S. Kim et al.

Crash consistency

e 100 (11.4 exec/sec)
2 .. .
2 80 Logic invariants POSIX conformance
\gj/ oL (102.8 exec/sec) (4.5 exec/sec)
é Memory safety
S 40 -
E! (98.4 exec/sec)
2 20
E_q
0 TN TN U TN BRSO Dl - " M
0 0.01 0.1 1 10 100 1000 10000

Checker overhead (ms)

Fig. 15. Performance of HYDRA’s state exploration with checkers exhibiting different overheads, indicating
the expected throughput when a developer integrates a custom checker with HypRra.

small workloads are sufficient to reveal file system bugs of all types. Testing a file system with a
fixed length of random syscalls (e.g., B3 seq-3) might miss many bugs to be found.

5.2 Fuzzing Speed

The overall throughput of HYyprA highly depends on the speed of a companion checker; intuitively,
a more expensive checker implies lower throughput (Figure 15). For example, checking POSIX
violation is the most expensive, as each test case needs to be piped to a separate process that hosts
an OCaml runtime and re-emulates the syscalls with extensive specification checking. However,
the logic checker places accounting and assertion hooks inlined with the code, allowing HYDRA to
explore the input space at full speed.

It is worth noting that the performance of a checker is not a limitation, as HYDRA is not respon-
sible for reducing the checking overhead. Rather, we consider that the amount of analysis (and
hence the overhead) is the price we have to pay to find bugs of a particular type. The theoretical
maximum is 122 exec/sec, measured by merely starting and stopping the LKL instance. The dif-
ference between this and the HYDRA baseline (104 exec/sec) reflects the overhead of the generic
fuzzing infrastructure, including input mutations and book-keeping (e.g., updating the AFL cov-
erage bitmaps).

For comparison, a VM-based approach takes at least 1.4 seconds (0.7 exec/sec) to achieve the
same effect—that is, a clean-slate kernel and file system for every test case, which is 100x slower
than our 1ibOS-based executor. In addition, although the throughput might be low for expen-
sive checkers, this may be compensated by paralleling HYDRA, similar to distributed fuzzers like
syzbot [17].

5.3 Code Coverage

Besides throughput, code coverage, especially the coverage when fuzzing is toward saturation, is
another important factor that decides the effectiveness of fuzzing. Intuitively, the more execution
paths covered, the more thoroughly a file system is tested. HYDRA achieves higher code coverage
than not only existing OS fuzzers but also bug checkers that synthesize test suites with their own
algorithms.

Comparison with existing OS fuzzers. We perform controlled experiments on HyDRA and state-
of-the-art OS fuzzers Syzkaller and KAFL by (1) mutating file system images only and fuzzing with
the same sequence of syscalls, (2) mutating syscall sequences only and fuzzing with the same seed
image, and (3) mutating both. The results are shown in Figure 16. At the end of the 12-hour period,
Hypra outperforms Syzkaller by 1.55x, 1.52x, and 1.45x for ext4, Btrfs, and F2FS, respectively,
and outperforms kAFL by 8.74x, 6.31x, and 6.47x.

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

Finding Bugs in File Systems with an Extensible Fuzzing Framework 10:23

ext4

10k 18k

16k

?} 8k 100220 DN | 1

i)

g

2

E Syzkallers

3 Syzkaller ——
3 Syzkaller; -
HH

i A
L 1 L L |

0 2 4 6 8 10 12 4 6 8 10 12
Time (hours) Time (hours) Time (hours)

Fig. 16. Code coverage for 12 hours of fuzz testing with kAFL, Syzkaller, HyDRrA, and their variants (i for
image-only and s for syscall-only mutation). It indicates that HyDRA aggressively explores the input space
that both kAFL and Syzkaller could not reach, and combining both image and input mutators exhibit a
synergistic effect in exploring different parts of the input space.

By mutating image metadata only, upon saturation, HYDRA; explores at least 3.36x code paths in
all tested file systems compared with both Syzkaller; and kAFL. This is because HYDRA identifies
metadata chunks in an image with file system-specific parsers, whereas Syzkaller; mutates the
non-zero parts only and KAFL mutates the first 2K bytes only. Both Syzkaller; and kKAFL may miss
important metadata chunks and include non-essential user data. For syscall mutation, HYDRA; is
still slightly better than Syzkaller; (at most 1.12x). The improvements mainly come from generating
image-aware workloads.

On top of that, HYDRA achieves higher code coverage than both Hyprag and Hypra;, which
proves the importance of dual-aspect input mutation in file system fuzzing. Moreover, HYDRA also
outperforms Syzkaller on all tested file systems. Having more effective mutators is one reason.
More importantly, HYyDRA wisely schedules two mutators (see Section 3.2), whereas Syzkaller does
not prioritize either of them, leading to even worse performance than Syzkallers in all cases.

Comparison with synthesized test suites. To support the claim that bug checkers can offload the
path exploration component to Hypra, HYDRA should be additionally compared with test syn-
thesizers in these checkers, as these synthesizers share the same goal with fuzzing: exploring as
many program states as possible. To this end, we check whether the test cases generated by Hypra
yield more code coverage than those synthesized by individual bug checkers recently proposed;
the results are shown in Figure 17.

B3 seq-2 test suite. Even though we restrict the syscalls to be the same set as supported by B3,
HypRra yields more coverage than B3’s seq-2 test cases. This is because B3 selects arguments from
a pre-defined small set when generating test cases. For example, truncate’s length is either 0
or 2,500, and only two directories and two files are used as path arguments. However, HYDRA
randomly mutates these arguments, discovering more code paths.

SibylFS test suite. Similarly, HYDRA yields more coverage than the test suite synthesized by
SibylFS even when fuzzing is restricted to the same set of syscalls. One reason is that SibylFS
heavily relies on the manual enumeration of equivalence classes, which can be incomplete. For
example, SibylFS seems to treat read(fd, buf, 100) and read(fd, buf, 10000) as equivalent,
because both reads from the same file descriptor, although they may trigger different code paths
as the length crosses the page and block size. Another reason is that SibylFS focuses more on enu-
merating combinations of arguments for a single syscall, generating less diverse syscall sequences.

