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Abstract. We consider an ad network’s problem of allocating the auction for each indi-
vidual impression to an optimal subset of advertisers with the goal of revenue maximi-
zation. This is a variant of bipartite matching except that advertisers may strategize by
choosing their bidding profiles and their total budget. Because the ad network’s allocation
rule affects the bidders’ strategies, equilibrium analysis is challenging. We show that this
analysis is tractable when advertisers face a linear budget cost rj. In particular, we show
that the strategy in which advertisers bid their valuations shaded by a factor of 1 + rj is an
approximate equilibrium with the error decreasing with market size. This equilibrium can
be interpreted as one in which a bidder facing an opportunity cost rj is guaranteed a return
on investment of at least rj per dollar spent. Furthermore, in this equilibrium, the optimal
allocation for the ad network, as determined from a linear program (LP), is greedy with
high probability. This is in contrast with the exogenous budgets case, in which the LP
optimization is challenging at practical scales. These results are evidence that, although in
general such bipartitematching problemsmay be challenging to solve because of their high
dimensionality, the optimal solution is remarkably simple at equilibrium.

Funding:K. Iyer gratefully acknowledges support from the National Science Foundation [Grant CMMI-
2002156].

Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2020.2052.

Keywords: bipartite matching • endogenous budgets • truthful equilibrium

1. Introduction
In the sponsored search advertising market, ad-serving
systems (henceforth referred to as ad networks), such as
Google’s AdWords, monetize millions of search en-
gine keyword queries (impressions) every day. Fur-
thermore, these markets involve a large number of
advertisers (bidders), that compete for the opportunity
to display their ads. Given the immense scale, it is
practically important yet technically quite challeng-
ing to understand the interplay between the behavior
of the bidders and that of the ad network and its effect
on the long-run state of the market.

Taking a deeper look into the market operation, for
each keyword query, the ad network must make two
decisions: first, the ad network must choose the set of
advertisers that will compete for the impression and,
second, within that set of advertisers, determine one
(or more) advertiser(s) to which the impression is
allocated. As a solution to the latter decision problem,
the generalized second price (GSP) (Edelman et al.
2007, Varian 2007) auction has emerged as the gold
standard allocation mechanism.

The former problem, namely restricting the set of
bidders that participate in the auction for an im-
pression, is known as throttling (Goel et al. 2010) and
has received a lot of recent attention. A number of
factors play an important role in the ad networks’
throttling policy, such as the bidders’ (remaining)
budgets, targeting requirements, and campaign du-
rations (see, e.g., Balseiro et al. 2017, Conitzer et al.
2017). Given the scale of the market, simple throttling
policies, such as the greedy mechanism that always
picks the maximal set of bidders eligible for each im-
pression, have a practical appeal. However, Abrams
et al. (2007) and Goel et al. (2010) show that, through
optimal throttling, the ad network can ensure sub-
stantial revenue gains as compared with simple al-
location mechanisms.
Given the substantial revenue gains from throt-

tling, the considerable literature on constrained re-
source allocation problems has been brought to bear
on this problem. In particular, given the bids and the
budgets of the bidders and assuming that the ad
network’s objective is to maximize its own aggregate
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revenues, the problem of finding the optimal throt-
tling decision can be cast as a linear program (LP); this
LP finds the optimal allocation of impressions to sets
of advertisers that will participate in the GSP auction.
Although appealing, the dimensions of this problem
in practice render solving the corresponding LP to
optimality a computationally daunting task. This
suggests that the ad network faces a trade-off between
adopting a computationally simple mechanism, such
as the greedy mechanism, and incurring a revenue
loss or implementing the optimal throttling mecha-
nismbut facing a computationally challenging resource-
allocation problem.

However, the preceding discussion crucially ig-
nores the fact that, in the long run, the bidders not
only strategize over the individual bids they submit to
the auctions for the impressions, but also strategically
set their campaign budgets. Furthermore, with the
advent of automated bidding agents, a reasonable
case can be made that budgets are the primary lever
many advertisers use to optimize their campaigns.
For example, in its Ads Help Center, Facebook (2019)
features advice on how to set budgets as part of ad-
vertising fundamentals, whereas advice on setting
bid strategies features less prominently.1

There are many reasons for this strategic choice of
budgets. For one, the bidders may have cost of capital
or opportunity costs for the budgets that preclude
setting budgets substantially higher than their ex-
pected expenditures. Another related effect is that
bidders may have a return-on-investment (ROI) con-
straint and set budgets and bids so as to remain above
this ROI constraint (Borgs et al. 2007, Auerbach et al.
2008, Wilkens et al. 2017). But, more importantly,
because the ad network’s throttling policy takes the
bidders’ budgets into account, these budgets provide
another lever the bidders may use to affect their (or
their competitions’) ad allocations.

If the bidder behavior is endogenized, the analysis
of suboptimality of the greedy mechanism present in
Abrams et al. (2007) and Goel et al. (2010) is invali-
dated, and the question remains: how does the in-
terplay between the ad network’s throttling policy
and the bidders’ bidding and budget-setting behavior
affect the market operation? We seek to address this
question in this paper and to obtain valuable insights
about the market and its operation when bidders’
budgets arise endogenously as a response to an ad
network’s allocation policy.

1.1. Model Description and Results

Formally, we consider a sponsored search market
with n impressions and m bidders, indexed by i and,
respectively, j. For simplicity, we assume there is a

single ad slot available for each impression. The market
operates in the following way:
• The bidding profile of each advertiser j is si-

multaneously announced to the ad network in the
form of an n-dimensional bid vector bj for the n dif-
ferent impressions and a budget Bj. We think of Bj as a
hard constraint on j’s total spend for impressions.
• Upon receiving the bidding profiles {bj,Bj}j∈[m],

the ad network decides, for each impression i, a subset
of bidders that will participate in the second price
auction for i. The outcome of the auction is to award
the impression to the highest bidder but at a cost equal
to the second highest bid.
We assume that each bidder j faces a linear cost rj · Bj

for the budgets they declare to the ad network: rj can
be interpreted as an interest rate or opportunity cost
of the budget that is committed to an ad campaign.
We focus on the setting in which the ad network

seeks to maximize its (expected) revenues. Finally, as
we make precise in Section 2, we assume that the ad
network commits to solving a linear optimization
problem to produce the optimal subset of advertisers
that are allocated to each impression i. Informally, this
linear program maximizes the ad network’s own
aggregate revenues subject to not exceeding adver-
tiser budget constraints or the supply of impressions.
Having defined the primitives of the problem, we

give a concrete example that there are substantial
revenue gains from optimal throttling when budgets
are set exogenously. Consider the following example
adapted from Abrams et al. (2007):

Example 1. Consider an instance with n � 2 impres-
sions and m � 3 bidders. The configuration of budgets
and bids is given in Table 1. Let us assume that im-
pressions 1 and 2 arrive as a fluid over some time
interval normalized to [0, 1]. We examine two policies:
• The ad network uses a greedy policy to allocate

every infinitesimal amount of impressions 1 and 2.
This means that the entire set {1, 2, 3} of bidders
participates in the auction, and bidder 1 wins both i � 1
and 2, up to the time τ � 1/2when bidder 1 runs out of
budget and effectively drops out of the system. Al-
though bidder 2 still has positive budget, the greedy
policy can only allocate to bidder 2 impression 1 for
the remaining time horizon; bidder 3 remains the only
bidder eligible to win the remaining amount of im-
pression i � 2 and wins it at 0 (we assume there is no
reserve). Total ad network revenues are 3

2 −
δ
2.

• The ad network chooses the set of bidders {2, 3}
for i � 1 and {1, 3} for i � 2. Then, bidder 2 wins i � 1
at a spend of 1 − δ, and 1 wins i � 2 at a spend of 1 − δ.
The ad network’s revenues are now 2 − 2δ. We note
the fact that this allocation of sets of advertisers to the
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two impressions can indeed be obtained by the ad
network via a linear program that optimizes over Xi

jk

the fraction of impression i that is throttled to a pair
(j, k) of advertisers:

max
X≥0

X1
12 + 1 − δ( )X1

13 + 1 − δ( )X1
23 + 1 − δ( )X2

13

subject to X1
12 + 1 − δ( )X1

13 + 1 − δ( )X2
13 ≤ 1 −

δ

2
,

X1
23 ≤ 1 (bidder budget constraints)

X1
12 + X1

13 + X1
23 ≤ 1,

X2
13 ≤ 1. (item supply constraints).

Thus, as we let δ → 0 in this example, the greedy
policy only garners 3/4 of the optimal revenues. Al-
though the example instance we consider is small,
the suboptimality of the greedy mechanism does not
hinge on the size of the market in the sense that it is
possible to modify this example to arbitrarily large
dimensions ofm and n andmaintain the same 3/4 gap.
Finally, although here we consider a fluid model for
the arrival of impressions, a similar argument can be
made in the setting in which impressions arrive
discreetlywhen the optimality gap can be shown to be
1/2 (Abrams et al. 2007).

Crucially, in the preceding example, we have as-
sumed that bidder behavior (in terms of bid and
budget profiles) does not respond to the ad network
changing its throttling policy. Our contribution in this
paper is to endogenize this behavior; surprisingly,
this reveals appealing structural properties of the
market in equilibrium, which would not hold true in
the exogenous case. We discuss these results in more
detail next.

1.1.1. Existence of a Tractable Equilibrium. Showing
the existence of an equilibrium in our model turns out
to be considerably difficult. To highlight the challenge,
consider that bidder j’s best response function de-
pends on the ad network’s choice of allocation (or
throttling policy), which, in turn, is the optimal as-
signment of a linear program. It is typically difficult to
perform sensitivity analysis on the (high-dimensional)
solution to a linear program, which may fail to have
the continuity and convexity properties needed by the
machinery of fixed-point theorems to which game-
theoretic analyses typically appeal.

