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ABSTRACT: Levoglucosan (Levo), a Cg-anhydrosaccharide
produced in the combustion of cellulosic materials, is the
major component of aerosols produced from biomass burning
over vast regions worldwide. Levo has long been considered
chemically inert and thus has been used as a tracer of biomass
burning sources. However, we now show that sugars including
Levo, glucose, arabitol, and mannitol react rapidly with Criegee
intermediates (Cls) generated during the ozonolysis of
sesquiterpenes on the surface of water:acetonitrile microjets.
Hydrophilic Levo reacts faster with Cls than with water or
surface-active 1-octanol at air—aqueous interfaces. This
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Criegee Intermediates + Sugars = Larger Mass Ethers

unexpected phenomenon is likely associated with the relatively low water density at air—aqueous interfaces coupled with a
higher gas-phase acidity of the saccharide hydroxyl groups (i.e, —OH) versus n-alkanols. Results presented herein show that
aerosol saccharides are in fact reactive toward Cls. Given the abundance of saccharides in the atmosphere, they may be important
contributors to the growth and mass loading of secondary organic aerosols.

S accharides (sugars) are ubiquitous components of atmos-
pheric particles generated from biomass burning.'~®
Biomass is widely utilized as a domestic fuel worldwide such
as in India, China, and various regions of Africa. The dense
“brown aerosol” emitted from such sources absorbs and scatters
sunlight, influencing climate’™"* and affecting human
health.">'* Field measurements of summertime aerosols over
Mt. Tai, in the North China Plain, show that sugars are a
dominant class of compounds throughout the campaign, with
concentrations ranging from 49.8 to 2115 ng m™> (average 640
ng m™>) in the daytime, and from 18.1 to 4348 ng m™> (799 ng
m™>) at night.l Levoglucosan (Levo)""® detected at 3432 ng
m™> levels during the nighttime is the most abundant
saccharide." Sugars are also present as water-soluble organic
compounds in soils.” From a chemical perspective, Levo and
other sugars have been considered inert in the particle phase,
except toward OH-radicals,'*~*’ due to the absence of carbon—
carbon double bonds.

We recently found that Criegee intermediates (Cls, carbonyl
oxide biradicals/zwitterions)>* > generated from the ozonol-
ysis of sesquiterpenes (C,sH,, p-caryophyllene/a-humulene)
react with amphiphilic carboxylic acids rather than (H,0), in
the outermost interfacial layers of water/acetonitrile mix-
tures.””* This observation was ascribed to the low water
concentrations prevalent in the outermost interfacial layers and
the enrichment of the hydrophobic carboxylic acids therein.”**’
We also reported that sesquiterpene Cls react with n > 4
alcohols C H,,,;OH to produce Cs,, ethers with yields that
increase as a function of 7. The OH-group of l-octanol
proved to be ~25 times less reactive than the C(O)OH group
of n-octanoic acid toward Cls at the air—liquid interface,
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revealing that the reactivity of hydroxylic species therein
depends both on their acidities and interfacial propensities.”’

Here we demonstrate that sugars found in ambient aerosol
and soils are very reactive with Cls at air—aqueous interfaces.
We report the direct detection of initial products from reactions
of Levo, glucose (Glu), arabitol (Ara), and mannitol (Man)
with ClIs generated on fresh surfaces of f-caryophyllene (f-C)
and a-humulene (a-H) solutions in acetonitrile(AN):water(W)
exposed to O;(g) for ~10 us (Scheme 1).

Figure 1 shows negative ion electrospray mass spectrum of 1
mM f-C + 0.2 mM NaCl + 100 mM Levo in AN:W (4:1 =
vol:vol) solution microjets in the absence and presence of
O;(g). In the absence of O5(g), peaks appear at m/z 197;199 in
the M/M+2 = 3/1 = ¥Cl/¥Cl ratio (Figure 1), that are
assigned to chloride-Levo adducts (m/z 162 + 35/37 = 197/
199). The observation that neutral hydroxylic species form
detectable chloride-adducts is in accordance with relports on the
strong affinity of chloride for related species.” > In the
presence of O;(g), intense peaks appear at m/z 449;451 in
addition to those at m/z 305;307 and 251. We confirmed that
Levo is inert toward O;(g) in the absence of f-C under the
present condition (Figure S1), as expected from a structure
lacking C=C double bonds. The m/z 449;451 corresponds to
the products of Levo (MW = 162) addition to Cls: 449 (451) =
204 + 48 + 162 + 35 (37) (Scheme 2).

