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This paper proposes a new method to simultaneously estimate the locations and magnetic moments of multiple magnetic dipole
sources without the prior knowledge of the number of dipoles in the 3D detection region. By initializing a large number of dipole
sources evenly spaced in the detection region as potential candidates for the true dipoles, we introduce an indicator parameter
for each dipole candidate, such that its Sigmoid function is the probability that the candidate converges to a true dipole. A joint
optimization is then formulated to minimize the mean square of the regularized error between the measured magnetic gradients and
the calculated gradients from the estimated dipoles. The proposed nonlinear optimization is solved by the Levenberg-Marquardt
algorithm, yielding the indicators and their corresponding dipole locations and magnetic moments. The implementation details are
also provided, such as using multiple initialization schemes to avoid local minima, selection of measurement points and candidate
locations to avoid the “high-wall effect”, and the need of preprocessing measurement data to avoid interference. Extensive simulations
are conducted to investigate the effects of parameters, noise and interference on the detection performance, and the results show
that the proposed algorithm is robust in different scenarios as long as the total number of measurements is larger than the total
number of unknowns in the optimization problem. When the false alarm rate is set at 5× 10−2, the proposed algorithm achieves
Recall of 0.91, 0.86, and 0.78 for the number of true dipoles being N = 2, 4, 6, respectively. and the performance is robust against
external interference and parameter selections.

Index Terms—multiple magnetic dipole detection, unknown dipole quantity, nonlinear optimization, high-wall effect.

I. INTRODUCTION

EFFECTIVE detection of magnetic sources has found
important applications in underground and underwater

object detection, vehicle tracking, navigation, and biomedical
engineering [1]–[5]. Although magnetic sources in practice
come with various shapes and sizes, a source can be treated
as a dipole when the largest physical dimension of the source
object is much smaller than the distances between the object
and the measurement points [6], [7]. In most practical scenar-
ios of magnetic sources, this condition is well satisfied and
the dipole source assumption is usually adopted in practice.

Different from the active detection techniques that use
either electromagnetic [8], [9] or acoustic signals, this research
concerns the passive methods where the magnetic field is only
passively measured in the receiver without active transmission.
Therefore, simultaneous detection of multiple dipole sources
becomes challenging because the magnetic fields of multiple
sources are overlapped and field strength varies nonlinearly
with the distance between the source and the measurement
point. Separating the individual sources becomes a nonlinear
deconvolution problem.

The methods of detecting a single dipole have been well
developed in the past few decades [10]–[13]. A static dipole
source has five independent gradient tensors and 3-D per-
pendicular measurements at more than two remote locations
can usually solve for the 3D location coordinates, as well as
the magnetic field strength and gradient tensor components.
Yoshii [10] takes measurements from a fixed array of three
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or four magnetometers, and computes the source location by
solving the original high-order magnetic field and gradient
models through transformation of unknowns and dimension
reduction. Wynn [11] and Heath [12] propose a potential field
inversion method to estimate the source location and magnetic
properties from measurements of 3D magnetic gradients and
Total Magnetic Intensity (TMI). The eigenvalues derived from
TMI measurements are used to eliminate the ambiguous
solutions due to nonlinearity. Reid [13] proposes a magnetic
interpretation method in 3D using Euler deconvolution. This
method is later improved in [14]–[16], where the 3D co-
ordinates of the source dipole are solved directly using the
relationship among the magnetic field vector, gradient tensor
matrix and a structural index. The shortcomings of the Euler
deconvolution method include the sensitivity to noises and
the limitation that the 3D moments of the source cannot be
estimated together with the coordinates. Teixeira [17] then
adds an extra equation derived from eigen-analysis of the
gradient tensor as a constraint to the solution of [14], and
achieves better noise rejection.

The existing researches for detecting multiple dipole sources
take three different approaches. The first approach is to
generalize the single-source Euler deconvolution method to
multiple-source situations by Hansen and Suciu [18]. This
method requires taking high-order derivatives of the field,
thus depending more on data quality. The second approach,
as in [19] and [20], applies the Werner algorithm [19] to 3D
multiple-source detection, which uses the thin-dike assumption
to linearize the complex nonlinear magnetic field equations
and leads to linear matrix inversion for deconvolution. Its
advantage compared with the multi-source Euler deconvolu-
tion method is that the Werner method requires the first-order
derivatives only regardless of the number of sources, thus has
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lower noise sensitivity. However, the Werner deconvolution
method is incapable of estimating the dip angle or suscepti-
bility of the sources.

The third approach to multi-source detection uses nonlinear
optimization which minimizes the mean square error between
the measurements and the reconstructed magnetic field from
the estimated source locations [21]–[23]. The Levenberg-
Marquardt (LM) algorithm is often used to solve the nonlinear
optimization, but the challenge is that the solution is easily
trapped in local minima. Several methods have been utilized to
solve the nonlinear optimization problem. He et al. [5] uses a
set of random vertices to initialize the LM algorithm and calls
it the random complex algorithm. Hu et al. [22] combines
the hybrid of Particle Swarm Optimization (PSO) and the
immune clone algorithm to provide an initial guess for the
LM algorithm to search for the global optima. Hu et. al. [23]
proposes another initialization method using the single-source
Euler deconvolution method to estimate the initial locations of
the dipole sources. For all these existing works, the number
of sources is assumed to be known a priori and some also
assume other prior knowledge about the sources, such as the
magnetic moments or magnetization.