To circumvent this difficulty, we define a notion of
ǫ-approximate equilibrium, which guarantees that
the expected ex ante gain of an arbitrary bidder j’s
deviation from the strategy σj is at most a 1+ ǫ factor
away from j’s profit under (σj, σ−j). We show that a
bidding strategy in which advertisers bid their true
valuation shadeddownbya factorof 1+ rj anddeclare a
budget equal to their expected spend multiplied by a
factor of 1+ o(ǫ), is such an ǫ-approximate equilibrium
when the distributions of bidder valuations are het-
erogeneous exponentials. We give a precise charac-
terization of ǫ in terms of the market size parame-
ters m and n.
An interesting interpretation of the bid shading we

observe in the approximate equilibrium is that it ef-
fectively implements an ROI guarantee for the ad-
vertisers, which shade their bids exactly to the point at
which they are guaranteed a return on their spend
that exceeds rj. We believe this interplay is new in the
literature on sponsored search markets. Moreover,
there is evidence that such an ROI-driven paradigm
for the operation of online advertisingmarkets, rather
than one that is built around hard budgets, can better
model real advertiser behavior (Auerbach et al. 2008).

1.1.2. Optimality of the Greedy Throttling Policy. In
addition, we show that, when bidders play this ap-
proximate equilibrium, the ad network’s optimal
throttling policy is, with exponentially high proba-
bility, greedy. In other words, assuming that the
market plays out into this equilibrium, the ad network
does not need to solve the large-scale linear optimiza-
tion problems that are typically required for generic
budgeted bipartite matching settings. We find this re-
sult quite surprising, particularly because the practical
necessity to solve such massive matching problems has
motivated some of the recent research on large-scale
optimization. We additionally remark that, thus, the
resulting strategies and equilibrium landscape have a
simple structure that is easy to interpret and rationalize
by the bidders participating in the market.

1.1.3. Extension to Reserve Prices andGeneral Valuation

Distributions. We also explore two extensions to our
model. First, we show that, if the ad network is allowed
to run a reserve price, then our approximate equilib-
rium remains valid with the slight modification that
budget declarations increase to account for this re-
serve. Second, we consider symmetric bidders with
valuations coming from general distributions with
hazard rates that are simultaneously bounded from
above and below and show that our strategy still
constitutes an equilibrium.

1.1.4. Technical Contributions. Themain technical con-
tribution of our paper is in showing that, under

Table 1. Example of Suboptimality of Greedy Throttling
with n � 2 and m � 3

Bidder Bid for i � 1 Bid for i � 2 Budget

1 1 + δ 1 1 − δ
2

2 1 0 1
3 1 − δ 1 − δ 2
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endogenous budgets, both the equilibrium behavior
of the bidders and the ad network’s optimization
problem drastically simplify. In particular, we pro-
vide an exact characterization of the large market re-
gime under which truthful reporting of values, shaded
down by a 1+ rj factor, and a greedy allocation by the
ad network constitute an approximate equilibrium
and obtain bounds on the rate of convergence. Our
analysis proceeds in two steps:

1. In broad terms, to show that this response is
approximately optimal for a single bidder given the
strategies of other bidders and the allocation policy of
the ad network, we identify a corresponding event for
each candidate deviating strategy. Then, we prove
that, conditioned on that event, the strategy under
consideration obtains a lower payoff than the equi-
librium strategy. As a step toward showing this result,
weuse LPduality to characterize the structure of the ad
network’s allocation as a response to this deviation.

2. The second step of our analysis involves showing
that the event identified in the first step occurs with
very high probability as the number of items and
agents increases. This step is fairly technical and in-
volves obtaining probabilistic bounds using Bernstein-
type concentration results for subexponential ran-
dom variables.

Although our approximation bounds on the equi-
librium require a large market with n ≫ m, we em-
phasize that our analysis and results differ from the
other notions of equilibria in large markets, such as
mean field equilibrium (MFE) (Gummadi et al. 2011,
Iyer et al. 2014, Balseiro et al. 2015). In particular, in an
MFE, one typically assumes that the market is pop-
ulated by an infinite number of bidders, and each
bidder takes the allocation and bid distribution in the
market to be fixed and independent of the bidder’s
actions in themarket. In contrast, ourmodel explicitly
takes into account the effect each bidder’s strategy has
on the ad network’s allocation. In particular, in our
model, a single bidder could, in principle, increase the
spend of other bidders and exhaust their budgets,
thereby reducing the competition.

On the other hand, MFE models explicitly include
market dynamics, allowing for bidder strategies to
depend on their current states, such as remaining
budgets, whereas our model assumes that bidder
behavior is static, and each submits a single fixed bid
profile and budget at the start of the campaign.
Nevertheless, previous literature, such as Balseiro
et al. (2015), shows that static analysis provides a
good approximation to dynamic bidding behavior in
large markets. Specifically, via a “fluid approxima-
tion” of the market, any variability that could induce
bidders to change their bids dynamically is smoothed
out. Moreover, in a dynamic setting, a bidder must
model other bidders’ dynamic responses in order to

influence their spending and exhaust their budgets;
thus, a bidder’s deviations may need to be substan-
tially more complex than those in the static setting in
order to be profitable, making them less practically
plausible. Finally, we note that our static model al-
lows for more deviations for a bidder, and the bidder
can base bids on the entire valuation vector. In contrast,
in a dynamic model, the deviations are more restricted
as they cannot depend on future valuations. Thus, we
believe our guarantees are fairly conservative in a dy-
namic setting.

1.2. Literature Review

Several variants of the sponsored search matching
problem described have been considered in the lit-
erature with most of the work falling into two distinct
streams. The first stream treats the bidding profiles
(bj,Bj) of the advertisers in the system as exogenous
and formulates the core problem as one of optimal
resource allocation or budgeted bipartite matching
to compute an optimal allocation of impressions to
advertisers. Our throttling policies are akin to bi-
partite matching policies with the added complica-
tion that prices depend not only on the bidder that
wins the impression, but rather on the set of bidders
that participate in the auction; thus, a throttling policy
can be thought of as bipartite matching between
impressions and sets of bidders.
The other stream fixes the ad network’s throttling

policy as exogenous and typically simple (such as
greedy) and examines the game-theoretic behavior of
advertisers bidding in the resulting system. Our current
work is an attempt to bridge these two streams of lit-
erature on sponsored search ad matching: the model is
an instance of the optimal budgeted bipartite matching
problem but one in which we endogenize the bids and
budgets as coming from the bidders’ self-interested
behavior. We organize our literature review around
these two distinct research streams.

1.2.1. Optimal Bipartite Matching. A large body of re-
search deals with the following prototypical match-
ing problem: we are given a bipartite graphwith fixed
rewards pij on its edges and a budget on each right-
side vertex. Any time we match a right-side vertex i
to a left-side vertex j, we receive the reward tied to the
edge but consume some amount cij from j’s budget. In
addition, p and c could be given by a second price
mechanism as in our sponsored search example or
by a first price mechanism that is more common in
display advertising settings but are exogenous param-
eters. The objective is to find a matching of maximal
aggregate reward subject to constraints.
When the supply of left-side vertices is determin-

istically known, the problem is solvable by a linear
program. Thus, most of the attention is devoted to

Ciocan and Iyer: Equilibria in Sponsored Search with Endogenous Budgets
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models in which this supply is uncertain, either sto-
chastic or adversarial. In adversarial settings and for
particular choices of p and c, such as the AdWords
structure described, there are algorithms that achieve
1 − 1/e approximations of the off-line optimal, such as
Karp et al. (1990), Mehta et al. (2007), and Buchbinder
et al. (2007); this is the best achievable competitive
ratio against an adversary. On the other hand, if the
left-side vertices arrive in a random permutation or if
they are independent and identically distributed (i.i.d.)
samples fromafixeddistribution, the competitive ratios
can be refined to yield essentially optimal performance
as in Devanur and Hayes (2009), Feldman et al. (2009,
2010), and Agrawal and Devanur (2015). We defer to
the survey of Mehta et al. (2013) for a more com-
prehensive coverage of this literature.

The bipartite matching problem is also reminiscent
of the network revenue management problem from
operations research. There, in the case that vertices
arrive as a known-rate Poisson process, one can
employ a fluid analysis to show that the dynamic
matching problem can be well approximated by a
static linear program that uses mean arrival rates as
estimates of actual arrivals (Gallego and Van Ryzin
1997, Talluri and Van Ryzin 1998). Ciocan and Farias
(2012) use a similar LP approach when the rates of the
Poisson processes are themselves stochastic.

We mention that, in practical situations, ad net-
works match tens of millions of impressions per day
with tens of thousands of advertisers; the large scale
of the problemsmakes even basic optimizationmethods,
such as linear programming, intractable computa-
tionally. This has been a considerable hurdle to imple-
menting throttling in practice.

1.2.2. Strategic Bidders and Mechanism Design. There
is a vast body of literature that studies the strategic
behavior of bidders in auctions and analyzes the
mechanismdesign issues therein (Edelman et al. 2007;
Varian 2007, 2009; Babaioff et al. 2009; Devanur and
Kakade 2009). A number of these papers study stra-
tegic behavior and mechanism design in dynamic set-
tings (Bergemann and Välimäki 2010, Gummadi et al.
2011, Athey and Segal 2013, Nazerzadeh et al. 2013,
Iyer et al. 2014, Balseiro et al. 2015, Mirrokni and
Nazerzadeh 2017, Dütting et al. 2016, Balseiro and
Gur 2019, Kanoria and Nazerzadeh 2020).

Closer to our work, Balseiro et al. (2015) analyze
bidding behavior of agents under budget constraints
in a large market using the methodology of a mean
field equilibrium. The authors show that, in equilib-
rium, each advertiser shades the bid dynamically, and
the shading factor depends on the remaining budget.

