A Near Optimal Reliable Orchestration Approach
for Geo-Distributed Latency-Sensitive SFCs

Dmitrii Chemodanov**, Prasad Calyam®, Flavio Esposito!,
Ronald McGarvey”, Kannappan Palaniappan”, Antonio Pescapé’

*University of Missouri-Columbia, USA; Saint Louis University, USA; *University of Napoli Federico II, Italy.

Abstract—Traditionally, Network Function Virtualization uses
Service Function Chaining (SFC) to place service functions and
chain them with corresponding flows allocation. With the advent
of Edge computing and IoT, a reliable orchestration of latency-
sensitive SFCs is needed to compose and maintain them in geo-
distributed cloud infrastructures. However, the optimal SFC
composition in this case becomes the NP-hard integer multfi-
commodity-chain flow (MCCF) problem that has no known ap-
proximation guarantees. In this paper, we first outline our novel
practical and near optimal SFC composition scheme which is
based on our novel metapath composite variable approach, admits
end-to-end network QoS constraints (e.g., latency) and reaches
99% optimality on average in seconds for practically sized
geo-distributed cloud infrastructures. We then propose a novel
metapath-based SFC maintenance algorithm that guarantees a
distributed control plane consistency without use of expensive
consensus protocols. Using trace-driven simulations comprising
of challenging disaster-incident conditions, we show that our
solution composes twice as many SFCs and uses ~10x less control
messages than state-of-the-art methods. Finally, experimental
evaluations of our SFC orchestration prototype deployed on a
realistic cloud/edge computing testhed show significant speed-ups
(up to 3.5x) for our case-study geo-distributed latency-sensitive
object tracking pipeline w.r.t. its IP-based cloud computing
alternative.

Index Terms—NFYV, geo-distributed latency-sensitive SFCs,
reliable SFC orchestration, multi-commodity-chain flow problem

I. INTRODUCTION

Nowadays, Network Function Virtualization (NFV) is an
attractive paradigm for network operators to dynamically place
virtualized network functions (e.g., firewalls, load-balancers,
etc.), chain them for a service flow routing and allocate corre-
sponding compute/network resources in a cloud infrastructure
by utilizing SFCs [1]. Recently, areas such as Microser-
vices [2], Mobile Edge Computing [3] and Computer Vision
Analytics [4] have also shown benefits of adopting the SFC
technology. With the advent of Edge (or Fog) computing that
augments cloud Application Programming Interfaces closer to
the end-user IoT devices, SFCs can be now ‘composed’ from
both core and edge cloud resources forming geo-distributed
chains to satisfy geo-location and latency requirements of
their functions [3], [5], [6]. Our case study example of a
geo-distributed latency-sensitive SFC which is utilized for the
computer vision of a real-time object tracking pipeline is
shown in Figure 1. The pre-processing and Human-Computer
Interaction analysis functions are placed for a low-latency
access on edge servers, and the tracking function is placed

*Corresponding and primary author (dycbt4 @mail.missouri.edu).

IConsumption Site
[

) Collection Sitel
(o)

* Raw images
o Metadata
o Parameters

Pre-processing
Function

Enhance
Image Quality

Fig. 1: Tilustrative example of the geo-distributed latency-sensitive SFC used
for the real-time object tracking pipeline [4].

HCI Analysis
Function
Analyze
Tracks and
Backtrack

on a cloud server for the compute-intensive processing. Mi-
croservices in this case allow users to have a low-latency
access to processed data while waiting for new data from the
main tracking pipeline. At the same time, using low-latency
pre- processing functions allows the processing to exclude raw
images without waiting for the main tracking pipeline to catch-
up in cases such as e.g., if the desired target is missing, or if
an image quality is poor [4].

However, geo-distributed SFCs can be subject to node
failures and congested network paths leading to their frequent
Quality of Service (QoS) demands violations [7]. In some
specific cases of natural or man-made disaster-incidents, they
can be subject to severe infrastructure outages [8]. Moreover,
computation and network QoS demands of SFCs can fluc-
tuate themselves [9], e.g., due to interference of co-located
functions [6], [10]. Thus, a reliable orchestration of SFCs
is needed to cope both proactively upon their composition
as well as reactively during their lifespan maintenance with
potential SFC demand fluctuations [9] as well as with possible
infrastructure outages [7], [8].

At the same time, providing a continuously available and
reliable service chain orchestration is hard [1], and it has
engendered prior efforts on development of new algorithms
to design special hardware accelerators [11]. First of all, this
is because the optimal SFC composition has known approx-
imation guarantees only in some special cases. For instance,
when chaining of service functions (e.g., satisfying bandwidth
requirements between two consequent functions) [12], [13]
and/or their ordering (i.e., ensuring that function A precedes
function B) [14], [15] are omitted. In the general case however,
it requires solving of the NP-hard integer MCCF problem to
align flow splits with supported hardware granularity [16].
It is also necessary to support cases when service functions
or their associated flows are non-splittable. This problem has
no known approximation guarantees and has been previously
reported as the integer NFV service distribution problem [17].
Moreover, its complexity can be further exacerbated by incor-

porated reliability and geo-location/latency aware mechanisms.
The former aims to cope proactively with both possible
infrastructure outages as well as SFC demand fluctuations,
whereas the latter is needed to satisfy QoS demands of geo-
distributed latency-sensitive service chains.

Secondly, due to scale and nature of geo-distributed SFCs,

having their orchestration with a single point of failure or
congestion (i.e., centralized) is too risky. On the one hand,
having a SFC maintenance which is based on a distributed
control plane system is crucial. On the other hand, distributed
control plane-based Software Defined Networking (SDN) sys-
tems such as ONOS [18] require consistency guarantees to
avoid various violations [19]. Examples of such violations
tailored to the SFC orchestration can be double assignment of
services, looping paths, QoS constraints violations and others.
A common approach to guarantee consistency of a distributed
control plane is by establishing a consensus. The latter can be
done by running known consensus protocols such as Raft [20],
etc. To the best of our knowledge, the only distributed SFC
orchestration scheme that builds upon consensus literature is
‘Catena’ [21]. This algorithm ensures a consistency by running
consensus protocols based on specified policies and can be
used safely within distributed control plane. However, using
consensus protocols for every service placement or its chaining
in a SFC request is expensive.
Our approach: In this paper, we propose a new reliable
service chain orchestration approach that can serve the needs
of geo-distributed latency-sensitive SFCs at high-scale. Our
orchestration approach assumes an initial SFC composition
via a centralized control plane and its consequent maintenance
during its lifespan within a distributed control plane.

Firstly, our approach involves ensuring reliability proac-
tively. To do so, we compose SFCs with capacity chance-
constraints (that handle both SFC demand fluctuations as
well as infrastructure outages uncertainties) and with backup
policies which further complicate solution of the NP-hard
integer MCCF problem. We remark that our approach does
not focus on the optimal composition of SFCs with their
“guarantee” reliability. This is because this optimization prob-
lem scales poorly [22]. Instead, we propose a policy-based
reliability mechanism that can trade-off SFCs’ reliability and
their composition optimality.

Secondly, to cope with this problem solution intractabili-
ties, we outline our novel metapath-based composite variable
approach that has been proposed in our prior work [23]. This
approach is similar to other composite variable solutions in
terms of its nature that aggregates multiple decisions within a
single binary variable [24].

Finally, to maintain QoS demands satisfaction of SFCs
during their lifespan, we propose a distributed control plane
algorithm that builds upon metapaths and Simple Coordination
Layer (SCL) [19].

Contributions: In this paper, we augment our previously
proposed practical and near optimal SFC composition ap-
proach with a novel SFC maintenance algorithm designed
for a distributed control plane that guarantees the latter’s
consistency without use of expensive consensus protocols. [23]
Specifically, our contributions are the following:

(1) We formulate the (master) NP-hard integer MCCF problem
previously adopted in NFV literature [17] but now with geo-

location and latency constraints as well as with probabilistic
capacity constraints for a reliable composition under uncer-
tainty of geo-distributed latency-sensitive SFCs. (Section III)
(2) We outline our first-of-its-kind metapath-based composite
variable approach that aggregates feasible mapping decisions
of each single-link SFC segment as a set of k-constrained
shortest metapaths. It then assigns SFC segments to their
associated metapaths either optimally by using generalized
assignment problem (GAP) [25] or suboptimally by using its
(polynomial) Lagrangian relaxation counterpart. (Section IV)
(3) We also propose a new metapath-based SFC maintenance
algorithm that operates in a distributed control plane and prove
its eventual correctness property to use SCL. (Section V)
(4) Using trace-driven simulations of real US Tier-1 (~300
nodes) and regional (~600 nodes) infrastructure providers’
topologies, we first show how our SFC composition approach
achieves 99% optimality on average. In addition, we show that
it only takes time on the order of seconds for practically sized
problems in contrast with the master problem solution that
takes several hours. By recreating challenging disaster incident
scenarios as in [8], we lastly show how our approach can
compose twice as many sequentially incoming SFC requests
and better maintain them in terms of optimality and number
of control messages due to use of metapaths and SCL than
the state-of-the-art solutions [21], [22], [26]. (Section VII)
(5) Finally, using experimental evaluation, we implement our
open-source reliable service chain orchestration prototype
(available under GNU license at [27]) and show how it speeds-
up the case study geo-distributed latency-sensitive object track-
ing pipeline by up to 3.5 times in comparison to its cloud
computing alternative over IP networks. To this end, we deploy
our prototype on a realistic core/edge cloud testbed in GENI
infrastructure [28]. (Section VII-B)

II. RELATED WORK

SFC is traditionally used in NFV to place a set of mid-
dleboxes and chain relevant functions to steer traffic through
them [1]. Existing SFC solutions either separate the service
placement from the service chaining phase [12], [14], [15], or
jointly optimize both the two phases [9], [17].