In this paper, we assume that the exact number of true dipole
sources is unknown, but only an estimated maximal number
of sources is available. We use a large number of initial dipole
candidates and introduce a new indicator for each candidate.
The Sigmoid function outputs of the indicators become the
probabilities that the corresponding dipole candidate converges
to a true dipole source. We then propose a new joint optimiza-
tion method to solve for the 3D locations, magnetic gradients,
and indicators of the dipole candidates by minimizing the
mean squares of a regularized error between the measured
and the estimated gradients from the candidates. The novelty
of the proposed regularization term is that it encourages the
nonlinear optimization to learn whether the candidates are
true or false dipole sources while learning their locations and
magnetic moments simultaneously.

The proposed nonlinear optimization problem is solved by
the Levenberg-Marquardt algorithm with multiple initializa-
tion schemes to improve the chance of reaching the global
optima. Through extensive simulations, we also discover the
“high-wall effect” related to the measurement paths and selec-
tion of initial dipole candidates. The high-wall effect occurs
when the measurement points form paths that separate the
detection region into several sub-regions and if no initial
candidates fall into the sub-region of a true dipole, then the
cost function will increase along the measurement paths when
some candidates try to pass the paths to converge to the true
dipole. Therefore, the good strategy is to spread the initial
candidates into every sub-region and it is easily incorporated
in the random re-initialization step in the LM algorithm.

Extensive simulations are also conducted to evaluate the
performance of the proposed algorithm under different param-
eters and noise/interference settings. To avoid underdetermined
system solutions, the 5 independent gradient components are
measured at each point in the detection region and the number
of measurement points shall be no smaller than 7Nini/5
with Nini being the number of initial dipole candidates,

which is chosen to be slightly higher than the maximum
number of true dipoles. The proposed algorithm achieves high
rates of precision, recall, and accuracy when the number of
initial candidates and/or the number of re-initialization sets
increases. Meanwhile, the normalized mean absolute errors
of the estimated locations and moments of the true positive
dipoles also increase as the detection accuracy increases. The
proposed algorithm is also robust against background noises
and non-ambient interference such as other magnetic sources
and live electrical wires. The proposed algorithm outperforms
the existing multi-source detection algorithms [22], [23] even
though the prior information such as the number of true
dipoles and/or the magnetic moments of sources are kept
unknown to the proposed algorithm but are fed to [22], [23].
We also investigate the effect of dipole approximation of real
3D sources and find that the performance degradation of the
dipole approximation is negligible when the size of the sources
is smaller than 10% of the distance between the measurement
points and the sources.

II. PROBLEM STATEMENT

Let a magnetic dipole be placed at the origin of a Carte-
sian coordinate system. The magnetic field generated by the
magnetic dipole at point (x, y, z) is calculated as

B =
µ

4πr5

 3x2 − r2 3xy 3xz
3xy 3y2 − r2 3yz
3zx 3yz 3z2 − r2

M (1)

where B = [Bx By Bz]
T is the magnetic field vector, M =

[Mx My Mz]
T is the magnetic moment vector of the dipole,

and r2 = x2 + y2 + z2. The permeability parameter is µ =
µr · µ0, where µr is the relative permeability of the medium,
and µ0 = 4π × 10−7T ·m/A is the magnetic permeability of
the air. The magnetic gradient tensor matrix is then

Gt =

 Gxx Gyx Gzx

Gxy Gyy Gzy

Gxz Gyz Gzz


=

 ∂Bx/∂x ∂By/∂x ∂Bz/∂x
∂Bx/∂y ∂By/∂y ∂Bz/∂y
∂Bx/∂z ∂By/∂z ∂Bz/∂z

 (2)

which contains only five independent components, because
Gxy = Gyx, Gxz = Gzx, Gyz = Gzy , and Gxx+Gyy+Gzz =
0. If there are multiple dipole sources in a region, the magnetic
field and gradient vector measured at a point in the region is
simply the sum of the individual source measured at the point.

In real applications, B and Gt are usually available via
measurements and the relationship between them and the
relative positions of the sources are strongly nonlinear. To
avoid the shortcoming that the magnetic field is easily polluted
by environmental noises, we use only the five independent
components of the gradient tensor in this research. If gradient
is measured at J positions in a region, then the gradient vector
has 5J elements

G = [G1 G2 ... Gj ... GJ ] (3)

where Gj = [Gxx,j Gxy,j Gxz,j Gyy,j Gyz,j ] contains five
independent gradient elements at the jth measurement point.
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Fig. 1: Curve of the Sigmoid function.

