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Abstract—Underwater acoustic communication often suffers
from extended channel impulse response and large Doppler
spread, such that signals become difficult to detect and decode.
For underwater internet of things (IoT) applications, the chal-
lenges are even bigger, because IoT devices usually transmit very
short messages due to severe power constraints, and the length
of pilots are often shorter than that of channel impulse response.
Therefore, conventional pilot-assisted channel estimation and
equalization approaches are incapable of detecting information
data. Moreover, existing blind channel equalization algorithms,
which do not require pilots, are not able to detect information
data either, because the number of transmitted symbols is too
small to approximate the expected loss with empirical loss, where
the loss refers to as the error of estimated signal envelopes. In this
paper, a new equalization and decoding algorithm is proposed
for underwater IoT devices under harsh communication environ-
ments. Inspired by recent blind deconvolution and compressive
sensing techniques, we construct an optimization problem with
objective function rewarding sparsity of the estimated channel
impulse response using ls-norm, and convexify the feasible set
of the problem while guarantee the same solution. Then we
develop a pruned tree search initialization method, and use
gradient descent to find an optimal solution efficiently. The new
algorithm is first verified by simulations, which show that the
proposed algorithm outperforms conventional methods such as
linear minimum mean square error (LMMSE) equalizer and
constant modulus algorithm (CMA). The proposed algorithm,
along with a practical procedure for compensating large Doppler
spread and carrier frequency offset, is further employed to
process real-world underwater IoT data collected in a fish-
tag project. It shows that the proposed algorithm can equalize
and detect IoT data which was corrupted by channels whose
length are longer than that of pilots, but existing algorithms
such as LMMSE equalizer and CMA-based blind equalizer
are not able to accomplish. It also shows that the proposed
algorithm can provide a very impressive improvement compared
to raw detection (no equalization or decoding) and decoding-only
approaches.

Index Terms—Underwater acoustic communication, sparse
multipath channel, channel equalization, IoT devices.
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HE idea of internet of things (IoT) first began in 1982

when researchers used some small devices to report
basic information of daily products. The system only involved
simple sensors reporting the collected data. Then in 1999, the
phrase IoT was first time invented as increasing data had been
created by devices instead of human. As the communication
technologies developed and embedded system designs become
more sophisticated, it becomes possible to connect different
self-control devices to internet. In 2003 the things-to-people
ratio was only 0.08, while that increased to 1.84 in 2010 [1].
Today IoT draw much attention of people and a large number
of IoT systems have been implemented for different purposes.
The advantages of IoT system are remarkable. Small devices
can be implemented in different places to monitor, collect and
send data, which is sometimes impossible for human to do
[2]. For example, it can measure the temperature of water and
send results back to human automatically without a break,
while this task can cost expensive human resources.

Today’s IoT systems are supported by novel communication
technologies [3, 4], hardware design strategies, and big data
processing, however problems arose in [oT systems are still
challenging. Many IoT devices need to work in very harsh
environments, and implementing devices in such environments
is expensive for even one-time effort. Therefore people want
the devices to work as long time as possible before next
maintenance or being discarded. For the purpose to save
power, many devices are designed to transmit very short
messages, but such designs can arise problems at receiver in
communication systems.

Oceans take up most of the earth surface while many
mysteries remain unknown to people. Researchers make lots of
efforts in studying oceans, and one of the tasks is to understand
more about marine animals. In order to do that, people put IoT
devices into animals’ bodies to collect data related to their
movements and quantities [5]. These small devices transmit
identity messages of animals regularly through water, and
people collect these messages for analysis. Such underwater
acoustic communication systems [6] can suffer from severe
multipath channels, Doppler spread, interference and noise.

When short IoT signals meet severe multipath channels,
conventional channel estimation and equalization methods,
such as zero-forcing (ZF) and linear minimum mean square
error (LMMSE), cannot work. Since pilots in such signals
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are shorter than channel impulse response (CIR), the number
of linear equations related to pilots is smaller than the num-
ber of unknown taps, which makes linear equation systems
for channel estimation underdetermined. Blind equalization
refers to equalizing channel without knowing CIR. One of
most common methods is constant modulus algorithm (CMA)
[7, 8], which adjusts linear equalizer coefficients to minimize
expectation error of envelopes of received signal. However, it
cannot be used in short signal scenarios, since CMA tries to
minimize expected error of estimated signal envelopes while
short signals do not contain enough symbols to make emprical
error close to expected error. The problem encountered here is
a special tpye of blind deconvolution (BD), which deconvolves
two unknown signals with their convolution results [9—11]. [9]
solves the subspace-constrained BD by minimizing nuclear
norm of ‘lifted’ matrix with linear constraints, which is a con-
vex programming. However, this cannot be adopted to solve
our problem, because it requires the number of constraints
to be much larger than the number of unknown variables,
which cannot be achieved in our cases. [10, 11] solve and
analyize sparse constrained BD via non-convex programmings
on sphere. Even though [10, 11] consider sparsity, which
is a key property of CIR, their methods still cannot be
directly adopted, since constraints in our problem, such as
linear convolutions and pilots, will harm the symmetry of
the objective geometries on sphere, which results in degraded
performance.

