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computing resources and real-time communication. The problems

of insu�cient computing resources and edge networking speeds

can be addressed using computation o�-loading to a Ground Con-

trol Station (GCS) [14]. However, computation o�-loading cannot

always be used for tactical drones computation and control due to

the dynamic wireless channel and energy consumption constraints

on the drone-edge computing for processing high-resolution im-

ages. In edge networks, a variety of environmental conditions may

a�ect the performance of the video streaming between the drone

and GCS. This in turn a�ects the performance of video streaming

in terms of end-to-end delay, frame blurring, stalling and distortion.

Based on our literature survey and important observations from

[13], there is a clear lack of mechanisms to e�ciently coordinate

the networking protocols in conjunction with drone control orches-

tration and computation o�-loading during drone video analytics.

As shown in Figure 1, we consider an application scenario com-

prising of a network of drones based on the concepts borrowed

from prior work on Flying Ad hoc Networks (FANETs) [1]. A multi-

UAV system can operate in a centralized or decentralized manner.

In a decentralized system, the UAVs need to explicitly cooperate

on di�erent levels to achieve the system goals and exchange infor-

mation to share tasks and make collective decisions. We assume

that the drones are cooperatively working in a decentralized way

when recording the video of a scene at di�erent angle. Even if the

connection among one of the drones to the GCS is interrupted or

disconnected, we suppose that the inter-drone communication may

still be possible as outlined in [11].

In this paper, we present a novel dynamic computation o�-loading

and control scheme that detects occlusions that impair user Quality

of Experience (QoE), and coordinates intelligent processing in drone

video analytics. The intelligent processing considers the trade-o� in

processing time vs. tracking/accuracy rate using a Function Centric

Computing (FCC) architecture [6]. The FCC architecture utilizes the

drone edge, GCS and cloud computing resources and decomposes

an application over these resources in the form of microservice

functions/tasks. We summarize the major novel contributions of

this paper as follows:

• We describe a drone video analytics application that supports

FCC by decomposing a pipeline for video surveillance in

the form of microservice functions/tasks that are deployed

over a mixture of drone/GCS/cloud computing resources

communicating via RESTful web services [17].

• We also present a novel dynamic computation o�-loading

and control scheme based on occlusion detection in drone

video analytics. Our approach supports FCC to optimally

trade-o� processing time vs. tracking/accuracy rate among

the di�erent computing architectures, i.e., drone, GCS and

cloud. The goal of our approach is to dynamically change

networking protocols (i.e., TCP/HTTP, UDP/RTP, QUIC),

and handle network impairments a�ecting the switching

between high resolution/low resolution video capture, or

change of camera direction for assessment of the scene ef-

fectively.

• Lastly, we deploy a drone/GCS/cloud testbed in the GENI

cloud infrastructure [16] and span it in multiple geographical

locations using novel metrics such as occlusion rate and pro-

cessing times. We also evaluated our scheme under various

network conditions and realistic application settings.

The rest of the paper is organized as follows: Section 2 presents

relatedwork. In Section 3, we formulate our problemwith occlusion-

based settings, categorize the occlusion formats with transport layer

protocol considerations, and introduce our drone video analytics

application pipeline. In Section 4, we detail our novel dynamic

computation o�-loading scheme for real-time drone video analytics.

Section 5 describes our experimental testbed settings, performance

metrics and evaluation results. Section 6 concludes the paper.

2 RELATED WORK

Computation o�-loading on drones. Real-time video analytics

applications pose new challenges in processing intensive media-

rich data on the drone due to its limited computing power. It is

di�cult to meet user QoE [3] expectations when low-latency and

highly accurate video analytics is required to be performed [25].

In [6], a novel policy-based function-centric computation o�-

loading (FCC) scheme was presented for o�-loading decision mak-

ing. The decision to o�-load either to an edge, cloud or FCC for

real-time video analytics is done by considering the performance vs.

cost factors as evaluation parameters. However, this prior work did

not consider factors such as network connection quality and pro-

tocol selection needed on the drone during computation and data

transfer. In [27], the authors proposed an o�-loading scheme for a

drone cluster with high computing tasks to borrow the computing

resources from nearby clusters that have low computing tasks. Due

to the constrained drone resources (i.e computation power, energy,

human operations, etc.,) the o�-loading decision is made statically

based on the available computational resources of the neighbor

clusters. In both of these works, the decision making process is

not dynamic and cannot adapt to environmental changes such as

network connection bottlenecks and austere edge computing.