The m/z 449;451 signals are assigned to the a-alkoxy-
hydroperoxides (C,, ethers) produced from the reaction of Cls
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Scheme 1. Structures of the Saccharides Used in the Present Study
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Figure 1. Negative ion electrospray mass spectra of 1 mM f-C + 0.2
mM NaCl + 100 mM levoglucosan in AN:W (4:1 = vol:vol) solution
microjets (gray), or those exposed to Os(g) (red, E = 2.4 X 10"
molecules cm™ s) at 1 atm and 298 K. The m/z 449;451 signals
correspond to chloride-adducts of alkoxy-hydroperoxide products (C,,
ether species) from the -C’s Cls + levoglucosan reaction. See the text
for details.

with Levo. This result is surprising because Cls react faster with
Levo than with interfacial (H,0), at bulk molar ratios: [Levo]/
[H,0] = 100 mM/23 M ~ 4 X 1073 (molar fraction of H,O =

0.42 in 4:1::AN:W). Since surface-tension data suggests poly
hydroxylic Levo is not surface-active,”* this result implies that
Levo has an exceptional intrinsic reactivity toward Cls at the
air—water interface (see below). The m/z 305;307 and 251
corresponds to species resulting from the addition of O; (+ 48)
to a f-C (MW = 204) endo C=C bond,**** followed by H,O
addition (+18), which are detected as chloride-adducts (+35 or
+37), ie, 305 (307) = 204 + 48 + 18 + 35 (37), and
functionalized-carboxylates, respectively (see our previous
reports).”*7*° Clearly, Levo competes with interfacial water
for Cls to generate a high mass product (MW 414, detected as
m/z 449 and 451) versus the m/z = 305 a-hydroxy-
hydroperoxides from the reaction of Cls with (H,0),. We
previously found that the reactivities of CIs toward OH-species
at the gas—liquid interface are positively correlated with their
gas-phase acidities AG, sy, (rather than with bond dissociation
energies).”’ This finding represents evidence of the partic-
ipation of polar transition states involving zwitterionic rather
than biradical CIs both in the gas-phase’” and at air—aqueous
interfaces.” Among the three —OH groups in Levo, the —OH
groups at positions 1 and 3 (see Scheme 1) are significantly
more acidic than that at position 2: AGgys = 1454,
AG gty 3 = 1457 versus AG gy, = 1486 k] mol™" (within 4
k] mol™! accuracy),”® and thus they will preferentially H-
transfer to the more negative terminal O atoms of Cls carbonyl
oxides. On this basis, we tentatively propose the structure of the
likely isomer shown for the m/z 449;451 product (Scheme 2).

Scheme 2. Reaction Scheme of f-Caryophyllene’s Criegee Intermediate + Levoglucosan at Air—Aqueous Interfaces”
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“Here we show the most likely structures among possible isomers (see text).
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Theoretical calculations might help pinpoint actual molecular
structures, an issue that is beyond the scope of this paper.

Similar products at m/z = 204 + 48 + MW(sugars) + 35;37 =
467;469 (C,, ethers), 439;441 (C,, ethers), and 469;471 (C,,
ethers) are observed from the ozonolyses of B-C in the
presence of Glu, Ara, and Man, respectively (Figures S2, S3,
and S4). Interestingly, the signal intensities of ether products
relative to that of the a-hydroxy-hydroperoxide (m/z 305;307)
are in the order: Ara > Levo ~ Man ~ Glu. This implies that
that Ara is ~4 times more reactive than the other sugars on a
molar basis (Figures S2, S3, and S4). The significantly higher
reactivity of the Cs- versus the Cg-polyols toward Cls at the
air—water interface suggests the operation of the subtle
conformational effects predicted by recent calculations.”~**

Peaks at 449;451 appear both in the ozonolysis of #-C and a-
H in the presence of Levo (Figure SS). Also, peaks at 467;469,
439;441, and 469;471 are observed as major products from the
ozonolyses of a-H in the presence of Glu, Ara, and Man,
respectively (Figures S6, S7, and S8). These results imply that
sesquiterpene Cls will generally react with sugars at air—
aqueous interfaces.