To address short message equalization and decoding prob-
lems, we first prove that these problems are identifiable if
they satisfy three conditions. Then a non-convex optimization
problem is constructed, by solving which we can obtain the
equalization detection results. In order to obtain an optimal
solution in the non-convex optimization, a pruned tree search
initialization algorithm is proposed. With good initialization,
our proposed optimization methods show significant advan-
tages over other algorithms. In addition, complete procedures
for real-world data processing are proposed, and 28, 000 real-
world underwater IoT data recordings collected by Pacific
Northwest National Laboratory (PNNL) fish-tag project are
used to test our algorithm. The results show that our methods
significantly improve successful detection rate.

The rest of the paper is organized as follows. System model
and conventional equalization techniques are reviewed in Sec-
tion II. Main algorithms and simulation results are illustrated
in Section III. Section IV shows the data processing procedures
and experimental results. Section V finally concludes the

paper.

II. SYSTEM MODEL AND PRELIMINARIES

Consider a block of bits vy € BMa1*1 going to be
transmitted. It is first encoded by a forward error correction
code resulting in ug = [vg; cg] € BMaX1 where cg € BMazx!
are parity check bits, and My = Mg + Mgo. Then pilot bits
u, € BM»*! are prepended to give u = [u,;uy] € BM*!,
where M = M, + M. After that, u is mapped to x =
[xp; xq] € {—1,1}*1 via binary phase shift keying (BPSK)
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modulation. Through a pulse shaping filter, baseband signal
can be expressed as

D=3 ali

i=1

(t—(i—1)Tp) (1

where T}, denotes BPSK symbol duration and p(¢) is pulse
shaping. Then b(t) is modulated with carrier frequency f.
and transmitted through a multipath channel. At receiver end,
coherent demodulation is applied and results in baseband
received signal

7(t) = [b(t)e? IO w h(t) + Rt 2)

where h(t) € C is equivalent baseband CIR, n(t) is additive
Gaussian noise. Af refers to frequency shift error including
carrier frequency offset (CFO) and Doppler shift, and 6 is the
initial phase. ‘x’ refers to linear convolution operation. With
Af and 6 being estimated accurately, we have the received
baseband signal

r(t) = b(t) * h(t) + n(t) 3)

where 7(t) = 7(t)e I@TA=0) and h(t) = h(t)e I2TASL,
Downsample r(t) with sampling interval T},, we have eq. (3)
written in discrete-time symbol-spaced input-output relation:

L

y(k) =Y h(Da(k —1+1) +n(k) 4)

=1

where {h(l)}£_, are the baseband CIR with sampling interval

L {y(k)}Y_,, where N = M + L — 1, are the received
symbols, and {n(k)}._, are the additive white Gaussian noise
with zero mean and variance 2.

Since short signals are considered, we assume x(k)

if Kk < 1ork > M. We further assume that h(k) O
k <1ork > L. Denote y = [y(1),y(2),...,y(N)]*, h =
[h(1),h(2),...,h(L)]T and n = [n(1),n(2),...,n(N)]T, then
eqg. (4) can be rewritten as

y=Cxh+n=Cuyx+n )

where Cx(i,j) = (i —j + 1) and Cy(4,5) = h(i — j + 1).
In baseband processing at receiver end, channel equalizer and
decoder are used to recover vg4 (or x), given y and x,. The
above system model is depicted in Fig. 1.

For conventional coherent receiver, channel estimation is
required before equalization, detection and decoding. Denote
ve = [y(1),y(2),.., y(k)}T’ hy = [h(1),h(2), ..., h(k)]T7
n; = [n(1),n(2),...,n(k)]”, and Cx a, as the first M, rows
of Cx. Then the first M, rows of eq. (5) can be expressed as

yu, = Cxpm,h+mpy,. (6)

With LMMSE channel estimation, the estimated channel can
be expressed as

h=(Cl) Cxn,+0D)7'Cy yu, 7)

{h(1)}E_, are obtained by downsampling R(t) * p(t) instead of h(t).
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Fig. 1. System model for IoT transceiver.

where I refers to as identity matrix. Denote the first M,
columns of C; as Cﬁ’p and the rest as Cf],d’ then LMMSE
equalizer gives

Xg = (Cg Chat 021)—1(:}{{ J—Chx). (8)
Here eq. (8) is based on the assumption that channel estimation
is accurate with the number of pilots M,, > 2L — 1. However,
things are significantly different when M,, < L, for which the
linear problem described in eq. (6) becomes ill-conditioned
with the number of unknowns L being larger than the number
of independent linear equations M,. To this end, different
channel estimation and equalization strategies are necessary.

III. PROPOSED EQUALIZATION AND DECODING

Blind equalization is well studied over decades. Many al-
gorithms including constant modulus (CM) and other adaptive
filter based algorithms can perform well for long messages.
However, one key difference between the scenarios of this
paper and others is that the length of transmitted signals are
short in this paper. This means that we do not have long
received signals to help us infer the CIR. Another difference
is that we have a small number of pilots which is not
enough to estimate channels properly. Besides, in underwater
acoustic communication, CIRs are usually sparse. Adopting
ideas from compressive sensing, the a priori information of
sparse channels helps us construct problems effectively.

