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porated reliability and geo-location/latency aware mechanisms.

The former aims to cope proactively with both possible

infrastructure outages as well as SFC demand fluctuations,

whereas the latter is needed to satisfy QoS demands of geo-

distributed latency-sensitive service chains.

Secondly, due to scale and nature of geo-distributed SFCs,

having their orchestration with a single point of failure or

congestion (i.e., centralized) is too risky. On the one hand,

having a SFC maintenance which is based on a distributed

control plane system is crucial. On the other hand, distributed

control plane-based Software Defined Networking (SDN) sys-

tems such as ONOS [18] require consistency guarantees to

avoid various violations [19]. Examples of such violations

tailored to the SFC orchestration can be double assignment of

services, looping paths, QoS constraints violations and others.

A common approach to guarantee consistency of a distributed

control plane is by establishing a consensus. The latter can be

done by running known consensus protocols such as Raft [20],

etc. To the best of our knowledge, the only distributed SFC

orchestration scheme that builds upon consensus literature is

‘Catena’ [21]. This algorithm ensures a consistency by running

consensus protocols based on specified policies and can be

used safely within distributed control plane. However, using

consensus protocols for every service placement or its chaining

in a SFC request is expensive.

Our approach: In this paper, we propose a new reliable

service chain orchestration approach that can serve the needs

of geo-distributed latency-sensitive SFCs at high-scale. Our

orchestration approach assumes an initial SFC composition

via a centralized control plane and its consequent maintenance

during its lifespan within a distributed control plane.

Firstly, our approach involves ensuring reliability proac-

tively. To do so, we compose SFCs with capacity chance-

constraints (that handle both SFC demand fluctuations as

well as infrastructure outages uncertainties) and with backup

policies which further complicate solution of the NP-hard

integer MCCF problem. We remark that our approach does

not focus on the optimal composition of SFCs with their

“guarantee” reliability. This is because this optimization prob-

lem scales poorly [22]. Instead, we propose a policy-based

reliability mechanism that can trade-off SFCs’ reliability and

their composition optimality.

Secondly, to cope with this problem solution intractabili-

ties, we outline our novel metapath-based composite variable

approach that has been proposed in our prior work [23]. This

approach is similar to other composite variable solutions in

terms of its nature that aggregates multiple decisions within a

single binary variable [24].

Finally, to maintain QoS demands satisfaction of SFCs

during their lifespan, we propose a distributed control plane

algorithm that builds upon metapaths and Simple Coordination

Layer (SCL) [19].

Contributions: In this paper, we augment our previously

proposed practical and near optimal SFC composition ap-

proach with a novel SFC maintenance algorithm designed

for a distributed control plane that guarantees the latter’s

consistency without use of expensive consensus protocols. [23]

Specifically, our contributions are the following:

(1) We formulate the (master) NP-hard integer MCCF problem

previously adopted in NFV literature [17] but now with geo-

location and latency constraints as well as with probabilistic

capacity constraints for a reliable composition under uncer-

tainty of geo-distributed latency-sensitive SFCs. (Section III)

(2) We outline our first-of-its-kind metapath-based composite

variable approach that aggregates feasible mapping decisions

of each single-link SFC segment as a set of k-constrained

shortest metapaths. It then assigns SFC segments to their

associated metapaths either optimally by using generalized

assignment problem (GAP) [25] or suboptimally by using its

(polynomial) Lagrangian relaxation counterpart. (Section IV)

(3) We also propose a new metapath-based SFC maintenance

algorithm that operates in a distributed control plane and prove

its eventual correctness property to use SCL. (Section V)

(4) Using trace-driven simulations of real US Tier-1 (∼300

nodes) and regional (∼600 nodes) infrastructure providers’

topologies, we first show how our SFC composition approach

achieves 99% optimality on average. In addition, we show that

it only takes time on the order of seconds for practically sized

problems in contrast with the master problem solution that

takes several hours. By recreating challenging disaster incident

scenarios as in [8], we lastly show how our approach can

compose twice as many sequentially incoming SFC requests

and better maintain them in terms of optimality and number

of control messages due to use of metapaths and SCL than

the state-of-the-art solutions [21], [22], [26]. (Section VII)

(5) Finally, using experimental evaluation, we implement our

open-source reliable service chain orchestration prototype

(available under GNU license at [27]) and show how it speeds-

up the case study geo-distributed latency-sensitive object track-

ing pipeline by up to 3.5 times in comparison to its cloud

computing alternative over IP networks. To this end, we deploy

our prototype on a realistic core/edge cloud testbed in GENI

infrastructure [28]. (Section VII-B)

II. RELATED WORK

SFC is traditionally used in NFV to place a set of mid-

dleboxes and chain relevant functions to steer traffic through

them [1]. Existing SFC solutions either separate the service

placement from the service chaining phase [12], [14], [15], or

jointly optimize both the two phases [9], [17].

SFC Optimality. In some special cases the optimal SFC is

shown to have approximation guarantees [12], [13], [14], [15].

For instance, Cohen et al. [14] and Sang et al. [15] provide

near optimal approximation algorithms for the SFC prob-

lem without chaining and ordering constraints. Tomassilli et

al. [12] propose the first SFC solution with the approximation

guarantees which admits ordering constraints, but still omits

chaining constraints. Similarly, omitting chaining constraints

allows Zhang et al. [13] to achieve in the worst case a 2x

approximation bound of SFC in polynomial time. Q. Zhang et

al. [6] propose an interference-aware approximation algorithm

for 5G network services placement of linear, split and split-

and-merged SFCs, however, without considering their chaining

constraints. Guo et al. [29] show approximation guarantees

for SFCs with both ordering and chaining constraints, but

only under assumptions that available service chaining options

are of polynomial size. In the general case however, when

service functions need to be jointly placed and chained in a

geo-distributed cloud infrastructure with a corresponding com-

pute/network resource allocation, possible SFC compositions
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if a service s ∈ Na
V of a backup b ∈ Ba of a SFC a ∈ A is

assigned to the physical node i ∈ NS , i.e., xs
i (b, a) = 1, and

0 otherwise. Having sets and variables defined, we now can

formulate the online service chain composition problem under

uncertainty using integer MCCF problem.

Problem 1 (online SFC composition under uncertainty).