Thereby, the problem of finding the locations and moments
of the dipole sources is usually formulated as a minimum mean
squared error problem

X∗ = argmin
X

[G− g(X)][G− g(X)]T (4)

where X is the vector containing all the parameters of the
dipole sources, and g(X) is the function for computing the
gradient vector at the measurement points using the estimated
X , and it is derived from (1) and (2). Assume the number of
true dipole sources is N , then the commonly used parameters
in X are

X = [X1 X2, · · · ,XN ] (5)

and

Xn = [xn, yn, zn,Mx,n,My,n,Mz,n] , 1 ≤ n ≤ N (6)

Obviously, the dimension of X increases linearly with the
number of dipoles. The moments Mx,n,My,n and Mz,n can be
randomly initialized without significant effect on optimization
results. Note that most of the existing works [21]–[23] in
dipole source detection assume that N is known a priori.
However, this assumption maybe invalid in practice, and the
optimization of (4) may result in poor estimation if the number
of dipole sources is wrong.

III. NONLINEAR OPTIMIZATION METHOD

To avoid using the trial and error method to estimate the
number of dipole sources, we propose a joint optimization
method that simultaneously determines the number of dipoles
and their related parameters. Let Nini and Nmax denote the
initial guess and the possible maximum number of dipoles,
respectively. Then the actual number of dipoles satisfies N ≤
Nmax. Let Nini ≥ Nmax, we construct a new parameter vector
X = [X1, · · · ,Xn, · · · ,XN ini] where

Xn = [xn, yn, zn,Mx,n,My,n,Mz,n, cn] (7)

The new parameter cn is the input to the Sigmoid function
which converts the parameter cn into the probability that
the nth candidate Xn is a true dipole source. The Sigmoid
function, as shown in Fig. 1, is defined as

f(cn) =
1

1 + e−cn
(8)

with cn ∈ (−∞,∞).

Clearly, if cn > 5 , then f(cn) ≈ 1 indicating that the nth
dipole candidate converges to a true dipole almost surely. If
cn < −5, then f(cn) ≈ 0 indicating that the nth candidate
is a false source and shall be removed from the initial set.
The Sigmoid function is globally differentiable and requires
no constraints for cn in the optimization problem defined later
in (13). Also, the derivative of the Sigmoid is large when cn
is close to 0. This helps the LM algorithm which solves (13)
converge fast.

One problem of using the new parameter set for the
MSE minimization is that both the Sigmoid function and
the moment vector M are linearly related with the mag-
netic gradients. This means that the two parameter sets
[Mx,1,My,1,Mz,1, c1] and [Mx,2,My,2,Mz,2, c2] will pro-
duce the same gradient data when [Mx,1,My,1,Mz,1] =
u[Mx,2,My,2,Mz,2] and f(c1) = f(c2)/u, for u > 0. To
avoid this problem, we propose a new objective function as

Φ(P) = ||[ϕ(P1), · · · , ϕ(Pj), · · · , ϕ(PJ)]||2 (9)

where || · || is the L2 norm of a vector, Pj denotes the jth
measurement point, and

ϕ(Pj) = [ϕ1(Pj), · · · , ϕk(Pj), · · · , ϕ5(Pj)] (10)

in which k indicates the kth independent gradient component
measured at a point, and

ϕk(Pj) =

∣∣∣∣∣Gk,j −
N ini∑
n=1

f(cn) · gk,j(Xn)

∣∣∣∣∣+λ · |Gk,j | ·p(f(C))

(11)
where Gk,j is the kth component of the gradient vector Gj ,
and gk,j(Xn) is the computed gradient component generated
by the nth estimated dipole at the jth measurement point.
The vector C = [c1, c2, · · · cN ini] is the collection of the
indicators, λ is a positive constant set as 0.01 in this research,
and p(f(C)) is a regularization term formulated as

p(f(C)) =
N ini∑
n=1

f(cn) · (1− f(cn)) (12)

Obviously, (12) is the sum variance of the Bernoulli vari-
ables f(cn), and the output of (12) will be 0 only when
f(cn) = 0 or 1 for all n. The regularization term encourages
the optimization process to learn whether the dipole candidate
is a true or false source. The dipole detection and estimation
problem is formulated as

X∗ = argmin
X

Φ(P) (13)

The Levenberg-Marquardt (LM) algorithm is used to solve
this nonlinear optimization problem. The LM algorithm is a
widely used nonlinear least square algorithm and combines the
advantages of gradient method and Newton method [24]. The
nonlinear Least Squares problem in (13) has 7Nini unknowns,
and the total number of independent gradient measurements
is 5J . Therefore, the number of measurements shall satisfy
5J ≥ 7Nini to ensure unique solutions.

Although it is common sense that the measurement points
shall be uniformly spread in the detection region, the practical
implementation may constrain the measurement points along
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Fig. 2: Illustration of “high-wall effect”. For (a) and (b), the
dipole is located at (0,0,0) m and Mx = My = Mz =
2000Am2. The measurement points are spaced on a straight
line from (0,0,5) m to (20,0,5) m. For (c) and (d), the red
circle represents the true dipole at (20,35,0) m. The blue circles
are measurement points. The red points represent the possible
initial locations of the dipole candidates on the other side of the
measurement path. The 3D surface in (d) indicates the values
of (9) computed using the corresponding estimated dipoles.

some paths as is often done by vehicles. We discover through
extensive simulations that, measurements aligning on a path
may lead to a detrimental effect in solving (13). We call
this the “high-wall effect” which occurs when the true dipole
and initial dipole candidates are located on two sides of the
measurement path. In this scenario, the cost function of the LM
algorithm becomes very high as the locations of the estimated
dipoles try to cross the measurement path to approach the
true dipole location. The “wall” of the cost function is caused
by the rapid increase of the computed magnetic gradient
intensity. As the LM algorithm moves the estimates closer to
the measurement point, the MSE increases rapidly and the LM
algorithm would terminate without converging. The high-wall
effect is demonstrated in Fig. 2.