A. Identifiability

Blind equalization is a special type of blind deconvolution.
Most blind (circular) deconvolution problems are not identifi-
able, and they can only be recovered up to a scaled and signed
shift version of the ground truth. For our specific problem, we
have the following proposition to guarantee the identifiability.

Proposition 1. The problem is identifiable with probability
approaching to 1, if the following conditions hold: (1) There is
no noise; (2) There is at least one pilot; and (3) The probability
measure function p(h € E) = 0 if M(E) = 0, where M is
Lebesgue measure.

Proof. Without loss of generality, we assume x(1) = 1 is
known. Suppose ambiguity exists, then there exist Cx,, Cx,
and hy, hs such that

y = Cx,h1 = Cx, ha. ©)

This means y € range(Cx,) N range(Cx,). Denote the
basis of range(Cyx,) N range(Cx,) as V = Cx, T. Then
all possible h; making ambiguity are in range(T).

Note that rank(T) < L. If rank(T) < L, then p(hy €
range(T)) = 0 by the third condition, since M (range(T)) =
0. If rank(T) L, then range(Cx,) = range(Cy,).
This means every vector in Cy, can be written as linear
combination of vectors in Cy,. Consider the first column of
Cx,, there exists a vector q such that

Cx: (5 1) = Cx,q.

Note that the indexes of non-zero entries in Cx,(:,1) are
{1,2,...,M}. If ¢(N) # 0 then the N-th entry of Cy,q is
non-zero, which contradicts to the fact that Cx,(:,1) has 0 at
the N-th entry. Therefore ¢(N) = 0. Then if ¢(N — 1) # 0,
since we have ¢(N) = 0, it will contradict to the fact that
Cx,(:,1) has 0 at the (N — 1)-th entry. Similarly, we can
infer that Vi > 1,¢(¢) = 0, and

sz(:vl) = Q(l)cx1(:’1)' (11)

Since we have pilot 21(1) = z2(1) = 1, the first columns
of Cy, and Cx, have to be same. Apply similar approach to
other columns of Cy, and Cx,, we finally conclude Cy, =
Cx,-

(10)

O

Apparently, many common types of distributions follow the
conditions in Proposition 1. However, these conditions are
sufficient but may not be necessary. For example, though we
generate entries of h as independent identically distributed
(i.i.d.) Bernoulli-Gaussian (BG) random variables [11] in
simulations, which violates the third condition, the problem
can still be identifiable for most of the time.

B. Optimization Problem Construction

Let matrix Y denote

y(1)  y(2) y(M)
y(2)  y(3) y(M +1)
=1 . : : (12)
y(L) y(L+1) y(L+M —1)
Then we construct an optimization problem as
1
“min——[[Yx|[},
X=[Xp;Xd] 4
st xq € {—1,1}Ma, (13)
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Fig. 2. Pruned tree search with at most 4 survival candidates at each level.

In eq. (13), x,, contained in x is known and fixed as pilots,
and we only optimize the objective function with respect to
Xg. In general, if x is the ground truth, Yx can be a good
approximation to h, because Yx = CLCyh + CIn can be
viewed as part of the signal h % Auto(x) plus noise, where
Auto(x) refers to as the auto-correlation of signal x. Since
elements of x can be viewed as independent random variable
in equalizer (without the knowledge of channel encoder), the
Auto(x) can be spiky, and h* Auto(x) preserves the sparsity
of h. [4-norm is used here to encourage sparsity and it is not
sensitive to noise compared with [y-norm [11, 12]. The [,-
norm is defined as

Vi, = (Z Jo(@)|™) /"

where v is a complex vector.
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Fig. 3. Example of Yx preserving sparsity of h.

Fig. 3 shows an example of Auto(x), ||h||;, and ||Yx],.
The black solid curve refers to as the auto-correlation of a
31-bits long BPSK signal x, which is spiky as we expected.
The blue circle stem shows the absolute value of CIR of a
31-bits long sparse channel h. The red diamond stem shows
the absolute value of signal Yx. If we viewed non-zero entries
with small values as noise in the bottom subfigure, sparsity of
h is preserved.
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}First Mp Levels

The feasible set {—1,1}M4 is discrete and non-convex, so
we relax it to its convex-hull [—1,1]™4 and form problem
min

x=[xp,%d]

st xg € [—1,1)Ma,

1
— Il
15)

Note that problems in eq. (13) and eq. (15) yield same
solution, because the objective function is strongly concave
almost everywhere, and local minimizers of a strongly concave
function over a closed convex set must be extreme points of
the set, and the set {—1,1}*¢ consists of all extreme points
of [—1,1]M4, Successive underestimation methods (SUM) are
often used to deal with concave minimization over convex sets
[13], however it involves vertices enumeration of polyhedral
sets. When a problem has relative large size, the computational
complexity of SUM becomes prohibitive. Therefore, gradient
descent methods are used here to find an optimal solution.