5.4 Checker Feedback

For semantic bug checkers, besides greedy exploration of code paths, what is equally important
if not more valued is the triggering of their “favored” states—that is, the states in which the

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

10:24 S. Kim et al.

8k ext4 12k — Btrfs 6k F2FS
SOOOOXRRRKKX KKK KKKKKKXK NN

22

X

b=} 10k R
% 6k ?XXXXXXXXXXXXXXXXXXXXXXX
2 m 8k ak
© LA H
£ ak s ok [E
_;‘ ’; 4k ? 2k ? HyprA +SYM(13333 -
8 2k f : i el
5 H ok £ g HyDRA +SibylFS - 4 -
]] SibylFS ——
ok I I I I I I 0k I I I I I I ok I I I I I i
0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time (hours) Time (hours) Time (hours)

Fig. 17. Code coverage for 12 hours of checking crash consistency bugs by using a static mutator, B3, and
our feedback-driven fuzzer, Hypra with SymMC3, as well as checking specification violation using SibylFS’s
test suite versus HYDRA’s dynamically generated test cases. In finding both bug types, HYDRA not only visits
more code paths but also keeps discovering new paths throughput execution—as the exploration quickly
saturates, finding just one new path for a few hours of executions is a significant indicator. Note that B3’s
seq-2 test cases for ext4 complete in 8 hours (the left-most graph), and SibyIFS’s test suite completes within
an hour (the straight red lines).

Table 5. Effectiveness of Checker Feedbacks

s Crash Inconsistency Logic Bug Spec. Violation
W/Sig No Sig W/Sig NoSig W/Sig No Sig
ext4 0 0 0 0 1 1
Btrfs 4 2 5 1 2 2
F2FS 2 1 8 2 1 1
Total 6 3 13 3 4 4

W/Sig: with signal; No Sig: no signal.
The table shows how many unique bugs are found with checker feedback and by replay-
ing the test cases generated without checker feedback.

checking actually occurs and errors are likely to be reported. For example, for checkers that en-
force developer-annotated invariants, what developers hope for is exploring not only more paths
in the file system but also more paths that go through the annotated checks. Test synthesizers
tightly coupled for a specific bug type may hard code this intention in their test generation algo-
rithms that try their best to enforce that the generated tests trigger the “favored” states. HYDRA
supports this by adding feedback from the checker to the input mutator. The feedback can be as
simple as a Boolean variable indicating whether or not the checker favors this test case, which
is the case in SymC3, which sends 1 when it finds a crash inconsistency. Intuitively, by sending
positive feedback, the checker expresses its intention to see more inputs like this.

We show this with a controlled experiment. We first run Hypra with checker feedback for 12
hours and collect the number of test cases flagged as buggy by the checker. We then run Hypra
without checker feedback for 12 hours® and collect all test cases AFL saved in the seed pool. With
only branch coverage feedback, the seed cases represent the situation where the fuzzing effort is
not directed toward any particular states. The last step is to rerun these seed cases with checker
enabled again and see how many unique bugs are found. The results are shown in Table 5.

5In this run, HyDRa still invokes the checker, but regardless of whether a bug is reported, the feedback is ignored. This
allows the execution to proceed given semantic bugs are unlikely to cause visible impact.

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

Finding Bugs in File Systems with an Extensible Fuzzing Framework 10:25

Table 6. Number of System Calls Used to Trigger New Bugs Before and After Minimization

ES #Syscall (min.) B3 Sequence Required Bound Relaxation
1 ext4 36— 3 (91.7%) seq-1* Requires support for chmod

2 Btrfs 164— 12(92.7%) seq-5 Requires longer sequence

3 Btrfs 151— 6 (96.0%) seq-1* Opens and persists additional file
4 Btrfs 44— 6 (86.4%) seq-3* Mix of data and metadata ops

5 Btrfs 40— 8 (80.0%) seq-4 Requires longer sequence

6 F2FS 233— 6 (97.4%) seq-2* Writes on overlapping regions

7 F2FS 20— 3 (85.0%) seq-1* Requires support for chmod

8 F2FS 29— 8(72.4%) seq-3* Opens and persists additional file
9 FSCQ 36— 7(80.6%) seq-2 (Not reported by B3)

10 Yxvé 6— 2 (66.6%) seq-2 (Not tested by B3)

11 Yxvé 6— 3 (50.0%) seq-2 (Not tested by B3)

Even after minimization, all test cases, except FSCQ and Yxv6 bugs, cannot be reached by B3’s input generator.
The star (%) indicates that some relaxation of boundaries is required. For example, bug#3 requires one core
operation (i.e., chmod) but needs to open and persist an arbitrary (seemingly irrelevant) file. This is not a case
reachable by B3’s seq-1 workloads.

On average, disabling the feedback means that we will miss 57% of the semantic bugs that could
be caught with the checker feedback. The explanation lies in the seed selection policy. In particular,
seeds receiving positive feedback from the checker are prioritized for more mutations. The ratio-
nale is that a test case favored by the checker will likely have some erroneous states accumulated.
Therefore, by exploring more along that direction, HyprA has a higher chance to trigger more
bugs. However, this effect does not show up for POSIX violations, as these bugs are too shallow to
be missed.

5.5 HybpRrA Framework Services

Hypra provides bug processing as a framework service to all bug checkers in an attempt to ad-
dress the challenge in traditional OS fuzzing: irreproducible bugs due to the accumulated effects
of thousands of syscalls. We measure how successfully Hypra achieves its goal from two aspects:
VM replay for bugs found and test case minimization.

VM replay for bugs found. Whenever the bug checker flags a test case, HYDRA replays the test
case on a fresh VM instance running with the same kernel and file system HYDRA uses for fuzzing.
We manually check whether the VM replays the same behavior as shown in the LKL executor—for
instance, (1) being in an inconsistent state (for crash inconsistency), (2) deviating from standards
(for POSIX violations), (3) failing at assertions (for logic bugs), or (4) panicking with the same
KASan or BUG() location (for memory errors). Only four bugs (one logic bug and three memory
bugs) are not always replayable, although they are acknowledged by the developers, and the reason
is that the LKL and the kernel in the VM use different schedulers. As a result, these timing-critical
bugs do not always manifest in the VM. For instance, an ext4 memory error is caused by the JBD2
thread running in the background. Since the LKL is a uniprocessing and non-preemptive kernel,
we can trigger the bug, as syscalls and the JBD2 thread are serialized, but not on the VM, where
we have no control of the scheduling.