Additional evidence for the functionalities of the products
was obtained in experiments involving isotopic labeling. Figure
2 and Figure S9 show negative ion electrospray mass spectra of
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Figure 2. Negative ion electrospray mass spectra of 1 mM S-C + 0.5
mM NaCl + 100 mM levoglucosan in AN:D,O (4:1 = vol:vol)
solution microjets (gray), or those exposed to O;(g) (red, E = 2.4 X
10" molecules cm™ ).

[f-C + NaCl + Levo] in AN:D,0 and AN:H,"O solution
microjets in the absence and presence of O5(g). Chloride-Levo
adducts (m/z 197;199) shifts to +3 mass units into 200;202 in
AN:D,0O (Figure 2), which is consistent with a structure having
three exchangeable —O(H) groups. The fact that the m/z =
449;451 product signals do not shift in AN:H,"*O (Figure S9)
is consistent with the formation of a-alkoxy-hydroperoxides
without the participation of water molecules (see Scheme 2). In
contrast, the m/z 305;307 product signals shift by +2 mass
units into 307;309 signals in both AN:D,O (Figure 2) and
AN:H,"®0 (Figure S9), in accordance with the formation of a-
hydroxy-hydroperoxides directly from the CIs + (H,0),
reaction (Scheme 2), as confirmed before.”* " The m/z 251
and 252 corresponds to keto- and aldehydic-carboxylates,
respectively.”**> Note that since hydrophobic ether products
(MW 414, detected as m/z 449;451 for Levo) still have one
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(for p-C) and two (for a-H) C=C double bond(s), their
atmospheric processing would involve further ozonolysis into
species possessing higher O/C ratios at the interface.”™*
More importantly, ethers containing labile hydroperoxide
—OOH groups could trigger further oligomerizations.”"**~*
Such processes may underlie recent findings of extremely low-
volatility organic compounds (ELVOCs) in a variety of field
studies. "

Figure 3 shows electrospray mass spectral signals acquired
from 1 mM fB-C + 0.2 mM NaCl + 100 mM Levo in AN:W
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Figure 3. Reactant (A) and products (B) mass spectral signal
intensities from 1 mM f-C + 0.2 mM NaCl + 100 mM levoglucosan in
AN:W (4:1 = vol:vol) solution microjets exposed to O;(g) as
functions of O,(g) exposure (in 10'° molecules cm™ s). The lines are
regression curves fitted with double exponential decay or growth
functions.

(4:1 = vol:vol) microjets exposed to gaseous O5/O, mixtures as
functions of O5(g) exposure. Product signals display nonzero
initial slopes, suggesting that these are early major products
generated in a few microseconds. Recent studies on AN:W
binary mixtures revealed the microheterogeneity of their
outermost interfacial layers, which are sparsely populated by
disjoint water clusters in the molar fraction range relevant to
our results.””*"

We quantified the competition between Levo and water at
the gas—liquid interface by plotting the 449/305 signals ratio as
a function of Levo concentration at constant O; exposure
(Figure 4). The linear rather than Langmuirian dependence on
[Levo] observed in Figure 4 implies that the surface is never
saturated with Levo under our experimental conditions. This is
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Figure 4. Ratio of 449/305 signal intensities as a function of
concentration of levoglucosan in 1 mM J-caryophyllene + 0.2 mM
NaCl in AN:H,0O (4:1 = vol:vol) solution microjets exposed to O;(g),
E = 2.4 X 10" molecules cm™ s. Error bars were derived from 2—5
independent experiments. The line is a linear-regression fitting.