C. Initialization

An initialization close to ground truth makes gradient-
based algorithms more likely to converge to global minimum.
Here a pruned tree search algorithm [14-16] is proposed for
initialization. Denote y}, hy with definition in Section II, and

(1)

z(2)  z(1)
T : (16)
(k) x(k—1) (1)
we define the k-th subproblem in initialization as
i — X, hil? + Ao(h
XdER{Eirelex1 ||yk k k||l2 + p( k)
st. x4 € {-1, 1}Md (a7

where p(hy) is the penalty, which is necessary here, oth-
erwise one can easily find pairs of x; and hj; such that
llyr — Xihglli, = 0. We use the results of the M-th
subproblem as the initialization of our main problem in eq.
(15). The pruned tree search begins at the 1-st level and ends
at the M-th level, which is the bottom of the tree. At the k-
th level, each leaf node is extended into 2 new leaf nodes at
(k+1)-th level. Then with a chosen metric, we keep at most T
nodes at the (k + 1)-th level, where T is a pre-selected value.
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Basically, the larger the T, the better the error performance
of the algorithm. If T is large enough such that no node is
pruned, the algorithm is equivalent to exhaustive search. Fig.
2 gives an example of this process. In the figure, 1" is set to
4, so each level can preserve at most 4 survival leaf nodes.
Before the (Mp + 2)-th level (including Mp + 2), all survival
paths are preserved. At the (Mp + 3)-th level, 8 nodes are
extended from last level while only 4 can be preserved. The
(Mp + 4)-th level is in a similar process.

We use the following metric when pruning nodes. At the
k-th level, consider a leaf node z(k), and denote the path of it
from the 1-st level to the k-th level as [z(1),x(2), .., x(k)]T,
then the metric is computed as Ji(x(1),z(2),..,z(k)) =
miny, eckx ||yr — Xihi|[7, +Ap(hy). Note that we calculate
Ji with the knowledge of X}, which is associated with the
path to the node.

Since we have M, pilots, from the 1-st to the M,-th level,
there is only one path x,. At the bottom level, the path
with smallest metric Jj; is taken as hard output, and the
approximate log likelihood ratio (LLR) can be calculated as

LLR(z;) = érsli(I_ll) T (x(1),2(2), .., x(M))/o?

- mi{ll) T (x(1),2(2), .., x(M))/o?
x€S;

(18)

where S¢ refers to as the set of paths that survive at bottom
level such that (i) = a [14], and the LLR format is

given as LLR(z) = log(ggiiﬂg). The following algorithm

summarizes the pruned tree search process mentioned above.

Pruned Tree Search Algorithm
1: Initialize first M, levels of the tree.
2: for k from M, + 1 to M, do
3:  Extend the k-th level to have the (k + 1)-th level node
candidates.
4:  Preserve at most T nodes at the (k + 1)-th level with
smallest Jy,.
5: end for
: Output the x with smallest .Jy; as hard decision.
: Output the soft decision according to eq. (18).

~N N

After this process, the mean value of each x; can be
calculated with LLR(z;) as

exp(LLR(z;)) — 1
exp(LLR(z;)) + 1

E{z:} = 19)

and the value can be used as the initialization of problem eq.
(15).

D. Algorithm Convergence Analysis

For simplicity, denote Y, € CL*Mr ag the first M,
columns of Y and Y, € CE*Ma 35 the rest columns, so

we have Y = [Y,,Yy]. Then denote objective function
G(x) = —3[[Ypx, + Yux||},. Since x,, is known as pilots,

Y ,x, is a constant vector. Before showing any theoretical
results, we first make an assumption below.
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Assumption 1. Let x* be a local minimizer of G(x) on K =

[—1,1)M4, then Vi, %C;E’(‘;) # 0.

This assumption is quite reasonable. Because, if there exists
4 such that %ig‘)) |x=x+ = 0, we can move the point x* along
the ¢-th axis a little bit to let the objective function decrease
even though partial derivative along the ¢-th axis is 0, because
objective function has negative curvature almost everywhere.
Now we establish two lemmas and a theorem to describe the

convergence properties of the problem.

Lemma 1. Let x* be a local minimizer of G(x) on K =
[—1,1]M4. Define set

0G(z) ...
220 x* (i) < 0}

then gradient descent algorithm can generate a sequence
{di}32, that converge to x*, if the set

Q(do,x*) = {2z : Vi, (2() — do(2))(2(¢) — z*(i)) <0} (21)

is a subset of S(x*), i.e. Q(dg,x*) C S(x*), where dy is the
initial value.

S(x*)={z e K :Vi, (20)

Proof. See Appendix. O

Lemma 2. Denote the A = Re(Y) and B = Im(Y), and
define Ap, Ag4, B, and By in similar way defining Y, and
Y 4. Further, we denote a = Ax,, b = Bx,, ¥, = a+ Agx,
¥, = b+Byx, E, = [a, Ay] and B}, = [b, B,|. For arbitrary

X1,Xg € K, where K = [—1,1]M¢ we have
IVG(x1) = VG(x2)lli; < 7llx1 = x2lfs, (22)
where v is given as
7 =3||Adl3]1Zall% + 3IBal 3] E |3
+ 4[| Adl|2|[Ball2||Zalloc|[Zb |l (23)
+ | Adl3][Zs]13 + [Ball3] 2l |2
Proof. See Appendix. O

Theorem 1. Let x* be a local (global) minimizer of G(x),
then the gradient descent algorithm is guaranteed to generate
a sequence {d;}2, that converges to x*, if the initial point
dy satisfies

9G (x*)

where v is defined in Lemma 2.
Proof. See Appendix. O

Theorem 1 generally states that all points in the ball centred
at x* with radius described in eq. (24) can be guaranteed to
converge to x*.