Finally, a number of recent papers (Zhou et al. 2008,
Charles et al. 2013, Karande et al. 2013, Asadpour
et al. 2014, Balseiro et al. 2017, Conitzer et al. 2017)

study budget management strategies adopted by
advertisers to effectively manage their budget de-
pletion. Balseiro et al. (2017) study a problem close to
ourmodel, inwhich they characterize, for a number of
different budget-management strategies of the ad
network, the “system equilibrium.” A system equi-
librium ignores strategic considerations of the bidders,
and assuming they report their values truthfully, con-
stitutes the long-runmarket outcome. In contrast, in our
model, the bidders’ strategic considerations are cen-
tral; however, our focus is only on the optimal allocation
of the ad network. Furthermore, they consider a setting
in which budget constraints only need to hold in ex-
pectation, and the bidders incur a cost of the expected
spend and not on the budget allocation.

2. Model
Weconsider a setting inwhich there arembidders and
n items: in a sponsored search market, bidders cor-
respond to advertisers and items to impressions. Each
bidder is endowed with a vector of valuations Vj �
(Vij : i ∈ [n]) for the items. Each individual valuation
Vij is drawn i.i.d. (across bidders and items) from an
exponential distribution with parameter λj. We make
this distributional choice for V mainly for technical
convenience; in Section 4, we discuss extensions to
valuation distributions with symmetric and bounded
hazard rates and examine the precise distributional
properties needed for our analysis. From a practical
perspective, such a bounded hazard-rate condition is
justified under sufficient heterogeneity in the impres-
sions and if the ad network can use tools, such as target-
ing, to identify and differentiate among the impressions.

2.1. Market Operation

The sequence of events in the sponsored search auction
market is as follows:
1. Each bidder j’s valuation Vj is realized and re-

mains private information to j.
2. Based on the bidder’s own realization ofVj, each

bidder j submits a budget Bj(Vj) and bids bj(Vj) �
(bij(Vj) : i ∈ [n]) to the ad network.
3. The ad network observes the submitted bids b �

(bj : j ∈ [m]) and the budgets B � (Bj : j ∈ [m]) and

decides on the allocation X(B,b) of items to auctions
among subsets of bidders. Thus, we let X(B,b) �

(Xi
S(B,b) : i ∈ [n], S ⊆ [m], |S| ≥ 2), where Xi

S(B,b) de-
notes the proportion of item i auctioned off among
bidders in subset S. Because of the second price
auction mechanism, we require that at least two
bidders form S.
Our formulation allows for fractional allocations of

items; because we are dealing with a regime in which
n ≫ m and, as we see, an optimal allocation uses only
few bidder subsets S, this is a reasonable simplification.
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Furthermore, methods to convert such fractional allo-
cations to integral ones are common in the literature,
such as interpreting the fractions Xi

S as probabilities of
allocation (Jasin and Kumar 2012).

Additionally, we denote by δ > 0 the outside value
that the ad network can garner for any item not
allocated to an auction. The main purpose of this
outside value is technical: in degenerate instances in
which many allocations X yield the same revenue to
the ad network, the parameter δ acts as a means to
select allocations that are most effective. We let δ be
arbitrarily small (but positive), minimizing its impact
on the ad network’s revenue.

2.2. Budget Costs

We assume that each bidder faces a linear cost rj · Bj

for the budget it commits to the ad network. We in-
terpret rj as capturing the opportunity cost of allocating
a budget to the advertising campaign. The linear as-
sumption is a reasonable model for budget costs in
practice, in which the advertisers’ budget decisions do
not exhibit extreme scale variation. More broadly, the
linear assumption serves as a good first-order ap-
proximation to general budget cost structures and is a
first step toward tackling this challenging setting in
its full generality. Moreover, a merit of the linear
assumption is that, as we show, it leads to a simple
equilibrium that one can expect agents in a sponsored
search system could implement in practice.

We also highlight that, here, bidders incur cost for
the unspent portion of their budgets. An alternative
model is one in which bidders borrow money in real
time as they win items. However, we believe a more
accurate description of real-life operations is that ad-
vertisers commit a budget to a sponsored searchmarket
at the expense of using it for other outside opportuni-
ties; thus, it is more realistic to account for the cost of
capital incurred on the entire commitment of budget Bj.

2.3. Strategy, Allocation, and Payoffs

A strategy for bidder j, denoted by σj, specifies the

pair (Bj(Vj),bj(Vj)) for all values of Vj; we denote the
space of all strategies by Σ. Note that, in general, an
agent’s bids may be correlated across items through
its dependence on the entire valuation profile Vj.

For each (B,b), the ad network chooses the allo-
cation X(B,b) to maximize its revenue, subject to
bidders’ budget constraints being satisfied. Before
formally describing this allocation policy, we intro-
duce a notation: given a bid vectorb, for any item i ∈ [n]
and bidder j, we let pb(i, j) denote the highest bid less
than the bid of bidder j:

pb i, j
( )

�
maxk 	�j,bik≤bij bik{ }, if bij 	� mink bik{ };
0, otherwise.

{

(1)

Recall that the ad network’s basic decision variable
is Xi

S, the proportion of item i that is allocated to an
auction among bidders in subset S ⊆ [m]. With the
goal toward revenue maximization, it turns out that
it suffices to consider only the auctions between a
bidder j and the bidder k with the highest bid below
j’s, for a payment of pb(i, j). Intuitively, this is because
• Allocating item i to the bidder set {j, k} attains the

same outcome as allocating it to the larger set {j, k} ∪ S0,
where S0 includes other bidders with bids below j’s
and k’s. Thus, the ad network can achieve optimal
revenues if it restricts the allocation to only pairs
of bidders.
• The ad network prefers allocating i to the bidder

set { j, k} instead of { j, ℓ} for some bidder ℓ with biℓ <

bik � pb(i, j) as that always uses item imore efficiently.
Thus, we can further restrict the allocations to only
these bidder pairs.
We show this equivalence formally in Online Ap-

pendix C.1.
This observation allows us consider alternative

decision variables Yij for each item i and bidder j that
capture the proportion of item i that is auctioned

between bidder j and the bidder with bid pb(i, j). In
other words, Yij captures the proportion of item i that
is won by bidder j. With this change of variables, the
ad network commits to choosing an allocation policy

Y(B,b) that is a solution to the following LP:

Y B,b( ) ∈ argmax
Y≥0

∑n

i�1

∑m

j�1

pb i, j
( )

Yij + δ
∑n

i�1

1 −
∑m

j�1

Yij

( )

subject to
∑n

i�1

pb i, j
( )

Yij ≤ Bj, for each j ∈ m[ ],

∑m

j�1

Yij ≤ 1, for each i ∈ n[ ]. (2)

Here, the first constraint ensures that the payments of
bidder j do not exceed the bidder’s declared budget,
and the second constraint ensures that the total al-
location of item idoes not exceed its available quantity
of one. Finally, the objective captures the revenue
across all allocations together with the outside value
of unallocated items.
Having described the adnetwork’s allocation policy,

we are now ready to describe the payoff of bidder j.
Given a strategy profile σ � (σj, σ−j), the realized spend
of bidder j is given by

Ψj σj, σ−j
( )

≜
∑n

i�1

pb i, j
( )

Yij B,b( ),

where Y(B,b) optimizes (2). Similarly, we define the
payoff of bidder j as

πj σj, σ−j
( )

≜
∑n

i�1

Vij − pb i, j
( )( )

Yij B,b( ) − rjBj.
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Note that this is a net payoff because it subtracts the
cost of budget rjBj from the utility gained by j from
winning items. In our analysis,we also refer to bidder j’s
payoff minus the cost incurred on the unspent (slack)
portion of its budget, which we denote by

π̃j σj, σ−j
( )

≜πj σj, σ−j
( )

+ rj · Bj −Ψj σj, σ−j
( )( )

.

We call the quantity π̃j the modified profit of bidder j.
An interpretation of the modified profit π̃j is that it is
equal to the bidder’s payoff had it set its budget ex-
actly equal to realized spend.

2.4. Other Notation

Given a bid vector b, we employ the following no-
tation to identify the set of items for which bidder k
has the qth highest bid:

Ub
k,q ≜ i ∈ n[ ]s.t. bidder k has q-th highest bid

{

for item i across all bidders l ∈ m[ ]}.

Recall that we focus on the setting in which the val-
uations are distributed continuously. Consequently,
we ignore issues of tie breaking among bids because
ties have measure zero for the bidder strategies we
consider. Therefore, in the rest of the paper, we as-
sume that, for each i and q, there exists a unique k such
that i ∈ Ub

k,q. Finally, for a vector of bids across one

item bi, we define b
(q)
i to be the qth highest valuation

among bi and b
(q)
i,−j to be the qth highest valuation

among all bi excluding bij.
With this notation, we obtain the following defi-

nition of a greedy allocation policy:

Definition 1. Given a bid vector b, an allocation Y is
greedy if Yij � I{i ∈ Ub

j,1, b
(2)
i ≥ δ}.

Note that, in the greedy allocation, each item i is
allocated to the bidder j with the highest bid (i.e.,

i ∈ Ub
j,1) as long as the bidder’s payment pb(i, j) � b(2)i is

greater than the value of outside option δ. Recall that
we allow the outside option δ to be arbitrarily small
(but positive). Thus, in the regime in which δ → 0,
each item is won by the highest bidder under the
greedy allocation.

2.5. Equilibrium Concept

Summarizing our preceding description of themodel,
observe that the bidders compete by submittingbidding
profiles and budgets given that the ad network sets the
subsequent allocation according to the solution to the
linear program (2). One natural candidate to describe
the resulting outcome of the competition is a Bayes–
Nash equilibrium, inwhich each bidder sets a bidding
profile and budgets optimally given the competi-
tions’ choice. For the unbudgeted setting, inwhich the

budget cost rj for each bidder j equals zero, the fol-
lowing result characterizes the Bayes–Nash equilib-
rium. Let σ0j denote the strategy in which bidder j
truthfully bids bj � Vj and sets a budget equal to ∞.
We have the following lemma:

Lemma 1 (Unbudgeted Case). Assume rj � 0 for all j.
Then, the strategy profile σ0 � (σ0j : j ∈ [m]) constitutes a
Bayes–Nash equilibrium. Given the bidders follow the strat-
egy profile σ0, it is optimal for the auctioneer to set Y(∞,V)
to be the greedy allocation.