consistent with reported surface-tension data on aqueous Levo
solutions.”* Notably, the slope in Figure 4 is larger than those
from CIs + alkanoic acids/alkanols determined in our previous
studies.”®*’

The competition among hydrophilic Levo, interfacial water
molecules and surface-active 1-octanol for Cls is shown in
Figure S. These experiments involve [1 mM f-C + 0.2 mM
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Figure S. Negative ion electrospray mass spectra of [1 mM f-C + 0.2
mM NaCl + 100 mM Levo +100 mM l-octanol] in AN:W (4:1 =
vol:vol) solution microjets (gray), or those exposed to O;(g) (red, E =
2.4 x 10" molecules cm™ s) at 1 atm and 298 K. The m/z 417;419
signals correspond to a-alkoxy-hydroperoxides from the CIs + 1-
octanol reaction. See the text for details.

NaCl + 100 mM Levo + 100 mM I-octanol (MW 130)] in
AN:W (4:1 = vol:vol) solution microjets in the absence or
presence of O;(g). The peaks at m/z 417;419 correspond to
the products of 1-octanol addition to Cls: 417 (419) = 204 +
48 + 130 + 35 (37).”" Signal intensities at m/z 449;451 from
CIs + Levo are ~20 times larger than those at m/z 417;419,
implying that Levo is more reactive than 1-octanol toward Cls
at the air—liquid interface.”””*° We consider that the larger gas-
phase acidities of the multiple OH-groups of Levo and other
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sugars, relative to linear monoalkanols underlie their excep-
tional reactivities toward CIs.”*~*' Reported AG, gty values for
the different Levo —OH groups: AG,ggiys = 1454, AG,qaiym
= 1486, AG,qqiyps = 1457 KJ mol™,*® are significantly lower
(i, —OH groups are more acidic) than those of n-alkanols
C,H,,.,;OH, which range from 1563 k] mol™" (n = 1) to 1525
kJ mol™! (n = 8, 1-octanol),”” but closer to those for n-alkanoic
acids R,-COOH: 1429 k] mol™ (n = 1) to 1418 k] mol™ (n =
6).>® As mentioned above, we recently reported that the
reactivities of OH-species toward Cls are positively correlated
with their gas-phase acidities AGacidity-30’37 Mass spectra from
the interfacial ozonolysis of [#-C + NaCl + Levo + octanoic
acid (OA, MW 144)] also shows that signal intensities at m/z
449;451 from CIs + Levo are still ~2 times larger than the m/z
431;433 products from ClIs + OA at [Levo] = [OA] = 100 mM
(Figure S10). We infer that the multiple acidic —OH groups of
Levo account for its enhanced reactivity towards Cls.

This study demonstrates that the ozonolysis of sesquiter-
penes in the presence of atmospherically relevant sugars
produce previously unreported large-mass a-alkoxy-hydro-
peroxides (C,, or C,; ether species) via “one-step” reactions
on aqueous surfaces. Recent experimental studies have shown
that Levo can also react with OH-radicals during the aging
process, thereby casting doubts about its role as a biomass
burning tracer.'°"** Importantly, in contrast with OH-radical
oxidations, C=C + O; + sugars reactions in/on aqueous
organic aerosol occur during day- and night-time. We point out
that unsaturated organic species, which are reactively uptaken
via protonation on acidic pH < 4 aqueous surfaces,””~** will be
present as such on the very acidic atmos‘})heric particles
collected in recent field measurements.”~"° Under such
conditions, the Cls produced via interfacial ozonolysis (Oj is
rather insoluble in water, Henry’s law constant H = 0.01 M
atm™") are expected to react with ubiquitous sugars or surface-
active cis-pinonic acid,” rather than water and hydrophilic
acids.

