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ABSTRACT

Unmanned Aerial Vehicles (UAVs) or drones equipped with cam-
eras are extensively used in different scenarios such as surveil-
lance of hazardous locations, disaster response and crime fighting.
The related video streaming/analytics requires real-time drone-to-
Ground Control Station (GCS) communication and computation
co-ordination for desired user Quality of Experience (QoE). In situ-
ations where the quality of the video can be affected by occlusions
(e.g., image distortion, frame stalling) due to network bottlenecks,
there is a need to dynamically make decisions on the computation
offloading and networking protocols in order to properly handle
the video data for real world application purposes. In this paper, we
propose a novel function-centric computing approach that helps a
user to perform drone video analytics to assess a wide-area scene
to chart a plan of action. Our approach involves handling network
impairments affecting the switching between high resolution/low
resolution video capture, or change of camera direction for assess-
ment of the scene effectively. It also features a novel video quality
enhancing algorithm based on occlusion-detection that adapts to
video impairments related to image distortion and frame stalling.
Our experiment results from a realistic testbed show that our ap-
proach can efficiently choose the suitable networking protocols
(i.e., TCP/HTTP, UDP/RTP, QUIC) and orchestrate both the cam-
era control on the drone, and the computation off-loading of the
video analytics over limited edge computing resources. The perfor-
mance improvements for computation off-loading involving our
video quality enhancing algorithm are shown for different network
conditions in terms of occlusion rate and processing times.
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1 INTRODUCTION

In the last few years, Unmanned Aerial Vehicles (UAVs), also known
as drones, have been extensively used in different scenarios in ur-
ban and rural area control such as disaster response, surveillance
of smart city, crime fighting and smart farming [18]. Most com-
mercially used drones are equipped with high-resolution cameras
that are able to visualize and monitor target status, e.g., object
recognition, counting and tracking purposes.

Figure 1: Overview of multiple drone communication and GCS computa-
tion using a FANET and an edge computing infrastructure.

State-of-the-art video analytics processing applications are in-
creasing using drone video farming that requires high-performance
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computing resources and real-time communication. The problems
of insufficient computing resources and edge networking speeds
can be addressed using computation off-loading to a Ground Con-
trol Station (GCS) [14]. However, computation off-loading cannot
always be used for tactical drones computation and control due to
the dynamic wireless channel and energy consumption constraints
on the drone-edge computing for processing high-resolution im-
ages. In edge networks, a variety of environmental conditions may
affect the performance of the video streaming between the drone
and GCS. This in turn affects the performance of video streaming
in terms of end-to-end delay, frame blurring, stalling and distortion.
Based on our literature survey and important observations from
[13], there is a clear lack of mechanisms to efficiently coordinate
the networking protocols in conjunction with drone control orches-
tration and computation off-loading during drone video analytics.

As shown in Figure 1, we consider an application scenario com-
prising of a network of drones based on the concepts borrowed
from prior work on Flying Ad hoc Networks (FANETS) [1]. A multi-
UAV system can operate in a centralized or decentralized manner.
In a decentralized system, the UAVs need to explicitly cooperate
on different levels to achieve the system goals and exchange infor-
mation to share tasks and make collective decisions. We assume
that the drones are cooperatively working in a decentralized way
when recording the video of a scene at different angle. Even if the
connection among one of the drones to the GCS is interrupted or
disconnected, we suppose that the inter-drone communication may
still be possible as outlined in [11].

In this paper, we present a novel dynamic computation off-loading
and control scheme that detects occlusions that impair user Quality
of Experience (QoE), and coordinates intelligent processing in drone
video analytics. The intelligent processing considers the trade-off in
processing time vs. tracking/accuracy rate using a Function Centric
Computing (FCC) architecture [6]. The FCC architecture utilizes the
drone edge, GCS and cloud computing resources and decomposes
an application over these resources in the form of microservice
functions/tasks. We summarize the major novel contributions of
this paper as follows:

o We describe a drone video analytics application that supports
FCC by decomposing a pipeline for video surveillance in
the form of microservice functions/tasks that are deployed
over a mixture of drone/GCS/cloud computing resources
communicating via RESTful web services [17].

e We also present a novel dynamic computation off-loading
and control scheme based on occlusion detection in drone
video analytics. Our approach supports FCC to optimally
trade-off processing time vs. tracking/accuracy rate among
the different computing architectures, i.e., drone, GCS and
cloud. The goal of our approach is to dynamically change
networking protocols (i.e., TCP/HTTP, UDP/RTP, QUIC),
and handle network impairments affecting the switching
between high resolution/low resolution video capture, or
change of camera direction for assessment of the scene ef-
fectively.

o Lastly, we deploy a drone/GCS/cloud testbed in the GENI
cloud infrastructure [16] and span it in multiple geographical
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locations using novel metrics such as occlusion rate and pro-
cessing times. We also evaluated our scheme under various
network conditions and realistic application settings.