Proof. In this setting, the auctioneer essentially im-
plements a second price auction between the top two
bidders for each item, independently across the items.
This implies that each bidder’s dominant strategy is to
bid truthfully. To prove the greediness of the optimal
allocation, note that, because budgets are infinite, the
auctioneer (i.e., ad network) obtains the highest rev-
enue if it runs an auction between the top two bidders
for each item, independently across the items. Infinite
budgets ensure the allocation is feasible. □

Observe that the equilibrium in the costless budgets
case has two highly desirable properties. First, the
equilibrium is truthful, meaning the bid profile sub-
mitted by each bidder is equal to the bidder’s value
profile. This result, although not entirely surprising,
follows from the fact that, because the bidders set high
budgets, there is effectively no budget constraint to
link the individual item auctions together. The in-
tuition is that large enough budgets decouple the
problem into a set of unbudgeted, independent, single-
item second price auctions. Second, in the equilibrium,
the ad network’s optimal allocation has a simple so-
lution structure; in particular, the ad network’s de-
cision problem (2) can be solved greedily.
There are two challenges to generalizing the pre-

ceding result to the case in which the budget costs are
nonzero. First, given the complexity of the actions and
the noncompactness of the action space, it is unclear
whether an equilibrium exists in general. Second, and
more importantly, even if such an equilibrium exists,
it is unlikely to be simple. This is because, under
positive budget costs, a bidder’s budget is unlikely to
be significantly larger than its expected spend, im-
plying that the bidder’s bids across different auctions
are highly linked. Thus, when bidder j’s budget
constraint is binding, the corresponding lack of slack
provides strong incentives for the bidder’s competi-
tors to underbid on items they expect to win and
overbid on other items; the overbidding increases j’s
spend per item won and restricts it from competing
for some other items that can then be won by other
bidders for lower payments. This suggests that truthful
biddingwith tight budgets, that is, budgets that are set
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equal to expected spending, cannot be an equilibrium.
We formally show this via an example in Proposi-
tion EC.1 in Online Appendix C.2.

Furthermore, this complexity is not primarily driven
by the stochastic nature of the problem, such as the
underlying mismatch between the realized spending
and the expected spending budgeted by the bidders. In
fact, even in a largemarket regime in which the number
of both items and bidders are scaled proportionally,
which essentially “fluidizes” both the bidders’ prob-
lems and washes out stochastic effects, one can show
that truthful bidding with tight budgets is not an
equilibrium. Thus, a “large markets” assumption on
its own is not sufficient to yield a natural equilibrium.

In the face of this difficulty, one possible approach
forward could be to study mixed equilibria of the
underlying game between the bidders and the ad
network. However, this presents many challenges of
its own: first, we have the technical challenge of
working with distributions over a continuum of pure
strategies and showing existence; second, and more
importantly, it is not immediately clear whether such
an approach would yield itself to obtaining a struc-
tural understanding of the bidders’ equilibrium strat-
egies and budget reports.

Instead, we focus on approximate notions of equi-
librium, in which we relax the requirement that each
bidder responds optimally to the ad network’s and
other bidders’ strategies. In contrast, we only require
each bidder’s strategy to be an approximate best re-
sponse.We define such an equilibrium concept. In the
following, we let E[·] denote the expectation over
the valuations V as well as any randomizations in the
bidders’ strategy profile.

Definition 2. For a given profile σ−j of strategies of all
bidders different from j, we call a strategy σj of bidder j an
ǫ-approximate best response, denoted by σj ∈ BRǫ

j (σ−j), if

sup
σ′j

E πj σ
′
j , σ−j

( )[ ]{ }

≤ E πj σj, σ−j
( )[ ]

· 1 + ǫ( ).

Given the best response definition, our definition of
an approximate equilibrium is the following:

Definition 3. A strategy profile σ � (σj : j ∈ [m]) is an
ǫ-equilibrium if σj ∈ BRǫ

j (σ−j) for each j ∈ [m].

Our notion of approximate best response differs
from standard notions in two distinct ways: (i) We
consider approximate best response strategies that
are ǫ-close to the best response strategy in a multi-
plicative sense. In contrast, standard notions of ap-
proximate equilibria focus on additive error terms,
and (ii) the approximation holds ex ante with respect
to the expectation taken over all possible realizations
of Vj. Under our definition, there may be values of Vj

for which bidder j can gain substantially from a

unilateral deviation from an ǫ-best response. How-

ever, our analysis implicitly shows that the proba-

bility j receives such a Vj is exponentially decreasing

as m, n grow appropriately large; this yields an alter-
native equilibrium definition, namely ex post with high
probability, for which our results still hold.
In the following section, we show that, indeed, the

concept of an approximate equilibrium allows us to
obtain the two desirable properties of the equilibrium
in the unbudgeted case as obtained in Lemma 1. In
particular, we show that there exists an approximate
equilibrium, in which the bid profile and the resulting
allocation are simple. To state our results, we use the
notation θj ≜ λj(1+ rj). Furthermore, we assume that
each θj belongs to some fixed interval [θmin, θmax]
independent of n and m. We let ϑ≜θmax/θmin signify
the degree of heterogeneity among the bidders. More-
over, we letE−j[·] � E[·|Vj] denote the expectation over
V−j, the vector of valuations excluding j’s, for a fixed
valuation Vj for bidder j. For example, we write
E−j[πj(σ)] to denote the expected payoff of bidder j
under strategy profile σ, conditioned on the realiza-
tion Vj of its own valuations. Finally, we assume that
the outside value δ satisfies 0 < δ ≤ log(4/3)/θmax.

3. Equilibrium Characterization
We begin by describing the strategy profile that we
show constitutes an approximate equilibrium as de-
fined in Definition 3. Informally, the bid profile in the
strategy is obtained by shading the valuation profile,
whereas the budgets are set so that each bidder adds a
small multiplicative slack over its expected spend in
its budget declaration. The challenge here is balanc-
ing two tensions: finding an equilibrium in which the
induced slack budgets are relatively small and, thus,
are not too costly for the advertisers yet large enough
to essentially decouple the problem as in Lemma 1.

3.1. A Tractable Equilibrium

For a given ǫ > 0, we define the strategy profile σ∗ �
(σ∗j : j ∈ [m]), where, for each j ∈ [m], the strategy σ∗j ≜

(B∗
j ,b

∗
j ) is given by

b∗
j ≜Wj �

Vj

1 + rj
,

B∗
j ≜E−j Ψ̄j

[ ]

· 1 + β m( )
( )

� E−j Ψ̄j

[ ]

· 1 +
2ϑ

m1/ϑ

( )

, (3)

where ϑ � θmax/θmin, and for each j, Ψ̄j is defined as

Ψ̄j ≜
∑n

i�1

W 2( )
i I i ∈ UW

j,1

{ }

. (4)

Note that Ψ̄j corresponds to the realized spend that j
incurs if budgets are set equal to infinity and the value
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of the outside option δ is set to zero. We make a few
remarks about this strategy:

i. Under σ∗, the bid profile has an appealing min-
imum ROI interpretation. To see this, consider the
simplest case in which all rj � r > 0; if this is indeed an
equilibrium in which the ad network’s optimal allo-
cation is greedy as in the unbudgeted case, then any
given bidder jwins items i in the set Ub

j,1 ∩ {i s.t. b(2)i >
δ} ≈ Ub

j,1 � UV
j,1, at a profit of

Vij − payment − opportunity cost

� Vij − pb i, j
( )

− rpb i, j
( )

� V
1( )
i − 1 + r( )

V
2( )
i

1 + r
� V

1( )
i − V

2( )
i ,

which is exactly the payoff in the costless case. More-
over, this equilibrium could be thought of as one in
which, for every item i won,

Vij/p
b i, j
( )

≥ 1 + rj.

In other words, bidders bid in such a way that the
return on every dollar spent (ROI) is guaranteed to
exceed their budget cost r.

ii. The precise multiplicative slack that j sets on top
of E−j[Ψ̄j], which is the expected spend in the un-
budgeted case with δ � 0, is β(m) � 2ϑ/m1/ϑ. This
multiplicative slack is consistent with typical ad-
vertiser behavior, in which advertisers typically ad-
just budgets over time so as to match their spends
while, at the same time, erring on the side of having
some small amount of leftover budget.

iii. Under σ∗, each bidder j bids by discounting all
its valuations by a common factor of 1+ rj. Thus, under
σ∗, the knowledge of rj is enough to back out bidder j’s
valuations from its bids.

iv. The shading factor here is of a different nature
from those encountered in the previous literature,
such as in (Balseiro et al. 2015); here, the shading
depends on a physical opportunity cost of budget
rather than a Lagrangian penalty on the bidder’s
budget constraint, which, in fact, is equal to zero with
high probability in our model.

Ourmain result, whichweprove in the next section,
is that σ∗ does indeed constitute an ǫ-approximate
equilibrium:

Theorem1. Let m≥max{(2ϑ)ϑ,exp(3ϑ + 5ϑ log(ϑ) + 1)}
and n ≥ 6ϑm2(ϑ+1/ϑ)log(m)/C, where C is a fixed constant
independent of m. Then, for any bidder j, we have σ∗j ∈
BRǫ

j (σ
∗
−j) for ǫ � 11ϑ2 log(m)/m1/ϑ. In other words, we

have, for any deviation σj of any bidder j,

E πj σj, σ
∗
−j

( )[ ]

≤ E πj σ
∗( )

[ ]

· 1 +
11ϑ2 log m( )

m1/ϑ

( )

.

Consequently, under the same condition on n andm and for
the same value of ǫ, the strategy σ∗ is an ǫ-approximate
equilibrium.

Theorem 1 can be interpreted as a large-markets
guarantee for the validity of the equilibrium: namely,
for any choice of ǫ > 0, there exist market parameters n
and m that are large enough for σ∗ to become an ap-
proximate equilibrium with approximation error pa-
rameter ǫ. Informally, the theorem highlights the
benefits of thick markets in terms of enforcing simple
equilibria, such as the one considered here. Specifi-
cally, we show that, for any given ǫ > 0, a market with
m > Ω(1/ǫϑ · log(1/ǫ)ϑ) bidders with a corresponding
number of items suffices to achieve the stated ap-
proximate equilibrium.
Moreover, the following theorem establishes that,

given that all bidders are playing σ∗, the ad network’s
LP optimization problem has a simple greedy solu-
tion with high probability. Its proof, given at the end
of this section, shows that the bidder budget con-
straints are slack in our proposed equilibrium with
high probability.