Test case minimization. We also evaluate whether HYDRA is capable of eliminating syscalls that
do not contribute to the manifestation of the bug. We run the minimizer on all bugs Hypra found,
and on average, the minimizer reduces the number of syscalls in the bug PoC from 69.5 to 5.8,
yielding a 91.6% reduction. As a snippet of the effectiveness of the minimizer, Table 6 shows how
it reduces the syscalls in the bug PoC for the 11 crash consistency bugs Hypra found.

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

10:26 S. Kim et al.

Table 7. Comparing HYDRA with B3 in Terms of Execution Time
and Precision in Testing Btrfs of Linux v4.16

B3 Hybpra
Type #Tests Size T-Gen T-Comp (w/SymC3)
seq-1 03K 2.8 MB <lm <lm
Prep. seq-2 240K 27GB 3h28m 6h,31m None
seq-3 8,241K 948GB 5d,1h -
Exec 0.2 exec/s 11.4 exec/s
FP+ 31K (100%) 0 (0%)

T-Gen: time to generate, T-Comp: time to compile.

HYDRA generates test cases on the fly, whereas B3 requires extensive resources for prepro-
cessing when testing seq-1/2 test cases, HYDRA incurs no false positives, whereas B3 reports
31K incorrect consistency errors.

5.6 Crash Consistency Checker (SymC3)

We compare the crash consistency checker of Hypra with the state-of-the-art prior work—B3—in
detail, focusing on false positives and performance.

Correctness. We tested HyDrA with 26 previous crash consistency bugs that B3 collected, as well
as 10 new bugs that B3 found. SymC3 detected 24 out of 26 previous bugs. One bug missed by
SyMC3 requires a special command—dropcaches—and B3 also missed the same bug. Another bug
requires msync, which SymC3 currently does not support.

SymC3 successfully detected all 10 bugs newly discovered by B3. However, B3 missed all of the
bugs HYDRA newly discovered, for the following four reasons: (1) requiring more than three core
operations, (2) requiring the combining of both metadata and data operations,® (3) not supporting
crucial file system operations (e.g., chmod) or (4) not supporting different file types (e.g., FIFO file).
The last column of Table 6 shows the specific bound that needs to be relaxed from B3’s input
generator to generate the corresponding buggy test case.

False positives (incorrect reports). B3 runs the same test case on two empty file system images
while keeping one image as a reference oracle and crashing the other. Then it tests crash consis-
tency by comparing the files and directories in the oracle with those in the recovered image. As
noted in Section 3.4.1, the oracle is one of the possible post-crash states, and B3 ends up flagging
legitimate cases as bugs. For example, if a file is resized multiple times but not persisted before a
crash, the file in the recovered image can be of any size that it was once resized to. However, B3
only considers the final size (i.e., the size right before the crash) as a correct metadata and falsely
identifies all other correct states as bugs, in consequence. Because of this systematic limitation, B3
reported 31K incorrect consistency errors from the Btrfs file system in the v4.16 kernel, whereas
HyDRA raised no false positives. The only possibility of SyMC3 having false positives is through
bugs in the checker. However, we fuzz tested SymC3 for a month by running SymC3 without in-
jecting a crash condition in the LKL executor until there were no more bugs to fix.

Performance. B3’s strategy of enumerating all input space requires a considerable amount of
space and preprocessing time for generating and compiling the test cases. As shown in Table 7, it
required more than 5 days for B3 to generate 8M seq-3 test cases. To make matters worse, much
bigger input space (i.e., up to seq-5) has to be enumerated to generate the test cases that cover
the new bugs found by Hypra, which makes B3 infeasible. However, because of fuzzing, the input
generation in HYDRA is dynamic and requires no preprocessing. In addition, the speed of execution

B3 only generated three non-exhaustive sets of seq-3 test cases: seq-3-data, using write operations only, seq-3-metadata,
using metadata operations only, and seq-3-nested, using link and rename on nested directories and files.

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

Finding Bugs in File Systems with an Extensible Fuzzing Framework 10:27

10000 ,..5eq-3
+

O} © B3+ + + +

g FHYDRA X

g, 1000 £

= F seq-2

o F e

3= 100 &

E :

= E

S 10 - X X X X

g : X X

o F seq-1

: X

E ol I | I I I I j
1 2 3 4 5 6 7 8

Bug ID

Fig. 18. Time to reach the eight crash consistency bugs in Btrfs, found and reported by B3. Bugs 1 and 2
require seq-1, bugs 3 and 4 require seq-2, and bugs 5 through 8 require seq-3 workloads, respectively, to be
triggered.

of HYDRA is orders of magnitude faster than that of B3, further showing HyprA’s usability as a
large-scale framework.

Time to reach bugs. B3 exhaustively tests all execution sequences in a limited test space, whereas
HyYDRA uses a randomized approach to explore a larger test space. To evaluate the efficacy of the
feedback-driven input generation of HYDRA over exhaustive search, we compared the time to reach
bugs that both Hypra and B3 found. As B3 fails to generate test cases for all 11 new bugs that
Hypra found, we chose to use 8 Btrfs bugs that B3 previously detected for comparison. Among
the eight cases, two are seq-1, two are seq-2, and the remaining four are seq-3 workloads. For a
fair comparison, we modified the input mutator of HYDRA to (1) not generate test cases that are
longer than B3’s seq-3 workloads and (2) select arguments from the exact set of values that B3’s
workloads use. The result is shown in Figure 18. HYDRA successfully found 8 bugs; it reached two
seq-1 workloads in 30 seconds and the longest workload after 15 minutes of execution. Meanwhile,
as shown in Table 7, B3 required orders of magnitude longer time to exhaustively generate all seq-1
to -3 workloads. This proves that HYpDrA’s feedback-driven input generation leads to the efficient
exploration of a vast input space to find buggy cases without having to look through all test cases.

5.7 Lifespan of Detected Bugs

To analyze and compare the effectiveness of HYDRA against that of existing regression testing
approaches, we measure the lifespan of crash consistency bugs that Hypra detected from in-kernel
file systems: ext4, Btrfs, and F2FS. The PoC of each bug is tested against all stable kernels starting
from v4.1 to v5.3, which currently is the latest stable kernel.