SFC Optimality. In some special cases the optimal SFC is
shown to have approximation guarantees [12], [13], [14], [15].
For instance, Cohen et al. [14] and Sang et al. [15] provide
near optimal approximation algorithms for the SFC prob-
lem without chaining and ordering constraints. Tomassilli et
al. [12] propose the first SFC solution with the approximation
guarantees which admits ordering constraints, but still omits
chaining constraints. Similarly, omitting chaining constraints
allows Zhang et al. [13] to achieve in the worst case a 2x
approximation bound of SFC in polynomial time. Q. Zhang et
al. [6] propose an interference-aware approximation algorithm
for 5G network services placement of linear, split and split-
and-merged SFCs, however, without considering their chaining
constraints. Guo et al. [29] show approximation guarantees
for SFCs with both ordering and chaining constraints, but
only under assumptions that available service chaining options
are of polynomial size. In the general case however, when
service functions need to be jointly placed and chained in a
geo-distributed cloud infrastructure with a corresponding com-
pute/network resource allocation, possible SFC compositions

are of exponential size. Thus, it becomes a linear topology
Virtual Network Embedding (VNE) [3], [30] and can be
formulated as the (NP-hard) MCCF problem with integrality
constraints with no known approximation guarantees [17].
Thus, Feng et al. [17] propose a heuristic algorithm whose
preliminary evaluation results in a small-scale network settings
(of ~10 nodes) shows promise for providing efficient solutions
to the integer MCCF problem in practical settings.

In this paper, we propose the first to our knowledge practical

and near optimal SFC composition approach in the general
case of joint service function placement and chaining in a
geo-distributed cloud infrastructure that also admits end-to-
end network QoS constraints such as latency, packet loss, etc.
To this aim, we propose a novel metapath composite variable
approach which reduces a combinatorial complexity of the
(master) integer MCCF problem. As a result, our approach
achieves 99% optimality on average and takes seconds to com-
pose SFCs for practically sized problems of US Tier—1 (~300
nodes) and regional (~600 nodes) infrastructure providers’
topologies, where master problem solution takes hours using
a High Performance Computing cloud server.
SFC Reliability. With the advent of edge networking, 5G
and growing number of latency sensitive services, recent
works consider problems of geo-distributed [31] and edge
SEC [5], [6]. Although these works mainly focus on the load
balancing [32] and latency optimization techniques [5], they
omit an important reliability aspect of geo-distributed latency-
sensitive SFCs. The closest works related to ours are [9]
and [22]. Fei et al. [9] propose a prediction-based approach
that proactively handles SFC demand fluctuations. Similarly,
Xiao et al. [33] propose a deep reinforcement learning ap-
proach viz., ‘NFVdeep’ to cope with both SFC demands and
network traffic uncertainties. However, their approach does not
account for network/infrastructure outages that mainly cause
service function failures [7]. At the same time, Spinnewyn
et al. [22] propose a SFC solution that ensures a sufficient
infrastructure reliability, but neither proactively nor reactively
handles SFC demand fluctuations.

In contrast to [9] and [22], our reliable composition scheme
uniquely ensures reliability of geo-distributed latency-sensitive
SFCs by using of chance-constraints and backup policies to
cope with both SFC demand fluctuations and infrastructure
outages [23]. It then also maintains them during their lifespan
to ensure reliability of already composed service chains (i.e.,
reactively) by utilizing a distributed control plane to avoid
a single point of failure or congestion. We also found only
one SFC orchestration approach that guarantees a distributed
control plane consistency during service chain orchestration
— Catena [21]. In contrast to Catena that uses expensive con-
sensus protocols, we prove our metapath-based maintenance
algorithm eventual correctness to use SCL [19].

III. MODELING RELIABLE SERVICE CHAIN COMPOSITION

In this section, we define the problem of joint SFC compo-
sition that can be formulated as the integer MCCF problem for
an augmented cloud infrastructure graph [17] which is a gener-
alization of a well-known multi-commodity flow problem [30].
To proactively ensure reliability of a SFC composition, we
use backup policies as well as probabilistic ‘chance’ capacity
constraints instead of deterministic ones. Thus, we use a

Physical SBCIS ct;m[:os;:d: SCR12 c;)n;posed:
Network ﬁ+?+ﬁ+§+§= 7+§+§=3

Fig. 2: Illustrative example of the online composition of service chain
requests (SCR) on top of the capacitated physical network (numbers indicate
service demands and corresponding resource capacities).

chance-constrained programming [34]. We also extend this
problem with geo-location and latency constraints to satisfy
all QoS demands of geo-distributed latency-sensitive SFCs.
Objective and example of the online chain composition.
Based on providers’ policies, the service chain composition
problem can be used to minimize (expected) values of different
fitness functions F. One example of common fitness func-
tions is an additive function of ratios of service chain demands
and corresponding physical resource capacities. Such function
is known to best balance the physical network load [30].
In most cases service chain requests can be unknown in
advance, and using the load balancing fitness function allows
one to increase the acceptance ratio of these requests. Such
optimization is also known as the ‘online optimization’ [26],
[30].

Figure 2 shows an example of the online SFC composition
that minimizes the network load balancing function: by min-
imizing a sum of SFC demands and corresponding physical
resource capacity ratios, for a —b— ¢ service chain we achieve
itsminimumvalueFE:%+%+%+%+% =3. Asa
result, we compose this service chain request with X, Y and
A physical nodes (e.g., servers) to place a, b and ¢ services,
respectively. To enable service communications a—b and b—c,
we chain them with X — B — Y and Y — A physical paths,
respectively. This also allows us to compose the subsequent
d — e request.

In the rest of this paper, our objective is to minimize the
expected value of the load balancing fitness function Fp
formally defined below (see Equation 1) for the case of SFC
demand and available physical resource uncertainties.
Service chain composition sets and variables. We model
each SFC a € A as a chain graph G* = (N{,E{). A
service G is composed by a set [Ny, of services and a set EY,
of corresponding service communications (or service links)
representing logical network connectivities among elements in
N7;. Moreover, each SFC a has a set of primary and backup
resources denoted as B®. Note that we assume here full backup
policy, ¢.e., each individual SFC replica should be able to
handle SFC workload by itself. We then model the physical
infrastructure on which the service functions run as a physical
network graph G = (Ng, Eg), composed by a set Ng of
substrate nodes and a set Eg of substrate edges.

We define two types of binary variables: one for the service
chain link mapping, and another for (node) service mapping.
Particularly, let binary variable ff(b,a) = 1 if a flow for
st € EY, service link of a backup b € B* of a SFC a € A
is assigned to the physical edge ij € Fs, i.e., fff(b,a) = 1,
or 0 otherwise. Furthermore, let binary variable z7(b,a) = 1

if a service s € Ny, of a backup b € B* of a SFC a € A is
assigned to the physical node i € Ng, i.e., xf(b,a) = 1, and
0 otherwise. Having sets and variables defined, we now can
formulate the online service chain composition problem under
uncertainty using integer MCCF problem.

Problem 1 (online SFC composition under uncertainty).
Given a set of SFCs represented as graphs G* = (N{, EY,)
and a physical network graph G = (Ng,Eg), the online
service chain composition problem under SFC demands and
available physical resources uncertainties can be formulated
as follows:

min Fp = Z Z

ac€Abe B®

3 ZZE{CT}W,G)

sEN{, T€TIENS

£ Y E[g riea

steEyijEES

(D

subject to
Service Placement Constraints:

> (b)) =1,¥se€ Nj,be B ac A @)
iENg

> > Y DU (b,a)<C]|>R,VieNs,7eT (3)

a€AbeBeseNY,
Service Chaining Constraints:
Z b, a) Z #(b,a) = x3 (b, a) — (b, a),
jENs jENs “)
Vi€ Ng,st € Ey;,be B*,ac A

P> > > Do

a€AbeB*steEY,

H(b,a) < Cy;| > R,Vij € Eg (5)

Specific QoS Constraints (Geo-Location, Latency, etc.):
gds.xl(b,a) < GDY. Vi € Ng,s € Nyy,be B* a€ A, (6)

> whif(ba) < K

ijeEs

Vste EY,,be Bbac A,ke K (7)

st7

Additional Policy Constraints (e.g., No-Consolidation):

2. 2.«

beB*se Ny,

(bya) <1,Vi € Ng,ac€ A ®)

where symbols and notations of sets, parameters, variables
and functions are summarized in Table I.

SFC composition constraints discussion. Minimization of
Fg in Equation 1 is subject to a set of constraints which
contains both — basic composition constraints and constraints
specific to the geo-distributed latency-sensitive SFCs. The
basic constraints include service placement for a specified
number of duplicates (Equation 2), service chaining or well-
known multi-commodity flow constraints (Equation 4). Addi-
tional policy constraints for service chain composition prob-
lem are also acceptable. One such example is a common
‘no consolidated service placement’ constraint that prohibits
placement of two or more different services (or their backups)

TABLE I: Symbols and Notations

Service Chain Composition: Sets

A £Set of SFCs that needs to be composed

B¢ £Set of primary and backup replicas for the SFC a

Ny 28Set of service functions composing the SFC a

EY, £Set of service communications in the SFC a that create a service
chain

Pt £Set of metapaths for the st (single-link) service chain segment of
SFC a

T £Set of QoS demands for service functions such as CPU, memory,
storage, etc

K £Set of end-to-end network QoS demands for SFC communications

such as latency, losses, jitter, etc
Ng £8et of physical nodes within the infrastructure
FEg £Set of physical links within the infrastructure
Service Chain Composition: Variables
z$(b,a) £Binary variable that equals to 1 if the service s backup b for the
SFC a is placed on the physical node ¢
ffjt(b7 a) £Binary variable that equals to 1 if the communication backup b
between services s and ¢ for the SFC a is placed on the physical
link 45
(b, a)2Binary variable that equals to 1 if the single-link chain segment
st is assigned to the metapath Pfjtk of the SFC a backup b

zgk

Dg7 £Random variable that corresponds to the SFC a service s QoS
demand 7 € T'
D, £Random variable that corresponds to the communication band-

, Width demand between services s and ¢ for the SFC a

CT =Discrete random variable that corresponds to the possible physical
node ¢ capacity of 7 € T resource, i.e., CT € {0,C7}

£ Discrete random variable that corresponds to the possible physical
link ¢j capacity, i.e., Ci; € {0,Cy;}

Service Chain Composition: Parameters

gdS; £ Parameter that corresponds to the geographical distance between
the desired location of the service s in the SFC a and the physical

, Dode ¢ location

=Parameter that corresponds to the maximum allowable geograph-
ical distance between the desired location of the service s for the
SFC a and some physical node location

£ Parameter that corresponds to the additive weight of the physical
link 75 (or multiplicative when composed with log function) of the
service communication end-to-end £ € K QoS constraint (e.g.,
latency)