Given a set of SFCs represented as graphs Ga = (Na
V , E

a
V )

and a physical network graph G = (NS , ES), the online

service chain composition problem under SFC demands and

available physical resources uncertainties can be formulated

as follows:

minF
E
=

∑

a∈A

∑

b∈Ba





∑

s∈Na
V

∑

τ∈T

∑

i∈NS

E

[

Daτ
s

Cτ
i

]

xs
i (b, a)

+
∑

st∈Ea
V

∑

ij∈ES

E

[

Da
st

Cij

]

fst
ji (b, a)





(1)

subject to

Service Placement Constraints:
∑

i∈NS

xs
i (b, a) = 1, ∀s ∈ Na

V , b ∈ Ba, a ∈ A (2)

P





∑

a∈A

∑

b∈Ba

∑

s∈Na
V

D
aτ
s xs

i (b, a)≤C
τ
i



≥R, ∀i∈NS , τ ∈T (3)

Service Chaining Constraints:
∑

j∈NS

fst
ij (b, a)−

∑

j∈NS

fst
ji (b, a) = xs

i (b, a)− xt
i(b, a),

∀i ∈ NS , st ∈ Ea
V , b ∈ Ba, a ∈ A

(4)

P





∑

a∈A

∑

b∈Ba

∑

st∈Ea
V

D
a
stf

st
ij (b, a) ≤ Cij



 ≥ R, ∀ij ∈ ES (5)

Specific QoS Constraints (Geo-Location, Latency, etc.):

gdasix
s
i (b, a) ≤ GDa

s , ∀i ∈ NS , s ∈ Na
V , b ∈ Ba, a ∈ A, (6)

∑

ij∈ES

wk
ijf

st
ij (b, a) ≤ Kak

st , ∀st∈Ea
V , b∈Ba, a∈A, k∈K (7)

Additional Policy Constraints (e.g., No-Consolidation):
∑

b∈Ba

∑

s∈Na
V

xs
i (b, a) ≤ 1, ∀i ∈ NS , a ∈ A (8)

where symbols and notations of sets, parameters, variables

and functions are summarized in Table I.

SFC composition constraints discussion. Minimization of

F
E

in Equation 1 is subject to a set of constraints which

contains both — basic composition constraints and constraints

specific to the geo-distributed latency-sensitive SFCs. The

basic constraints include service placement for a specified

number of duplicates (Equation 2), service chaining or well-

known multi-commodity flow constraints (Equation 4). Addi-

tional policy constraints for service chain composition prob-

lem are also acceptable. One such example is a common

‘no consolidated service placement’ constraint that prohibits

placement of two or more different services (or their backups)

TABLE I: Symbols and Notations

Service Chain Composition: Sets

A ,Set of SFCs that needs to be composed

Ba ,Set of primary and backup replicas for the SFC a

Na
V ,Set of service functions composing the SFC a

Ea
V ,Set of service communications in the SFC a that create a service

chain
Pst
a ,Set of metapaths for the st (single-link) service chain segment of

SFC a
T ,Set of QoS demands for service functions such as CPU, memory,

storage, etc

K ,Set of end-to-end network QoS demands for SFC communications
such as latency, losses, jitter, etc

NS ,Set of physical nodes within the infrastructure

ES ,Set of physical links within the infrastructure
Service Chain Composition: Variables

xs
i (b, a) ,Binary variable that equals to 1 if the service s backup b for the

SFC a is placed on the physical node i
fst
ij (b, a) ,Binary variable that equals to 1 if the communication backup b

between services s and t for the SFC a is placed on the physical
link ij

fst
ijk

(b, a),Binary variable that equals to 1 if the single-link chain segment
st is assigned to the metapath P st

ijk
of the SFC a backup b

Daτ
s ,Random variable that corresponds to the SFC a service s QoS

demand τ ∈ T
Da

st ,Random variable that corresponds to the communication band-
width demand between services s and t for the SFC a

Cτ
i ,Discrete random variable that corresponds to the possible physical

node i capacity of τ ∈ T resource, i.e., Cτ
i ∈ {0, Cτ

i }
Cij ,Discrete random variable that corresponds to the possible physical

link ij capacity, i.e., Cij ∈ {0, Cij}
Service Chain Composition: Parameters

gdasi ,Parameter that corresponds to the geographical distance between
the desired location of the service s in the SFC a and the physical
node i location

GDa
s ,Parameter that corresponds to the maximum allowable geograph-

ical distance between the desired location of the service s for the
SFC a and some physical node location

wk
ij ,Parameter that corresponds to the additive weight of the physical

link ij (or multiplicative when composed with log function) of the
service communication end-to-end k ∈ K QoS constraint (e.g.,
latency)

Kak
st ,Parameter that corresponds to the communication end-to-end k ∈

K QoS constraint (e.g., latency) between services s and t of the
SFC a

R ,SFC reliability probability that a chance-constraint will be satisfied

Kα ,Constant in a standard Normal distribution table corresponding to
desired α probability

µaτ
s ,Expected (or mean) value of the SFC a service s QoS demand

τ ∈ T
µa
st ,Expected (or mean) value of the the communication bandwidth

demand between services s and t for the SFC a
σaτ
s ,Variance of the SFC a service s QoS demand τ ∈ T

σa
st ,Variance of the the communication bandwidth demand between

services s and t for the SFC a
Cτ

i ,Physical node i capacity of τ ∈ T resource (e.g., CPU)

Cij ,Physical link ij capacity

belonging to the same service chain onto one physical node

(Equation 8). Note that this policy further complicates a

combinatorial complexity of the (NP-hard) integer MCCF

problem. In contrast to prior SFC composition problems [17],

[22], we now use probabilistic physical node and link capacity

constraints to ensure that physical resources satisfy SFC QoS

demands given some acceptable risk (Equations 3 and 5).

The specific geo-distributed latency-sensitive SFC con-

straints include physical node geo-location and service com-

munication end-to-end network QoS constraints such as la-

tency, packet loss, etc. (Equation 7).

SFC reliability and chance-constraints discussion. It is

know that even infrastructures with very high availability

are subject to traffic loss and outages [16]. Thus, both the

reliability of SFCs and provided QoS are naturally coupled. To

address this, we use chance-constrained programming [34] that
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guarantees QoS satisfaction at a given infrastructure segment

with a set reliability level. To this aim, we use a policy-

based reliability for the SFC composition, i.e., we allow for

policy specifications of chance-constraints acceptable risks and

service backups.