In [13], the authors proposed an adaptive computation o�-loading

drone system architecture (ACODS) with reliable communication

to preserve energy consumption on the drone. A prediction module

was used to estimate the overall system response time to decide if

the computation needs to be performed on the drone or o�-loaded

to a GCS. This work, however, does not consider partial o�-load of

computation workloads to maximize performance and to reduce the

the system delays caused by data transmission during drone-to-GCS

communication. Our work overcomes this issue by introducing the

FCC concept that partially o�-loads computation workload from

the drones, while simultaneously performing a reasonable level of

computation on the drone device itself.

Authors in [10] present a framework for UAV-based video mon-

itoring with a FANET. The FANET consists of UAVs with multi-

access edge computing (MEC), which helps reduce response delays

by providing higher network bandwidth and provides o�-loading

capabilities to reduce computation workload. However, in this work,

the increase in the performance of the whole aerial-ground MEC

platform and an o�-loading decision-making scheme is not pre-

sented. Speci�cally, we propose a dynamic o�-loading scheme that

e�ciently o�-loads the computation among edge, cloud or FCC

architecture based on thresholds of occlusion detection.
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Dynamic Decision Making on computation o�-loading. Due

to the change in environments during UAV’s movement, the com-

putation o�-loading decision making needs to be dynamically made

in order to keep system performance at a high level and to provide

satisfactory user QoE [5].

An energy-aware dynamic computation o�-loading scheme for

object recognition and tracking is proposed in [26]. The proposed

o�-loading scheme considers both the dwell time of the moving

target object and the network failure rate to estimate the system

response time for recognizing and tracking of a moving object.

A mobile-cloudlet-cloud architecture (MOCHAA) is presented in

[24], in which face recognition applications were used to evaluate

the ability of the system to minimize the response time in airport

security surveillance. The system architecture deals with how to

divide computation loads among the servers in order to get min-

imal response. However, it does not consider the mobility of the

edge device which could a�ect the network connection quality

and thus the transmission delay. A real-time object recognition

system using a camera equipped mobile device is proposed by [29].

In this system, the algorithms for object recognition and labeling

are o�-loaded to the cloud due to its signi�cant computation over-

head. Also, o�-loading to a cloud server is determined by energy

consumption and computation delays of the system. However, it

does not consider the variability in network conditions between

mobile devices and a cloud server. A solution using deep reinforce-

ment learning is proposed to dynamically o�-load computation as

part of a sequential decision making for cloud robotics [7]. In this

work, vision deep neural networks (DNN) were used for decision

making in o�-loading computation workloads. This approach has

shown improved performance during o�-loading, thus allowing

robots to signi�cantly transcend their on-board sensing accuracy.

However, the o�-loading scheme is limited at a device level or at in-

dividual cloud servers. In contrast, our approach proposes dynamic

o�-loading scheme among edge, cloud and FCC, providing more

available choices and �exibility to the application users.

Occlusion-awareness onAerial VideoAnalytics.The overhead

imagery recognition poses many challenging tasks than a �xed

ground level camera because of low resolution or high resolution

imagery patterns [2]. Here a major challenging task involves han-

dling the large intra-class variation in activities including varia-

tions in resolution scale, target (e.g., visual appearance, speed of

motion) and environment (e.g., lighting condition, occlusion) [28].

The meaningful structures in video are extracted through the unsu-

pervised learning of temporal clusters and are associated with the

metadata [8]. A �exible dual TCP-UDP streaming protocol (FDSP) is

used for high-quality video streaming [9]. Here, this FDSP approach

results in lower packet loss compared to UDP-based streaming. The

performance of QUIC vs. TCP for a better QoE in video stream-

ing is studied in [23]. Our approach involves handling network

impairments a�ecting the switching between high resolution/low

resolution video capture, or change of camera direction for as-

sessment of the scene e�ectively. It features a novel video quality

enhancing algorithm based on occlusion-detection that adapts to

video impairments related to image distortion and frame stalling.

Function-centric Computing. In [4], Service Function Chaining

(SFC) was proposed to compose and maintain the services in a

geo-distributed cloud infrastructure. Each service is considered as

a function and the task is represented as a service function chain.

The compute / network resources are allocated to each service in

a cloud infrastructure in SFC. Studies have shown that SFC or-

chestraction deployed on the realistic edge / cloud has given good

performance. This Service Function Chain (SFC) was �rst used by

[6] in policy based FCC for o�-loading. In this work, the given ap-

plication is decomposed into functions, such as microservices, and

each functions can be o�-loaded to di�erent sites for execution. The

proposed FCC based o�-loading approach has given satisfactory

performance with respect to frames per-second vs. a cost factor for

a given drone-based video analytics application. In our proposed ap-

proach, we extend the FCC approach with dynamic decisionmaking

in computation o�-loading with consideration of device mobility,

system response time, network quality and energy consumption

for processing streamed video from UAVs.