£ Parameter that corresponds to the communication end-to-end k €
K QoS constraint (e.g., latency) between services s and ¢ of the
SFC a

R £SFC reliability probability that a chance-constraint will be satisfied

Ka £ Constant in a standard Normal distribution table corresponding to

desired « probability
nar £Expected (or mean) value of the SFC a service s QoS demand
TeT
ey £Expected (or mean) value of the the communication bandwidth
, demand between services s and ¢ for the SFC a

oy =Variance of the SFC a service s QoS demand 7 € T'

£ Variance of the the communication bandwidth demand between

,services s and ¢ for the SFC a

CcT =Physical node ¢ capacity of 7 € T resource (e.g., CPU)

Cij éPhysical link %5 capacity

G2

ak
ICst

a
Ost

belonging to the same service chain onto one physical node
(Equation 8). Note that this policy further complicates a
combinatorial complexity of the (NP-hard) integer MCCF
problem. In contrast to prior SFC composition problems [17],
[22], we now use probabilistic physical node and link capacity
constraints to ensure that physical resources satisfy SFC QoS
demands given some acceptable risk (Equations 3 and 5).
The specific geo-distributed latency-sensitive SFC con-
straints include physical node geo-location and service com-
munication end-to-end network QoS constraints such as la-
tency, packet loss, etc. (Equation 7).
SFC reliability and chance-constraints discussion. It is
know that even infrastructures with very high availability
are subject to traffic loss and outages [16]. Thus, both the
reliability of SFCs and provided QoS are naturally coupled. To
address this, we use chance-constrained programming [34] that

guarantees QoS satisfaction at a given infrastructure segment
with a set reliability level. To this aim, we use a policy-
based reliability for the SFC composition, i.e., we allow for
policy specifications of chance-constraints acceptable risks and
service backups.

For instance, by decreasing an acceptable risk and/or in-

creasing number of backups, we can leverage the overall
probability of a SFC disruption that requires its re-composition
(e.g., migration of virtual resources) during its maintenance.
For example, given a risk of 5%, i.e., R = 0.95, and 5
services for a single SFC, the lower bound probability that
its demands will be satisfied is Py, = R® = 0.95° ~ 0.77
not considering inter-service communication demands and not
allowing backup resources. Thus, approximately in 1 out of 5
cases the service chain needs to be re-composed. Alternatively,
if we at least duplicate the service chain physical resources
(i.e., compose 2 service chain backups), the lower bound
probability that SFC demands will be satisfied by at least one
of the duplicates becomes Py, = 1 — (1 — R%)? ~ 0.95. As
a result, the service chain needs to be re-composed only in 1
out of 20 cases. However, with tighter reliability policies (i.e.,
the lower acceptable risk or the higher number of backups),
fewer feasible solutions are available, and the optimal solution
achieves a poorer objective value of the optimal solution,
and thus, worse performance of the online service chain
composition is realized. We show such reliability/performance
trade-offs of our approach using trace-driven simulations in
Section VII.
MCCF-based SFC composition intractabilities. When deter-
ministic equivalents of the objective in Equation 1 as well as of
capacity chance-constraints are known, we can use any integer
programming solver (e.g., CPLEX [35]) for Problem 1 to
reliably compose all (known at a time) service chain requests.
However, due to NP-hardness of this composition, the solution
can be intractable for large-scale cloud/edge infrastructures.
To improve its scalability limitations, existing column genera-
tion [26], heuristic [22] and metaheuristic [22] approaches can
be used (often at expense of the master problem optimality).
In the next section, we propose a near optimal metapath
composite variable approach that simplifies a combinatorial
complexity of the SFC composition outlined in Problem 1.

IV. SERVICE CHAIN COMPOSITION VIA METAPATHS

In this section, we outline our previously proposed
metapath-based composite variable approach that aims to sim-
plify the combinatorial complexity of the integer MCCF-based
SFC composition problem [23]. Thus, similarly to existing
composite variable schemes [24], we create a binary variable
that composes multiple (preferably close to optimal) decisions.
To this end, we build upon a known result in optimization the-
ory: all network flow problems can be decomposed into paths
and cycles [36]. We first introduce our notion of metapath and
its relevance to the constrained shortest path problem [37],
[38], [39]. We then use the constrained shortest metapaths
to create variables with composite decisions for the SFC
composition problem and discuss scalability improvements of
this approach.

Metalinks and metapaths. Before defining the metapath, it
is useful to introduce the idea of ‘metalinks’. Metalinks have
been widely adopted in prior NFV/VNE literature to solve

Fig. 3: Illustrative example of the augmented with metalinks physical
network which represent feasible service a, b and c¢ placements; numbers
indicate fitness function values - red and black values annotate service
placement and service chaining via some physical link, respectively.

optimally graph matching problems [17], [26]. A metalink
is an augmentation link in a network graph. In our case, it
represents the (potential) feasible placement of some service
a on some physical node A, as shown in Figure 3. Formally,
we have:

Definition 1 (metalink). A link si for SFC a € A belongs to
the set of metalinks EY; if and only if the service s € Ny, of
SFC a can be placed onto the node i € Ng.

Building on the definition of a metalink, we can define a
metapath as the path that connects any two services through
the physical network augmented with metalinks. For example,
consider following metapaths a — A—Y —band a— A—B—b
shown in Figure 3. Formally, we have:

Definition 2 (metapath). The path Pfjt is a metapath between
services s and t for SFC a € A if and only if Vkl € P[f :
kl € EsV kl € {si,tj}.

Intuitively, metapath Pfjt is formed by exactly two metalinks
that connect s and ¢ to the physical network and an arbitrary
number of physical links kl € Fg.

Constrained shortest metapaths. Having defined metapaths,
let us consider a simple case of the SFC composition prob-
lem - composition of a single-link chain (¢.e., two services
connected via a single virtual link): the optimal composition
of a single-link chain can be seen as the constrained shortest
(meta)path problem that connects two services via the aug-
mented physical network, where all physical links have arbi-
trary fitness values of a service chaining (virtual link mapping)
and all metalinks have arbitrary fitness values of a service
placement divided by the number of neighboring services (i.e.,
by 1 for a single-link chain). In our example, shown in Figure
3, the optimal single-link SFC a — b composition can be
represented by the constrained shortest metapath a— A—Y —b
that satisfies all SFC composition constraints with the overall
fitness function of 3. Further, we prove our intuition formally:

Theorem IV.1. (The optimal single-link SFC composition)
The optimal single-link chain composition is the constrained
shortest metapath.

Proof. Assume the contrary. Let Lq(s,t) be the optimal ob-
jective value of the single-link service chain st composition
and Lo(s,t) be a length of the constrained shortest metapath
P>. We need to show that Ly # Lo:

Case 1 (L1 < Lo): In this case, L (s, t) solution is mapping
of services s and t to physical nodes ¢ and j, respectively,
and a service link st to a physical path P(i,j) as defined
in the service chain composition problem. Without loss of
generality, we can assume that the optimal solution of the
service chain composition problem is feasible. Hence, s and ¢
mappings are sz and ¢j metalinks by Definition 1, respectively.
Furthermore, let us define the path P, = P(si, P(i,7),jt)

which by Definition 2 is a metapath. As the optimal solution
is feasible, P; satisfies all constraints of the single-link chain
st composition. Hence, P; is a constrained metapath whose
length L;(s,t) is shorter than Lo(s,t) contradicting that P
is the constrained shortest metapath.

Case 2 (L1 > L»): In this case, we can present metapath
P, as P, = P(si, P(i,35),jt), where si and tj are metalinks,
and P(i,j) is a physical path (see Definition 1). Let us map
services s and t on physical nodes 7 and j, respectively,
and service link st on a physical path P(i,j). As P is
the constrained metapath, this mapping is feasible with the
objective value Ly(s,t) less than Lq(s,t) contradicting that
L1 (s, t) is the optimal objective value of the single-link service
chain st composition. |

Corollary IV.1. (The optimal single-link SFC composition
complexity) The optimal single-link SFC composition has a
pseudo-polynomial complexity.

Proof. Based on Theorem IV.1, the optimal single-link SFC
is the constrained shortest metapath which is by Definition 2
the constrained shortest path in the augmented network graph.
However, it is known that the constrained-shortest path can be
found in pseudo-polynomial time [39].]

We conclude that constrained shortest metapaths are good
candidates to perform composite decisions, i.e., to optimally
decide on a single-link SFC composition in terms of its
services placement and chaining with a single binary variable.
Multiple-link chain composition via metapath. While ob-
serving Figure 3, we can notice how using only a single
constrained shortest metapath per a single-link segment of
a multiple-link SFC a — b — ¢ can lead to an unfeasible
composition: as the optimal a —b compositionis a—A—Y —b
metapath, and the optimal b — ¢ composition is b— B — X —c¢
metapath - service b has to be simultaneously placed on Y
and B physical nodes. Thus, we cannot stitch these metapath,
and we need to find more than one constrained shortest
metapath per a single-link chain. In our composite variable
approach, we find k-constrained shortest metapaths (to create
k binary variables) per each single-link segment of a multi-
link service chain. To find metapaths any constrained shortest
path algorithm can be used [37], [38], [39]. In this paper, we
build upon the path finder proposed in our prior work that is
an order of magnitude faster than recent solutions [37].

To further benefit from constrained shortest metapaths
and simplify the chain composition problem, we offload its
constraints (either fully or partially) to either metalinks or
the path finder. Specifically, geo-location and an arbitrary
number of end-to-end network (e.g., latency) QoS constraints
can be fully offloaded to metalinks and to the path finder,
respectively. At the same time, capacity constraints of the
SFC composition problem are global and can be only partially
offloaded. Once k-constrained shortest paths have been found
for each single-link service chain segment, we can solve GAP
problem [25] to assign each single-link chain segment to
exactly one constrained shortest metapath and stitch these
metapaths as described below.