E. Simulation Results and Analysis

In the simulation, we adopt the same parameters used in
PNNL’s fish-tag project for real-world IoT devices in under-
water acoustic communication systems. An entire transmitted
signal block has M = 31 bits, which include M, = 7 bits
barker code as pilots, My, = 16 bits for the information
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data, and M4, = 8 bits as the cyclic redundancy check (CRC)
bits. The block structure is shown in Fig. 4. At receiver end,
a syndrome decoding is used after equalization to give final
results.

Pilots

Data bits ~

8 CRC bits

7 Barker bits 16 information bits

Fig. 4. Block structure used in the underwater animal tracking project.

—— LMMSE_15
—8— Tree_15
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- X7- - LMMSE_31

= - - Tree_31

- .IA-Norm OPT_31

102

0 5 10 15 20 25 30
SNR(dB)

Fig. 5. BER comparison with length of CIRs being 15 and 31.

. ---vwv‘-v-v-%-v—v-v-v—

™ 5

BLER

CMA_15
—%— LMMSE_15
107" | —a— Tree_15
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CMA_31
- %7- - LMMSE_31
= €~ -Tree_31
- .I4-Norm OPT_31

0 5 10 15 20 25 30
SNR(dB)

Fig. 6. BLER comparison with length of CIRs being 15 and 31.

Fig. 5 and Fig. 6 show bit error rate (BER) and block error
rate (BLER) performance comparison among four algorithms
followed by syndrome decoding: CMA, LMMSE, pruned
tree search and l/4-norm optimization with pruned tree search
initialization. In these two figures, the entries of channels
are modeled as i.i.d. BG random variables with parameter as
¢ = 0.2, i.e. for any k, the k-th entry of h

h(k) = w(k)o(k) (25)
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where w(k) ~ Ber(¢) and (k) ~ CN(0,1). Here Ber(¢)
refers to as Bernoulli distribution with Pr(w(k) = 1) = ¢.
We model channel as eq. (25) because underwater channels
are often sparse [17]. Apparently, the smaller the ¢, the sparse
the channel we modeled.

According to Fig. 5 and Fig. 6, we can see the CMA
performs poorly in this parameter setting, because only a small
number of bits are transmitted. The CMA basically adjusts the
linear equalizer coefficients based on the error of estimated
signal envelopes. If a large number of received symbols are
given, the empirical loss calculated by these symbols can
accurately approximate the true loss of CMA, which is the
expected error of estimated signal envelops. Unfortunately, the
received symbols are too few to support CMA. LMMSE also
performs poorly, since it can only estimate first M, = 7 taps
of CIR according to eq. (6) 2.

The square-marked red curves are corresponding to the BER
and BLER of pruned tree search initialization proposed in
Section III-C. We choose p(hy) = |[hg||7,, simply because
it yields explicit expression for Jg, i.e.

_ : _ 2 2
o= min lys —Xehillz, + Ml

= Ay (X Xy +AD My (26)
As we can see, the pruned tree search performs much better
than the other two. The star-marked blue curves show the
performance of the proposed [4-norm optimization with pruned
tree search initialization, and its performance is better than the
other three. Note that, to reduce computational complexity, we
first check the hard output of tree search initialization. If it
passes the CRC check, we directly output it as final result,
otherwise we use estimated mean values given by eq. (19) to
initialize the /4-norm optimization to perform equalization and
then decoding.

100\ 7 T T : - : €

; e a gk sk AR
—”V-

o Bm--B---g---O---E---

== _‘,___-q:«-—--é——**=*;——¢

CMA_BLER

- ¥/~ - MMSE_BLER

= - - Tree_BLER

- -#--|,-Norm OPT_BLER
CMA_BER

—7— MMSE_BER

—8— Tree_BER

—— I4-N0rm OPT_BER

I T T

15 20 25 30 35 40 45 50

BLER and BER

Fig. 7. BLER and BER with different L at SNR 30 dB.

2In conventional communication systems, M,, pilots can only estimate at
most (Mp + 1) /2 taps of CIR with linear methods. However, in this system,
they can estimate M, taps with linear methods, since the head of received
signal y is used. Note that, in eq. (6), Cx, M, is a lower triangular matrix
which contains only pilots.
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In simulations, signal-to-noise ratio (SNR) is defined as

[Ihl]7,
o2

SNR = 10log;, 27
At the same SNR, algorithms perform better when length of
CIRs are shorter, because inter-symbol-interference (ISI) is
weaker. Without surprise, simulation results in Fig. 7 show
lower BLER and BER with short CIRs.