The rest of the paper is organized as follows: Section 2 presents
related work. In Section 3, we formulate our problem with occlusion-
based settings, categorize the occlusion formats with transport layer
protocol considerations, and introduce our drone video analytics
application pipeline. In Section 4, we detail our novel dynamic
computation off-loading scheme for real-time drone video analytics.
Section 5 describes our experimental testbed settings, performance
metrics and evaluation results. Section 6 concludes the paper.

2 RELATED WORK

Computation off-loading on drones. Real-time video analytics
applications pose new challenges in processing intensive media-
rich data on the drone due to its limited computing power. It is
difficult to meet user QoE [3] expectations when low-latency and
highly accurate video analytics is required to be performed [25].

In [6], a novel policy-based function-centric computation off-
loading (FCC) scheme was presented for off-loading decision mak-
ing. The decision to off-load either to an edge, cloud or FCC for
real-time video analytics is done by considering the performance vs.
cost factors as evaluation parameters. However, this prior work did
not consider factors such as network connection quality and pro-
tocol selection needed on the drone during computation and data
transfer. In [27], the authors proposed an off-loading scheme for a
drone cluster with high computing tasks to borrow the computing
resources from nearby clusters that have low computing tasks. Due
to the constrained drone resources (i.e computation power, energy,
human operations, etc.,) the off-loading decision is made statically
based on the available computational resources of the neighbor
clusters. In both of these works, the decision making process is
not dynamic and cannot adapt to environmental changes such as
network connection bottlenecks and austere edge computing.

In [13], the authors proposed an adaptive computation off-loading
drone system architecture (ACODS) with reliable communication
to preserve energy consumption on the drone. A prediction module
was used to estimate the overall system response time to decide if
the computation needs to be performed on the drone or off-loaded
to a GCS. This work, however, does not consider partial off-load of
computation workloads to maximize performance and to reduce the
the system delays caused by data transmission during drone-to-GCS
communication. Our work overcomes this issue by introducing the
FCC concept that partially off-loads computation workload from
the drones, while simultaneously performing a reasonable level of
computation on the drone device itself.

Authors in [10] present a framework for UAV-based video mon-
itoring with a FANET. The FANET consists of UAVs with multi-
access edge computing (MEC), which helps reduce response delays
by providing higher network bandwidth and provides off-loading
capabilities to reduce computation workload. However, in this work,
the increase in the performance of the whole aerial-ground MEC
platform and an off-loading decision-making scheme is not pre-
sented. Specifically, we propose a dynamic off-loading scheme that
efficiently off-loads the computation among edge, cloud or FCC
architecture based on thresholds of occlusion detection.
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Dynamic Decision Making on computation off-loading. Due
to the change in environments during UAV’s movement, the com-
putation off-loading decision making needs to be dynamically made
in order to keep system performance at a high level and to provide
satisfactory user QoE [5].