Allowable fitness functions for metapath-based variables.
In general, fitness functions qualify for our metapath compos-
ite variable approach if they are comprised from either additive

or multiplicative terms. The above requirement fits for most
SEC objectives [1], and other objectives can also qualify if
well-behaved (e.g., if their single-link chain fitness values can
be minimized by a path finder). As the load balancing fitness
function Fp in Equation 1 qualifies, we compute its single-

link chain value E [Fsm]

ik | for k metapath as following:

(LT
CT

E[Fle] = ZE{
+¥ ¥ E[gH]+

©))
SB[| st
steEy, {uveEs:

TET
quPfjt,f}

| raeatsy+

where deg(s) (or deg(t)) corresponds to the service s (or t)
degree, i.e., deg(s) = 1 (or deg(t) = 1) for s = in (or
t = out) service that handles input (or processed output) data
of SFCs; and deg(s) = 2 (or deg(t) = 2) otherwise. The first
and the last terms represent the fitness values of metalinks,
and the middle term corresponds to the sum of physical links’
fitness values. Thus, this division by deg(s) (or deg(t)) is
needed to avoid counting the contribution of the intermediate
service placement twice in the objective.

Remark: in and out are services that handles input and
processed output data of SFCs, respectively.

Problem 2 (SFC composition via metapaths). Given a set
of SFCs a € A represented as graphs G* = (N, E{,),
a physical network graph G = (NS,ES), and having set
of k-constrained shortest metapaths PSJ“ € Pt and their
corresponding fitness function values Ffjt,g found for each
virtual link st € EY, in the SFC a, let a binary variable
Z]k(b a) =1 if the szngle link chain segment st is assigned
to the metapath P“’t‘? of the backup b € B®* of SFC a € A,
or 0 otherwise. The SFC composition problem via metapaths

can be formulated as follows:

Y S S BRE60 00
a€AbeBsteEY, P“taefpst
subject to
Metapath Stitching (Assignment) Constraints:
-1, t=1in
Z Z]k(b a) Z]'Lk(b a) 1’ t = out (11)
Pilaepgt Plraepls 0, otherwise
Vt € {in,out} Vtj € Efy;,be B® ac A
Node Capacity Chance-Constraints:
Y. D Dijdegt) | Y0 fiboa) +
ac€Abe B teN{ PrlrePst
(12)
+ > f <Cl| >RVjeNs,reTl
Pt ae'Pfc

jik

Link Capacity Chance-Constraints:

ZZ Z Z Dst zyk Cuv = +b 13
a€AbeB*ste EY, { pf t;e’pf‘t (13)
quPfﬁi‘
Yuv € Eg

where symbols and notations of sets, parameters, variables
and functions are summarized in Table I.

We remark that service placement, chaining, geo-location,

latency and no-consolidation constraints from the master Prob-
lem 1 have been fully offloaded to the constrained shortest
path finder that generates metapaths composite variables. Thus,
there is no need to specify them explicitly. At the same
time, capacity constraints can be only partially offloaded,
and still need to be specified in Problem 2. Note also that
deterministic equivalents for the objective coefficients and
capacity constraints in Equations 10, 12 and 13 are similar to
deterministic equivalents of Problem 1, and their deterministic
equivalent examples can be found in [23].
On complexity benefits of metapath composite variables.
Both the master integer MCCF Problem 1 and its reduced
with composite variables integer (GAP) Problem 2 are NP-
hard [17]. However, the number of binary variables in mas-
ter problem includes the following: the number of binary
variables to place services is Qn, (JA||B||Nv||Ns|); and
the number of binary variables to chain these services is
Qp, (|A||B||Ev||Esl|). The total number of binary variables
is Qp, (JA||B|(|Nv||Ns| + |Ev||Esl|)). At the same time the
total number of composite variables in the reduced problem
is Qp,(|A||B||Ev]|K]). As we show later in Figure 7, K
can be empirically bounded as |K| ~ |Ng|. Thus, the com-
posite variable approach at least halves the number of binary
variables, ¢.e., halves the exponent of time (and space) com-
plexities of the Problem 1. This is because for linear topology
SFCs O(|Ny|) = O(|Ev|), and for infrastructure topologies
O(|Ev]) > O(|Ns|). As a result, Qp, (JA||B|(|Nv||Ns| +
|Ev||Bs])) > Q2 - |A|B|INy|[Ns). and hence, Qp, >
2 - Qp,. We demonstrate these complexity benefits of the
proposed composite variable approach in Section VII.

A. SFC Composition via Lagrangian Relaxation

Aside from solving the NP-hard GAP Problem 2, we also
propose its better scalable alternative. In particular, we solve
the GAP using its polynomial Lagrangian relaxation by com-
promising both its optimality and feasibility guarantees [25].
Our approach. Problem 2 has two types of constraints -
stitching (assignment) and capacity constraints. The assign-
ment constraints (Equation 11) represent flow conservation
constraints for metalinks tj € E%,. Hence, these constraints
form a totally unimodular constraint matrix. When having the
linear objective function (Equation 10) this property allows
us to relax integrality constraints on (b a) variable in the
uncapacitated service chain comp0s1t10n case (when capacity
constraints are omitted). As a result, we can solve the above
problem using polynomial Linear Programming (LP).

Lower Bound Algorithm. Similarly to [40], we use the
unimodularity property benefits and push capacity constraints

(see Equations 12 and 13) to the objective. To this end, let us
denote g;” = R — P} and g5 = R — IP,,,, functions for each
constramt in Equations 12 and 13, respectively. Let us define
w1’ and w4 as the Lagrangian multipliers specified for each
iteration of the subgradient method [40]; we now can define
(deterministic) Lagrangian weights as following:

wift = Ffe +ul’ ((u7 + K pot™) Jdeg(s)+
(K g ofT) [deg(t) |+ ul <“+K a) (14)
I RU gt HstTh B Oy
quPft"’

We then can solve the following linear program £ with any
LP solver:

= min Z Z Z Z f;g Zsjtk a)+
a€AbeBestcEY, P"‘f‘lepst
TJj C R<P uv CuvyRSPuu
_Z Zulj.{o R> P _Z {07 R> P,

JENsTET

5)

subject to constraints in Equation 11. Note that to improve LB
while solving £, we can also fix all variables f7f, (b,a) = 0
whose node (or link) mappings do not satisfy rehablhty, i.e.,
if R> P; or R> P; (orif Juv € ijt,g : R > Py,).

If solution of L satisfies GAP capacity constraints, we can

stop and report optimal (or suboptimal) solution to GAP.
However, if £ solution is unfeasible to the primal GAP
problem, we can project it back to the feasible space using
some polynomial heuristic algorithm to get an upper bound
(UB) of the primal GAP problem.
Upper Bound Algorithm. We propose a new (polynomial)
greedy regret lower bound replication (GRLBR) algorithm that
we found fast enough for our large scale GAP problem with
flow assignment constraints. We build our GRLBR algorithm
upon both lower bound replication and greedy regret algo-
rithms proposed earlier in [40], and its pseudo code is outlined
in Algorithm 1.

GRLBR starts by detecting the largest regret service chain
segment st of SFC a’ (lines 5-12), i.e., the segment with the
largest difference between the first best and the second best
corresponding lagrangian weights wsm for its potential feasi-
ble assignments. If there are no feas1ble metapaths assignments
for st of a that satisfy both assignment and capacity constraints
(see Equations 11, 12 and 13), we stop and report no feasible
solution (lines 6-8). Once, st of a’ is found, we add it to the
priority queue (), based on its langrangian weight wsm (line
13). We then retrieve and remove the head of this queue and try
to map it to the L B metapath solution first (lines 19-20), or to
the lowest lagrangian weight metapath Psta’ ijk (lines 22-23),
or report no feasible solution and terminate, otherwise (lines
17-18). Finally, we allocate corresponding metapath solution
resources for the service chain st segment of ¢’ and add all its
adjacent segments (lines 25-26). Once (), is empty, all service
chain segments of SFC a’ for its backup b’ have been placed.
We then mark &’ backup of SFC o’ as mapped and remove it
from further consideration by GRLBR (lines 28-31). Note that
at any time (), contains only two elements due to a linear
service chain topology.

Subgradient method. Having LB and UB algorithms out-
lined, we use them within the general subgradient method to

Algorithm 1: GRLBR [Legend (Service Chain Segments):]
Input: ff]tk(a, b):= solution of £; wf},‘j:: lagrangian weights; Pfjt,? cp:t — Functional == Nonfunctional — Temporal - - Potential
= set of k—constggilned shortest metap;llhs ar}d their corrisponding o Root Controller Controller A Controller B
fitness values F7;3* found for each virtual link st € Ev,
Output: U B := upper bound to GAP problem; ffjtk (a, b):= feasible solution
to GAP problem QP
1 begin §
/* Step 0: initialize */ g
2 A+ A £
3 B'® + B*,Va € A N
4 while A’ ¢ 0 do z
/+ Step 1: find highest regret virtual link sta’ +/ 5_
5 forall st € E* and a € A’ do S
6 it AP« PP is feasible then i,
7 terminate and report no feasible solution T
8 end %
9 ikl < argmin{wly : Pl is feasible} §
10 Psta min{wf}‘: — w:;g,(sm) : oo
Pl s feasible, ijk # ijkl,, } =°
11 end v
12 sta’ + argmax {psta}

stEEA ac A’
/% Step 2: allocate all service chain segments

that contains sta’ */
. . ’

13 Put sta’ to the p,rlomy queue Qs + {sta’, wf},‘j/
14 b’ < min{B'* }
15 while Q,/ ¢ 0 do
16 st < retrieve and remove Q,’s head

Sta! sta’ . ¢ .
17 if ﬂPZ}tg : Pfj‘,? is feasible then
18 terminate and report no feasible solution

NEAN
19 else if P/ : f:jtk(a'l b'/) == 1 is feasible then
20 UB <+ UB+F¢
21 else
~ ta! ta! - - .
2 Psta’; ;0 arg n}in{wf;‘,‘: : PO s feasible}
23 UB «+ UB+ FY,
24 end
25 allocate corresponding physical resources for st
26 add adjacent virtual links of st and their best lagrangian
weights to @,/
27 end
/+ Step 3: mark b’ backup of a’ SFC as allocated
and go to Step 1 */
’ ’
23 B'* « B* —b’
’

2 it B’ € () then
30 A — A —a
31 end
32 end
33 end

iteratively improve LB and UB as in [40]. To this end we
start with zero u; and ug lagrangian multiplier vectors. At
each iteration we track if LB solution is feasible, and if so
we terminate our subgradient algorithm. Moreover, if LB has
been improved, i.e., if LB, > LB, and LB is not feasible,
we project LB solution back to the feasible space with our
GRLBR algorithm to obtain new U B,,,, solution and update
existing U B solution if UB¢,, < UB. If % < € or
number of iterations is exceeded, we terminate the subgradient
algorithm. At the end of each iteration u; and us are calculated
w.r.t. to their objective gradient. More implementation details
as well as best practices on the subgradient method can be
found in [40].