For instance, by decreasing an acceptable risk and/or in-

creasing number of backups, we can leverage the overall

probability of a SFC disruption that requires its re-composition

(e.g., migration of virtual resources) during its maintenance.

For example, given a risk of 5%, i.e., R = 0.95, and 5

services for a single SFC, the lower bound probability that

its demands will be satisfied is Plb = R5 = 0.955 ≈ 0.77
not considering inter-service communication demands and not

allowing backup resources. Thus, approximately in 1 out of 5

cases the service chain needs to be re-composed. Alternatively,

if we at least duplicate the service chain physical resources

(i.e., compose 2 service chain backups), the lower bound

probability that SFC demands will be satisfied by at least one

of the duplicates becomes Plb = 1 − (1 − R5)2 ≈ 0.95. As

a result, the service chain needs to be re-composed only in 1

out of 20 cases. However, with tighter reliability policies (i.e.,

the lower acceptable risk or the higher number of backups),

fewer feasible solutions are available, and the optimal solution

achieves a poorer objective value of the optimal solution,

and thus, worse performance of the online service chain

composition is realized. We show such reliability/performance

trade-offs of our approach using trace-driven simulations in

Section VII.

MCCF-based SFC composition intractabilities. When deter-

ministic equivalents of the objective in Equation 1 as well as of

capacity chance-constraints are known, we can use any integer

programming solver (e.g., CPLEX [35]) for Problem 1 to

reliably compose all (known at a time) service chain requests.

However, due to NP-hardness of this composition, the solution

can be intractable for large-scale cloud/edge infrastructures.

To improve its scalability limitations, existing column genera-

tion [26], heuristic [22] and metaheuristic [22] approaches can

be used (often at expense of the master problem optimality).

In the next section, we propose a near optimal metapath

composite variable approach that simplifies a combinatorial

complexity of the SFC composition outlined in Problem 1.

IV. SERVICE CHAIN COMPOSITION VIA METAPATHS

In this section, we outline our previously proposed

metapath-based composite variable approach that aims to sim-

plify the combinatorial complexity of the integer MCCF-based

SFC composition problem [23]. Thus, similarly to existing

composite variable schemes [24], we create a binary variable

that composes multiple (preferably close to optimal) decisions.

To this end, we build upon a known result in optimization the-

ory: all network flow problems can be decomposed into paths

and cycles [36]. We first introduce our notion of metapath and

its relevance to the constrained shortest path problem [37],

[38], [39]. We then use the constrained shortest metapaths

to create variables with composite decisions for the SFC

composition problem and discuss scalability improvements of

this approach.

Metalinks and metapaths. Before defining the metapath, it

is useful to introduce the idea of ‘metalinks’. Metalinks have

been widely adopted in prior NFV/VNE literature to solve

Legend:

Physical
Links

Meta
Links

1

2

2

11

1

1

22

a

b

YA

BX

c

1

Fig. 3: Illustrative example of the augmented with metalinks physical
network which represent feasible service a, b and c placements; numbers
indicate fitness function values - red and black values annotate service
placement and service chaining via some physical link, respectively.

optimally graph matching problems [17], [26]. A metalink

is an augmentation link in a network graph. In our case, it

represents the (potential) feasible placement of some service

a on some physical node A, as shown in Figure 3. Formally,

we have:

Definition 1 (metalink). A link si for SFC a ∈ A belongs to

the set of metalinks Ea
M if and only if the service s ∈ Na

V of

SFC a can be placed onto the node i ∈ NS .

Building on the definition of a metalink, we can define a

metapath as the path that connects any two services through

the physical network augmented with metalinks. For example,

consider following metapaths a−A−Y −b and a−A−B−b
shown in Figure 3. Formally, we have:

Definition 2 (metapath). The path P st
ij is a metapath between

services s and t for SFC a ∈ A if and only if ∀kl ∈ P st
ij :

kl ∈ ES ∨ kl ∈ {si, tj}.

Intuitively, metapath P st
ij is formed by exactly two metalinks

that connect s and t to the physical network and an arbitrary

number of physical links kl ∈ ES .

Constrained shortest metapaths. Having defined metapaths,

let us consider a simple case of the SFC composition prob-

lem - composition of a single-link chain (i.e., two services

connected via a single virtual link): the optimal composition

of a single-link chain can be seen as the constrained shortest

(meta)path problem that connects two services via the aug-

mented physical network, where all physical links have arbi-

trary fitness values of a service chaining (virtual link mapping)

and all metalinks have arbitrary fitness values of a service

placement divided by the number of neighboring services (i.e.,
by 1 for a single-link chain). In our example, shown in Figure

3, the optimal single-link SFC a − b composition can be

represented by the constrained shortest metapath a−A−Y −b
that satisfies all SFC composition constraints with the overall

fitness function of 3. Further, we prove our intuition formally:

Theorem IV.1. (The optimal single-link SFC composition)

The optimal single-link chain composition is the constrained

shortest metapath.

Proof. Assume the contrary. Let L1(s, t) be the optimal ob-

jective value of the single-link service chain st composition

and L2(s, t) be a length of the constrained shortest metapath

P2. We need to show that L1 6= L2:

Case 1 (L1 < L2): In this case, L1(s, t) solution is mapping

of services s and t to physical nodes i and j, respectively,

and a service link st to a physical path P (i, j) as defined

in the service chain composition problem. Without loss of

generality, we can assume that the optimal solution of the

service chain composition problem is feasible. Hence, s and t
mappings are si and tj metalinks by Definition 1, respectively.

Furthermore, let us define the path P1 = P (si, P (i, j), jt)
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which by Definition 2 is a metapath. As the optimal solution

is feasible, P1 satisfies all constraints of the single-link chain

st composition. Hence, P1 is a constrained metapath whose

length L1(s, t) is shorter than L2(s, t) contradicting that P2

is the constrained shortest metapath.

Case 2 (L1 > L2): In this case, we can present metapath

P2 as P2 = P (si, P (i, j), jt), where si and tj are metalinks,

and P (i, j) is a physical path (see Definition 1). Let us map

services s and t on physical nodes i and j, respectively,

and service link st on a physical path P (i, j). As P2 is

the constrained metapath, this mapping is feasible with the

objective value L2(s, t) less than L1(s, t) contradicting that

L1(s, t) is the optimal objective value of the single-link service

chain st composition.