Theorem2. Let m≥max{(2ϑ)ϑ,exp(3ϑ + 5ϑ log(ϑ) + 1)}
and n ≥ 6ϑm2(ϑ+1/ϑ)+1 log(m)/C, where C is a fixed constant
independent of m. Then, under the strategy profile σ∗ with
probability at least 1 − exp(−m), the unique optimal allo-
cation the ad network chooses is Y(B∗,b∗) � Y(∞,b∗). Thus,
the optimal allocation induced by the strategy profile σ∗

is greedy.

Here, we remark that, although Y is not necessarily
greedy on all sample paths, it is greedy with large
probability as m → ∞.2 This is a desirable property
because, practically, for most realizations V, the auc-
tioneer can simply check if the greedy solution is, in
fact, optimal. This is a significant computational
advantage of this equilibrium versus one in which the
ad network would have to solve a high-dimensional
linear optimization problem given any realization of
the bidder valuations.
Finally, we note that our analysis does not rule out

the existence of other equilibria. However, other equi-
libria that are not small perturbations of the equilib-
rium we consider are unlikely to share its simplicity,
in which bidders uniformly shade their valuations by
1+ rj, and furthermore, their declared budgets de-
pend on simple aggregate markets statistics (such as
bid distribution). Such equilibria are likely to either
involve correlation in the bidders’ bids across dif-
ferent items or strategies that depend on more com-
plicated market statistics. This complexity invariably
renders these equilibria implausible, especially in
the asymptotic regime we consider. The simplicity of
σ∗ also suggests its focality, making it easier for the
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bidders to coordinate on the equilibrium and plau-
sible for it to be played by them.

3.2. Characterization of the Best Response

Strategy to σ∗

The goal of this section is to prove that the strategy σ∗

derived from the truthful bidding strategy is bidder j’s
best response in the approximate sense of Definition 2,
that is, supσj

{E[πj(σj,σ
∗
−j)]} ≤E[πj(σ

∗)] · (1+ ǫ).We first
outline the main building blocks of our proof:

i. The key step in deriving our result is to show that
deviating from σ∗ cannot improve any bidder’s mod-
ified profits π̃j. In other words, we would like to
prove that

π̃j σj, σ
∗
−j

( )

≤ π̃j σ
∗
j , σ

∗
−j

( )

, for all σj, j.

Unfortunately, we cannot prove this uniformly for all
realizations of V, so instead, our proof of this in-
equality holds only for “typical” realizations. In par-
ticular, we show in Lemma 3 that, for any j and σj,
when conditioned on a high-probability event Ej(σj), it
must be that

P π̃j σj, σ
∗
−j

( )

≤ π̃j σ
∗
j , σ

∗
−j

( )⃒
⃒
⃒Ej σj

( )
( )

� 1. (5)

Essentially, the event Ej(σj) that we construct enforces
the condition that the additional β(m) � 2ϑ

m1/ϑ fraction of
expected spend that bidders declare under σ∗ pro-
vides sufficient slack to prevent j from playing some
alternative strategy σj 	� σ∗j and succeeding in in-
creasing its payoff.

ii. We further prove in Online Appendix A that
Ej(σj) is typical in that it occurs with high probability
for any σj as n and m grow large. Then, Lemma 5 uses
this high-probability bound to show that

sup
σj

E π̃j σj, σ
∗
−j

( )[ ]

≤ E π̃j σ
∗( )

[ ]

· 1 + ǫ( ). (6)

iii. Because the modified profit π̃j does not account
for the expected cost of unspent budget, which is
equal to rj · E[B

∗
j −Ψj(σ

∗)], inequality (6) is not suffi-
cient to prove that σ∗ is a best response. To conclude,
we additionally show that the cost of this slack is
dominated in scale by j’s modified profit, that is, rj ·
E[B∗

j −Ψj(σ
∗)] � o(E[π̃j(σ

∗)]), and thus, it does not lead
to a high enough diminution of profits to break the
approximate best response condition.

In the following,we providemore in-depth insights
into the mechanics of our technique together with
formal proofs of some of the key results. We organize
this discussion around the three road map steps
outlined here.

3.2.1. Step (i). We begin by introducing the following
“slack” termΞk(σj) for any deviation σj of bidder j and
for any bidder k 	� j:

Ξk σj
( )

≜
∑

i

bij −W 2( )
i

( )

I i ∈ UW
k,1 ∩Ub

j,2

{ }

−
∑

i

W
2( )
i,−jI i ∈ UW

k,1 ∩Ub
j,1

{ }

+
∑

i

W 2( )
i I i ∈ UW

j,1 ∩UW
k,2

{ }

. (7)

Intuitively, Ξk(σj) is interpretable as excess budget
that bidder kwould have had to declare on top of Ψ̄k in
order to prevent the deviation σj from being profitable
to j. In the following, we show that Ξk(σj) provides a
sufficient amount of slack above Ψ̄k to achieve this.
We construct Ξk(σj) via the following thought ex-

periment: let us consider any arbitrary deviation σj,
and furthermore, let us assume bidder k wins all the
items for which it is the highest bidder (which would
be the case under the greedy allocation for small
enough δ). Under this scenario, the following lemma
(proved in Online Appendix B) shows that bidder k’s
maximum possible spend is still below the sum of its
spend under the truthful equilibrium, Ψ̄k, plus the
slack term Ξk(σj):

Lemma 2. For any deviation σj of bidder j and for any k 	� j,
we have

∑

i∈ n[ ]

pb i, k( )I i ∈ Ub
k,1

{ }

≤ Ψ̄k + Ξk σj
( )

,

where b is the bid vector induced by the strategy (σj, σ
∗
−j).

One can heuristically break Ξk(σj) up into two
distinct components that qualitatively highlight the
types of deviations against which this slack protects
bidder k 	� j:
• The term

∑

i W
(2)
i I{i ∈ UW

j,1 ∩UW
k,2} is budget slack

preventing underbidding behavior, in which j un-
derstates its true valuations. This can be profitable
when bidder k runs out of budget by winning other
items and, therefore, cannot compete for those items
bidder j underbid, which j can then win with a high
profit. Qualitatively, this term ensures that, for an
item i that j would win under σ∗, another bidder
possessing the second highest valuation (that can
become the highest bidder if j under-reports) has
enough slack budget to win i away from j.

• On the other hand, the (bij −W(2)
i )I{i ∈ UW

k,1 ∩Ub
j,2}

term corresponds to the externality that j can impose
on some other bidder k by successfully overbidding
and increasing the spend on an item k was going to
win. Such strategies deplete competitor k’s budget
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beyond its projections and, in turn, orphan some
items that k would have won in equilibrium; j can
then win these orphaned items with low bids. In the
specification of our slack, this term is balanced by
∑

i W
(2)
i,−jI{i ∈ UW

k,1 ∩Ub
j,1}, which corresponds to over-

bid items for which j becomes the highest bidder.
A challenging part of our analysis is that the impact

of bidder j’s deviation strategies, which factors into
the magnitude of Ξk(σj), can be large: unlike with
other approaches, such as mean field equilibrium, in
which a bidder’s effect on the market is infinitesimal,
here a deviating bidder can sizably impact the entire
market. This can be seen with overbidding, for which
there exist bidding strategies bj such that E[

∑

i(bij−

W(2)
i )I{i∈UW

k,1∩Ub
j,2}]� Θ(E[

∑

i(W
(1)
i −W(2)

i )I{i∈UW
k,1}])�

Θ(π̃k(σ
∗)); that is, bidding bj can succeed in artificially

increasing the spend of almost all other bidders. More
importantly, it does so by a quantity that washes out
their potential profits under σ∗. Were it not for the
additional term E[W(2)

i,−jI{i ∈ UW
k,1 ∩Ub

j,1}] that we show

counterbalances E[(bij −W(2)
i )I{i ∈ UW

k,1 ∩Ub
j,2}] and re-

duces the necessary EΞk(σj), it would be too costly for
bidders to sustain such an equilibrium that requires
exceedingly large slack budgets.

As shown in Lemma 2, if the network’s optimal
allocation were greedy, bidder k could bound its
spending by declaring a budget that exceeds Ψ̄k +
Ξk(σj). Hence, for a deviation σj, we consider the event
Ejk(σj), in which bidder k’s declared budget B∗

k satisfies
this condition:

Ejk σj
( )

≜ Ψ̄k + Ξk σj
( )

< B∗
k

{ }

. (8)

Finally, we define Ej(σj) as the union of the events
Ejk(σj) for all bidders k 	� j together with an additional
condition that Ψ̄j < B∗

j :

Ej σj
( )

≜ Ψ̄k + Ξk σj
( )

< B∗
k, for all k 	� j

{ }

∩ Ψ̄j < B∗
j

{ }

,

(9)

An important remark is that Lemma 2 together with
conditioning on the event Ej(σj) do not ensure that the
deviating bidder j’s budget constraint is slack under
(σj, σ

∗
−j). Thus, we cannot conclude that the greedy

allocation is optimal under (σj, σ
∗
−j). This is prob-

lematic because j’s best deviations are likely to be ones
in which its budget constraint is tight and for which
the optimal allocation is not greedy. For example, j
would not want any slack budget as that would lead
to it winning unprofitable items i ∈ UW

k,1 ∩Ub
j,1.

The following key lemma shows that, in the event
Ej(σj), bidder j’smodified profit under the deviation σj
is lower than that under the strategy σ∗j . In proving it,
we close the remaining difficulty discussed in the

previous paragraph and characterize how the allo-
cation Y behaves even when j’s budget constraint
is tight.