10° w ‘ : & & =
\4 v

__.v_-_v--’V""V‘"JV"_V_--‘

- * - 4
-l m T -a---0
P e CMA_BLER
o —7— LMMSE_BLER
* - —&8— Tree_BLER
. —a— |, -Norm OPT_BLER

» CMA_BER
4 - X7- :LMMSE_BER
’ = - Tree_BER
’ - -#-.1,-Norm OPT_BER

BLER and BER

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0]

Fig. 8. BLER and BER under different ¢ with length-15 CIR at SNR 10 dB.

Fig. 8 shows the change of error performances with respect
to different value of sparse parameter ¢. In the simulation,
the length of CIR is chosen as 15 and SNR is set as 10
dB. According to Fig. 8, the pruned tree search initialized
l4-norm optimization performs much better with smaller ¢,
which means the channel is sparse. When ¢ grows larger, its
performance gradually degraded.

IV. DATA PROCESSING AND RESULTS

The real-world data are from an underwater animal tracking
project developed by PNNL. In this project, carrier frequency
is f. = 416.667 kHz, sample frequency is fs = 2.5 MHz, so
the sample duration is Ts = 1/f; = 0.4 us, and bit duration
is T, = N T, where Ny, = 60 refers to as the number of
samples for each data bit. Each transmission block contains
M,, = 7 bits barker code as pilots, M; = 24 data bits. Among
the M, = 24 data bits, My, = 16 are information bits, and
the rest My, = 8 bits are CRC bits.

The pulse shaping filter is given as >

(t) . 1, 0<t<Ty
P = 0, otherwise.

Each recording contains N; = 40,960 samples, equally
16,400 ps, and signals may appear anywhere in the recording.

(28)

3The original IoT devices and signals were designed with limited energy
constraints and complexity which are not necessarily optimal in terms of
conventional communication pulse shaping.
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A. Block Synchronization

In each recording, we need to know when the desired signal
begins. The desired signals are not necessary to appear at
any fixed time or sample indexes, so block synchronization
is necessary after coherent demodulation (i.e. remove carrier
frequency).

Due to the fact that pilots are short, CIRs are long and
sparse, conventional block synchronization does not work
properly, therefore we propose a new method to perform block
synchronization [18, 19].

Denote the baseband barker signal as

MP
bbarker(t) = Z zp(i)p(t — (i — 1)T5) (29)
i=1
and the T sampled baseband barker signal as vector by ke €
RMpNsx1 ety € CNt*1 denote the recording after coherent
demodulation, which is T sampled. Then for an index ¢ to be
the starting position, it must satisfy following two conditions.
First, a shape condition is given by

Hbléqarkery(i R MPNS 7 1)”[2
bearkerleHS’(i ti+ MpN,s — 1)Hl2

where 7; is a chosen parameter. Note that energy is nor-
malized for §(i : ¢ + M,Ns; — 1) instead of §, so only
shapes of the signals are considered. Indexes satisfying this
condition turn out to be consecutive groups, for example
[{1,2,3},{8,9,10,11,12},{40}]. We choose the index at
center of each group as candidates which are [{2}, {10}, {40}],
since they are often the ones with highest correlation values
in its group. Second, an energy condition is given by

1
MN,

This means that energy of length-M N signals starting from
should be higher than a chosen threshold 7 times the average
energy of the recording. With these two conditions, we can
narrow down starting positions of signal to a few possible
candidates.

>m (30

o 1.
[F(i:i+ MNg— 1|, > anIIYIIzT (3D

B. Frequency Shift Error and Initial Phase Estimation

In this subsection, we use received pilot signals, i.e. ¥(i :
i+ M,N; — 1) where i is a starting position of transmitted
signals, to estimate frequency shift A f and 6. We consider the
case that pilots are much shorter than the delay of channel, so
we assume that no echo begins during pilots. Denote yyurier
as the vector generated by downsampling y (i : i + M, N; —1)
by Ns, then we have symbol-spaced received pilot signal,

Ybarker (n) = Axp(n)ej(27rAf(n_1)Tb_9) + W(’n) (32)

where w(n) is the noise and A > 0 is the amplitude of
channel’s first tap. Consider the phase difference between
Ybarker With x,,, we have

/ Yvarker (n)

%, (7) =21Af(n —

VT, — 0+ /w.  (33)
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Denote A/x,(n) = £¥terker() apq

xp(n)
0 -1
27TTb -1
U= ) ) (34)
2r(n— 1)1, -1
Write eq. (33) in matrix form, we have
Asx,=U [Aof] + 4w (35)
With zero-forcing (ZF), we estimate A f and 6 as
[Aef } = (UTu)~'uTAzx,(n). (36)

After compensate the frequency shift error and initial phase,
the sampled signal y is used for equalization and decoding.

C. Equalization and Decoding

In this project, we assume maximum length of the CIR as
L = 31. We roughly estimate noise variance o2 by calculating
the average energy of samples before the first start position.

Before equalization and decoding, we first make a hard
decision on y to have x. Then we check if X passes the CRC
and the correlation between signal by and M N, samples of
y after start position ¢ being larger than a threshold 7, i.e.

b5 (i i+ MN, —1)||;,

ballLl3G i+ N, I, ~ O
where by is given by
M
be(n) = @(i)p(nTs — (i — )NJTL).  (38)
=1

If both conditions are satisfied, we directly output X as the
final result, otherwise we perform equalization and decoding
mentioned in Section III-E to give final results.