The result is shown in Figure 19. Typically, regression testing is carried out to ensure that soft-
ware works correctly after new pieces of code are added. Even though Linux kernel developers
put a lot of effort into testing the prepatch (i.e., release candidate, or RC) kernels before releasing
the stable version, we can still find that more than half of the detected bugs (bugs 2, 4, and 6-8)
are introduced at some point and have been present in several stable versions until being detected
by HyDprA. This shows that HYDRA is an effective approach to complement regression tests that
completely missed these bugs. Among these bugs, three cases were fixed in the v5.1 release after
developers took actions in response to our bug reports, and one (bug 8) was patched before we
reported. The other four bugs are yet to be fixed and still remain in the latest stable kernel. Further
analysis of these bugs will be given in Section 6.

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

10:28 S. Kim et al.

(Jul ’15) (Oct ’16) (Aug ’18) (Oct ’18) (Mar ’19) (May ’19) (Sep ’19)

FS v4l .. v48 .. v4.18 v4.19 v4.20 v5.0 v5.1 v5.2 v5.3

1 ext4 @ >
2 Btrfs [20

3 Btrfs| @ &>
4 Btrfs @ =
5 Btrfs| @ >
6 F2FS —O

7 F2ES &—O @: Introduced
8 F2FS e—O O: Fixed

Fig. 19. Lifespan of crash consistency bugs in stable Linux kernel, from v4.1 to v5.3. The black dot (e) denotes
the version in which bug is introduced, the white dot (O) marks the version in which bug is fixed, and the
arrow (—) refers to the affected versions. Note that the bug ids (#) are consistent with those of Table 6.

fd_root = open(".", O_DIRECTORY, 0);

fd_foo = open("./foo", O_CREAT | O_RDWR, 0777);
fsync(£fd_foo);

mkdir("./A", 0777);

ftruncate(fd_foo, 5595);

pwrite64 (fd_foo, buf, 4000, 1303);
fsync(fd_root); // should persist both A and foo

P Y, B NN R R

Fig. 20. FSCQ: fsync fails to persist directory A after fsync on root directory. After a crash and recovery,
only foo is in the file system.

6 CASE STUDY
6.1 Crash Consistency Bugs in Verified File Systems

This section breaks down the crash consistency bugs found in FSCQ and Yxv6, which are verified
file systems.

FSCQ. FSCQ [9] is a formally verified file system with proven specifications regarding correct
behaviors of a crash-safe file system, especially the precise definition of fsync and fdatasync and
how they react to logged writes and log-bypassing writes. However, to our surprise, HYDRA is still
able to find two bugs that violate the crash consistency property, and both have been acknowledged
by FSCQ developers.

Figure 20 shows the bug PoC when fsync fails to persist a directory entry. This bug triggers an
uncovered part in their proof, as noted by the developer [7]:

“[TThe design of DFSCQ should permit them to be crash safe, but the proofs don’t
cover mixing direct and logged writes, and logged writes currently are not synced
correctly.”

The pwrite64 syscall (line 6) accidentally triggers the mixing of direct and logged writes. As a
ballpark fix (commit 97b50e), all of the logged writes in the fscqWrite procedure are disabled.
This case proves the effectiveness of HYDRA in generating test cases that are hard for developers
to contemplate even with the help of machine-checked proofs.

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

Finding Bugs in File Systems with an Extensible Fuzzing Framework 10:29

1 fd_root = open(".", O_DIRECTORY, 0);
2 fd_foo = open("./foo", O_CREAT | O_RDWR, 0777);
3 fsync(fd_root);

4 write(fd_foo, buf, 4000);

5 fdatasync(fd_foo); // foo should be size 4000

Fig. 21. FSCQ: fdatasync fails to persist data in file foo. After a crash and recovery, foo is empty.

mkdir("./A");

mkdir("./A/B");

fd_foo = open("./A/B/foo", O_CREAT | O_RDWR, 0777);
sync(); // persist three new inodes, A, B, and foo persist
mkdir("./C");

rename("./C", "./A"); // should fail if POSIX-compliant
syncQ;

D I S B N O N

Fig. 22. Yxv6: Children inodes A/B and A/B/foo are orphaned when renaming an empty directory C to A.
After a crash and recovery, directories A, B, and file foo are lost.

char buf[2048] = {0, };

fd_foo = open("./foo", O_CREAT | O_RDWR, 0777);
write(fd_foo, buf, 1947);

int ret = ftruncate(fd_foo, 2791); // ret is 0 (success code)
fsync(fd_foo); // size of foo should be 2791

L

Fig. 23. Yxvé: File size is not properly adjusted by ftruncate. After a crash, the size of foo is 1,947.

Figure 21 shows the bug PoC when fdatasync is not persisting data written to files. According
to FSCQ developers [8], this is due to different interpretations of the fdatasync on the Linux man
page [30], especially the part on “fdatasync... to allow a subsequent data retrieval to be correctly
handled.” If one interprets “correctly handled” as all previously written data to the file should be
readable, this is a bug. However, this is not the specification FSCQ formalizes. In FSCQ, fdatasync
forms a weaker guarantee: either empty content or the previously written data in its integrity is
allowed, but nothing in between. In this case, either 0 or 4,000 as the size of foo is allowed. In
FSCQ, to force data to touch disk, fsync is required. This bug is found and reported by B3 as well;
therefore, we do not count it in the new bugs found. By updating SymC3 to adopt the notion taken
by FSCQ developers, SYMC3 can tolerate this relaxed interpretation of fdatasync.

Yxv6. Yxv6 [54] is yet another verified file system, in which possible disk states after a crash are
defined as a subset of those allowed by the specification. Hypra found two interesting bugs in the
latest GitHub release of Yxv6 (commit e1de61), which eventually lead to crash inconsistency.