3 OCCLUSION-BASED PROBLEM

FORMULATION

In this section, we �rst introduce our problem formulation, which

includes occlusion type and rate, occlusion in�uencing factors, and

how these occlusion types and in�uencing factors a�ect compu-

tation o�-loading decision making. We then present our function

chain for processing of streamed video, and how we decouple the

function chain into FCC functions, as described in [6].

3.1 Drone operations in�uence on occlusion

type and rate

In our proposed scenario, a �eet of drones is embedded with high-

resolution cameras and one control drone is in charge of controlling

the drone swarm. We divide our drone control into several di�erent

control panels, including navigation control, platform control and

sensor/camera control. It is needed in advance and the guide in-

cludes changing the location or the speed of the drone �eet. Platform

control mainly focuses on changing the position, pose or height of

the drone swarm to clearly regain the vision of any blocked objects.

This decision could be made by the control drone itself, edge server

on the GCS, or human operators on the ground. Sensor/camera

control is responsible for changing the camera information, such as

zooming-in/zooming-out on Pan-Tilt-Zoom (PTZ) cameras or reset

of the sensor e.g., switching to infrared or night-vision sensors, to

avoid missing targets.

To make sure the drone �eet control decision is accurate and

on-time, a standard occlusion detection and occlusion rate calculat-

ing algorithm are provided. In our approach, we consider most of

the data transmission through wireless communication between

drones and GCS, and most of the video streaming uses network

layer protocols to deal with network transport issues. We observed

the spatial and temporal occlusions that occur during video stream-

ing of various types of �le formats and codec types with di�erent

networking protocols. Table 1 summarizes our experiments with

TCP/QUIC [23], UDP [9]/RTP [22] networking protocols that oc-

curred during video streaming using MPEG/MPEG.1 or MP4/H.264

codecs. Figure 2 illustrates the broadly di�erent spatial and tem-

poral occlusions that were recorded in the video frames in our

experiments.
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4.2 Policy-based Function-Centric Computing

in dynamic decision making

In our recent prior work [6], we assume that the both the drone

and GCS edge computation resources will be leveraged to perform

tasks such as pre-processing in the video analytics pipeline. Hence,

the decision of scheduling a task/function to be executed at a suit-

able location is an optimization problem. For the pre-condition, we

assumed that the computation resources on-board a drone is less

in terms of computation power than at a GCS that is co-located

with a high-performance computing edge server. If the GCS has

access to high-performace computation resources, we assume that

the resources are abundant and real-time video processing can be

achieved without waiting time. In the following, we �rst describe

our supported policies, and then detail our occlusion-based compu-

tation o�-loading algorithm that uses FCC.

The polices that we consider include: (i) the real-time control

policy, which is required during the video streaming. A dynamic

control strategy must be determined for the drone �eet and the GCS

in real-time based on the response time with low-latency; (ii) the

FCC availability policy ensures that a video analytics application is

function-based or microservices-based, and the individual functions

can be executed at di�erent locations; and (iii) the video performance

policy, which calculates the occlusion rate of the video during

transmission as well as the processing speed. A few metrics that

we use to implement this policy include: tracking rate, accuracy

rate, and system response time; note that we describe these metrics

later in detail in Section 5.

4.3 Occlusion-based dynamic decision making

in drone control

The real-time control relies on estimating the quality of the video

streamed by the drones. The level of occlusion is detected at the

drone by estimating the peak signal-to-noise ratio (PSNR), as shown

in Equation 5. We remark that PSNR is a widely used metric to

estimate the quality of images that undergo degradation when

being transmitted on a communication link. PSNR is estimated

by using mean square error (MSE), and the image quality at the

destination of a communication link can be estimated as:

MSE =

Õ
M ,N [I1(m,n) − I2(m,n)]

2

M ∗ N
(4)

whereM , N de�ne the size of the image, andm, n are pixels.

Threshold = PSNR = 20lo�10
VPeak

MSE
(5)

Here we assume that impairments in the video can be recti�ed ef-

fectively if the PSNR is less than or equal to a �xed threshold (≤30%).

If the PSNR value is within such limits, then the impairments in the

video can be mitigated by instructing the drone to stream higher-

resolution video through the drone controller as shown in Figure 4.

If the PSNR threshold is (>30%), then the drone communicates to

a nearby drone to capture the required high-quality video in the

FANET [12]. This process iterates until the required high-resolution

quality of the video is streamed as part of the video farming process.