V. SERVICE CHAIN MAINTENANCE VIA METAPATHS

Any network operating in a challenged scenario is subject to
instabilities. Consider e.g., a physical network after a natural
disaster. In this section, we present a novel metapath-based
SFC maintenance algorithm that utilizes a distributed control
plane to cope with such network instabilities by allowing
migration i.e., reallocation of (part of) the service chain to

Fig. 4: Tlustrative example of our distributed metapath-based SFC mainte-
nance algorithm which provisions permanently the best new mappings of the
failed SFC segments with the total fitness function of 5 once controllers A
and B check all potential mappings.

maintain its services. We first outline our algorithm, and then
prove its eventual correctness property to qualify for the SCL
use that avoids expensive consensus protocols [19].

Distributed metapath-based SFC maintenance. Firstly, we
assume that all demand increase requests of SFCs which
QoS demands are not sufficient are handled proactively by
the root controller — a controller associated with a physi-
cal node of the chain root service. By convention the root
service is a service that outputs SFC processed data. We
now present our metapath-based SFC maintenance algorithm
for a distributed control plane whose logic is outlined in
Algorithm 2, and Figure 4 illustrates its work. Upon a non-
functional SFC segment detection (Figure 4a), the algorithm
starts from the root controller and then, recursively, checks all
service chain segments between the corresponding controllers
to find all non-functional assignments (Step 1). In Step 2, the
algorithm generates k-constrained shortest metapaths or finds
them among the list of pre-computed, e.g., during the service
chain composition. When all service chain segments belong-
ing to some controller are checked or temporally restored
(Figure 4b), this controller requests the next chain segment
(Steps 3 and 4; Figure 4c). Once the termination criteria is
met (Figure 4d), the best found mappings (w.r.t. the fitness
function) or a failed SFC error message are returned (Step 5).

The termination criteria is met when all combinations
of possible failed segment allocations are checked or some
heuristic number is reached, e.g., the number of maximum
recursive calls, used metapaths, etc.

To generate metapaths, we have two options - use metapaths
which have been pre-computed during the service chain com-
position step, or find such metapaths dynamically. We evaluate
different policy trade-offs in Section VII-A2.

On Algorithm 2 space/time complexity. Both time and space
complexities of the maintenance algorithm for the particular
SFC can be bounded as O(kV). This is because Algorithm 2
uses k constrained-shortest metapaths at each recursive call
with the maximum depth of the number of SFC segments Ey, .
To avoid potential exponential complexity of the Algorithm 2,
we suggest to use a simple decay function for k policy, ¢.e.,

Algorithm 2: Metapath-based Service Chain Mainte-
nance

Step 1: Upon receiving a message from controller [, start from the service s at
the controller j and verify the next service chain link segment st ¢ checked
segments

e If st is non-functional, stop and go to Step 2
e Else if t € j, make s = ¢ and check next segment
e Else, send checked service chain segments to the controller ¢ : ¢ € ¢
Step 2: If failed st found, generate k-constrained shortest metapaths set K for st
(sorted in ascending order by their fitness function values) dynamically (to be
discussed later) or among pre-computed metapaths during the composition step

Step 3: Iterate while K ¢ ()

o Retrieve and remove & metapath from K, then temporally allocate
st on k and add it to checked segments
e Check current fitness function value:

— If current fitness function values is worse then the best known objective
value, skip this step
— Else if t € j, make s = ¢ and resume from the step 1
— Else, send checked service chain segments to the controller 4 : ¢t € 4
o If all segments have been checked and current fitness function value
is the best known, track best physical resource mappings for non-functional
segments
e Release st resources and remove it from checked segments
Step 4: Reply back to the controller [
Step 5: Once a termination criteria is met, permanently provision best known
physical resources for non-functional service chain segments.

k = round(k1), where d is a depth of a service chain segment
from the root. Thus, if £ = 10, we use up to 10 metapaths for
the first segment, up to 3 for the second one, etc.

On Algorithm 2 ‘eventual correctness’. Based on the recent
results in [19] it is possible to guarantee a distributed control
plane consistency without expensive consensus protocols by
introducing a simple layer for its coordination. However, in
order to qualify for this layer use, control mechanisms have
to have eventual correctness guarantees. We formally prove
such guarantees of our Algorithm 2 below.

Lemma V.1. (The metapath maintenance eventual correctness)
Our metapath-based SFC maintenance outlined in Algorithm 1
has eventual correctness guarantees.

Proof. To have eventual correctness guarantees, by definition
control mechanisms needs to be deterministic, have idempotent
behavior, triggered recomputation and be proactive w.r.t., to
data plane [19]. We remark that once SFCs are functional,
their demands become certain during some time slot 7. Hence,
our metapath-based SFC maintenance outlined in Algorithm 1
is deterministic and features the idempotent behavior, e.g.,
once a flow rule for some SFC link is setup by one controller
this rule remains the same if setup by another one. Moreover,
our Algorithm 2 needs to be triggered (e.g., by a root
controller) for a service chain elements migration which is
done proactively by setting up new flow rules and provisioning
new virtual machines to host service functions. |

We conclude, that Algorithm 2 qualifies for the SCL use.
In the rest of this paper, we first outline our reliable SFC
orchestration prototype implementation. We then evaluate per-
formance of our approach using both trace-driven simulations
as well as experiments on a realistic core/edge cloud testbed.

VI. SERVICE CHAIN ORCHESTRATION PROTOTYPE

In this section we describe the architecture of our reliable
service chain orchestration prototype shown in Figure 5. Our
prototype architecture includes four main logical components:
(i) control applications, used to compose and maintain SFCs;

:’S’_e;';l_c_e_é}_l;n_y; }Jr Centralized Control Plane A
Composition !
under v Control SCL Policy Centralized Centralized
3 : App Coordinator Hypervisor SDN Controller
Uncertainty r(

(see §4)

1
]
1
]
1
]
!
!]
i Distributed |
! !
]
:
1
]
]
]
]
]

IJ RESTful API [I Ji
Distributed Control Plane)

!
E E
Regular

Regular Root
Controller| |Controller| | Controller

. |
Reliable 1 {__scLproy) [
. . U
Service Chain !’ Control | Hyper f" !Q
. h App visor
Maintenance)i Root

!!('sDN Controller |/ Controller

(see §5)

OpenStack/OpenFlow/SCL Protocols

)
i i Data Plane
H = s s
] ' 4 e B
:Q ! D et /@ s
1 H Hosts SDN Switches Servers
N : DN S
1 U

Uyser Apps J:‘[SCL Agent][_S-[_);\l Switch]jf[S-CL Agenthontainersl:

Fig. 5: System architecture of our reliable SFC orchestration prototype
includes four main logical components: (i) control application is responsible
for service chain composition in centralized control plane and its maintenance
in distributed control plane; (ii) the Simple Coordination Layer (SCL) and
root controllers are responsible for guaranteeing consistency in the distributed
control plane; (iii) SDN is responsible for traffic steering in data plane; and
(iv) Hypervisor is responsible for placing service functions. The prototype
source code is publicly available at [27].

(ii) the SCL and root controllers, used to guarantee consistency
of the distributed control plane; (iii) A SDN-based system with
(iv) a Hypervisor to allocate mapped physical resources. Our
source code is publicly available at [27]. In the rest of the
section, we describe with some more details each of the four
components of our prototype.

Control applications. We have two main types of control
applications. The first type is responsible for the reliable
service chain composition in the centralized control plane
as discussed in Section IV. The second type is responsible
for maintenance of composed service chains as discussed in
Section V. We remark that to avoid both a single point of
failure as well as congestion in the centralized control plane,
we maintain SFCs in the distributed control plane.

SCL and root controllers. To guarantee consistency in the
distributed control plane and avoid various related violations
(e.g., looping paths, QoS violations, etc.), our control ap-
plications qualify to use the SCL [19]. SCL includes three
main components: SCL Agent running on physical resources,
SCL Proxy Controller running on controllers in the distributed
control plane, and SCL Policy Coordinator running in the
centralized control plane. The agent periodically exchanges
messages with corresponding proxy controllers and triggers
any changes in the physical resources. Proxy controllers send
information about data plane changes to the service chain
maintenance control application and periodically talk with
other SCL Proxy Controllers. Finally, all policy changes (e.g.,
in control applications, in SCL, etc.) are committed via 2-
phase commit [19] by the policy coordinator.

In order to handle all service chain modification requests
from application owners such as demand or latency sensitivity
changes, we use root controllers - controllers that leverage
physical resources associated with root services of service
chains. In this paper, by root services we mean services that
provide processed data to end-users.

SDN and Hypervisor. The last two logical components of
our prototype are well-known SDN and Hypervisor systems.

Guided by control applications, both SDN and hypervisor are
responsible for traffic steering and containers provisioning in
the data plane, respectively. We use OpenFlow as our main
SDN system [41] and Docker containers [42] as our hypervisor
system to place services on the physical server.

VII. PERFORMANCE EVALUATION

In this section, we evaluate performance of our reliable SFC

orchestration approach under challenging disaster incident
conditions that can cause severe infrastructure outages [8].
Thus, we first evaluate its performance against the state-of-
the-art NFV/VNE solutions of the (master) integer MCCF
problem. We then evaluate its maintenance performance w.r.t.,
the only existing to our knowledge consensus-based SFC
orchestration scheme [21]. Finally, we evaluate its prototype
implementation and benefits for our case study of object
tracking using geo-distributed latency-sensitive SFCs w.r.t. the
common core cloud computing.
Results. Our evaluation results can be summarized with the
following thrusts: (i) our metapath approach yields more than
99% optimality on average and is up to 3 orders of magnitude
faster than the master problem solution; (ii) our metapath
approach can secure up to two times more SFCs in comparison
to the state-of-the-art NFV/VNE approaches under challenging
disaster incident conditions; (iii) policies allow to trade-off
between a SFC reliability and its composition optimality;
(iv) our metapath approach enables better SFC maintenance
for lesser control messages; and (v) geo-distributed latency-
sensitive SFCs can improve real-time data processing.