Figure 22 is one buggy test case, where persisted inodes are lost in face of a crash. The PoC
creates directories A and A/B, and a regular file foo under A/B/, then persists them altogether
through sync (lines 1-4). Then a new empty directory C is created and renamed to A (lines 5 and
6). Upon execution of rename, directories A, A/B, and the file A/B/foo are unlinked, and the image
ends up having only C. In fact, POSIX specifies the behavior of rename(const char *old, const
char xnew); syscall that “if new names an existing directory, it shall be required to be an empty
directory.” A similar piece of information is given in the Linux programmer’s manual: “old can
specify a directory. In this case, new must either not exist, or it must specify an empty directory.”
This means that renaming of an empty directory C to a non-empty directory A should not have
succeeded. Hence, this is not only a POSIX incompliance but also a crash consistency bug, as three
persisted inodes are eventually lost after a crash.

Another bug-triggering case of Yxv6 is shown in Figure 23. A new file foo is created, and some
data is written to make the file size 1,947 bytes (line 3). Thenftruncate syscall is invoked on the

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

10:30 S. Kim et al.

1 int fd = open("./fifo", O_RDWR, 0); // fifo: FIFO special file in the base image
2 chmod("./fifo", 0400);
3 fsync(£fd); // permission mode (0400) of fifo should be persisted

Fig. 24. ext4- fsync fails to persist metadata of a FIFO special file foo. This is bug 1in Table 6 and Figure 19.

unsigned char buf[111] = {0, };
int fd_root = open(".", O_DIRECTORY, 0);
link("foo/bar/baz", "./x"); // foo bar, and baz already exist in the base image

fsync(fd_root);

int fd = open("./x", O_RDWR, 0);

mkdir("A", 0777);

setxattr("A", "system.advise", buf, 111, XATTR_CREATE);

link("foo/bar/xattr", "A/y"); // xattr is another already existing empty file
fsync(£d);

T T T IR T R R

Fig. 25. F2FS: Directory A becomes inaccessible after a crash. This is bug 8 in Table 6 and Figure 19.

file descriptor of foo, enlarging the file size to 2,791 bytes. Although we omitted in the PoC, the
return value of ftruncate is 0, which is a success code. As the PoC ends with a call to fsync, Yxv6
should guarantee that the new size (2,791 bytes) is persisted on a disk. However, the size of foo
found after a crash is 1,947, meaning that it is not crash consistent.

The developers of Yxv6 have confirmed both cases yet claimed that neither the specification nor
the verification was broken, but their unverified glue code for the FUSE wrapper had bugs that
caused these behaviors. Still, such instances effectively show that even for the formally verified
systems, HYDRA is a practical approach to explore and reveal bugs in the end product of the file
system that end users install and use.

6.2 Crash Consistency Bugs in In-Kernel File Systems

In this section, we analyze the remaining crash consistency bugs found in ext4, Btrfs, and F2FS.

Ext4. HYDRA revealed one bug from one of the most widely used Linux file systems: ext4. The
bug, shown in Figure 24, is simple; when the metadata of a special FIFO file is changed (permission
mode in this case), it is not flushed to disk even with an explicit call to fsync. Currently, this is true
for all special files in Linux, such as block device files, or sockets, because the VFES layer does not
have fsync function defined for these special files, and thus calling fsync on these files becomes a
no-op. Nevertheless, the Linux man page states that “As well as flushing the file data, fsync() also
flushes the metadata information associated with the file (see inode(7)),” where file could refer to
any special file. Regarding this, the ext4 developer noted the following:

“We should either fix the man page to document existing practice, or change the
kernel” [57].

Btrfs. We have already presented one case in Figure 1, which corresponds to bug 2 of Figure 19.
By tracking down the patch’ for this bug, we found that the bug was inadvertently introduced
from a fix of another old crash consistency bug. As we pointed out in Section 5.7, this case shows
how HYDRA complements the blind spot of regression testing. Meanwhile, the other consistency
issues in Btrfs are not patched yet.

F2FS. HYDRA detected the bug in Figure 25 in kernel v4.18, and it was already fixed before v4.19
was released. This case demonstrates how complicated the sequence of syscalls can be to trigger a
crash consistency bug. The sequential execution of syscalls creating a hard link x of an existing file

"https://patchwork kernel.org/patch/10837829/.

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

https://patchwork.kernel.org/patch/10837829/

Finding Bugs in File Systems with an Extensible Fuzzing Framework 10:31

1 int fd = open("./A", O_DIRECTORY, 0); // dir A exists in the base image
2 chmod("./A", 0777);
3 fsync(£d);

Fig. 26. F2FS: fsync fails to persist permission of directory A. This is bug 7 in Table 6 and Figure 19.

foo/bar/baz, making a new directory A and setting an extended attribute, and creating another
hard link A/y of an existing file foo/bar/xattr under this new directory, collaboratively triggers
a crash consistency bug, and directory A becomes inaccessible after a crash. At the same time, the
link count of file foo/bar/xattr remains as two. This is another crash inconsistency because its
hard link A/y no longer exists in the image as a side effect of directory A being inaccessible. As
shown in the example, it is challenging to reason about how each syscall affects the file system to
eventually trigger the bug and what the result of bug will be. This shows the worth of HYDRA in
terms of generating a bug-triggering input that humans can hardly formulate.

In the meantime, some cases are remarkably simple, as shown in Figure 26. A change in mode
is not persisted through fsync, resulting in an inconsistency in face of a crash. From the patch,
we found that the bug was caused because f2fs_setattr function missed adding an inode into
global dirty list once the mode is changed, and so fsync did not flush the metadata of this inode.
This test case is now added to the regression test suite of F2FS.

7 DISCUSSION

Even though HYDRA is capable of detecting a large portion of file system bugs (semantic and mem-
ory bugs), the current input generation and execution model of HYDRA is best suited for the single-
threaded, single-node environment. To support the detection of various concurrency bugs, besides
plugging in a proper checker (e.g., KTSan [18]), improvements on the input mutator are required
to generate inputs with interleaved operations to be run on multiple threads. In addition, a proper
coverage metric to capture the code coverage and the context regarding the interleavings of mul-
tiple threads will better drive the fuzzer to buggy conditions.

Another possible future direction is extending HypRrA beyond a single node to support network-
based file systems (netfs) that typically run with multi-node, client-server configurations (e.g., NFS,
Samba, and Ceph). Interesting research questions arise from this direction, such as how to capture
the code coverage across nodes with different roles, or how to generate and mutate network events
and topology changes.