Further, the drone control (as shown in Figure 5) checks if the

quality of the streamed video from drone has a PSNR threshold of

(≤30 %). In such cases, the impairments in the video can be recti�ed

by the actions of camera control directed by navigation control

to get the necessary high-resolution video streams in the video

farming. Depending on the purpose that the drone is for, either of

the above two actions are performed on the drone to satisfy user

QoE expectations dynamically. For application pipelines involving

object tracking or object detection, the drone can be instructed

by the drone control module to shift to a low-resolution (to save

on-board drone storage when high accuracy is not necessary for

object recognition/counting) or a high-resolution (for increasing

accuracy of object recognition/counting) setting.

4.4 Algorithm for dynamic computation

o�-loading and decision making

To detect occlusions and direct computation o�-loading, the drone

controller and GCS execute our proposed dynamic computation

o�-loading decision making as per the scheme shown in Figure 5

and the corresponding steps outlined in Algorithms 2 and 3.

Algorithm 2: D-FCC: Network Failure Module

Input:V ideo:= video data to analyze; Drone := IP:Port; Networkstatus :=1 if
Network failure, 0 Otherwise; Reco�er�t ime := t

Output:URI := o�-loading RESTful API URI; Network_str en�th_f unction,
Buf f er _on_drone := raw data ready to o�-load

1 begin
2 URI ← http://

3 Data ← V ideo

4 if Networkstatus == 1 then
5 if P .f cc_a�ailabil it� == 1 then
6 URI ← URI ∪ Drone /functionCentricProcessing

7 Data ← Data ∪ Reco�er�t ime

8 end

9 else
10 Buf f er _on_drone ← Data

11 end

12 end

13 else
14 Network_str en�th_f unction ← URI ∪ Data

15 end

16 end

We start by checking if a network failure event occurs at the

beginning of the application (line 4 in Algorithm 2). If the network

fails, and if the application can be decoupled into functions, we will

execute part of the low computation resources needing functions

on the drone and wait for network to be recovered (line 6, 7 in

Algorithm 2). On the contrary, if the application is highly coupled,

we will store the streaming video data into an on-board drone bu�er

to avoid packet/information loss (line 10 in Algorithm 2).

If the network health status is good for transmission, we will

choose to use the edge high-performance computing resources for

computation o�-loading, if they are available. This in turn will

result in better performance on tracking and accuracy in the object

detection application pipeline. In this case, we will also choose o�-

loading to cloud resources (if they are available in order to increase

the accuracy), instead of using low performance edge resources

(line 6 in Algorithm 3).

In situations where there are no high-performance computing

resources available at the edge, we choose to perform real-time

control if we detect occlusions in the video frames. The occlusion-

detection thus in�uences the subsequent real-time video farming

and processing steps. Our schemewill provide guidance to the video
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we are concerned about the accuracy and tracking rate of the object,

both drone-only and our proposed scheme are suitable choices.

6 CONCLUSION

In this paper, we presented a novel dynamic computation o�-loading

and control scheme that detects occlusions and coordinates intel-

ligent processing in drone video analytics. Our scheme takes into

account not only the computation workload and processing time,

but also the dynamic parameters that a�ect drone video analytics

performance in a real-time manner. We handle network bottlenecks

with regards to drone mobility, data transmission protocol in video

streaming, and various occlusion types resulting from changes in

these dynamic parameters. Our evaluation results collected from

a near realistic testbed show how our dynamic computation o�-

loading scheme can intelligently balance the trade-o�s between

tracking/accuracy rate vs. processing time using a novel Function-

centric Computing (FCC) architecture with regards to di�erent

networking protocols under di�erent available bandwidth network

connections between the drones and a GCS. Our results also demon-

strated how the FCC architecture e�ciently utilizes the drone edge,

GCS edge and cloud computing resources while optimally o�oad-

ing any decomposable application functions/tasks in the form of mi-

croservices among these resources. Lastly, we demonstrated object

recognition and tracking results with our approach under di�erent

types of occlusion rates measured using PSNR thresholds. Speci�-

cally, we showed how our approach can signi�cantly improve users’

QoE levels in terms of tracking/accuracy within drone-based video

streaming services as part of the video collection/analysis steps of

an object detection pipeline application.

Future work could focus on performance evaluation studies on

handling additional QoE factors related to the occlusion detection

on drone captured videos, e.g., blocking of the object of interest

by other objects and night vision based occlusions due to lack of

visible light. In the same context, additional system parameters

can be handled that could impact computation o�-loading decision

making in a real scenario, e.g., energy consumption on the drone

devices in object tracking and/or geo-location reconstruction.
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