If the measurement points form a line between the true
dipole location and the initial locations of all the dipole
candidates, then the dipole candidates have trouble to pass
the line to reach the true dipole. This is because the estimated
gradient intensity will increase and result in a large objective
function (9). This conflicts with the minimum MSE principle
and terminates the optimization without convergence. Thereby,
the measurement points selected in the detection region shall
avoid forming a closed loop. If the measurement paths divide
the whole region into separate parts, then a sufficient number
of dipole candidates shall be initialized in each of the divided
sub-regions.

Algorithm 1 Joint Optimization of the Number of Dipoles
and Their Parameters
Require:

Q – the number of dipole initialization schemes (Q ≥ 1);
Nini – the number of initial dipole candidates;
D = {D1,D2, · · · ,DQ} – the Q sets of initial 3D
positions of dipole candidates uniformly distributed in the
detection area;
cn = 5 – initial indicators for n = 1, · · · , Nini;
α ∈ (0, 1) – scaling factor for rejecting a solution;
β ∈ [0.4, 1) – threshold for binary (true/false) decision;

1: for q = 1 : Q do
2: Select Dq as the dipole initialization scheme, solve (13)

using the Levenberg-Marquardt algorithm;
3: With the optimal X∗, estimate the (5J)-dimensional

gradient vector Ĝ = [Ĝ1, · · · , Ĝj , · · · , ĜJ ], where
Ĝj = [Ĝxx,j , Ĝxy,j , Ĝxz,j , Ĝyy,j , Ĝyz,j ]

T;
4: Compute the L2 norm ||∆G||2 where ∆G = Ĝ −G,

and G is the measured gradients;
5: if ||∆G||2 ≤ α||G||2 then
6: Accept the results of X∗, and set q = Q;
7: end if
8: end for
9: Remove all n in X∗ whose coefficient f(cn) < β;

10: Return X∗.

Another problem of the LM algorithm for nonlinear opti-
mization is its no guarantee of global optima. Multiple runs of
the LM algorithm with different initialization are often used
to avoid local minima. Let the Q sets of magnetic dipole
initialization schemes be Dq = {Dq

1,D
q
2, · · · ,D

q
N ini}, for

q = 1, · · · , Q. The overall optimization method is summarized
in Algorithm 1. The multiple initialization schemes used in the
re-optimization process can help make better approximation
to the true dipoles, and lead to better optimization results.
Although this approach means high computational complexity,
the multiple runs with different initialization schemes can be
highly parallel. The resulting cost functions are compared and
the lowest one is accepted as the global optimal solution.

IV. SIMULATIONS AND ANALYSIS

In the simulation experiments, we set a round space of 20 m
radius as the detection region. Up to six magnetic dipoles are
contained in the space, that is N ≤ 6. The dipoles distribute
randomly in this area with their height zn = 0. Their moments
are randomly selected from Table I and they are different from
each other.

TABLE I: MAGNETIC MOMENTS OF THE DIPOLES

No. Mx (A ·m2) My (A ·m2) Mz (A ·m2)
1 1000 2000 1000
2 2000 1000 2000
3 1000 2000 2000
4 2000 1000 1000
5 2000 2000 1000
6 1000 1000 2000
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Six different situations with N = 1 : 6 are considered.
The parameters of the optimization algorithm are set as:
Nmax = 6; Nini = 9; for n = 1, · · · , Nini, randomly select
Mx,n,My,n,Mz,n ∈ [0, 3000]Am2, and the initial locations of
dipoles are set such that xn and yn are evenly spread on the X-
Y plane of radius R = 20 m and zn ∈ [−5, 5] m are randomly
selected. The number of measurement points is selected as
J = 17. An independent white Gaussian noise is added to
each measurement. The noise distribution is N (µ, σ2) with
the mean µ = 0 nT/m and the standard deviation σ = 0.5
nT/m. The measurement points and two initialization schemes
are shown in Fig. 3 as an example.
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Fig. 3: Two initialization schemes for Algorithm 1. The
small blue circles represent the J = 17 measurement points
projected on the plane of z = 5 m. The red triangles are the
initial locations of (xn, yn), and the big red circle shows the
detection region.

For each experimental case, we run 500 random trials
and collect statistics. The first metric is the percentage of
successful trials, or the number of trials that results in a
valid solution of X∗ divided by the total number of trials.
The second type of metrics are related to true positive, false
positive, and false negative dipoles in the resulting X∗. The
3D locations of the detected dipoles in X∗ are compared with
the ground truth dipoles generated in the simulation. Let the
Euclidean distance between a detected dipole n and a true
dipole j be dn,j . For each n in X∗, if dn,j < δ exists for
some j, then the nth dipole is a true positive detection. If
dn,j > δ for all j, then the nth dipole is a false positive
detection. For each true dipole j, if there is no detection n
that satisfies dn,j < δ, then a false negative is counted for the
jth true dipole. The threshold is set to δ = 0.4 m in this study.