In summary, our experiments show that Cls produced by
ozonolysis of sesquiterpenes react with atmospherically relevant
saccharides in the interfacial layers of model aqueous organic
aerosols. We provide mass-specific identification of the
products generated in a very short (<10 us) reaction time-
frames on fresh aqueous organic surfaces. Present results
suggest that CIs will largely react with sugars rather than water
molecules at air—aqueous interfaces. Therein, Levo is ~20
times more reactive than 1-octanol, and ~2 times more reactive
than n-octanoic acid toward Cls. Our results reveal that sugars
could be important, hitherto unrecognized, contributors to the
growth/augmentation of atmospheric particles and play
substantial roles in the troposphere.

B EXPERIMENTAL SECTION

We utilize sesquiterpene (f-C or a-H) + saccharide
(levoglucosan, glucose, arabitol or mannitol) in acetonitrile:-
water (AN:W = 4:1 = vol:vol) microjets into the spraying
chamber of an electrospray mass spectrometer (ES-MS, Agilent
6130 Quadrupole LC/MS Electrospr:i)r System at NIES, Japan)
flushed with N,(g) at 1 atm, 298 K.**”" The experimental setup
is essentially the same as those we reported elsewhere.”®”" We
use sesquiterpenes as in situ sources of Cls due to their extreme
reactivities toward Os(g),” which makes them compatible with
the short 7z ~ 10 ps contact times of our experiments.”"’*””
An AN:W mixture solvent is used as a suitable surrogate of
atmospheric aqueous organic media because the composition of
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its interfacial layers is well characterized both by theory and
experiments.””>" Microjets are exposed to orthogonal gas-phase
0;/0, beams. AN:W solutions containing reactants are
pumped (100 L min~") into the spraying chamber through
a grounded stainless steel needle (100 ym bore) coaxial with a
sheath issuing nebulizer N,(g) at a high gas velocity v, (~160 m
sec™!).”* The species detected by ES mass spectrometry are
produced in collisions of gaseous O; with the surface of the
intact aqueous microjets just after they emerge from the
nozzle.”> The modest polarizations of the initial microjets do
not affect the observed phenomena.””’® These mass spectra
correspond to species generated by heterogeneous processes in
the outermost interfacial layers of initial microjets as shown in
our previous studies.”””"”* Present small ozone exposures: E =
[05(g)] X 7 < 2.4 X 10" molecules cm™ s enables us to
monitor very early stages of Cls reactions on the liquid surface.
In the presence of chloride anion, most of the negatively
charged species we detect in our experiments correspond to
chloride-adducts of neutrals, which are unambiguously
identified by their characteristic M/M+2 = 3/1 ratio arising
from the **Cl/*’Cl ratio. Chloride is inert toward O5(g) under
present conditions as shown before.”®”” Further experimental
details could be found in previous publications.”®”""

Ozone was generated by flowing ultrapure O,(g)
(>99.999%) through a silent discharge ozonizer (KSQ-050,
Kotohira, Japan) and quantified via online UV—vis absorption
spectrophotometry (Agilent 8453) prior to entering the
reaction chamber. The reported [O5(g)] values correspond to
the concentrations actually sensed by the microjets in the
reaction chamber that are estimated to be ~12 times smaller
than the values determined from UV absorbance due to
dilution by the drying nitrogen gas. Conditions in the present
experiments were as follows: drying nitrogen gas flow rate: 12 L
min~'; drying nitrogen gas temperature: 340 °C; inlet voltage:
+ 3.5 kV relative to ground; fragmentor voltage value: 60 V. All
solutions were prepared in purified water (resistivity >18.2 MQ
cm at 298 K) from a Millipore Milli-Q water purification
system and used within a couple of days. Chemicals: p-
caryophyllene (>98.5%, Sigma-Aldrich), a-humulene (>96.0%,
Sigma-Aldrich), levoglucosan (>99%, Sigma-Aldrich), D-
(+)-glucose (ACS reagent, Sigma-Aldrich), D-(+)-arabitol
(>99.0%, Wako), D-mannitol (>98%, Sigma-Aldrich), acetoni-
trile (>99.8%, Wako), D,O (99.9 atom % D, Sigma-Aldrich),
H,"®0 (97%, Santa Cruz Isotope), and NaCl (>99.999%,
Sigma-Aldrich) were used as received.
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