D. Data Processing Results

To demonstrate the efficacy of our new algorithm, two
groups (G1, G2) of IoT data were processed by the following
five algorithms: 1) raw detection (no equalization or decod-
ing); 2) syndrome decoding only; 3) CMA equalization and
syndrome decoding; 4) LMMSE equalization and syndrome
decoding; and 5) our proposed new equalization and syndrome
decoding. Each group of the data contains 14, 000 recordings.

The successful detection rates of these five algorithms are
listed in Table I, which can draw three clear observations: a)
the syndrome decoding algorithm provides better results than
raw detection, which has no surprise; b) CMA equalization
plus syndrome decoding and LMMSE equalization plus syn-
drome decoding lead to degraded performance compared to
syndrome decoding only, since signals output from CMA and
LMMSE equalizers are far from the ground-truth such that
the number of errors is larger than correction capability of
the channel codes; c¢) our new equalization and syndrome de-
coding algorithm provides significantly improved performance
compared to syndrome decoding only.
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TABLE I

COMPARISON OF SUCCESSFUL DETECTION RATE.

Items G1 G2
Raw Detection 13.64% | 48.01%
Decoding-Only 21.94% | 55.98%
CMA and Decoding 16.47% | 49.81%
LMMSE and Decoding 20.21% | 51.53%
New Equalization and Decoding | 31.31% | 66.07%

E. Example A

Fig. 9 gives an example of intermediate results for process-
ing a data recording. The top subfigure in Fig. 9 shows the ab-
solute value of the baseband recording. The middle subfigure
gives correlation between the baseband recording and barker
code signal according to left hand side of eq. (30). After check
the energy condition according to eq. (31), the algorithm gives
4 possible starting positions as {11513,12102, 12696, 13489}.
We takes the first one (11513) as an example, which is
highlighted by a red circle. As we can see it is a very high
peak of correlation which means the baseband signal start there
looks similar to barker code signal. The noise power o2 was
estimated by samples between positions 0 and 11513.

Then frequency shift error and initial phase are estimated
and compensated according to Section IV-B. The Doppler shift
is estimated as 193 Hz. After that the signal in the red block
in top subfigure is shown in the bottom subfigure, which has
31 bits duration. In the subfigure we can clearly recognize the
7 bits barker code and some bits following them. However,
the amplitude of signal changes a lot after the 8-th bit, and
the shape of signal for each bit looks very much different
from rectangular pulse shaping filter used in this project.
Apparently, some echoes come in after the 8-th bit.

Then the signal in bottom subfigure and following L — 1 =
30 bits signal after it are downsampled to get y. After that,
the algorithm first check if the first 31 entries of y (the hard
decision in bottom subfigure) pass CRC and it turns out to be
not. Then proposed equalization and decoding is applied to
give final results.

Fig. 10 gives the estimated CIR with the final decoding re-
sults. Strong echo peaks appear at {9, 11, 19}-th bit positions,
which is compatible with the observation in bottom subfigure.

F. Example B

The Fig. 11 gives another recording example. Apparently,
the signal is very clean at beginning, and the block synchro-
nization finds the starting position of signal accurately. The
Doppler is estimated as 80 Hz. However, some echoes come
in at the 10-th symbol position, which makes signal after the
10-th symbol awkward. Then we use the proposed methods to
process the signal, and finally get decoded signal pass CRC.
The CIR inferred from decoded symbols is given in Fig. 12.

It is important to point out that the CIR of examples A
and B are longer than the pilot length, conventional channel
estimation approaches are not able to estimate the channel,
therefore reliable data detection becomes impossible by con-
ventional communication algorithms. Furthermore, due to the
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short length of signals, blind equalization is not possible either
to detect the information data.

V. CONCLUSION

We considered the scenario of short message transmis-
sion with IoT devices in underwater acoustic communication,
where the length of pilots is shorter than the channel impulse
response. This makes conventional channel estimation and
equalization incapable of detecting the information data. In this
paper, we proposed a novel channel equalization and decod-
ing algorithm to combat severe frequency selective channels.
Inspired by strategies in blind deconvolution and compressive
sensing, we constructed a non-convex optimization problem
and developed a method to find good initialization. By solving
the non-convex optimization problem we made very good de-
tection on signals. In additional, a complete procedure of real-
world data processing are illustrated in this paper, including
block synchronization, frequency shift error estimation, and
proposed equalization and decoding methods. Our proposed
new algorithm was utilized to process 28,000 fish-tag data
recordings, the results showed that our proposed algorithm
provides significant advantage on data detection performance.

APPENDIX A
PROOF OF THEOREM 1

A. Proof for Lemma 1

Proof. Suppose dj, € S(x*) at the k-th iteration, then at (k+
1)-th iteration, gradient descent gives

dit1 =dp — apVG(di) © vy (39)

where © refers to as element wise multiplication, a, is step-
size such that dg4; will not exceed boundary (o is usually
chosen as a constant. If d;y; exceeds the boundary, then
choose «ay, such that diy; is on the boundary), and v is
a vector indicating whether the corresponding boundaries are
active. The i-th entry of vy is 0 if di(i) € {—1,1}, and is 1
if di(3) ¢ {—1,1}.