Lemma 3. Fix a bidder j. Suppose all other bidders k 	� j
play the strategy σ∗k, whereas bidder j unilaterally deviates
to a strategy σj. In the event Ej(σj), we have, almost
surely, π̃j(σj, σ

∗
−j) ≤ π̃j(σ

∗
j , σ

∗
−j).

The proof of the lemma involves a duality-based
argument that exploits the LP structure of the auc-
tioneer’s optimization problem (2). To elaborate, let µj

be the dual variable associated with each bidder’s
budget constraint and νi be the dual variable asso-
ciated with each item constraint. Then, the dual of (2)
is given by

min
µ,ν

∑

i∈ n[ ]

νi +
∑

k∈ m[ ]

Bkµk + δn

subject to νi + µkp
b i, k( ) ≥ pb i, k( ) − δ,

for each i ∈ n[ ], k ∈ m[ ],

µ ≥ 0, ν ≥ 0. (10)

Let (µ̄, ν̄) denote an optimal solution to the dual (10).
We make two quick observations: first, the presence
of a positive outside option, that is, δ > 0, guarantees
that µ̄k < 1 for all k ∈ [m]. This is the technical reason
why we incorporate the outside option δ into the ad
network’s optimization problem. Second, we have
ν̄i � (maxℓ∈[m]{(1 − µ̄ℓ)p

b(i, ℓ)} − δ)
+
for all i ∈ [n]. Thus,

the complementary slackness conditions imply that, if
Yik > 0, then kmust belong to argmaxℓ{(1− µ̄ℓ)p

b(i, ℓ)}.
As a step toward proving our key lemma, we first

show that, in the event Ej(σj), the optimal dual vari-
able µ̄j corresponding to bidder j’s budget constraint
is the largest among all µ̄ℓ. Thus, informally, in the
event Ej(σj), it is bidder j’s budget constraint that is
most active.

Lemma 4. Let (µ̄, ν̄) denote the optimal solution to the
dual (10). Then, in the event Ej(σj), we have µ̄j ≥ maxk 	�j µ̄k.

Proof. For any fixed optimal allocation Y to the primal
problem (2), consider the following definition: we say
there is a chain from bidder k to bidder j if there exists a
pair of sequences {k1, . . . , ks} and {i1, . . . , is−1} such that
1. k � k1, j � ks and kt /∈ {k, j} for all 1 < t < s.
2. Yit,kt > 0 for all 1 ≤ t < s.
3. it ∈ Ub

kt+1,1
for all 1 ≤ t < s.

First, consider a bidder k such that there exists a chain
from bidder k to bidder j. Let {k1, . . . , ks} and {i1, . . . , is−1}
be the sequences that form a chain from k to j. By
definition, for any 1 ≤ t < s, we have Yit,kt > 0, im-
plying by complementary slackness that

1 − µ̄kt

( )

pb it, kt( ) � ν̄it + δ ≥ 1 − µ̄kt+1

( )

pb it, kt+1( ).
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Moreover, because it ∈ Ub
kt+1,1

, the payment of kt+1 for
item it is at least as high as that of kt for the same item
as well as strictly positive, so we have

pb it, kt( ) ≤ pb it, kt+1( ) and 0 < pb it, kt+1( ).

These two inequalities, taken together with the com-
plementary slackness condition, imply that µ̄kt ≤ µ̄kt+1

for all 1 ≤ t < s, and hence, µ̄k ≤ µ̄j for any k such that
there is a chain from k to j.

Next, let J 0 ≜ {ℓ 	� j : there does not exist a chain
fromℓ to j}, andconsiderabidderk∈argmax{ �µℓ :ℓ∈J 0}.
First, if Yik � 0 for all i ∈ [n], then bidder k’s spend
equals zero. Complementary slackness then implies
that µ̄k � 0, and hence, µ̄ℓ � 0 ≤ µ̄j for all ℓ ∈ J 0.

Second, suppose there exists an i ∈ [n] such that
Yik > 0.We claim that i ∈ Ub

k,1. To see this, for the sake of
contradiction, suppose instead that i ∈ Ub

q,1 for some
q 	� k. Because there is no chain from k to j, it must be the
case that q ∈ J 0; otherwise, one can create a chain from
k to j by adjoining i and k to a chain from q to j. Because

i ∈ Ub
q,1, wemust have pb(i, q) > max{pb(i, k), 0}. Finally,

complementary slackness yields that (1 − µ̄k)p
b(i, k) ≥

(1 − µ̄q)p
b(i, q). From these inequalities and the fact that

µ̄q < 1, we obtain that µ̄q > µ̄k, contradicting the fact
that k ∈ argmaxℓ∈J 0

µ̄ℓ. Thus, for any i ∈ [m] such that

Yik > 0, we have i ∈ Ub
k,1. Hence, we obtain

∑

i∈ n[ ]

pb i,k( )Yik ≤
∑

i

pb i,k( )I i∈Ub
k,1

{ }

≤ Ψ̄k +Ξk σj
( )

, (11)

where for the second inequality,wehaveusedLemma2.
Now, in the event Ej(σj), we obtain that the right-hand
side expression in (11) is strictly less than B∗

k, implying
that the spend of bidder k is strictly below its budget.
This implies, by complementary slackness, that µ̄k � 0,
and hence, µ̄ℓ � 0 ≤ µ̄j for all ℓ ∈ J 0. □

Armed with this result, we are now ready to prove
our key lemma.

Proof of Lemma 3. Consider i ∈ [n] such that Yij > 0. By
complementary slackness, we obtain that (1− µ̄j)p

b(i, j) ≥

(1− µ̄k)p
b(i,k) for all k ∈ [m]. By Lemma 4, µ̄j ≥ µ̄k for all

k ∈ [m] in the event Ej(σj). Together with the fact that
µ̄j < 1, we obtain that, in the event Ej(σj), if Yij > 0, then

pb(i, j) ≥ pb(i, k) for all k ∈ [m]. This, in turn, implies that,
in the event Ej(σj), for any i ∈ [n] with Yij > 0, bidder j’s
bid bij must be at least as high as the highest bid among
all other bidders, that is, bij ≥ W(1)

i,−j. There are now two
possibilities, depending on how the truthful bid of
bidder j compares with the bids of other bidders:

a. IfWij ≤ W(1)
i,−j or, equivalently, i /∈ UW

j,1, then j gains

Vij−W(1)
i,−j− rjW

(1)
i,−j � (1+ rj)(Wij−W(1)

i,−j) ≤ 0 on the item i
when accounting for the cost of j’s spend to win i.
Thus, j does not gain from winning such items. For
such items, bidding bij is worse than bidding Wij.

b. If Wij > W(1)
i,−j, then i ∈ UW

j,1 and pb(i, j) � pW(i, j).
Because we condition on Ej(σj) and, thus, Ψ̄j ≤ B∗

j , we
have bidder jwinning these same items under σ∗. This
deviation is not profitable because j is not lowering
the prices at which it wins these items.
This argument shows that the strategy σj can-

not obtain more payoff for bidder j than σ∗j , condi-
tional on the event Ej(σj), implying P(π̃j(σj, σ

∗
−j) ≤

π̃j(σ
∗
j , σ

∗
−j)|Ej(σj)) � 1. □

3.2.2. Step (ii). Having stated the key lemma for the
first part of our road map, which hinges on the event
Ej(σj) happening, we give some insight into step (ii) of
the road map, in which we prove this event happens
with high probability as the size of the market in-
creases. This requires that Ψ̄k + Ξk(σj) < B∗

k happens
with high probability for all k 	� j. Showing this in-
volves two steps:
a. First, we make use of the subexponential tails

of the valuation distribution to show that B∗
k − (Ψ̄k +

Ξk(σj)) satisfies Bernstein’s concentration bound. This
allows us to argue that this quantity approaches its
expectationE[B∗

k]− (E[Ψ̄k] +E[Ξk(σj)]) asngrows large,

and thus, so long as E[B∗
k] − (E[Ψ̄k] + E[Ξk(σj)]) is suf-

ficiently positive, the required inequality holds with
high probability.
b. Next, given the budget of the form B∗

k � E−k[Ψ̄k] ·
(1+ β(m)), we obtain

E B∗
k

[ ]

− E Ψ̄k

[ ]

+ E Ξk σj
( )[ ]( )

� E Ψ̄k

[ ]

· β m( ) − E Ξk σj
( )[ ]

.

Thus, for the left-hand side to be positive, we require

β m( ) >
EΞk σj

( )

EΨ̄k

�

E bij −W
2( )
i

( )

I i ∈ UW
k,1 ∩Ub

j,2

{ }[ ]

− E W
2( )
i,−jI i ∈ UW

k,1 ∩Ub
j,1

{ }[ ]

E W 2( )
i I i ∈ UW

k,1

{ }[ ]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

overbidding term

+
E W

2( )
i I i ∈ UW

j,1 ∩UW
k,2

{ }[ ]

E W
2( )
i I i ∈ UW

k,1

{ }[ ]

⏟̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

underbidding term

. (12)

Using the subexponentiality of the valuation function,
we show that the preceding inequality is indeed
satisfied by choosing a multiplicative factor β(m) �
2ϑ/m1/ϑ for k’s slack budget as in (3). The precise
details of this argument can be found in Online
Appendix A. Note that this argument suggests an
incentive to set a high slack factor β(m), thus in-
creasing the likelihood of Ej(σj). However, aswe show
in the next step, using too large a slack eats into a
bidder’s profits via its cost of unspent budget.
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Havingestablishedourkey technical result inLemma 3,
and together with the result that P[Ej(σj)] is large, it is
straightforward to convert a guarantee on modified
profits that only holds over Ej(σj) into a guarantee that

holds in expectation over allV for modified profits π̃j.

Lemma 5. Let m ≥ max{(2ϑ)ϑ, exp(3ϑ + 1)} and n ≥
6ϑm2(ϑ+1/ϑ) log(m)/C (where C is a universal constant
independent of m). For any bidder j and for any deviation σj,
we have

E π̃j σj, σ
∗
−j

( )[ ]

≤ E π̃j σ
∗( )

[ ]

· 1 +
3ϑ

m3ϑ/2

( )

.