We use Ntp, Nfp and Nfn to represent the numbers of “true
positive”. “false positive” and “false negative” dipoles, respec-
tively. Let Ntotal be the number of total true dipoles, then
Ntotal = Ntp +Nfn. Since we remove the negative detection
in Algorithm 1, we only concern the positive decisions and
ignore the true negatives. The commonly used three indexes,
Precision, Recall, and Accuracy, are defined as

Precision = Ntp/(Ntp +Nfp)

Recall = Ntp/(Ntp +Nfn)

Accuracy = Ntp/(Ntp +Nfn +Nfp)

(14)

Note Precision is the true positive prediction rate of
the detection algorithm. Higher Precision means that the

TABLE II: VALUES OF PARAMETERS

parameters values
Q 1, 2, 3, 4, 5, 6
α 0.01, 0.03, 0.05, 0.07, 0.09
β 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
N 1, 2, 3, 4, 5, 6
Nini 4, 5, 6, 7, 8, 9, 10, 11

detection algorithm has a higher level of trust. Recall is the
true detection rate, or sometimes also called the sensitivity. A
good detection algorithm often achieve both high Precision
and high Recall. Accuracy is simply a ratio of correctly
detected dipoles to all results.

The third type of metrics is for the true positive detection.
The mean relative absolute errors (MRAE) of the positions and
moments between the detected dipoles and the true dipoles are
defined as

MRAEPi = MAEPi/R

MRAEMi = MAEMi/|Mi|
(15)

where i is either x, y or z, MAE is the mean absolute error,
|Mi| is the magnitude of the magnetic moment of the true
dipole, and R is radius of the detection region.

A. Influence of Parameters

Extensive simulations are conducted according to Table II to
test the influence of the parameters Q, α and β in Algorithm
1, the number of true dipoles N , and the number of initial
dipoles Nini.

First of all, to show the effectiveness of multiple initializa-
tion schemes and re-optimization in Algorithm 1, the number
of initialization sets Q is selected from 1 to 6. The other
parameters are fixed as α = 0.03, β = 0.5, Nini = 9. The
detection results with N = 4 is shown as an example in Fig.
4. It can be seen that the value Q has a big impact on the
number of trials that can yield an acceptable solution, as well
as the Recall and Accuracy of the detection. This reveals that
Q > 1 can help improve the convergence of the LM algorithm.
Very little change can be found in Precision, position errors,
and moment errors.

Next, the relationship between the detection performance
and number of true dipoles is studied. Six situations that
N =1 to 6 are considered under the conditions that Q = 3,
Nini = 9, α = 0.03, and β = 0.5. The detection results are
shown in Fig. 5. The percentage of good trials decreases as N
increase, as shown in Fig. 5(a). This is for the obvious reason
that more dipoles require more resources such as Q, J , and
Nini to achieve better performance. Similar to the percentage
of good trials, the Recall and Accuracy also decrease with
N , as shown in Fig. 5(b), while Precision drops initially
from N = 1 to N = 2 but remains unchanged when N
increases beyond 2. Similar degradation is observed in the
error of location estimation as shown in Fig. 5(c), but the
error of moment estimation remains more or less the same
as N increases. This means that the moment estimation is
consistent once the detection is correct.

Next the influence of Nini is studied with Nini varying from
4 to 11. Other parameters are fixed as Q = 3, α = 0.03,
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Fig. 4: Comparison of detection performance under different
Q values. (a) Percentage of good trials yielding acceptable
solution; (b) Precision, Recall and Accuracy; (c) MRAE
of dipole positions; (d) MRAE of magnetic moments.
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Fig. 5: Comparison of detection performance under different
N . (a) Percentage of good trials yielding acceptable solution;
(b) Precision, Recall and Accuracy; (c) MRAE of dipole
positions; (d) MRAE of magnetic moments
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Fig. 6: Comparison of detection performance under different
Nini. (a) Percentage of good trials yielding acceptable solution;
(b) Precision, Recall and Accuracy; (c) MRAE of dipole
positions; (d) MRAE of magnetic moments.

β = 0.5, and N = 4. Detection results are shown in Fig. 6.
The percentage of good trials, Recall, and Accuracy increase
quickly when Nini changes from 4 to 9 and then decrease
slightly when Nini increases further from 9 to 11, as seen in
Fig. 6 (a) and (b). However, Precision decreases slightly with
the increase of Nini. The estimation errors of detected dipoles
also increase with Nini, as shown in Fig. 6(c) and (d). These
results indicate that the selection of Nini has a sweet spot that
is around 2N . For this example of N = 4, the good values
are 7 ≤ Nini ≤ 9. Without the prior knowledge of N , it is
better to select a larger Nini than a smaller one.