8 RELATED WORK

HyDRA is the first generic fuzzing framework that is capable of testing and finding various types
of bugs from existing file systems. This section introduces and compares the most relevant prior
work with HYDRA.

Finding bugs in file systems. There are two broad categories of approaches to find or eliminate
bugs in file systems: model checking and formal verification.

First, model checking can be done in a static or dynamic fashion. Static approaches, such as
JUXTA [37] and FERRITE [5], attempt to compare either well-specified [5] or inferred [37] models
with the design or implementation of file systems. Since static checkers lack concrete execution
states, they fundamentally suffer from high false positives, such as having stochastic errors in
inferred models [37].

Dynamic approaches, such as FiSC [61] and eXplode [59] for general storage system bugs,
B3 [39] for crash consistency, and SibylFS [49] for specification violation, concretely run and
validate test cases, thereby rendering high true positives (i.e., most reported bugs are real).
However, unlike HyDpRA, which directs the input exploration toward a targeted bug type while

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

10:32 S. Kim et al.

testing, existing methods aim to check the model against a fixed but too-humongous-to-explore
number of test cases, exhaustively testing all of the possible non-deterministic executions.

Second, formal verification [9, 10, 32, 54] is a promising new direction that can, in theory, elim-
inate all of the semantic bugs of file systems. However, as demonstrated by Hypra, formal verifi-
cation in practice suffers from incorrect assumptions in the proofs or often must embed unverified
code such as interface or driver. HYDRA can complement its effort by checking bugs on the whole,
end-to-end system as it is after the verification.

Fuzzing beyond memory safety. Besides the memory safety bugs, there have been works that
applied fuzzing techniques to find other types of bugs, such as race condition [25], use-before-
initialization vulnerabilities [34], or even bugs in deep learning systems [43]. As described in Sec-
tion 3.4.2, HYDRA can readily be extended to find these bug types by providing corresponding
checkers for existing file systems.

Fuzzing kernels. Syzkaller [20], KAFL [52], TriforceAFL [41] are the state-of-the-art fuzzing
frameworks for kernels. Unfortunately, their focus is to find non-semantic bugs such as mem-
ory errors that have a clear signal and thus fail to trigger deep semantic bugs in file systems. In
addition, by specializing our focus to file systems, HYDRA can shorten the execution time of a sin-
gle test case, as well as increase the reproducibility of found bugs by running the file system code
in user space with libOS.

9 CONCLUSION

This article presents HYDRA, an extensible fuzzing framework to find in theory any types of bugs
in file systems. HYDRA cleanly separates the process of exploring the input space from validating
the existence of bugs of interest. Thus, with HyDra, developers may now focus on the core logic
for hunting bugs of their own interest, whereas HYDRA takes care of file system state exploration
and test minimization. In our prototype, we equipped HyDpRrRA with both homegrown and external
bug checkers and discovered 11 crash inconsistencies, four POSIX violations, 23 logic bugs, and
123 memory errors across various Linux file systems, including the verified FSCQ. In particular,
our crash consistency checker, SyMC3, outperforms state-of-the-art checkers in both accuracy and
performance. With existing and future file system checkers unified under one umbrella, Hypra
can be the go-to solution for one-stop testing on multiple aspects of file systems to improve their
quality. Looking forward, besides integrating more checkers for local file systems, HYyDRA may be
further extended for fuzzing networked and distributed file systems.

ACKNOWLEDGMENTS

We thank the reviewers, Tej Chajed, Theodore Ts’o, and Junfeng Yang, for their insightful
comments.

REFERENCES

[1] Josef Bacik. 2017. Btrfs: Add a Extent Ref Verify Tool. Retrieved April 10, 2020 from https://patchwork.kernel.org/
patch/9978579/.

[2] Wendy Bartlett and Lisa Spainhower. 2004. Commercial fault tolerance: A tale of two systems. IEEE Transactions on
Dependable and Secure Computing 1, 1 (2004), 87-96.

[3] Marcel B6hme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury. 2017. Directed greybox fuzzing.
In Proceedings of the 24th ACM Conference on Computer and Communications Security (CCS’17).

[4] Marcel B6hme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-based greybox fuzzing as Markov chain.
In Proceedings of the 23rd ACM Conference on Computer and Communications Security (CCS’16).

[5] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy, Emina Torlak, and Xi Wang. 2016. Specify-
ing and checking file system crash-consistency models. In Proceedings of the 21st ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS’16). 83-98.

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

https://patchwork.kernel.org/patch/9978579/
https://patchwork.kernel.org/patch/9978579/

Finding Bugs in File Systems with an Extensible Fuzzing Framework 10:33

(6]
(7]
(8]
(9]

(10]

(1]

Mingming Cao, Suparna Bhattacharya, and Ted Ts’o. 2007. Ext4: The next generation of Ext2/3 filesystem. In Pro-
ceedings of the USENIX Linux Storage and Filesystem Workshop.

Tej Chajed. 2018. FSCQ Developer’s Comment on Logged Writes (Git Commit). Retrieved April 10, 2020 from https:
//github.com/mit-pdos/fscq/commit/97b50eceedf15a2c82cela5¢f83¢231eb3184760.

Tej Chajed. 2019. FSCQ Developer’s Comment on Fdatasync (GitHub Issue). Retrieved April 10, 2020 from https:
//github.com/mit-pdos/fscq/issues/14#issuecomment-485482506.

Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay ileri, Adam Chlipala, M. Frans Kaashoek, and
Nickolai Zeldovich. 2017. Verifying a high-performance crash-safe file system using a tree specification. In Proceedings
of the 26th ACM Symposium on Operating Systems Principles (SOSP’17).

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. 2015. Using
crash Hoare logic for certifying the FSCQ file system. In Proceedings of the 25th ACM Symposium on Operating Systems
Principles (SOSP’15).

Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac, Steven Kleiman, James Leong, and Sunitha Sankar. 2004.
Row-diagonal parity for double disk failure correction. In Proceedings of the 3rd USENIX Conference on File and Storage
Technologies (FAST 04).

Pedro Fonseca, Rodrigo Rodrigues, and Bjérn B. Brandenburg. 2014. SKI: Exposing kernel concurrency bugs through
systematic schedule exploration. In Proceedings of the 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’14).

Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao Cheng, Shaun Benjamin, Ashvin Goel, and Angela Demke Brown.
2012. Recon: Verifying file system consistency at runtime. In Proceedings of the 10th USENIX Conference on File and
Storage Technologies (FAST’12).

Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and Zuoning Chen. 2018. CollAFL: Path
sensitive fuzzing. In Proceedings of the 39th IEEE Symposium on Security and Privacy (Oakland).

Google. 2016. Kernel AddressSanitizer, a Fast Memory Error Detector for the Linux Kernel. Retrieved April 10, 2020
from https://github.com/google/kasan.

Google. 2018. KernelMemorySanitizer, a Detector of Uses of Uninitialized Memory in the Linux Kernel. Retrieved
April 10, 2020 from https://github.com/google/kmsan.

Google. 2018. Syzbot. Retrieved April 10, 2020 from https://syzkaller.appspot.com.

Google. 2015. KernelThreadSanitizer, a Fast Data Race Detector for the Linux Kernel. Retrieved April 10, 2020 from
https://github.com/google/ktsan.

Google. 2019. Honggfuzz. Retrieved April 10, 2020 from http://honggfuzz.com/.

Google. 2019. Syzkaller Is an Unsupervised, Coverage-Guided Kernel Fuzzer. Retrieved April 10, 2020 from https:
//github.com/google/syzkaller.

Bogdan Gribincea. 2009. Ext4 Data Loss. Retrieved April 10, 2020 from https://bugs.Jaunchpad.net/ubuntu/+source/
linux/+bug/317781?comments=all.

Alex Groce, Gerard Holzmann, and Rajeev Joshi. 2007. Randomized differential testing as a prelude to formal verifi-
cation. In Proceedings of the 29th International Conference on Software Engineering (ICSE’07).

HyungSeok Han and Sang Kil Cha. 2017. IMF: Inferred model-based fuzzer. In Proceedings of the 24th ACM Conference
on Computer and Communications Security (CCS’17).

Atalay Ileri, Tej Chajed, Adam Chlipala, Frans Kaashoek, and Nickolai Zeldovich. 2018. Proving confidentiality in a file
system using DiskSec. In Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI'18).

Dae R. Jeong, Kyungtae Kim, Basavesh Ammanaghatta Shivakumar, Byoungyoung Lee, and Insik Shin. 2019. Razzer:
Finding kernel race bugs through fuzzing. In Proceedings of the 40th IEEE Symposium on Security and Privacy (Oak-
land).

Dave Jones. 2018. Linux System Call Fuzzer. Retrieved April 10, 2020 from https://github.com/kernelslacker/trinity.

Jan Kara. 2014. ext4: Forbid Journal async_commit in Data=ordered Mode. Retrieved April 10, 2020 from https://
patchwork.ozlabs.org/patch/414750/.

Kernel.org Bugzilla. 2018. Btrfs Bug Entries. Retrieved April 10, 2020 from https://bugzilla.kernel.org/buglist.cgi?
component=btrfs.

Kernel.org Bugzilla. 2018. Ext4 Bug Entries. Retrieved April 10, 2020 from https://bugzilla.kernel.org/buglist.cgi?
component=ext4.

Michael Kerrisk. 2019. Fsync, Fdatasync—Synchronize a File’s In-Core State with Storage Device. Retrieved April 10,
2020 from http://man7.org/linux/man-pages/man2/fdatasync.2.html.

Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo Kim. 2019. Finding semantic bugs in
file systems with an extensible fuzzing framework. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP’19).

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

https://github.com/mit-pdos/fscq/commit/97b50eceedf15a2c82ce1a5cf83c231eb3184760
https://github.com/mit-pdos/fscq/commit/97b50eceedf15a2c82ce1a5cf83c231eb3184760
https://github.com/mit-pdos/fscq/issues/14#issuecomment-485482506
https://github.com/mit-pdos/fscq/issues/14#issuecomment-485482506
https://github.com/google/kasan
https://github.com/google/kmsan
https://syzkaller.appspot.com
https://github.com/google/ktsan
http://honggfuzz.com/
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781?comments$=$all
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781?comments$=$all
https://github.com/kernelslacker/trinity
https://patchwork.ozlabs.org/patch/414750/
https://patchwork.ozlabs.org/patch/414750/
https://bugzilla.kernel.org/buglist.cgi?component$=$btrfs
https://bugzilla.kernel.org/buglist.cgi?component$=$btrfs
https://bugzilla.kernel.org/buglist.cgi?component$=$ext4
https://bugzilla.kernel.org/buglist.cgi?component$=$ext4
http://man7.org/linux/man-pages/man2/fdatasync.2.html

10:34 S. Kim et al.

(32]
(33]

(34]

[35]
[36]

(37]

(38]

(39]

[40]
[41]
[42]
[43]
[44]

[45]

[46]

[47]

(48]

[49]

[50]
[51]
[52]
(53]
[54]
[55]

[56]
(57]

Eric Koskinen and Junfeng Yang. 2016. Reducing crash recoverability to reachability. In Proceedings of the 43rd ACM
Symposium on Principles of Programming Languages (POPL’16).

LLVM Dev Team. 2019. LibFuzzer—A Library for Coverage-Guided Fuzz Testing. Retrieved April 10, 2020 from https:
/Mlvm.org/docs/LibFuzzer.html.

Kangjie Lu, Marie-Therese Walter, David Pfaff, Stefan Niimberger, Wenke Lee, and Michael Backes. 2017. Unleashing
use-before-initialization vulnerabilities in the Linux kernel using targeted stack spraying. In Proceedings of the 2017
Annual Network and Distributed System Security Symposium (NDSS’17).

Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Shan Lu. 2014. A study of Linux file system
evolution. ACM Transactions on Storage 10, 1 (Jan. 2014), Article 3, 32 pages. DOI : https://doi.org/10.1145/2560012
Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou. 2005. BugBench: Benchmarks for evaluating
bug detection tools. In Proceedings of the Workshop on the Evaluation of Software Defect Detection Tools, Vol. 5.
Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Taesoo Kim. 2015. Cross-checking se-
mantic correctness: The case of finding file system bugs. In Proceedings of the 25th ACM Symposium on Operating
Systems Principles (SOSP’15).