Corollary IV.1. (The optimal single-link SFC composition

complexity) The optimal single-link SFC composition has a

pseudo-polynomial complexity.

Proof. Based on Theorem IV.1, the optimal single-link SFC

is the constrained shortest metapath which is by Definition 2

the constrained shortest path in the augmented network graph.

However, it is known that the constrained-shortest path can be

found in pseudo-polynomial time [39].

We conclude that constrained shortest metapaths are good

candidates to perform composite decisions, i.e., to optimally

decide on a single-link SFC composition in terms of its

services placement and chaining with a single binary variable.

Multiple-link chain composition via metapath. While ob-

serving Figure 3, we can notice how using only a single

constrained shortest metapath per a single-link segment of

a multiple-link SFC a − b − c can lead to an unfeasible

composition: as the optimal a−b composition is a−A−Y −b
metapath, and the optimal b− c composition is b−B−X− c
metapath - service b has to be simultaneously placed on Y
and B physical nodes. Thus, we cannot stitch these metapath,

and we need to find more than one constrained shortest

metapath per a single-link chain. In our composite variable

approach, we find k-constrained shortest metapaths (to create

k binary variables) per each single-link segment of a multi-

link service chain. To find metapaths any constrained shortest

path algorithm can be used [37], [38], [39]. In this paper, we

build upon the path finder proposed in our prior work that is

an order of magnitude faster than recent solutions [37].

To further benefit from constrained shortest metapaths

and simplify the chain composition problem, we offload its

constraints (either fully or partially) to either metalinks or

the path finder. Specifically, geo-location and an arbitrary

number of end-to-end network (e.g., latency) QoS constraints

can be fully offloaded to metalinks and to the path finder,

respectively. At the same time, capacity constraints of the

SFC composition problem are global and can be only partially

offloaded. Once k-constrained shortest paths have been found

for each single-link service chain segment, we can solve GAP

problem [25] to assign each single-link chain segment to

exactly one constrained shortest metapath and stitch these

metapaths as described below.

Allowable fitness functions for metapath-based variables.

In general, fitness functions qualify for our metapath compos-

ite variable approach if they are comprised from either additive

or multiplicative terms. The above requirement fits for most

SFC objectives [1], and other objectives can also qualify if

well-behaved (e.g., if their single-link chain fitness values can

be minimized by a path finder). As the load balancing fitness

function F
E

in Equation 1 qualifies, we compute its single-

link chain value E

[

F sta
ijk

]

for k metapath as following:

E
[

F sta
ijk

]

=
∑

τ∈T

E

[

Daτ
s

Cτ
i

]

/deg(s)+

+
∑

st∈Ea
V

∑

{uv∈ES :

uv∈P sta
ijk }

E

[

Da
st

Cuv

]

+
∑

τ∈T

E

[

Daτ
t

Cτ
j

]

/deg(t),
(9)

where deg(s) (or deg(t)) corresponds to the service s (or t)
degree, i.e., deg(s) = 1 (or deg(t) = 1) for s = in (or

t = out) service that handles input (or processed output) data

of SFCs; and deg(s) = 2 (or deg(t) = 2) otherwise. The first

and the last terms represent the fitness values of metalinks,

and the middle term corresponds to the sum of physical links’

fitness values. Thus, this division by deg(s) (or deg(t)) is

needed to avoid counting the contribution of the intermediate

service placement twice in the objective.

Remark: in and out are services that handles input and

processed output data of SFCs, respectively.

Problem 2 (SFC composition via metapaths). Given a set

of SFCs a ∈ A represented as graphs Ga = (Na
V , E

a
V ),

a physical network graph G = (NS , ES), and having set

of k-constrained shortest metapaths P sta
ijk ∈ Pst

a and their

corresponding fitness function values F sta
ijk found for each

virtual link st ∈ Ea
V in the SFC a, let a binary variable

fst
ijk(b, a) = 1 if the single-link chain segment st is assigned

to the metapath P sta
ijk of the backup b ∈ Ba of SFC a ∈ A,

or 0 otherwise. The SFC composition problem via metapaths

can be formulated as follows:

min
∑

a∈A

∑

b∈Ba

∑

st∈Ea
V

∑

P sta
ijk
∈Pst

a

E
[

F sta
ijk

]

fst
ijk(b, a) (10)

subject to

Metapath Stitching (Assignment) Constraints:

∑

P sta
ijk
∈Pst

a

fst
ijk(b, a)−

∑

P tsa
jik
∈Pts

a

f ts
jik(b, a) =











−1, t = in

1, t = out

0, otherwise

∀t ∈ {in, out} ∨ tj ∈ Ea
M , b ∈ Ba, a ∈ A

(11)

Node Capacity Chance-Constraints:

P





∑

a∈A

∑

b∈Ba

∑

t∈Na
V

D
aτ
t /deg(t)





∑

P sta
ijk
∈Pst

a

fst
ijk(b, a) +

+
∑

P tsa
jik
∈Pts

a

f ts
jik(b, a)



 ≤ C
τ
j



 ≥ R, ∀j ∈ NS , τ ∈ T

(12)



7

Link Capacity Chance-Constraints:

P













∑

a∈A

∑

b∈Ba

∑

st∈Ea
V

∑

{P sta
ijk ∈P

st
a :

uv∈P sta
ijk }

D
a
stf

st
ijk(b, a) ≤ Cuv













≥R,

∀uv ∈ ES

(13)

where symbols and notations of sets, parameters, variables

and functions are summarized in Table I.

We remark that service placement, chaining, geo-location,

latency and no-consolidation constraints from the master Prob-

lem 1 have been fully offloaded to the constrained shortest

path finder that generates metapaths composite variables. Thus,

there is no need to specify them explicitly. At the same

time, capacity constraints can be only partially offloaded,

and still need to be specified in Problem 2. Note also that

deterministic equivalents for the objective coefficients and

capacity constraints in Equations 10, 12 and 13 are similar to

deterministic equivalents of Problem 1, and their deterministic

equivalent examples can be found in [23].

On complexity benefits of metapath composite variables.