3.2.3. Step (iii). To conclude with a best response
guarantee, step (iii) argues that k’s expected modified
profit outweighs the expected cost it incurs on un-
spent budget given by rk · E[B

∗
k −Ψk(σ

∗)]. Formally,
the expected cost of unspent budget, as a fraction of
the expected modified profit, is given by

rk · E B∗
k −Ψk σ

∗( )
[ ]

E π̃k σ∗( )[ ]

≈
n · β m( ) · rk · E W

2( )
i I i ∈ UW

k,1

{ }[ ]

n · 1 + rk( ) · E W
1( )
i −W

2( )
i

( )

I i ∈ UW
k,1

{ }[ ]

�
rk

1 + rk
·
β m( )

α m( )
, (13)

where α(m)≜
E[(W(1)

i −W(2)
i )I{i∈UW

k,1
}]

E[W(2)
i
I{i∈UW

k,1
}]

depends only on the

valuation distribution.
As becomes apparent in the proof of Theorem 1, this

ratio also drives the approximation error of our equi-
librium.Thus, the ratioβ(m)/α(m)must be small for this
approximation to be good. Because α(m) is fixed by
the valuation distribution, this imposes the condition
that the multiplicative factor β(m) is not too large,
competing with the incentive for larger β(m) from
step (ii). As our analysis in Online Appendix B shows,
these two competing incentives are perfectly counter-
balanced by the choice, as in (3), of β(m) � 2ϑ/m1/ϑ.

Given the preceding intuition and results,we cannow
prove our main result, which translates the bound on π̃j

to a bound for πj by accounting for the additional cost
of rj · E[B

∗
j −Ψj(σ

∗)] and implicitly showing that β(m)/
α(m) is small enough to sustain the equilibrium:

Proof of Theorem 1. Throughout the proof, let m ≥
max {(2ϑ)ϑ,exp(3ϑ+5ϑ log(ϑ)+1)} and n≥ 6ϑm2(ϑ+1/ϑ)

log(m)/C. As proved in Lemma EC.11,

E π̃j σ
∗( )

[ ]

≥
9 1 + rj
( )

10ϑ log m( )
· E Ψ̄j

[ ]

, (14)

and at the same time,

E B∗
j −Ψj σ

∗( )
[ ]

� E E−j Ψ̄j

[ ]

· 1 +
2ϑ

m1/ϑ

( )[

− Ψj σ
∗( )

]

� E Ψ̄j

[ ]

· 1 +
2ϑ

m1/ϑ

( )

− E Ψj σ
∗( )

[ ]

≤
2ϑ

m1/ϑ
+

1

m1/ϑ

( )

· E Ψ̄j

[ ]

≤
3ϑ

m1/ϑ
· E Ψ̄j

[ ]

, (15)

where, in the first equality, we have used the defi-
nition (3) of B∗

j , the tower property, to remove the
conditioning onVj in the second equality and Lemma
EC.10 for the third inequality.
Because, by definition, E[πj(σ

∗)] � E[π̃j(σ
∗)] − rjE[B

∗
j −

Ψj(σ
∗)], we can combine inequalities (14) and (15)

to obtain

E πj σ
∗( )

[ ]

E π̃j σ∗( )
[ ] � 1 − rj

E B∗
j −Ψj σ

∗( )
[ ]

E π̃j σ∗( )
[ ] ≥ 1 − rj

3ϑ
m1/ϑ E Ψ̄j

[ ]

9 1+rj( )
10ϑ log m( )

E Ψ̄j

[ ]

≥ 1 −
10rjϑ

2 log m( )

3 1 + rj
( )

m1/ϑ
≥ 1 −

10ϑ2 log m( )

3m1/ϑ
.

(16)

Now, for m ≥ exp(3ϑ+ 5ϑ log(ϑ)), we have that the
final expression is greater than 1/3. Thus, we have, for
any strategy σj,

E πj σj, σ
∗
−j

( )[ ]

≤ E π̃j σj, σ
∗
−j

( )[ ]

≤ E π̃j σ
∗( )

[ ]

· 1 +
3ϑ

m3ϑ/2

( )

≤ E πj σ
∗( )

[ ]

·
1 + 3ϑ

m3ϑ/2

( )

1 −
10ϑ2 log m( )

3m1/ϑ

( )

≤ E πj σ
∗( )

[ ]

· 1 +
11ϑ2 log m( )

m1/ϑ

( )

,

where the second inequality follows from Lemma 5,
the third from (16), and the fourth inequality follows
from the fact that, for ǫ ≤ 2/3, we have 1

1−ǫ ≤ 1+ 3ǫ.
This completes the proof. □

To end this section, we provide a proof of Theorem 2,
which shows that, in equilibrium, the allocation
policy is greedy with high probability. We begin with
the following lemma, which is a consequence of our
key technical lemma, Lemma 4, and which states that,
for the particular case when σj � σ∗j and all other
bidders follow σ∗, the optimal allocation Y is greedy.
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Lemma 6. Fix a bidder j, and suppose all bidders k play the
strategy σ∗k. Then, in the event Ej(σ

∗
j ), the optimal allocation

is greedy.

Proof. Fix the strategy profile σ∗. For a given realiza-
tion of valuations V belonging to the event Ej(σ

∗
j ), let Y

be an optimal allocation, and let (µ̄, ν̄) denote an op-
timal solution to the dual (10). By Lemma 4, in the event
Ej(σ

∗
j ), we have 1 > µ̄j ≥ maxk 	�j µ̄k. Hence, in this event,

by complementary slackness, for any i ∈ [n] with

Yi j > 0, we have pW(i, j) ≥ pW(i, k) for all k ∈ [m]. Thus,
we obtain that, in the event Ej(σ

∗
j ), ifYij > 0, then i ∈ UW

j,1.
Hence, we obtain

∑

i∈ n[ ]

Yi,jp
W i, j
( )

≤
∑

i∈ n[ ]

W
2( )
i I i ∈ UW

j,1

{ }

� Ψ̄j < B∗
j .

Thus, in the event Ej(σ
∗
j ), we observe that bidder j’s

budget constraint is not tight, and hence, by com-
plementary slackness, we obtain µ̄j � 0. Because, in
this event, we have µ̄j ≥ µ̄k for all k ∈ [m], we conclude
that µ̄k � 0 for all k ∈ [m]. Moreover, for any bidder k,
if Yik > 0, then pW(i, k) ≥ pW(i, ℓ) for all ℓ by comple-
mentary slackness. Because the budget constraints
are not tight, we conclude that the optimal allocation
is unique and greedy. □

Theorem 2 now follows directly from this and is
formally proved in Online Appendix B.

4. Extensions
In this section, we explore two extensions to our base
model from Section 2. Specifically, we show that our
equilibrium can be sustained when the ad network
sets reserve prices as well as if we allowmore general
valuation distributions. We discuss these new model
features in more detail:

4.1. Reserve Prices

In our baseline model, we assume that the allocation
mechanism implemented by the ad network is a
second price auction. Our results can be extended to
accommodate reserve prices, a common feature of
modern ad-serving systems. Specifically, we allow
the ad network to set a reserve price ρ, which places a
floor on the price at which an item can be sold to a
bidder; in such a mechanism, only bidders who bid
over this reserve can be awarded the item, for a
payment equal to the maximum of the next highest
bid and the reserve price. Thus, the definition (1) of
pb(i, j) changes to

pb i, j
( )

�
max maxk 	�j,bik≤bij bik{ }, ρ

{ }

if bij ≥ ρ;

0 otherwise.

{

(17)

We place two bounds on the magnitude of the reserve
prices that we allow the network to set:
a. We require that ρ satisfies

P W
2( )
i ≥ ρ

⃒
⃒
⃒i ∈ UW

k,1

( )

≥ η,

for any i ∈ n[ ] and k ∈ m[ ]. (18)

This is for some fixed η > 0. The interpretation of this
condition is that reserve prices should not be so high
that the ROIs of bidders are effectively nullified un-
der σ∗, and who then do not have an incentive to
participate in the market. This could happen because,
when we introduce a reserve, the analog to the quan-
tity α(m) introduced in (13) becomes

α m( ) �
E W

1( )
i −max W

2( )
i , ρ

{ } ⃒
⃒
⃒ i ∈ UW

k,1,W
1( )
i ≥ ρ

[ ]

E max W
2( )
i , ρ

{ } ⃒
⃒
⃒ i ∈ UW

k,1,W
1( )
i ≥ ρ

[ ] .

One can show that α(m), in fact, vanishes as ρ → ∞,
but at the same time, the slack term β(m) required for
equilibrium to hold remains the same up to constant
factors. Thus, the ratio β(m)/α(m) increases as ρ → ∞,
and the natural counterpart of σ∗ to the reserve setting
is unlikely to be sustained as an equilibrium.