To test the influence of the scaling factor α on the detection
results, α is varied from 0.01 to 0.11 with a step size of 0.02,
while other parameters are fixed. The results for Q = 3, β =
0.5, and N = 4 are taken as an example, shown in Fig. 7. As
a larger α value accepts the optimization results with larger
errors, the percentage of good trials increases with α, so do
Recall and Accuracy. In contrast, Precision, along with the
MRAEs, decreases with α, because large optimization errors
lead to “false positive” and “false negative” dipoles, as well
as large estimation errors in “true positive” dipoles.

Furthermore, the influence of threshold β is tested with
values varying from 0.4 to 0.9. We set α = 0.03, Q = 3
and N = 4. Detection results are illustrated in Fig. 8. As
β is used to select dipoles from accepted trials, it has no
effect on the number of accepted trials. A higher β results in
better Precision and slightly dropped Accuracy and Recall,
as shown in Fig. 8(b). The location estimation errors remain
pretty constant with β while the moment estimation errors
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Fig. 7: Comparison of detection performance under different
α values. (a) Percentage of good trials yielding acceptable
solution; (b) Precision, Recall and Accuracy; (c) MRAE
of dipole positions; (d) MRAE of magnetic moments

reduce as β increases, as shown in Fig. 8(c) and (d). This
means that increasing β will reject more candidates that are
close to the true dipoles but have different magnetic properties.
This makes β a good quality control parameter.

Last, we evaluate the relationship between the conflicting
goal of increasing true positive and reducing the false positive
detection. Let Rfp = Nfp/Ntotal. We set parameters Q = 3,
α = 0.03, Nini = 9, N = 2, 4 and 6. Varying the detection
threshold β yields a series of Recall, and the corresponding
Rfp is computed. Fig. 9 shows the Recall versus Rfp plot,
where at the false alarm rate of 5× 10−2, the proposed algo-
rithm achieves Recall of 0.91, 0.86, and 0.78 for N = 2, 4, 6,
respectively. The best performance configuration is at the top
left corner where Recall is high and Rfp is relatively low.

B. Sensitivity to Measurement Noise and Interference

Three kinds of measurement noise and interference are
added to the simulation to test the sensitivity of the proposed
method. We used N = 4, nini = 9, Q = 3, α = 0.03, β = 0.5
and ran 500 trials. The magnetic moments of the true dipoles
were randomly selected from Table I.

First, different levels of white Gaussian noises are added to
the gradient measurements. With µ = 0 and σ varying from
0.5 to 15, the signal-to-noise ratios (SNR) of the measured
gradient vectors corresponded to 55.5 dB to 25.5 dB. Detection
results are shown in Fig. 10.

Second, we evaluate the influence of non-target interference
in the detection region. Let Nd denote the number of non-
target magnetic interference sources. The magnetic moment

0.4 0.5 0.6 0.7 0.8 0.9

 

60

80

100

p
e

rc
e

n
ta

g
e

 (
%

)

(a)

0.4 0.5 0.6 0.7 0.8 0.9

 

60

70

80

90

100

p
e

rc
e

n
ta

g
e

 (
%

)

precision

recall

accuary

(b)

0.4 0.5 0.6 0.7 0.8 0.9

 

0.2

0.3

0.4

0.5

M
R

A
E

 o
f 

p
o

s
it
io

n
s
 (

%
)

X

Y

Z

(c)

0.4 0.5 0.6 0.7 0.8 0.9

 

7

8

9

10

11

M
R

A
E

 o
f 

m
o

m
e

n
ts

 (
%

)

M
x

M
y

M
z

(d)

Fig. 8: Comparison of detection performance under different
β values. (a) Percentage of good trials yielding acceptable
solution; (b) Precision, Recall and Accuracy; (c) MRAE
of dipole positions; (d) MRAE of magnetic moments
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components of the non-target dipoles were randomly selected
from [50, 300]Am2. The white Gaussian noise was fixed as
N (0, 0.52). Detection results are shown in Fig. 11 for six
situations where Nd = 1 : 6.

Third, we evaluate the interference from live electrical wires
in the detection area. The center of the detection region is at
(20, 20, 0) m. Two straight wires pass through the detection
region linking random points in the region. Specifically for our
simulation, wire 1 passed through (25,−5, 0) m and (35, 45, 0)
m, and wire 2 passed through (−5, 8, 0) m and (40, 42, 0) m.
The current intensities varied as I =1 to 17 A with a step
size of 2 A. The magnetic field generated by the wires were
added to the measurement points. Detection results are shown
in Fig. 12.