Both the master integer MCCF Problem 1 and its reduced

with composite variables integer (GAP) Problem 2 are NP-

hard [17]. However, the number of binary variables in mas-

ter problem includes the following: the number of binary

variables to place services is ΩNV
(|A||B||NV ||NS |); and

the number of binary variables to chain these services is

ΩEV
(|A||B||EV ||ES |). The total number of binary variables

is ΩP1(|A||B|(|NV ||NS |+ |EV ||ES |)). At the same time the

total number of composite variables in the reduced problem

is ΩP2(|A||B||EV ||K|). As we show later in Figure 7, K
can be empirically bounded as |K| ∼ |NS |. Thus, the com-

posite variable approach at least halves the number of binary

variables, i.e., halves the exponent of time (and space) com-

plexities of the Problem 1. This is because for linear topology

SFCs O(|NV |) = O(|EV |), and for infrastructure topologies

O(|EV |) ≥ O(|NS |). As a result, ΩP1
(|A||B|(|NV ||NS | +

|EV ||ES |)) ≥ Ω(2 · |A||B||NV ||NS |), and hence, ΩP1
≥

2 · ΩP2
. We demonstrate these complexity benefits of the

proposed composite variable approach in Section VII.

A. SFC Composition via Lagrangian Relaxation

Aside from solving the NP-hard GAP Problem 2, we also

propose its better scalable alternative. In particular, we solve

the GAP using its polynomial Lagrangian relaxation by com-

promising both its optimality and feasibility guarantees [25].

Our approach. Problem 2 has two types of constraints -

stitching (assignment) and capacity constraints. The assign-

ment constraints (Equation 11) represent flow conservation

constraints for metalinks tj ∈ Ea
M . Hence, these constraints

form a totally unimodular constraint matrix. When having the

linear objective function (Equation 10), this property allows

us to relax integrality constraints on fst
ijk(b, a) variable in the

uncapacitated service chain composition case (when capacity

constraints are omitted). As a result, we can solve the above

problem using polynomial Linear Programming (LP).

Lower Bound Algorithm. Similarly to [40], we use the

unimodularity property benefits and push capacity constraints

(see Equations 12 and 13) to the objective. To this end, let us

denote gτj1 = R − P
τ
j and guv2 = R − Puv functions for each

constraint in Equations 12 and 13, respectively. Let us define

uτj
1 and uuv

2 as the Lagrangian multipliers specified for each

iteration of the subgradient method [40]; we now can define

(deterministic) Lagrangian weights as following:

wsta
ijk = F sta

ijk + uτj
1

(

(µaτ
s +K R

Pi

σaτ
s )/deg(s)+

+(µaτ
t +K R

Pj

σaτ
t )/deg(t)

)

+
∑

uv∈P sta
ijk

uuv
2

(

µa
st+K R

Puv

σa
st

) (14)

We then can solve the following linear program L with any

LP solver:

L = min





∑

a∈A

∑

b∈Ba

∑

st∈Ea
V

∑

P sta
ijk
∈Pst

a

wsta
ijkf

st
ijk(b, a)+

−
∑

j∈NS

∑

τ∈T

uτj
1 ·

{

Cτ
j ,R ≤ Pj

0, R > Pj
−
∑

uv∈Es

uuv
2 ·

{

Cuv,R ≤ Puv

0, R > Puv





(15)

subject to constraints in Equation 11. Note that to improve LB
while solving L, we can also fix all variables fst

ijk(b, a) = 0
whose node (or link) mappings do not satisfy reliability, i.e.,
if R > Pi or R > Pj (or if ∃uv ∈ P sta

ijk : R > Puv).
If solution of L satisfies GAP capacity constraints, we can

stop and report optimal (or suboptimal) solution to GAP.

However, if L solution is unfeasible to the primal GAP

problem, we can project it back to the feasible space using

some polynomial heuristic algorithm to get an upper bound

(UB) of the primal GAP problem.
Upper Bound Algorithm. We propose a new (polynomial)

greedy regret lower bound replication (GRLBR) algorithm that

we found fast enough for our large scale GAP problem with

flow assignment constraints. We build our GRLBR algorithm

upon both lower bound replication and greedy regret algo-

rithms proposed earlier in [40], and its pseudo code is outlined

in Algorithm 1.
GRLBR starts by detecting the largest regret service chain

segment st of SFC a′ (lines 5-12), i.e., the segment with the

largest difference between the first best and the second best

corresponding lagrangian weights wsta
ijk for its potential feasi-

ble assignments. If there are no feasible metapaths assignments

for st of a that satisfy both assignment and capacity constraints

(see Equations 11, 12 and 13), we stop and report no feasible

solution (lines 6-8). Once, st of a′ is found, we add it to the

priority queue Qa′ based on its langrangian weight wsta′

ijk′ (line

13). We then retrieve and remove the head of this queue and try

to map it to the LB metapath solution first (lines 19-20), or to

the lowest lagrangian weight metapath P ŝta′ijk′ (lines 22-23),

or report no feasible solution and terminate, otherwise (lines

17-18). Finally, we allocate corresponding metapath solution

resources for the service chain st segment of a′ and add all its

adjacent segments (lines 25-26). Once Qa′ is empty, all service

chain segments of SFC a′ for its backup b′ have been placed.

We then mark b′ backup of SFC a′ as mapped and remove it

from further consideration by GRLBR (lines 28-31). Note that

at any time Qa′ contains only two elements due to a linear

service chain topology.
Subgradient method. Having LB and UB algorithms out-

lined, we use them within the general subgradient method to
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Algorithm 1: GRLBR

Input: f̂st
ijk(a, b):= solution of L; wsta

ijk := lagrangian weights; P sta
ijk ∈ P

st
a

:= set of k-constrained shortest metapaths and their corresponding
fitness values F sta

ijk found for each virtual link st ∈ Ea
V

Output: UB := upper bound to GAP problem; fst
ijk(a, b):= feasible solution

to GAP problem
1 begin

/* Step 0: initialize */

2 A′ ← A
3 B′a ← Ba, ∀a ∈ A
4 while A′ /∈ ∅ do

/* Step 1: find highest regret virtual link sta′
*/

5 forall st ∈ Ea and a ∈ A′ do

6 if @P sta
ijk : P sta

ijk is feasible then

7 terminate and report no feasible solution
8 end

9 ijk′

sta ← argmin{wsta
ijk : P sta

ijk is feasible}

10 ρsta ← min{wsta
ijk − wsta

ijk′(sta)
:

P sta
ijk is feasible, ijk 6= ijk′

sta}
11 end

12 sta′ ← argmax
st∈Ea,a∈A′

{ρsta}

/* Step 2: allocate all service chain segments

that contains sta′
*/

13 Put sta′ to the priority queue Qa′ ← {sta′, wsta′

ijk′ }

14 b′ ← min{B′a′

}
15 while Qa′ /∈ ∅ do

16 ŝt← retrieve and remove Qa′ ’s head

17 if @P ŝta′

ijk : P ŝta′

ijk is feasible then

18 terminate and report no feasible solution

19 else if P ŝta′

ijk : f̂ ŝt
ijk(a

′, b′) == 1 is feasible then

20 UB ← UB + F ŝta′

ijk

21 else

22 P ŝta′

ijk′ ← argmin{wŝta′

ijk : P ŝta′

ijk is feasible}

23 UB ← UB + F ŝta′

ijk′

24 end

25 allocate corresponding physical resources for ŝt
26 add adjacent virtual links of ŝt and their best lagrangian

weights to Qa′

27 end

/* Step 3: mark b′ backup of a′
SFC as allocated

and go to Step 1 */

28 B′a′

← Ba′

− b′

29 if B′a′

∈ ∅ then

30 A′ ← A′ − a′

31 end
32 end
33 end

iteratively improve LB and UB as in [40]. To this end we

start with zero u1 and u2 lagrangian multiplier vectors. At

each iteration we track if LB solution is feasible, and if so

we terminate our subgradient algorithm. Moreover, if LB has

been improved, i.e., if LBnew > LB, and LB is not feasible,

we project LB solution back to the feasible space with our

GRLBR algorithm to obtain new UBnew solution and update

existing UB solution if UBnew < UB. If
||UB−LB||
||LB|| < ε or

number of iterations is exceeded, we terminate the subgradient

algorithm. At the end of each iteration u1 and u2 are calculated

w.r.t. to their objective gradient. More implementation details

as well as best practices on the subgradient method can be

found in [40].

V. SERVICE CHAIN MAINTENANCE VIA METAPATHS

Any network operating in a challenged scenario is subject to

instabilities. Consider e.g., a physical network after a natural

disaster. In this section, we present a novel metapath-based

SFC maintenance algorithm that utilizes a distributed control

plane to cope with such network instabilities by allowing

migration i.e., reallocation of (part of) the service chain to
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Fig. 4: Illustrative example of our distributed metapath-based SFC mainte-
nance algorithm which provisions permanently the best new mappings of the
failed SFC segments with the total fitness function of 5 once controllers A
and B check all potential mappings.

maintain its services. We first outline our algorithm, and then

prove its eventual correctness property to qualify for the SCL

use that avoids expensive consensus protocols [19].

Distributed metapath-based SFC maintenance. Firstly, we

assume that all demand increase requests of SFCs which

QoS demands are not sufficient are handled proactively by

the root controller – a controller associated with a physi-

cal node of the chain root service. By convention the root

service is a service that outputs SFC processed data. We

now present our metapath-based SFC maintenance algorithm

for a distributed control plane whose logic is outlined in

Algorithm 2, and Figure 4 illustrates its work. Upon a non-

functional SFC segment detection (Figure 4a), the algorithm

starts from the root controller and then, recursively, checks all

service chain segments between the corresponding controllers

to find all non-functional assignments (Step 1). In Step 2, the

algorithm generates k-constrained shortest metapaths or finds

them among the list of pre-computed, e.g., during the service

chain composition. When all service chain segments belong-

ing to some controller are checked or temporally restored

(Figure 4b), this controller requests the next chain segment

(Steps 3 and 4; Figure 4c). Once the termination criteria is

met (Figure 4d), the best found mappings (w.r.t. the fitness

function) or a failed SFC error message are returned (Step 5).

The termination criteria is met when all combinations

of possible failed segment allocations are checked or some

heuristic number is reached, e.g., the number of maximum

recursive calls, used metapaths, etc.

To generate metapaths, we have two options - use metapaths

which have been pre-computed during the service chain com-

position step, or find such metapaths dynamically. We evaluate

different policy trade-offs in Section VII-A2.

On Algorithm 2 space/time complexity. Both time and space

complexities of the maintenance algorithm for the particular

SFC can be bounded as O(kEV ). This is because Algorithm 2

uses k constrained-shortest metapaths at each recursive call

with the maximum depth of the number of SFC segments EV .

To avoid potential exponential complexity of the Algorithm 2,

we suggest to use a simple decay function for k policy, i.e.,
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Fig. 7: Service chain (SC) composition optimality gap (a) and time (b)
results in presence of no disaster incidents (R = 0).

estimate the baseline performance of our metapath approach,

we first assume a scenario without disasters (i.e., no outage

risks and R = 0) where capacity chance constraints becomes

deterministic yielding the largest feasible space (i.e., leading

to a higher combinatorial complexity of the master problem).

Figure 7a shows how its optimality depends on the number of

generated metapaths per single service chain (SC) request. We

can see how, when this number exceeds ≥80 times the number

of physical nodes (PNs), the performance of MpSC flattens.

On the other hand, when either the SFC service number (SN)

increases or the reliability requirements get tighter in a disaster

incident scene, MpSC achieves optimality most of the time

and shows 99% optimality on average. Note also how MpLG
shows significantly worse performance with respect to MpSC;

this is due to use of greedy heuristics used to recover feasible

solutions. However, MpLG can be beneficial for large SFCs

(of ≥ 25 services) as it is polynomial.

For the rest of our evaluation, we fix the number of metap-

aths generated per SFC request to 80 and 120 times the number

of physical nodes for MpSC and MpLG, respectively. These

values of metapaths are picked to allow both MpSC and

MpLG to compose large SFCs. For instance, with these

settings MpSC is almost three orders of magnitude faster than

the optimal solution (Opt) as shown in Figure 7b. For small

SFCs (i.e., ≤ 5 services) we found, however, no significant

scalability improvements of MpSC and MpLG over Opt.
This is due to the fact that generating metapaths is time-

consuming. Thus, for small service chains, it is recommended

to avoid use of metapath-based composite variables and merely

consider the Opt policy instead. For the rest of our evaluation,

we only use the MpSC service chain composition algorithm.