A. Numerical Evaluation of our Reliable SFC Orchestration

General Settings. For our simulations, we use an HPC Cloud
server with two Intel Xeon E5-2683 v3 14-core CPUs at 2.00
GHz (total 56 virtual cores), 256GB RAM, and running the
Ubuntu 16.04 allocated in NSF CloudLab platform [45]. We
solve math programs with IBM ILOG CPLEX [35]. We use
both Internet Topology Zoo [43] and Atlas [44] databases to
re-create the US Tierl and regional providers’ networks as
shown in Figure 6. We assume that each topology has nodes
and links with uniformly distributed computation capacity
from 5 to 50 TFlops and bandwidth from 1 to 10 Gbps,
respectively. Note that the lowerbound 5 TFlops performance
can simulate limited network edge servers, whereas 50 TFlops
can simulate HPC cloud servers. Moreover, we assume that
latency of each physical link is proportional to its propagation
delay computed as its geographical length divided by the
speed of light in fiber. Finally, we compute physical resources’
outage risk w.r.t. to the geographical proximity to the disaster
incident epicenter as discussed in [8]. All our results show
95% confidence intervals, and our randomness lays both in
SFC requests and in disaster incident events.

SFC request settings. We generate a pool of 50 SFCs
composed by 2 to 20 services, unless stated differently. Based
on a common object tracking application [4], each SFC has
equal chances to express its either High-Performance (HPC)
or regular computing demands shown in Table II. As in [8],
we assume a strong correlation between SFC demands and the
disaster incident intensity. Using natural disaster data sets and
their associated infrastructure outage risks specified in [8], we

(a) (b)

Fig. 6: Simulation data sets: (a) network infrastructure that spans 7 Tier-1
US providers and comprises of 286 Point of Presence (PoP) nodes and 534
links; and (b) network infrastructure that spans 56 regional US providers and
comprises of 596 PoP nodes and 1253 links.

use the following geo-location policies: All services handling
incoming raw data must be placed within a range of two
disaster incident region radiuses from its epicenter. When there
are no disaster incidents, these services as well as services that
output processing data have to be placed within 200 miles out
of the random geographic locations picked within the US. We
remark that this geo-location policy is intended to simulate
incident-supporting applications [4] that can benefit from use
of geo-distributed latency-sensitive SFCs.

TABLE II: An example set of demands for different SFC types

Demands | Expected Computation |Expected Data Expected Expected
Type D d per Function |Collection Size| Comp. Time Data Rate
Regular 0.5-5 TFlops 1-10 GB 10-100 ms/frame | 10-100 Mbps

HPC 1-10 TFlops 10-100 GB [10-100 ms/frame[0.1 - 1 Gbps

1) Service Chain Composition Evaluation:

Composition Metrics. We compare performance of our
metapath-based SFC composition in Problem 2 (referred as
MpSC) against its (polynomial) Lagrangian relaxation coun-
terpart (referred as MpLG). We also compare MpSC' against
the VNE/NFV state-of-the-art solutions of the (master) integer
MCCEF problem (i.e., Problem 1): IBM CPLEX branch-and-
bound version [35] (optimal, but has the highest combinatorial
complexity), branch-and-price column generation [26] and
recent isomorphism detection [22] approaches (suboptimal,
but have lower combinatorial complexities). We refer to the
branch-and-bound solution of the master problem as Opt, to
the column (or path in case of SFCs) generation approach as
Pg¢SC, and to the isomorphism detection as 1s0SC.
Assumptions. To evaluate the online optimization perfor-
mance of our approach, we assume the most difficult case:
all SFC requests arrive sequentially (i.e., unknown in advance)
and do not allow a service consolidation, i.e., only one service
in a chain can be placed onto the same physical server. Thus,
we are forced to compose fractional traffic flows between
all services in order to maximize the number of composition
decisions that need to be made during SFC.

We assess the performance of our SFC composition algo-
rithms by specifying the fraction of successfully composed
SFCs over the total requested chains (composition ratio).
Similarly, we assess the reliability of these algorithms by com-
puting a fraction of the number of composed SFCs disrupted
during disaster incidents over the total number of composed
SFCs (disruption ratio). In addition, we also use an optimality
gap metric which we define as a gap in % between Opt and
all other algorithms. Finally, we use a composition time metric
to access scalability performance of our metapath approach.
(i) MpSC gains more than 99% optimality on average
and is up to 3 orders of magnitude faster than Opt. To

% 5 [*-MpSC.Tierl# MpSC Region

z 10 +>MpLG,Tier 19 MpLG,Region /,

41-0-Opt, Tierl @ Opt, Reglon ‘ ”””
10

=t
oS

1 1
L
;_‘_;‘
.t
=4
44

o
s

->-MpLG,SN=20 9~ MpLG,SN=5
-0+ MpSC,SN=20 -8 - MpSC,SN=5

20 40 60 80 100 120
MPaths per SC [x PN Num]
(@) (b)

Fig. 7: Service chain (SC) composition optimality gap (a) and time (b)
results in presence of no disaster incidents (R = 0).

Optimality Gap [%]

(=}

2 5 10 15 20 30
Num. of Services per SC

estimate the baseline performance of our metapath approach,
we first assume a scenario without disasters (z.e., no outage
risks and R = 0) where capacity chance constraints becomes
deterministic yielding the largest feasible space (i.e., leading
to a higher combinatorial complexity of the master problem).
Figure 7a shows how its optimality depends on the number of
generated metapaths per single service chain (SC) request. We
can see how, when this number exceeds >80 times the number
of physical nodes (PNs), the performance of MpSC' flattens.
On the other hand, when either the SFC service number (SN)
increases or the reliability requirements get tighter in a disaster
incident scene, MpSC achieves optimality most of the time
and shows 99% optimality on average. Note also how MpLG
shows significantly worse performance with respect to M pSC;
this is due to use of greedy heuristics used to recover feasible
solutions. However, MpLG can be beneficial for large SFCs
(of > 25 services) as it is polynomial.

For the rest of our evaluation, we fix the number of metap-
aths generated per SFC request to 80 and 120 times the number
of physical nodes for MpSC and MpLG, respectively. These
values of metapaths are picked to allow both MpSC' and
MpLG to compose large SFCs. For instance, with these
settings M pSC' is almost three orders of magnitude faster than
the optimal solution (Opt) as shown in Figure 7b. For small
SFCs (i.e., < 5 services) we found, however, no significant
scalability improvements of MpSC and MpLG over Opt.
This is due to the fact that generating metapaths is time-
consuming. Thus, for small service chains, it is recommended
to avoid use of metapath-based composite variables and merely
consider the Opt policy instead. For the rest of our evaluation,
we only use the MpSC' service chain composition algorithm.
(ii) MpSC can secure up to 2 times more SFCs than
PathGen and IsoSC under challenging disaster-incident
conditions. Furthermore, we can see how our MpSC' outper-
forms PgSC' and 1s50S5C by securing up to 2 times more SFCs
under challenging disaster-incident conditions of tornadoes
and hurricanes as shown in Figures 8a and 8b with the
service chain reliability R = 0.8. This is due to the fact
that MpSC' reaches the optimality most of the time while
being sufficiently scalable. At the same time, PgSC' is limited
by the performance of the SFC composition algorithm (that
commonly uses a two-stage composition) to get the initial
feasible solution [26]. Moreover, it is also known that column
generation approaches such as PgSC' converge slowly to
the optimal for integer problems [25]. In contrast to PgSC,
Is0SC doesn’t need an initial feasible solution, but can fail
to find one or not converge to the optimal solution for the
predefined amount of iterations [22].

[IMpsc, Tier! [IMlisoSC,Tierl [MMPeSC,Tierl |~ |MpSC Region [25]1s0SC,Region |\|PgSC,Region

2 1
5] hoA
Q 0.8 I g.
g0s i
204 i &
2.0.2
£ o AN 2
@] I N
O ST O &
7 <° & >
. AQ» < o
Disaster Incident Disaster Incident
(@) (b)

[B=1Tier1 [llB=2,Tier1 [MlB=3 Tierl | ~|B=1Region [%|B=2,Region |\\\|B=3,Region
LS 1 e 1

3)5
~0.8 ~ 0.8

=} =]
S06 S06
k= =

£ 0.4 o] 504

£02 B Aozl B
o N EES) oo et s 2
O 0 £ NV 2 £ H
17} 0.8 09 095 098 099 0.8 09 095 098 0.99

SC Reliability (R) SC Reliability (R)
(© (d)

Fig. 8: Service chain (SC) composition ratio (a,c) and disruption ratio (b,d)
results under different natural disaster-incidents with reliability R = 0.8 (first
row), and M pSC results under hurricane disaster-incidents (second row).

(iii) Policy-based SFC reliability trade-offs. Further, to
achieve a desired level of reliability during SFC composition
(i.e., proactively), the capacity chance-constraints acceptable
risk (i.e., 1 — R) and/or the number of backups policies can
be adjusted appropriately. As shown for MpSC' in Figures 8c
and 8d, increasing either chance-constraints reliability R or the
number of backups decreases the number of composed SFCs
by either prohibiting more physical resources for allocation
or utilizing more physical resources for SFC backups. On
the other hand, such a strategy can significantly minimize the
number of disrupted SFCs, therefore minimizing their outages.

2) Service Chain Maintenance Evaluation:

Maintenance Metrics. We compare our metapath-based SFC
maintenance algorithm referred as MpSM with the only
existing (to the best of our knowledge) consensus-based SFC
orchestration approach that can guarantee distributed control
plane consistency — Catena [21].

In this simulation scenario we have mainly assessed per-
formance of SFC composition algorithm by specifying the
fraction of times service chain events are successfully migrated
over their total appearance number (blocking ratio). In addi-
tion, we also use an optimality gap and a number of control
messages metrics to access the optimality and a complexity
performance of our proposed solution.