In all the three scenarios, the position and moment errors of
the detected targets show obvious increase with the increase
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Fig. 10: Effects of white Gaussian noise. (a) Percentage
of good trials yielding acceptable solution; (b) Precision,
Recall and Accuracy; (c) MRAE of dipole positions; (d)
MRAE of magnetic moments.
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Fig. 11: Detection performance under different levels of noise
from non-target dipoles. (a) Percentage of good trials yielding
acceptable solution; (b) Precision, Recall and Accuracy;
(c) MRAE of dipole positions; (d) MRAE of magnetic
moments.
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Fig. 12: Detection performance under different levels of
electromagnetic noise. (a) Percentage of good trials yielding
acceptable solution; (b) Precision, Recall and Accuracy;
(c) MRAE of dipole positions; (d) MRAE of magnetic
moments.

of noise intensity or the number of noise sources. For the
first scenario of white Gaussian noises, the proposed method
shows good robustness when SNR is higher than 34 dB
(σ ≈ 6), and then the performance is declined rapidly when
noises become stronger. For the second scenario of non-
target dipole interference, Precision, Recall and Accuracy
show downward trend because the non-target dipoles are very
easily detected as “false positive” when they are located
near the measurement points. If the interfering sources are
far away from the measurement points, the their magnetic
field strengths act more like the white noises and reduce
detection performance. For the third scenario of live wires
passing through the detection region, the electromagnetic field
strength is proportional to the current intensity and inversely
proportional to the distance between the wires and the mea-
surement points. The results show good robustness of the
proposed method when the current increases from 1 to 9 A, but
the performance worsens quickly when the current increases
beyond 9 A. This reveals that the nearby underground or
aerial cables with strong currents may severely decrease the
detection performance. However, as the live wires exhibit
spatial structure, their effect can be detected easily and some
data preprocessing methods, such as method of moments [25]
and finite element method can be employed to compute and
remove the interference before applying the proposed method.
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C. Evaluation of Dipole Approximation

To verify the effectiveness of dipole approximation for true
objects, we used four spherical and four cylindrical magnetic
objects as targets to generate the measurements. The radius
of spherical objects is 0.15 m. The radius and length of the
cylindrical objects are 0.1 m and 0.4m, respectively. In two
situations, the geometric centers of these objects are randomly
placed on the z = 0 plane in the detection region. The objects
are uniformly magnetized with 1.5 × 105 m/A. The gradient
vectors are computed using the finite element method for the
17 measurement points. White Gaussian noises are also added
with SNR = 49 dB. The optimization method used the dipole
approximation to reconstruct the gradient vectors and used the
parameters Q = 3, α = 0.03, β = 0.5, and Nini = 9. Statistics
of 500 trials are listed in Tables III and IV, where results of
ideal dipole sources are compared.

TABLE III: Precision, Recall and Accuracy WITH DIF-
FERENT MAGNETIC OBJECTS

Object Precision(%) Recall(%) Accuracy(%)
Sphere 90.9 85.8 78.9

Cylinder 89.7 83.7 76.3
Ideal Dipole 92.0 87.0 81.1

TABLE IV: ESTIMATED POSITION ERROR WITH DIF-
FERENT OBJECTS

Object MRAEPx(%) MRAEPy(%) MRAEPz(%)
Sphere 0.5853 0.5702 0.6701

Cylinder 0.6401 0.7015 0.7635
Ideal Dipole 0.4175 0.4340 0.5045

In addition, the estimated object locations are plotted with
the true target locations in Fig. 13(a) and (b). These locations
were used to compute the total magnetic field intensity ||B||
and two gradient components Gxy and Gxz for the 17 mea-
surement points, as shown in Fig. 13(c) and (d).

The results in Tables III and IV and Fig. 13 demonstrate
that both the spherical and cylindrical types of objects can
be well detected using the dipole approximation. The per-
formance of spherical objects is closer to that of the ideal
dipole because the geometric features of a spherical magnetic
object are better approximated by the ideal dipoles than the
cylindrical objects.Nevertheless, both types of objects are well
detected using the ideal dipole approximation.

D. Some Typical Scenarios and Detection Results

Typical cases with correct detection results are illustrated
in Fig. 14 for N = 2, 4, 6. The true dipoles and detection
results are represented by small red circles and black stars,
respectively. The small triangles represent the initial locations
of the Nini dipole candidates.

In contrast, Fig. 15 shows examples of miss detection or
“false negative” for N = 4 under the conditions that Q = 3,
α = 0.03 and β = 0.5. Fig. 15 (a) shows an example of
true dipoles, detected dipoles, and initial candidates. Fig. 15
(b) shows all the “false negative” dipoles in the accepted
results from 500 trials. It is obvious that most of the “false
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Fig. 13: Detection results of dipole approximation. Legends:
red circles – ground truth and measurements generated by
finite-element analysis, black stars – detection results and re-
constructed gradients using dipole approximation. (a) Positions
for N = 4 spheres. (b) Positions for N = 4 cylinders.
(c) Magnetic field intensity and gradients for spheres. (d)
Magnetic field intensity and gradients for cylinders.

negative” dipoles concentrate in the four sub-regions that are
the farthest to the measurement points. Obviously, by sampling
other measurements in those four sub-regions, the number of
“false negative” dipoles will decrease significantly and better
detection performance can be achieved.

E. Verification of “High-wall” Effect

To verify the “high-wall” effect in the optimization, a case
of N = 5 is used to illustrate a closed circular trajectory of 17
measurement points, as shown in Fig. 16, where the small red
circles represent the true dipoles, the red triangles represent
the initial dipole candidates, and the black stars represent the
converged dipole results. In the first scenario, three initial
dipoles are put inside the measurement circle and the other
six are outside. In the second situation, all the 9 initial dipoles
are outside the measurement circle.