We remark that this condition does not, however,
remove reasonable reserve values. For example, if η � 1/2
and bidders are symmetric, the condition allows ρ �

median (W(2)
i ) ≈ EW(2)

i , which is the expected payment
one would see in equilibrium.

b. We also assume that the reserve price ρ exceeds
the outside option value δ, which is a mild technical
assumption. Recall that the presence of the δ terms in
problem (2) is required to remove some degenerate
allocations by ensuring that µℓ < 1 for all bidders ℓ
and can be set to an arbitrarily small but positive
value. Thus, requiring that ρ > δ does not substan-
tively restrict the space of allowable reserves. At the
same time, this simplifies the analysis: whereas in the
previous section, we had to account for the event
that a bidder’s payment could be positive but below δ,
in which case the bidder would not be allocated the
item, here a positive payment automatically satisfies
that pb(i, j) ≥ ρ > δ.
Under these two conditions, our main theorems

continue to hold with a minor modification. Specifi-
cally, the bidders’ strategies in the (approximate)
equilibrium σ∗,res � (B∗,res

j ,b∗,res
j )now reflect the change

in their expected spending as follows:

b∗,res
j ≜Wj �

Vj

1 + rj
,

B∗,res
j ≜E−j Ψ̄

res
j

[ ]

· 1 +
2ϑ

ηm1/ϑ

( )

, (19)
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where the quantity Ψ̄res
j once again describes the total

realized spending of bidder j under infinite budgets:

Ψ̄res
j ≜

∑n

i�1

max W
2( )
i , ρ

{ }

I i ∈ UW
j,1,W

1( )
i ≥ ρ

{ }

. (20)

The theorems characterizing this equilibrium are qual-
itatively identical to Theorems 1 and 2 and are, thus,
stated in Online Appendix F. However, we comment
on the changes we need to make to the proofs to
accommodate reserves. Mainly, the definitions of the
corresponding event Eres

j (σj) and the slack Ξres
j,k (σj)

change to incorporate the changes in the definitions of
pb(i, j) and the allocation mechanism:

Eres
j σj
( )

≜ Ψ̄res
k + Ξres

k σj
( )

< B∗,res
k , for all k 	� j

{ }

∩ Ψ̄res
j < B∗,res

j

{ }

, (21)

where

Ξres
k σj
( )

≜
∑

i

max bij, ρ
{ }

−max W 2( )
i , ρ

{ }( )

· I i ∈ UW
k,1 ∩Ub

j,2,W
1( )
i ≥ ρ

{ }

−
∑

i

max W
2( )
i,−j, ρ

{ }

I i ∈ UW
k,1 ∩Ub

j,1,W
1( )
i ≥ ρ

{ }

+
∑

i

max W 2( )
i , ρ

{ }

I i ∈ UW
j,1 ∩UW

k,2,W
1( )
i ≥ ρ

{ }

,

(22)

and note that Ξres
k (σj) differs from Ξk(σj) in two re-

spects: First, to reflect the change in allocation mecha-
nism, Ξres

k (σj) includes the indicator I{W(1)
i ≥ ρ} to

capture the fact that item is allocated under truthful
bidding. Second, to reflect the change in bidders’ pay-

ments, thequantitiesW(2)
i ,W(2)

i,−j, and bij arenowreplaced

by max{W(2)
i ,ρ}, max{W(2)

i,−j,ρ}, and max{bij,ρ}, respec-
tively. With these changes in the place, our concen-
tration bounds can once again be shown to hold with
appropriate changes.We summarize themain changes
in Online Appendix F.

4.2. Bounded Hazard Rate Valuation Distributions

Although our existing analysis has relied on the
condition that bidder valuations are exponentially
distributed, we expect that our results carry over for a
significantly wider family of distributions. Here, we
prove a result in this direction by extending our
equilibrium prescription to bidder valuations with
bounded hazard rate distributions.

To highlight the main differences from the baseline
analysis from Section 3, we make a simplification by
assuming that bidders are symmetric in the sense that
bidders’ discounted valuations Wij � Vij/(1+ rj) are
independently and identically distributed and drawn

from a distribution with cumulative distribution func-
tion F(·)with continuous hazard rate h(·) that satisfies
the bounds

θmin ≤ h v( ) ≤ θmax, ∀v ∈ 0,∞[ ). (23)

In a slight abuse of notation, we continue to define
ϑ≜θmax/θmin. The symmetry assumption allows us to
focus on the most salient changes while keeping the
analysis tractable.
For bounded hazard rate valuations, our main re-

sult that σ∗ is an approximate equilibrium carries
through as is, whereas our proof needs some minor
modifications. We describe these modifications in
some detail in Online Appendix G.

4.3. Generalizing Our Results to Other Distributions

Because we conjecture that our results would hold for
more general families of valuation distributions, we
also discuss how one could potentially further relax
our distributional assumptions.
Interestingly, an artifact of our analysis is that it

requires a lower bound on the hazard rates of the
valuations. This is because, as Equations (12) and (13)
togetherwith the related discussion imply, the valuation
distributions should allow that the ratio β(m)/α(m) is
small, where

β m( )

α m( )
≈

E bij −W 2( )
i

( )

I i ∈ UW
k,1 ∩Ub

j,2

{ }[ ]

−E W
2( )
i,−jI i ∈ UW

k,1 ∩Ub
j,1

{ }[ ]

E W
1( )
i −W

2( )
i

( )

I i ∈ UW
k,1

{ }[ ]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

overbidding term

+
E W

2( )
i I i ∈ UW

j,1 ∩UW
k,2

{ }[ ]

E W
1( )
i −W

2( )
i

( )

I i ∈ UW
k,1

{ }[ ]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

underbidding term

.

We remark that, as discussed in Section 3.2, the first
term in the right-hand side can be interpreted as
coming from overbidding-type behavior, whereas the
second is attributed to underbidding. In order to
bound the numerator of the overbidding term over all
possible deviations bj, our proof technique requires
that hj(v) ≥ θmin, where θmin ≥ 0 and hj(·) is the hazard
rate of Wij (note that, here, the distributions of Wij

could be asymmetric). This is a property we use in
Lemma EC.8 as we discuss following its proof. We
observe that this lower bound is also necessary for the
Bernstein concentration bounds that are crucial to
our proofs.
As we briefly mention in Section 2, in an ad net-

work, the bounded hazard rate condition implies a
large degree of heterogeneity in each advertiser’s
value for the impressions. This may arise when the ad
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network and advertisers have access to fine-grained
covariates (such as user demographics, purchase his-
tory, etc.) for each impression, which are used for dis-
playing highly targeted ads. Conversely, without a
minimal level of targeting, an advertiser’s value for an
impression is likely to be more concentrated. Thus,
our analysis and the results suggest that better tar-
getingmay give rise to simpler equilibriumoutcomes.

In addition to the hazard rate lower bound, bounding
themagnitude of the overbidding term also requires the
following tail bound condition:

1

θmin
· P W

2( )
i,−j ≤

1

θmin
, i ∈ UW

k,1

( )

� o 1( ) · E W 1( )
i −W 2( )

i

( )

I i ∈ UW
k,1

{ }
[ ]

,

which, for exponential valuations,weproveviaLemmas
EC.6 and EC.12.

Finally, bounding the underbidding termrequires that

E W
2( )
i I i ∈ UW

j,1 ∩UW
k,2

{ }[ ]

� o 1( ) · E W 1( )
i −W 2( )

i

( )[

I i ∈ UW
k,1

{ }]

.

For the case of exponential distributions, we establish
this requirement in Lemmas EC.5 and EC.12. We note
that, for the bounded hazard rate case, the assump-
tion of symmetry ofWijs simplifies the analysis of both
these last two properties.

Before concluding, we emphasize that the two
preceding conditions, although difficult to charac-
terize or check analytically, are easy to check via
simulation. Thus, a decisionmaker could use samples
from the valuation distributions to verifywhether our
proposed equilibrium holds.

5. Discussion and Conclusions
In this paper, we examine the strategic bidding be-
havior of advertisers in a sponsored search market.
Although this problem appears to be quite chal-
lenging from both game-theoretic and optimal match-
ing perspectives, we find that, under the assumption
that budgets arise out of endogenous bidder behavior,
simple tractable equilibria emerge. Moreover, these
equilibria are attractive because they also simplify the
ad network’s decision problem into a highly tractable
greedy policy.

An interesting direction to pursue would be to
study the market equilibrium in a dynamic setting in
which the items arrive over time and bidders can
adjust their bids dynamically. There are two main
considerations regarding porting our results to this
dynamic setting: first, whether our equilibrium strate-
gies, which assume the knowledge of the entire valu-
ation vectorVi, are implementable in a setting in which

valuations are revealed as andwhen impressions arrive
and, second, even if such implementationwere feasible,
whether our equilibrium guarantees carry over in set-
tings in which bidders can adjust their bids over time.
To address the first consideration, note that, as the

equilibriumbids are shadedversions of the valuations, a
bidder can equivalently specify a bidding function that
outputs the bid as andwhen the impressions arrive; this
is akin to contingent bidding in which bidders submit a
vector of bids fromwhich a true bid is selected upon the
resolution of the contingency. Similarly, each bidder can
set its equilibrium budget prior to seeing the valuations
through a slight modification to our equilibrium in
which the budget is set as the unconditional expectation
of the bidder’s spend (plus a slack); because the spend
concentrates in the large market limit we consider,
this modification does not affect our analysis.
For the second consideration, although formalizing

the dynamic setting is more intricate than the static
version studied here, we expect that such adjustments
would not impact our equilibrium guarantees. There
are a few reasons for this: First, our existing analysis
already provides ex ante guarantees for the equilib-
rium; this makes use of the fact that in a fluid regime,
variability in a bidder’s valuation realizations washes
away. In this setting, one can show that, if other bidders
follow static strategies, a single bidder’s utility does not
substantially improve by adopting a dynamic over a
static strategy. Second, we note that our static model
allows for more deviations for a bidder, in which it
can base its bids on the entire valuation vector. In
contrast, in a dynamic model, the deviations are more
restricted as they cannot depend on future valuations.
Thus, we believe our guarantees are fairly conser-
vative in a dynamic setting.
Another question that our work opens up is whether

our equilibrium, although simple and plausible, is
unique. Although this question is already significant in
the static setting, it becomes even more pressing when
we consider dynamics. To highlight the concern, the
ability of bidders to dynamically change bids can po-
tentially reduce the efficacy of the bidders’ deviations;
this leaves open the possibility that other dynamic
bidding equilibria may emerge in such a setting. If
other equilibria exist, further justifications are needed
that the equilibrium we study would arise given it
leads to a highly competitive market. Thus, an in-
teresting open problem is to identify conditions for
uniqueness for notions of approximate equilibria or to
pose strong criteria for equilibrium selection that
select equilibria such as ours.
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Endnotes
1We thank the anonymous referee for this example about Facebook’s
ad system.
2As stated, the minimum number of items n needed for Theorem 2 to
hold is larger than that in Theorem 1 by a factor of m. This additional
factor allows us to establish the optimality of the greedy solution
except with an exponentially small probability. With the same bound
on n as in Theorem 1, our proof method can be used to obtain op-
timality of greedy except for a polynomially small probability.
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