An energy-aware dynamic computation off-loading scheme for
object recognition and tracking is proposed in [26]. The proposed
off-loading scheme considers both the dwell time of the moving
target object and the network failure rate to estimate the system
response time for recognizing and tracking of a moving object.
A mobile-cloudlet-cloud architecture (MOCHAA) is presented in
[24], in which face recognition applications were used to evaluate
the ability of the system to minimize the response time in airport
security surveillance. The system architecture deals with how to
divide computation loads among the servers in order to get min-
imal response. However, it does not consider the mobility of the
edge device which could affect the network connection quality
and thus the transmission delay. A real-time object recognition
system using a camera equipped mobile device is proposed by [29].
In this system, the algorithms for object recognition and labeling
are off-loaded to the cloud due to its significant computation over-
head. Also, off-loading to a cloud server is determined by energy
consumption and computation delays of the system. However, it
does not consider the variability in network conditions between
mobile devices and a cloud server. A solution using deep reinforce-
ment learning is proposed to dynamically off-load computation as
part of a sequential decision making for cloud robotics [7]. In this
work, vision deep neural networks (DNN) were used for decision
making in off-loading computation workloads. This approach has
shown improved performance during off-loading, thus allowing
robots to significantly transcend their on-board sensing accuracy.
However, the off-loading scheme is limited at a device level or at in-
dividual cloud servers. In contrast, our approach proposes dynamic
off-loading scheme among edge, cloud and FCC, providing more
available choices and flexibility to the application users.
Occlusion-awareness on Aerial Video Analytics. The overhead
imagery recognition poses many challenging tasks than a fixed
ground level camera because of low resolution or high resolution
imagery patterns [2]. Here a major challenging task involves han-
dling the large intra-class variation in activities including varia-
tions in resolution scale, target (e.g., visual appearance, speed of
motion) and environment (e.g., lighting condition, occlusion) [28].
The meaningful structures in video are extracted through the unsu-
pervised learning of temporal clusters and are associated with the
metadata [8]. A flexible dual TCP-UDP streaming protocol (FDSP) is
used for high-quality video streaming [9]. Here, this FDSP approach
results in lower packet loss compared to UDP-based streaming. The
performance of QUIC vs. TCP for a better QoE in video stream-
ing is studied in [23]. Our approach involves handling network
impairments affecting the switching between high resolution/low
resolution video capture, or change of camera direction for as-
sessment of the scene effectively. It features a novel video quality
enhancing algorithm based on occlusion-detection that adapts to
video impairments related to image distortion and frame stalling.
Function-centric Computing. In [4], Service Function Chaining
(SFC) was proposed to compose and maintain the services in a
geo-distributed cloud infrastructure. Each service is considered as
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a function and the task is represented as a service function chain.
The compute / network resources are allocated to each service in
a cloud infrastructure in SFC. Studies have shown that SFC or-
chestraction deployed on the realistic edge / cloud has given good
performance. This Service Function Chain (SFC) was first used by
[6] in policy based FCC for off-loading. In this work, the given ap-
plication is decomposed into functions, such as microservices, and
each functions can be off-loaded to different sites for execution. The
proposed FCC based off-loading approach has given satisfactory
performance with respect to frames per-second vs. a cost factor for
a given drone-based video analytics application. In our proposed ap-
proach, we extend the FCC approach with dynamic decision making
in computation off-loading with consideration of device mobility,
system response time, network quality and energy consumption
for processing streamed video from UAVs.

3 OCCLUSION-BASED PROBLEM
FORMULATION

In this section, we first introduce our problem formulation, which
includes occlusion type and rate, occlusion influencing factors, and
how these occlusion types and influencing factors affect compu-
tation off-loading decision making. We then present our function
chain for processing of streamed video, and how we decouple the
function chain into FCC functions, as described in [6].

3.1 Drone operations influence on occlusion
type and rate

In our proposed scenario, a fleet of drones is embedded with high-
resolution cameras and one control drone is in charge of controlling
the drone swarm. We divide our drone control into several different
control panels, including navigation control, platform control and
sensor/camera control. It is needed in advance and the guide in-
cludes changing the location or the speed of the drone fleet. Platform
control mainly focuses on changing the position, pose or height of
the drone swarm to clearly regain the vision of any blocked objects.
This decision could be made by the control drone itself, edge server
on the GCS, or human operators on the ground. Sensor/camera
control is responsible for changing the camera information, such as
zooming-in/zooming-out on Pan-Tilt-Zoom (PTZ) cameras or reset
of the sensor e.g., switching to infrared or night-vision sensors, to
avoid missing targets.

To make sure the drone fleet control decision is accurate and
on-time, a standard occlusion detection and occlusion rate calculat-
ing algorithm are provided. In our approach, we consider most of
the data transmission through wireless communication between
drones and GCS, and most of the video streaming uses network
layer protocols to deal with network transport issues. We observed
the spatial and temporal occlusions that occur during video stream-
ing of various types of file formats and codec types with different
networking protocols. Table 1 summarizes our experiments with
TCP/QUIC [23], UDP [9]/RTP [22] networking protocols that oc-
curred during video streaming using MPEG/MPEG.1 or MP4/H.264
codecs. Figure 2 illustrates the broadly different spatial and tem-
poral occlusions that were recorded in the video frames in our
experiments.
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Table 1: Comparison of occlusion types found for different video formats, codec types and networking protocols in experi-

ments with the 5 Mbps available network bandwidth setting.