(ii) MpSC can secure up to 2 times more SFCs than

PathGen and IsoSC under challenging disaster-incident

conditions. Furthermore, we can see how our MpSC outper-

forms PgSC and IsoSC by securing up to 2 times more SFCs

under challenging disaster-incident conditions of tornadoes

and hurricanes as shown in Figures 8a and 8b with the

service chain reliability R = 0.8. This is due to the fact

that MpSC reaches the optimality most of the time while

being sufficiently scalable. At the same time, PgSC is limited

by the performance of the SFC composition algorithm (that

commonly uses a two-stage composition) to get the initial

feasible solution [26]. Moreover, it is also known that column

generation approaches such as PgSC converge slowly to

the optimal for integer problems [25]. In contrast to PgSC,

IsoSC doesn’t need an initial feasible solution, but can fail

to find one or not converge to the optimal solution for the

predefined amount of iterations [22].
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Fig. 8: Service chain (SC) composition ratio (a,c) and disruption ratio (b,d)
results under different natural disaster-incidents with reliability R = 0.8 (first
row), and MpSC results under hurricane disaster-incidents (second row).

(iii) Policy-based SFC reliability trade-offs. Further, to

achieve a desired level of reliability during SFC composition

(i.e., proactively), the capacity chance-constraints acceptable

risk (i.e., 1 − R) and/or the number of backups policies can

be adjusted appropriately. As shown for MpSC in Figures 8c

and 8d, increasing either chance-constraints reliability R or the

number of backups decreases the number of composed SFCs

by either prohibiting more physical resources for allocation

or utilizing more physical resources for SFC backups. On

the other hand, such a strategy can significantly minimize the

number of disrupted SFCs, therefore minimizing their outages.

2) Service Chain Maintenance Evaluation:

Maintenance Metrics. We compare our metapath-based SFC

maintenance algorithm referred as MpSM with the only

existing (to the best of our knowledge) consensus-based SFC

orchestration approach that can guarantee distributed control

plane consistency – Catena [21].

In this simulation scenario we have mainly assessed per-

formance of SFC composition algorithm by specifying the

fraction of times service chain events are successfully migrated

over their total appearance number (blocking ratio). In addi-

tion, we also use an optimality gap and a number of control

messages metrics to access the optimality and a complexity

performance of our proposed solution.

(iv) Metapaths and SCL for better SFC migrations with

lesser control messages. Figures 9a, 9b and 9c show how

MpSM with the pre-computed metapaths P policy can more

optimally migrate SFCs with a lower blocking probability

than Catena and using an order of magnitude less control

messages. The reason for these results is two fold. First of

all, our algorithm simultaneously considers fitness functions of

service placements and their chaining by recursively traversing

possible migrations w.r.t. k-constrained shortest metapaths pol-

icy, whereas Catena has approximation guarantees only for

the service placement and uses k-shortest physical paths (not

metapaths) to chain them in a best-effort manner. Secondly,
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Fig. 9: Service chain (SC) migration optimality gap (a), blocking probability
(b) and number of control messages used for this migration (c) results. Single
virtual link (VL), single virtual function service (VS) and partial or full service
chain (SC) event migrations probabilities (d), their blocking probabilities (e)
and number of control messages used to migrate them (f) results with k = 5
metapath policy and different physical network failure rates.

our MpSM uses SCL to avoid expensive consensus control

messages that Catena uses for providing the same distributed

control plane consistency guarantees. We can also see how

our MpSM reaches optimality of ≥90% when number of

traversed metapath candidates k ≥ 5 for both dynamic D and

pre-computed P metapath policies. Thus, for the rest of our

simulation we fix k = 5.

Figures 9e and 9f illustrate how MpSM can significantly

reduce the blocking probability of various SFC migration

events when finding metapaths dynamically D. However, the

main side effect is that MpSM with D policy demonstrates

≈ 4 orders of magnitude increase in control messages w.r.t. its

P policy. Thus, we recommend use D policy if the following

criteria are met: (i) single link or service migration events hap-

pen; (ii) the physical infrastructure experience severe failures,

i.e., ≥ 25%; and (iii) number of controllers is at least an order

of magnitude less than the number of physical resources. Each

of these criteria can decrease the number of control messages

approximately by an order of magnitude. Particularly, (i) is

due to the fact that single SFC segments are easier to recover,

and these events are more common (see Figure 9d); (ii) is due

to the fact that having more failed physical resources needs

less number of control messages and significantly reduces a

feasible space for SC migrations; and (iii) is due to the fact

that the more physical resources are controlled by a single

controller the more recursive calls of MpSM can be done in

memory, thus saving on control messages. As a result, number

of control messages of MpSM with D policy can be reduced

up to 3 orders of magnitude w.r.t. P policy and approximately

equal to Catena with P policy.

B. Experimental Evaluation of our Object Tracking Case

Study Geo-Distributed Latency-Sensitive Service Chain

In this subsection, we discuss our edge/core cloud testbed

setup in GENI [28] and show improvements in data throughput

and tracking time for our case study of object tracking using

geo-distributed latency-sensitive SFCs w.r.t. the common core

main flow concurrent flow
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Fig. 10: Data flows in the allocated in GENI edge/core cloud testbed: (a)
object tracking data flow interferes with concurrent flow on the s2 → s1 link
as regular network sends data through the best (the shortest) path; (b) by using
our reliable service chain orchestration prototype, we chain tracking services
with QoS guarantees which avoids congestion by redirection of concurrent
flow through longer path s2 → s3 → s1. Furthermore, by allocating image
pre-processing service function at the edge cloud (to h2 instead h1) it enables
near real-time tracking.

cloud computing. To this aim, we use our reliable service chain

orchestration prototype implementation outlined in Section VI.

Setup. Multiple video resolutions in practice need to be

processed because the input source imagery in surveillance

typically spans a wide variety of sensor technologies found

in mobile devices. In our experiments, we choose the VGA

resolution data to express regular SFC demands (see Table II)

and track pedestrians in a crowd [46]. The pre-processing step

is performed for every image that needs to undergo adaptive

contrast enhancement with Imagemagick tool before being

used for tracking in the core cloud. The adaptive contrast

enhancement requires global image information and thus needs

to read in image data into memory, and operates on every

pixel. All images are pyramidal tiled TIFF (Tagged Image File

Format) and the pre-processing retains the tile geometry.

Our edge/core cloud testbed setup includes 6 virtual ma-

chines (VMs) in the GENI platform as shown in Figure 10,

where three of these VMs emulate OpenFlow switches (s1,

s2 and s3) and others are regular hosts (h1, h2 and h3). To

consider disaster network scenarios that impact data transfer,

we assume a 4G-LTE network configuration at the edge.