(iv) Metapaths and SCL for better SFC migrations with
lesser control messages. Figures 9a, 9b and 9c show how
MpSM with the pre-computed metapaths P policy can more
optimally migrate SFCs with a lower blocking probability
than Clatena and using an order of magnitude less control
messages. The reason for these results is two fold. First of
all, our algorithm simultaneously considers fitness functions of
service placements and their chaining by recursively traversing
possible migrations w.r.t. k-constrained shortest metapaths pol-
icy, whereas C'atena has approximation guarantees only for
the service placement and uses k-shortest physical paths (not
metapaths) to chain them in a best-effort manner. Secondly,

—P— Catena,P

=& Catena,D

>, 1000 £

250
100}

Optimality Gap [%
3

1 2 3 5 10

E 1 2 3 5 10
(M)Paths per VLink

(M)Paths per VLink
(a) (b) ©

Migration: ||Single VL [l Single VS | \\|Partial SC || Full SC

(M)Paths per VLink

1 5 10 25 50
Failure Rate [%]

P/10 D/10 P/50 D/50 +
Policy/Failure Rate [%]

P/10 D/10 P/50 D/50
Policy/Failure Rate [%]

(d) (e))

Fig. 9: Service chain (SC) migration optimality gap (a), blocking probability
(b) and number of control messages used for this migration (c) results. Single
virtual link (VL), single virtual function service (VS) and partial or full service
chain (SC) event migrations probabilities (d), their blocking probabilities (e)
and number of control messages used to migrate them (f) results with £ = 5
metapath policy and different physical network failure rates.

our MpSM uses SCL to avoid expensive consensus control
messages that C'atena uses for providing the same distributed
control plane consistency guarantees. We can also see how
our MpSM reaches optimality of >90% when number of
traversed metapath candidates £ > 5 for both dynamic D and
pre-computed P metapath policies. Thus, for the rest of our
simulation we fix k£ = 5.

Figures 9¢ and 9f illustrate how MpSM can significantly
reduce the blocking probability of various SFC migration
events when finding metapaths dynamically D. However, the
main side effect is that MpSM with D policy demonstrates
~ 4 orders of magnitude increase in control messages w.r.t. its
P policy. Thus, we recommend use D policy if the following
criteria are met: (i) single link or service migration events hap-
pen; (ii) the physical infrastructure experience severe failures,
i.e., > 25%; and (iii) number of controllers is at least an order
of magnitude less than the number of physical resources. Each
of these criteria can decrease the number of control messages
approximately by an order of magnitude. Particularly, (i) is
due to the fact that single SFC segments are easier to recover,
and these events are more common (see Figure 9d); (ii) is due
to the fact that having more failed physical resources needs
less number of control messages and significantly reduces a
feasible space for SC migrations; and (iii) is due to the fact
that the more physical resources are controlled by a single
controller the more recursive calls of MpSM can be done in
memory, thus saving on control messages. As a result, number
of control messages of M pSM with D policy can be reduced
up to 3 orders of magnitude w.r.t. P policy and approximately
equal to Catena with P policy.

B. Experimental Evaluation of our Object Tracking Case
Study Geo-Distributed Latency-Sensitive Service Chain

In this subsection, we discuss our edge/core cloud testbed
setup in GENI [28] and show improvements in data throughput
and tracking time for our case study of object tracking using
geo-distributed latency-sensitive SFCs w.r.t. the common core

<— -concurrent flow

<— - main flow

#of cores: 4
memory: 4 GB|

of cores: 2
memory: 2 GB

. 7183, -
of cores: 1 Transmission
memory: 1 GB - E Cloud
G
(a)

of cores: 4
memory: 4 GB|

of cores: 2
et memory: 2 GB

g e hdg
& Q{s/-serwce chain Cloud
77583, ¢ Moptimization

\ x / Transmission

Cloud

#of cores: 1
memory: 1 GB| -
G
(b)

Fig. 10: Data flows in the allocated in GENI edge/core cloud testbed: (a)
object tracking data flow interferes with concurrent flow on the s2 — s1 link
as regular network sends data through the best (the shortest) path; (b) by using
our reliable service chain orchestration prototype, we chain tracking services
with QoS guarantees which avoids congestion by redirection of concurrent
flow through longer path s2 — s3 — sl. Furthermore, by allocating image
pre-processing service function at the edge cloud (to h2 instead h1) it enables
near real-time tracking.

cloud computing. To this aim, we use our reliable service chain
orchestration prototype implementation outlined in Section VI.
Setup. Multiple video resolutions in practice need to be
processed because the input source imagery in surveillance
typically spans a wide variety of sensor technologies found
in mobile devices. In our experiments, we choose the VGA
resolution data to express regular SFC demands (see Table II)
and track pedestrians in a crowd [46]. The pre-processing step
is performed for every image that needs to undergo adaptive
contrast enhancement with Imagemagick tool before being
used for tracking in the core cloud. The adaptive contrast
enhancement requires global image information and thus needs
to read in image data into memory, and operates on every
pixel. All images are pyramidal tiled TIFF (Tagged Image File
Format) and the pre-processing retains the tile geometry.
Our edge/core cloud testbed setup includes 6 virtual ma-
chines (VMs) in the GENI platform as shown in Figure 10,
where three of these VMs emulate OpenFlow switches (s1,
s2 and s3) and others are regular hosts (h1, h2 and h3). To
consider disaster network scenarios that impact data transfer,
we assume a 4G-LTE network configuration at the edge.
Hence, each host-to-switch link has 100 Mbps bandwidth
without delay, each switch-to-switch link has only 40 or
50 Mbps bandwidth (unless specified differently) and 5 ms
transmission delay to emulate congested and damaged net-
work infrastructure in a disaster scenario. Using our reliable
SFC orchestration prototype, the tracking service function is
allocated on h1 (quad-core CPU and 4GB of RAM) that acts at
a core cloud site. At the same time, the pre-processing service
function is allocated on h2 (double-core CPU and 2GB of
RAM) that acts at a edge cloud site. Finally, h3 (single-core
CPU and 1GB of RAM) consumes raw data from h2 by acting
as a remote storage at core cloud site. The h3 is configured
with cross-traffic flows consumption such that it interferes with
our object tracking traffic. We call cross and object tracking
traffic as the ‘concurrent’ and ‘main’ flows, respectively.

TABLE III: Object tracking case study results over limited

network conditions.

Performance
IMetrics

Object Tracking
in the Cloud

Object Tracking
via SFC

Perceived Benefits

Preprocess time (s/fr)

0.1955 £+ 0.0011

0.202 + 0.023

No significant difference

App thr-put (Mbps)

10.50 £ 0.34

41.85+£0.24

Avoiding congestion with

our reliable SFC orches-
tration maximizes object]
tracking throughput
0.4097 £ 0.0022]0.4229 + 0.0024|No significant difference
0.902 + 0.032 0fo Achieving maximum
speed of tracking service
function avoids waiting
time and supports real-
time computation
0.4229 £ 0.0024]Real-time data processing]
via geo/latency-sensitive
SFCs can produce ~3.5X
speedup over common|
cloud computing scenario

Tracking time (s/fr)
(Waiting time (s/fr)

[Total time (s/fr) 1.312 £ 0.034

To differentiate between object tracking via the allocated

geo-distributed latency-sensitive SFC and the cloud computing
scenario, our experiment workflow is as follows: (i) start
sending concurrent traffic from h2 to h3; (ii) start sending
main traffic (imagery) from h2 to hl; (ii.a) while performing
data processing via the allocated SFC, start pre-processing
concurrently with step (ii); (iii) wait until at least the first frame
has been transferred; (iii.b) in case of core cloud computing,
start pre-processing before step (iv) (in this case the tracking
service function has to wait for each frame when its pre-
processing ends); (iv) start tracking; (v) wait until all main
traffic has been transferred; and (vi) terminate both the service
functions and data transfers.
(v.a) Geo-Distributed Latency-Sensitive SFCs can improve
Real-Time Data Processing. Table III shows the final timing
results computed with estimate 95% confidence intervals for
SFC and cloud computing cases over limited edge network
with 50 Mbps access bandwidth. For each trial, we used a
300 frame video sequence and measured several application
performance metrics such as estimated throughout, tracking
time, waiting time and total time. In our settings, we are
able to pre-process frames faster in the core cloud computing
scenario than when a geo-distributed latency-sensitive SFC is
used. However, due to congestion in best-effort IP network and
the absence of raw data at the core cloud site, we cannot track
frames in real-time (i.e., with O waiting time) in the core cloud
computing scenario. Whereas by composing a geo-distributed
latency-sensitive SFC of our object tracking pipeline, we can
track frames in near real time at 3 — 4 Hz.

TABLE IV: Object tracking case study results over degrading
network conditions.

Performance Metrics Object Tracking in the Cloud|Object Tracking via SFC
Number of tracked frames| 224+ 7 892+ 9

App thr-put (Mbps) 11.02 +0.36 43.94+0.4
Tracking time (s/fr) 0.3904 + 0.021 0.403 £+ 0.004
'Waiting time (s/fr) 0.86 £+ 0.28 0+0

Total time (s/fr) 1.25 £ 0.29 0.403 £ 0.004

(v.b) Geo-Distributed Latency-Sensitive SFCs can mitigate
network QoS degradation. Further, to consider disaster
network scenarios that can impact data transfer, we apply a
bandwidth degradation profile to the (collection) edge network
with an initial bandwidth of 100 Mbps (best case). For
experimental purposes, the profile degrades the bandwidth at
a rate of 20 Mbps per minute due to heavy cross-traffic load
or candidate network path failures till it falls to zero (i.e.,
worst case disconnection scenario) with the total 5 minutes

of tracking time until the edge network gets disconnected
from the collection site. Table IV shows how using SFCs is
beneficial in terms of the total number of tracked frames, 7.e.,
almost 4x more frames can be tracked than in the similar case
of using tracking in the cloud. This is due to the benefit of
low latency data access by pre-processing functions that can
fetch required data faster from the collection site without been
bottlenecked by the main tracking pipeline in the cloud.