The optimization results in the first scenario successfully
detect all true dipoles, while the second scenario estimates an
incorrect number of true dipoles leading to a large location
estimation error and multiple false positive. The true dipoles
inside the measurement circle are entirely missed because
no initial dipoles can cross the measurement circle. In real
applications, if this kind of measurement scheme is inevitable,
then sufficient number of initial dipole candidates shall be
arranged in all separated sub-regions.
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Fig. 14: Examples of good detection. The left column subfig-
ures are projections on the X-Y plane, and the right column
subfigures are projections on the X-Z plane. (a)-(b) N = 2;
(c)-(d) N = 4; (e)-(f) N = 6.
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Fig. 15: Locations of “false negative” dipoles represented by
small red circles: (a) An example for N = 4 with initial dipole
candidates represented by triangles; (b) Distribution of false
negatives in 500 trials.
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Fig. 16: Examples of the “high-wall” effect.

F. Comparison with Existing Methods

The performance of the proposed method is compared with
the methods introduced in [23] and [22]. The simulation uses
500 trials of N = 4 true dipoles randomly placed in the detec-
tion region. For the method of [23], 9 stations are used to make
measurements and compute initial values for optimization. For
the method of [22], the PSO uses 500 particles with their initial
x, y, z randomly selected in [0, 40] m, [0, 40] m, and [-5, 5] m,
respectively. The magnetic moments of each particle are given
in [1000, 2000] Am2 which is a more favorable condition.
The clone hybrid algorithm is used for initialization. For the
proposed method, we set Nini = 9, α = 0.03, β = 0.5, Q = 3.
The initial moments are given in [0, 3000] Am2. The SNRs of
the measurements for three methods are all 49 dB. The results
are shown in Tables V and VI. Note that the exact number of
true dipoles is provided to the methods in [22] and [23], but
no such information is fed to the proposed method.

TABLE V: COMPARISON of Precision, Recall AND
Accuracy

Methods Precision(%) Recall(%) Accuracy(%)
[23] 77.1 74.3 62.1
[22] 88.1 87.3 78.1

This paper 92.0 87.0 81.1

TABLE VI: COMPARISON OF POSITION ERRORS

Methods MRAEPx(%) MRAEPy(%) MRAEPz(%)
[23] 0.8355 0.9015 1.1310
[22] 0.4225 0.4426 0.4360

This paper 0.4175 0.4340 0.5045

The method of [23] performed the worst because it suffers
from serious interference among target dipoles and the position
estimates are poor. The performance of [22] is similar to the
proposed method under the same noise level.

It should be noted that the PSO algorithm also requires
proper initialization for the particles, especially when both the
positions and moments are unknown and of quite different
numerical levels. If the initial magnetic moments are set the
same large range of [0, 3000]Am2 as that in the proposed
method, the performance of [22] becomes much worse than
the proposed method. Besides, the magnetic field B usually
suffer from higher level of noise than gradient data in same
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scenarios. For example, the earth magnetic field is at the level
of 104 nT, which is a serious noise source for measurement
of B. While the strength of earth magnetic gradient is usually
lower than 10−1 nT/m.

V. CONCLUSION AND FUTURE WORKS
A novel joint optimization algorithm has been proposed for

estimating the number of multiple magnetic dipole sources
and their corresponding 3D locations and magnetic moments
simultaneously. We initialize a large number of dipole can-
didates and introduce an indicator for each candidate and
formulate a novel regularized mean square error cost function.
We utilize the Levenberg-Marquardt (LM) algorithm and re-
initialization to solve the nonlinear optimization. We have also
discovered the “high-wall effect” related with the selections
of measurement points and initial dipole candidates. Extensive
simulations have demonstrated the outstanding performance of
the proposed algorithm over existing methods. When the false
alarm rate is set at 5× 10−2, the proposed algorithm achieves
Recall of 0.91, 0.86, and 0.78 for the number of true dipoles
being N = 2, 4, 6, respectively. The performance is robust
against external interference and parameter selections.

For future works, field experiments with a full tensor
magnetic gradiometer are desirable, where the challenge is
to integrate the measurement instruments using several 3-axis
magnetometers. Alternatively, the proposed algorithm can be
generalized to distributed detection and estimation when multi-
agent autonomous vehicles may be employed in a large area
with a large number of targets.

ACKNOWLEDGMENT

This work of S. Chang and Y. Lin was supported by the
National Natural Science Foundation of China under Grant
41906161. S. Chang was a visiting scholar at Lehigh Univer-
sity during Nov. 2019 - Jun. 2020. The work of Y. R. Zheng
was supported in part by the US National Science Foundation
under project CISE-1853257.

REFERENCES

[1] C. P. Du, M. Y. Xia, S. X. Huang, Z. H. Xu, X. Peng, and H. Guo,
“Detection of a moving magnetic dipole target using multiple scalar
magnetometers,” IEEE Geoscience and Remote Sensing Letters, vol. 14,
no. 7, pp. 1166–1170, July 2017.

[2] S. Gürkan, M. Karapınar, and S. Doğan, “Detection and imaging of
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