Hence, each host-to-switch link has 100 Mbps bandwidth

without delay, each switch-to-switch link has only 40 or

50 Mbps bandwidth (unless specified differently) and 5 ms

transmission delay to emulate congested and damaged net-

work infrastructure in a disaster scenario. Using our reliable

SFC orchestration prototype, the tracking service function is

allocated on h1 (quad-core CPU and 4GB of RAM) that acts at

a core cloud site. At the same time, the pre-processing service

function is allocated on h2 (double-core CPU and 2GB of

RAM) that acts at a edge cloud site. Finally, h3 (single-core

CPU and 1GB of RAM) consumes raw data from h2 by acting

as a remote storage at core cloud site. The h3 is configured

with cross-traffic flows consumption such that it interferes with

our object tracking traffic. We call cross and object tracking

traffic as the ‘concurrent’ and ‘main’ flows, respectively.
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TABLE III: Object tracking case study results over limited

network conditions.

Performance Object Tracking Object Tracking Perceived Benefits
Metrics in the Cloud via SFC

Preprocess time (s/fr)0.1955± 0.0011 0.202± 0.023 No significant difference

App thr-put (Mbps) 10.50± 0.34 41.85± 0.24 Avoiding congestion with
our reliable SFC orches-
tration maximizes object
tracking throughput

Tracking time (s/fr) 0.4097± 0.00220.4229± 0.0024No significant difference

Waiting time (s/fr) 0.902± 0.032 0 ± 0 Achieving maximum
speed of tracking service
function avoids waiting
time and supports real-
time computation

Total time (s/fr) 1.312± 0.034 0.4229± 0.0024Real-time data processing
via geo/latency-sensitive
SFCs can produce ∼3.5X
speedup over common
cloud computing scenario

To differentiate between object tracking via the allocated

geo-distributed latency-sensitive SFC and the cloud computing

scenario, our experiment workflow is as follows: (i) start

sending concurrent traffic from h2 to h3; (ii) start sending

main traffic (imagery) from h2 to h1; (ii.a) while performing

data processing via the allocated SFC, start pre-processing

concurrently with step (ii); (iii) wait until at least the first frame

has been transferred; (iii.b) in case of core cloud computing,

start pre-processing before step (iv) (in this case the tracking

service function has to wait for each frame when its pre-

processing ends); (iv) start tracking; (v) wait until all main

traffic has been transferred; and (vi) terminate both the service

functions and data transfers.

(v.a) Geo-Distributed Latency-Sensitive SFCs can improve

Real-Time Data Processing. Table III shows the final timing

results computed with estimate 95% confidence intervals for

SFC and cloud computing cases over limited edge network

with 50 Mbps access bandwidth. For each trial, we used a

300 frame video sequence and measured several application

performance metrics such as estimated throughout, tracking

time, waiting time and total time. In our settings, we are

able to pre-process frames faster in the core cloud computing

scenario than when a geo-distributed latency-sensitive SFC is

used. However, due to congestion in best-effort IP network and

the absence of raw data at the core cloud site, we cannot track

frames in real-time (i.e., with 0 waiting time) in the core cloud

computing scenario. Whereas by composing a geo-distributed

latency-sensitive SFC of our object tracking pipeline, we can

track frames in near real time at 3− 4 Hz.

TABLE IV: Object tracking case study results over degrading

network conditions.

Performance Metrics Object Tracking in the Cloud Object Tracking via SFC

Number of tracked frames 224± 7 892± 9
App thr-put (Mbps) 11.02± 0.36 43.9± 0.4
Tracking time (s/fr) 0.3904± 0.021 0.403± 0.004
Waiting time (s/fr) 0.86± 0.28 0± 0
Total time (s/fr) 1.25± 0.29 0.403± 0.004

(v.b) Geo-Distributed Latency-Sensitive SFCs can mitigate

network QoS degradation. Further, to consider disaster

network scenarios that can impact data transfer, we apply a

bandwidth degradation profile to the (collection) edge network

with an initial bandwidth of 100 Mbps (best case). For

experimental purposes, the profile degrades the bandwidth at

a rate of 20 Mbps per minute due to heavy cross-traffic load

or candidate network path failures till it falls to zero (i.e.,

worst case disconnection scenario) with the total 5 minutes

of tracking time until the edge network gets disconnected

from the collection site. Table IV shows how using SFCs is

beneficial in terms of the total number of tracked frames, i.e.,
almost 4x more frames can be tracked than in the similar case

of using tracking in the cloud. This is due to the benefit of

low latency data access by pre-processing functions that can

fetch required data faster from the collection site without been

bottlenecked by the main tracking pipeline in the cloud.

VIII. CONCLUSION

In this paper, we presented the reliable orchestration ap-

proach to augment our previously proposed composition ap-

proach with the maintenance approach to not only compose

but also support geo-distributed latency-sensitive SFCs during

their lifespan [23]. To ensure reliability of SFCs, we handle

both their demand fluctuations and possible infrastructure

outages during the composition via use of capacity chance-

constraints and service backups policies. We have addressed

NP-hardness limitations of the (master) integer MCCF-based

SFC composition problem by proposing a novel metapath

composite variable approach that uses either (NP-hard) GAP

or its (polynomial) Lagrangian relaxation counterpart. Using

realistic trace-driven simulations with US Tier-1 and regional

infrastructure topologies, we have shown that our metapath

composite variable approach reaches 99% optimality on av-

erage, is up to 3 orders of magnitude faster than the master

problem solution for practically sized problems and can com-

pose twice as many SFCs than related NFV/VNE methods.

Moreover, we have also proposed a novel metapath-based

SFC maintenance algorithm that guarantees consistency of the

distributed control plane without use of expensive consensus

protocols. To this aim, we have proved its eventual correctness

to utilize a prior Simple Coordination Layer concept [19]. As a

result, our metapath-based maintenance solution reaches better

optimality for less number of control messages than a recent

consensus-based SFC orchestration scheme [21]. Finally, we

were able to show almost a 3.5x speedup of our object tracking

case study application when a geo-distributed latency-sensitive

SFC is used for data processing with respect to a common

cloud computing-based solution. To this aim, we deployed

our reliable service chain orchestration prototype on a realistic

edge/core cloud testbed allocated in GENI. The source code

of our prototype is publicly available at [27].
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