VIII. CONCLUSION

In this paper, we presented the reliable orchestration ap-
proach to augment our previously proposed composition ap-
proach with the maintenance approach to not only compose
but also support geo-distributed latency-sensitive SFCs during
their lifespan [23]. To ensure reliability of SFCs, we handle
both their demand fluctuations and possible infrastructure
outages during the composition via use of capacity chance-
constraints and service backups policies. We have addressed
NP-hardness limitations of the (master) integer MCCF-based
SFC composition problem by proposing a novel metapath
composite variable approach that uses either (NP-hard) GAP
or its (polynomial) Lagrangian relaxation counterpart. Using
realistic trace-driven simulations with US Tier-1 and regional
infrastructure topologies, we have shown that our metapath
composite variable approach reaches 99% optimality on av-
erage, is up to 3 orders of magnitude faster than the master
problem solution for practically sized problems and can com-
pose twice as many SFCs than related NFV/VNE methods.
Moreover, we have also proposed a novel metapath-based
SFC maintenance algorithm that guarantees consistency of the
distributed control plane without use of expensive consensus
protocols. To this aim, we have proved its eventual correctness
to utilize a prior Simple Coordination Layer concept [19]. As a
result, our metapath-based maintenance solution reaches better
optimality for less number of control messages than a recent
consensus-based SFC orchestration scheme [21]. Finally, we
were able to show almost a 3.5x speedup of our object tracking
case study application when a geo-distributed latency-sensitive
SFC 1is used for data processing with respect to a common
cloud computing-based solution. To this aim, we deployed
our reliable service chain orchestration prototype on a realistic
edge/core cloud testbed allocated in GENI. The source code
of our prototype is publicly available at [27].

ACKNOWLEDGEMENTS

This work has been supported by NSF awards CNS-
1647084, CNS-1647182 and Coulter Foundation Translational
Partnership Program. The information reported here does not
reflect the views of the funding agencies.

REFERENCES

[1] D. Bhamare, et al., “A survey on service function chaining”, Elsevier
JNCA, 2016.

[2] Y. Niu, et al., “Load balancing across microservices”, Proc. of IEEE
INFOCOM, 2018.

[3] R. Yu, et al., “Application provisioning in fog computing-enabled IoTs:
a network perspective”, Proc. of IEEE INFOCOM, 2018.

[4] R. Gargees, et al., “Incident-Supporting Visual Cloud Computing Utiliz-
ing Software-Defined Networking”, IEEE TCSVT, 2017.

[5] R.Cziva, et al., “Dynamic, latency-optimal VNF placement at the network
edge”, Proc. of IEEE INFOCOM, 2018.

[6] Q.Zhang, et al., “Adaptive interference-aware VNF placement for service-
customized 5G network slices”, Proc. of IEEE INFOCOM, 2019.

[7]1 R. Potharaju et al., “Demystifying the dark side of the middle: a field
study of middlebox failures in datacenters,” Proc. of ACM IMC, 2013.

[8] B. Eriksson, et al., “Riskroute: a framework for mitigating network outage
threats”, Proc. of ACM CoNEXT, 2013.

[9] X. Fei, et al., “Adaptive VNF scaling and flow routing with proactive
demand prediction”, Proc. of IEEE INFOCOM, 2018.

[10] C. Zeng, et al., “Demystifying the performance interference of co-
located virtual network functions”, Proc. of IEEE INFOCOM, 2018.
[11] X. Li, et al., “DHL: Enabling flexible software network functions with

FPGA acceleration”, Proc. of IEEE ICDCS, 2018.

[12] A. Tomassilli, et al., “Provably efficient algorithms for placement of
SFCs with ordering constraints,” Proc. of IEEE INFOCOM, 2018.

[13] Q. Zhang, et al., “Joint optimization of chain placement and request
scheduling for network function virtualization”, Proc. of IEEE ICDCS,
2017.

[14] R. Cohen, et al., “Near optimal placement of virtual network functions,”
Proc. of IEEE INFOCOM, 2015.

[15] Y. Sang, et al., “Provably efficient algorithms for joint placement and
allocation of virtual network functions,” Proc. of IEEE INFOCOM, 2017.

[16] S. Jain, et al., “B4: Experience with a globally-deployed software defined
WAN,” Proc. of ACM SIGCOMM CCR, 2013.

[17] H. Feng, et al., “Approximation algorithms for the NFV service distri-
bution problem”, Proc. of IEEE INFOCOM, 2017.

[18] P. Berde, et al., “ONOS: Towards an Open, Distributed SDN OS”, Proc.
of HotSDN, 2014.

[19] A. Panda, et al., “SCL: Simplifying Distributed SDN Control Planes”,
Proc. of NSDI, 2017.

[20] D. Ongaro, J. K. Ousterhout, “In Search of an Understandable Consensus
Algorithm”, Proc. of USENIX, 2015.

[21] F. Esposito, “Catena: A distributed architecture for robust service
function chain instantiation with guarantees”, Proc. of NetSoft, 2017.
[22] B. Spinnewyn, et al., “Resilient application placement for geo-distributed

cloud networks”, Elsevier JNCA, 2017.

[23] D. Chemodanov, et. al., “A Near Optimal Reliable Composition Ap-
proach for Geo-Distributed Latency Sensitive Service Chains”, Proc. of
IEEE INFOCOM, 2019.

[24] C. Barnhart, “Airline fleet assignment with enhanced revenue modeling,”
INFORMS Operations Research, 2009.

[25] M. L. Fisher, “The Lagrangian relaxation method for solving integer
programming problems”, Management science, 2004.

[26] R. Mijumbi, et al., “A path generation approach to embedding of virtual
networks”, IEEE TNSM, 2015.

[27] Metapath-based service chain orchestration repository - https://bitbucket.
org/duman190/mpsc_orchestration; Last accessed Feb. 2019.

[28] M. Berman, et. al., “GENI: A federated testbed for innovative network
experiments”, Elsevier ComNet, 2014.

[29] L. Guo, et al., “Joint placement and routing of network function chains
in data centers”, Proc. of IEEE INFOCOM, 2018.

[30] M. Chowdhury, et al., “Virtual network embedding with coordinated
node and link mapping”, Proc. of INFOCOM, 2009.

[31] X. Fei, et al, “Towards load-balanced VNF assignment in geo-
distributed NFV infrastructure”, Proc. of IEEE/ACM IWQoS, 2017.

[32] T. Wang, et al., “Multi-resource load balancing for virtual network
functions”, Proc. of ICDCS, 2017.

[33] Y Xiao, et al., “NFVdeep: adaptive online service function chain de-
ployment with deep reinforcement learning”, Proc. of IEEE/ACM IWQoS
2019.

[34] J.R. Birge, F. Louveaux, “Introduction to stochastic programming”,
Springer Science & Business Media, 2011.

[35] IBM CPLEX solver - http://www-01.ibm.com/software/commerce/
optimization/cplex-optimizer/index.html; Last accessed Feb. 2019.

[36] R. K. Ahuja, “Network flows: theory, algorithms, and applications”,
Pearson Education, 2017.

[37] D. Chemodanov, et. al., “A Constrained Shortest Path Scheme for Virtual
Network Service Management”, IEEE TNSM, 2018.

[38] X. Chen, et al., “Multi-criteria Routing in Networks with Path Choices”,
Proc. of IEEE ICNP, 2015.

[39] P. Van Mieghem, F. Kuipers, “Concepts of exact QoS routing algo-
rithms”, IEEE/ACM TON, 2004.

[40] V. Jeet, et al., “Lagrangian relaxation guided problem space search
heuristics for generalized assignment problems”, Elsevier EJOR, 2007.

[41] Floodlight sdn controller - http://www.projectfloodlight.org/floodlight/;
Last accessed Feb. 2019.

[42] Docker containers - https://www.docker.com/; Last accessed Feb. 2019.

[43] S. Knight, et al., “The Internet Topology Zoo”, IEEE JSAC, 2011.

[44] R. Durairajan, et al., “Internet atlas: a geographic database of the
internet”, Proc. of ACM HotPlanet, 2013.

[45] R. Ricci, E. Eide, “Introducing CloudLab: Scientific infrastructure for
advancing cloud architectures and applications”, USENIX Login, 2014.

[46] A. Ellis, et al., “Pets2009 and winter-pets 2009 results: A combined
evaluation,” Proc. of IEEE PETS, 2009.

Dmitrii Chemodanov received both his BS and
MS degrees in applied math and physics from the
Department of Computer Science at Samara State
Aerospace University, Russia in 2012 and 2014, re-
spectively. He received his PhD degree in Computer
Science from the University of Missouri-Columbia
in 2019. His current research interests include dis-
tributed and cloud computing, network and service
management, and peer-to-peer networks.

Prasad Calyam received his MS and PhD degrees
from the Department of Electrical and Computer
Engineering at The Ohio State University in 2002
and 2007, respectively. He is currently an Associate
Professor in the Department of Electrical Engineer-
ing and Computer Science at University of Missouri-
Columbia. His current research interests include dis-
tributed and cloud computing, computer networking,
and cyber security. He is a Senior Member of IEEE.

Flavio Esposito is an Assistant Professor in the
Computer Science Department at SLU and a Visiting
Research Assistant Professor in the EECS Depart-
ment at University of Missouri-Columbia. He re-
ceived his Ph.D. in CS at Boston University in 2013,
and his MS in Telecommunication Engineering from
University of Florence, Italy. His research interests
include network management, network virtualization
and distributed systems.

Ronald McGarvey is an Assistant Professor in the
Industrial and Manufacturing Systems Engineering
Department at University of Missouri-Columbia and
at the Harry S Truman School of Public Affairs.
He received his PhD in Industrial Engineering and
Operations Research from Pennsylvania State Uni-
versity. His primary research interest is in applied
optimization and its applications to public policy
and resource management. McGarvey has more than
10 years of experience working as a researcher in
Project AIR FORCE, a federally funded research
and development center operated by the RAND Corporation that is tasked
with performing policy analysis on behalf of Air Force leadership.

Kannappan Palaniappan received his PhD from
the University of Illinois at Urbana-Champaign, and
MS and BS degrees in Systems Design Engineering
from the University of Waterloo, Canada. He is a
faculty member in Computer Science at the Univer-
sity of Missouri where he directs the Computational
Imaging and VisAnalysis Lab and helped establish

the NASA Center of Excellence in Remote Sensing.
ﬁ His research is at the synergistic intersection of

image and video big data, computer vision, high
performance computing and artificial intelligence
to understand, quantify and model physical processes with applications to
biomedical, space and defense imaging.

Antonio Pescapé is a Full Professor at the De-
partment of Electrical Engineering and Information
Technology of the University of Napoli Federico II
(Italy). His research interests are in the networking
field with focus on Internet Monitoring, Measure-
ments and Management and on Network Security.
Antonio Pescapé has coauthored over 200 journal
and conference publications and he is co-author of
a patent. For his research activities he has received
several awards, comprising a Google Faculty Award,
several best paper awards and two IRTF (Internet
Research Task Force) ANRP (Applied Networking Research Prize).