Since dj, € S(x*), we have
2™ ()dy (1) < " (1) dr41(1) < 1. (40)
This implies that for all ¢, there exists §; € [0, 1] such that
2" (1) di41 (1) = Bix™ (i)d (i) + (1 = Bs).- (41

Multiply z* (i) with both sides of eq. (41) and note the fact
2*(i)? = 1, we have

di+1(1) = Bidi (i) + 2" (0)(1 — B;) (42)
which implies that dx11 € Q(dg,x*). Therefore
dpy1 € Q(dry1,x") € Q(dg, x*) C ... € Q(do,x"). (43)

So far we have proved that {d;}?°, are bounded. Then
we consider the sequence {x*(i)di(i)}3>,. The sequence
{z*(i)dr (i)}, is bounded since {dj};°, is bounded,
and it is non-decreasing according to eq. (40). Therefore
{z*()di (i)} 72, converges. Since Q(do,x*) is closed and

bounded, z*(4) %lei?f)) has minimum larger than O for all i.
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Therefore the only way to make {x*(i)d(i)},, converge
is v,(i) = 0, which means all boundaries are active, so
{dg(2)}32, converges to x*.

O

B. Proof for Lemma 2

Proof. With previous definition, the objective function G(x)
can be written as

Gl = 1122+ w7 (44
where (.)©? refers to as element wise square. The Hessian
matrix of G(x) is give by eq. (45). Denote spectral norm of a
matrix as ||.||2, then we have an upper bound of ||V2G(x)||2
given by eq. (46). In the derivation of eq. (46), we use the fact
that for any matrix P and Q

P+ Qll2 < [[Pll2 + [IQl]2 (48)
IPQl2 < [[P]]2]|Q][2. (49)
Note that
||diag(®a)ll2 < [|Zalloo (50)
||diag(®s)[l2 < [|Z][ (51)
where ||.||o is defined as
(52)

IP[loc = mgX(Z [P (i, 4)])-

The reason why eq. (50) and eq. (51) hold is that x €
[~1,1]M4, Then from eq. (46), we can further have eq. (47)
by eq. (50) and eq. (51). Denote ~ as the right hand side of
eq. (47). Then by mean value theorem, for any x; and Xo,
there exists 5 € [0,1] and X = x; + (1 — 8)x2 such that

VG(x1) — VG(x2) = V’G(X)(x1 —%2).  (53)
Therefore we have
IVG(x1) = VG(x2)l1, < |[V2G(X)[2lx1 — x|, (54)
< llx1 = %2l
O
C. Proof for Theorem 1
Proof. For any d such that eq. (24) holds, we have
IVGida) ~ TG <911 =l <minf| 520}
(55
where first inequality is due to Lemma 2. Therefore we have
. 0G(x*) 0G(do) (56)

" 9xr (i) 9dy(i)
Since x* is a local minimizer, with Karush-Kuhn-Tucker
(KKT) conditions satisfied, we have

CO0G(x*) .
Vi, 92 (0) x* (1) < 0.

(57)
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V?G(x) = — [2(A] diag(¥,) + Bj diag(P;)) (A diag(¥,) + B diag(¥;))"

+ Agdiag(\Ilflw)Ad + Agdiag(\IIZ?Q)Ad + Bgdiag(\ll;y)Bd + Bdeiag(\Il,?2)Bd}

(45)

IV2G(x)|l2 <|[2(Ag diag(®,) + By diag(®,)) (A diag(¥a) + B diag(¥s))" |2
+[|A7 diag(TF?) Adllz + ||AG diag(¥;%) Agl|2 + | Bg diag(¥5?)Byl |2 + || By diag(¥*) Byl 2

=2||A] diag(¥,) + B} diag(¥,)||3

+ || Ag diag(Pa)[[3 + ||Ag diag(Ls)[|3 + B diag(¥a)[[3 + || B diag(s)[[3

<2(||AT diag(®,)||2 + ||BY diag(®y)||2)?

(46)

+ [|AG diag(®o)|I3 + ||Ag diag(®y)[[3 + B diag(®,)[|3 + [| B diag(¥y)|[3

IV2G()ll2 < 3l Adl3lIZall3, + 3l1Ball3]|Zs]15 + 41| Adll2lBall2l|Zal ool [Bb]loo + || Adl 3113 + [[Ball31IZall3

(47)

Combine eq. (56) with eq. (57) we have

. 0G(dy) .
Vi, ——=a" (i) < 0. 58
b Bdot) & W %)
This implies that
. 1 . 0G(x*) .
{do : [|[do — x"[]s, < ;m;n{lml}} C S(x). (59
For any point z € (dg, x*) we have
ldo — x|, = [|z = "3, )
=||z — dole2 —2(z —do)"(z—x*) > 0.
% . OG(x*
Therefore ||z — x*||;, < %mmiﬂ 8i£(i))|}’ SO
. . 1 . [ 0G(x")
Q(do,x") C {do : [[do — x|z, <j;ngn{kggz@yﬁ}}
(61)
By eq. (59), we have
Q(do,x*) C S(x") (62)
and by Lemma 1, dg is guaranteed to converge to x*. O
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