MITRE Corporation. 2009. CVE-2009-1235. Retrieved April 10, 2020 from https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2009-1235.

Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju, and Vijay Chidambaram. 2018. Finding crash-
consistency bugs with bounded black-box crash testing. In Proceedings of the 13th USENLX Symposium on Operating
Systems Design and Implementation (OSDI’18).

Ingo Molnar and Arjan van de Ven. 2019. Runtime Locking Correctness Validator. Retrieved April 10, 2020 from
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt.

NCC Group. 2017. AFL/QEMU Fuzzing with Full-System Emulation. Retrieved April 10, 2020 from https://github.
com/nccgroup/TriforceAFL.

Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. MoonShine: Optimizing OS fuzzer seed selection with trace
distillation. In Proceedings of the 27th USENIX Security Symposium.

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Automated whitebox testing of deep learn-
ing systems. In Proceedings of the 26th ACM Symposium on Operating Systems Principles (SOSP’17).

Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: Fuzzing by program transformation. In Proceedings
of the 39th IEEE Symposium on Security and Privacy (Oakland).

Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2005. IRON file systems. In Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP’05).

Octavian Purdila, Lucian Adrian Grijincu, and Nicolae Tapus. 2010. LKL: The Linux kernel library. In Proceedings of
the 9th Roedunet International Conference (RoEduNet’10). IEEE, Los Alamitos, CA.

Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and Herbert Bos. 2017. VUzzer:
Application-aware evolutionary fuzzing. In Proceedings of the 24th ACM Conference on Computer and Communications
Security (CCS’17).

Red Hat Inc. 2018. Utilities for Managing the XFS Filesystem. Retrieved April 10, 2020 from https://git.kernel.org/
pub/scm/fs/xfs/xfsprogs-dev.git.

Tom Ridge, David Sheets, Thomas Tuerk, Andrea Giugliano, Anil Madhavapeddy, and Peter Sewell. 2015. SibylFS:
Formal specification and oracle-based testing for POSIX and real-world file systems. In Proceedings of the 25th ACM
Symposium on Operating Systems Principles (SOSP’15).

Ohad Rodeh, Josef Bacik, and Chris Mason. 2013. BTRES: The Linux B-Tree Filesystem. ACM Transactions on Storage
9, 3(2013), Article 9.

Andrey Ryabinin. 2014. UBSan: Run-Time Undefined Behavior Sanity Checker. Retrieved April 10, 2020 from https:
//lwn.net/Articles/617364/.

Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and Thorsten Holz. 2017. kAFL:
Hardware-assisted feedback fuzzing for OS kernels. In Proceedings of the 26th USENIX Security Symposium.

GitHub. 2018. Linux Test Project. Retrieved April 10, 2020 from https://github.com/linux-test-project/ltp.

Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang. 2016. Push-button verification of file systems
via crash refinement. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI'16).

Silicon Graphics Inc. (SGI). 2018. (X)fstests Is a Filesystem Testing Suite. Retrieved April 10, 2020 from https://github.
com/kdave/xfstests.

Theodore Ts’o. 2018. Ext2/3/4 File System Utilities. Retrieved April 10, 2020 from https://github.com/tytso/e2fsprogs.
Theodore Ts’o. 2019. Ext4 Developer’s Comment on Fsync and Special File. Retrieved April 10, 2020 from https:
//bugzilla.kernel.org/show_bug.cgi?id=202485%#c3.

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/2560012
https://cve.mitre.org/cgi-bin/cvename.cgi?name$=$CVE-2009-1235
https://cve.mitre.org/cgi-bin/cvename.cgi?name$=$CVE-2009-1235
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
https://git.kernel.org/pub/scm/fs/xfs/xfsprogs-dev.git
https://git.kernel.org/pub/scm/fs/xfs/xfsprogs-dev.git
https://lwn.net/Articles/617364/
https://lwn.net/Articles/617364/
https://github.com/linux-test-project/ltp
https://github.com/kdave/xfstests
https://github.com/kdave/xfstests
https://github.com/tytso/e2fsprogs
https://bugzilla.kernel.org/show_bug.cgi?id$=$202485#c3
https://bugzilla.kernel.org/show_bug.cgi?id$=$202485#c3

Finding Bugs in File Systems with an Extensible Fuzzing Framework 10:35

(58]
(59]
[60]

[61]

(62]

(63]

Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and Taesoo Kim. 2019. Fuzzing file systems via two-
dimensional input space exploration. In Proceedings of the 40th IEEE Symposium on Security and Privacy (Oakland).
Junfeng Yang, Can Sar, and Dawson Engler. 2006. Explode: A lightweight, general system for finding serious storage
system errors. In Proceedings of the 7th USENLX Symposium on Operating Systems Design and Implementation (OSDI 06).
Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar, and Dawson Engler. 2006. Automatically generating malicious
disks using symbolic execution. In Proceedings of the 27th IEEE Symposium on Security and Privacy (Oakland).
Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. 2004. Using model checking to find serious
file system errors. In Proceedings of the 6th USENLX Symposium on Operating Systems Design and Implementation
(OSDI’04).

Chao Yu. 2018. F2fs: Disable F2fs_check_rb_tree_consistence. Retrieved April 10, 2020 from https://lore kernel.org/
patchwork/patch/953794/.

Michal Zalewski. 2014. Bash bug: The Other Two RCEs, or How We Chipped Away at the Original Fix (CVE-2014-
6277 and’78). Retrieved April 10, 2020 from https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.
html.

Michal Zalewski. 2019. American Fuzzy Lop (2.52b). Retrieved April 10, 2020 from https://lcamtuf.coredump.cx/afl.
Andreas Zeller, Holger Cleve, and Stephan Neuhaus. 2019. Delta Debugging: From Automated Testing to Automated
Debugging. Retrieved April 10, 2020 from https://www.st.cs.uni-saarland.de/dd/.

Received January 2020; revised March 2020; accepted March 2020

ACM Transactions on Storage, Vol. 16, No. 2, Article 10. Publication date: May 2020.

https://lore.kernel.org/patchwork/patch/953794/
https://lore.kernel.org/patchwork/patch/953794/
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html
https://lcamtuf.coredump.cx/afl
https://www.st.cs.uni-saarland.de/dd/