Original Resolution  File Format Codec Type Protocol Lossy/Lossless Impairment Type
1904*1071 MP4 H.264 UDP/RTP Lossy/Lossless Spatial Distortion
MP4 H.264 TCP/QUIC Lossy/Lossless Temporal Stalling
1344*756 MP4 MP4 UDP/RTP Lossy Spatial distortion
MP4 MP4 TCP/QUIC Lossy Temporal Stalling
13607765 MPEG H.264 UDP/RTP Lossy Distortion/frame overlap/green lines
MPEG H.264 TCP/QUIC Lossy Stalling
1920*1080 MPEG MPEG-1 UDP/RTP Lossy Distortion
MPEG MPEG-1 TCP/QUIC Lossy Stalling

Algorithm 1: Spatial Impairment

Input: inFrame, GT
Result: sptiImpairment
1 [M, N] « sizeO fImage(inFrame(1));
2 n « getFrameCount(inFrame);
3 C « 36;
4 for i=I:ndo
5 imageDif f (i) < abs(GT(i) — inFrame(i));
6 occludedPixel(i) < nonzeroPixels(imageDif f(i));
occludedPixel(i)*100

7 occludedPct(i) «— N
8 intensityDif f(i) « %&lfﬂl)
9 end

=
5

sptiImpairment < C % mean(occludedPct x intensityDif f)

Based on our observations of stalling and blurring i.e., the two
major occlusion types occurring during video streaming, we calcu-
late the occlusion rate as shown in Algorithm 1.

Spatial Impairment Rate: Spatial impairment in a frame can be
defined as how dissimilar the received content after transmission
is from the original content captured by the drone or an edge
computing device. Given the ground truth data, the amount of
spatial impairment present in each frame can be evaluated simply
comparing the frames before and after transmission as detailed in
the steps shown in Algorithm 1.

Temporal Impairment Rate: To get the sense of frame stalling or
temporal impairment from a video streaming session, we compare
frame at time i, with frame at time i — 1. If both are same, then there
is a temporal impairment. We calculate the total number of stalled
or buffered frames in a video sequence. Temporal impairment rate is
defined as the ratio of number of buffered frames and total number
of frames in a video sequence.

3.2 Function Chain for Video Processing
Application

Our drone video processing application performs objects motion

detection for aerial images and their subsequent classification. An

example result of this analytics application is show in Figure 3.

To implement the FCC pipeline, we decompose our video analysis

application and the occlusion calculation algorithm into separate

microservices. Streamed video data is collected after transmission
via different protocols, including TCP, UDP, RTP and QUIC. After

(b) Video frames with temporal stalling occlusions

Figure 2: Ilustration of spatial and temporal occlusions that are caused
by low available network bandwidth situations during MPEG/MPEG-1 or
MP4/H.264 video streaming using these networking protocols: (a) UDP/RTP
and (b) TCP/QUIC.

the video is captured, the video processing functions (microservices)
resides within Docker containers that can be quickly deployed on
appropriate nodes after computation off-loading decision making.
The decoupled microservices from the application allow us to inde-
pendently execute specific functions at desired location to evaluate
our different computation off-loading schemes, i.e., edge, cloud, and
FCC schemes.

..
truncation

A ‘Feﬂcslrian
K
pedestrian

truncation

Yoy
#}T  pedestian

. \
\ \ g

Figure 3: Example result of object classification on a surveillance video
from one of the drones in the drone fleet.
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The implemented drone video analytics pipeline is show in Fig-
ure 4, and has the following functions implemented as RESTful web
service interfaces:

The pre-processing endpoint. This endpoint (preProcessing) is
responsible for extracting the sections of an image that changed
between succeeding frames in a video using classic computer vision
techniques, see Section 5.1. This allows it to not only count object
whose positions have changed from preceding frames, but also
allows for labeling them accordingly. This endpoint includes gray
scaling function, blurring function and motion detection function.
The occlusion detection endpoint. This endpoint includes an
occlusion detection function. The (occlusionDetection) is responsible
for detecting the occlusion of the streaming video after transmis-
sion and calculating the occlusion rate. The main function contains
two modules i.e., occlusion categorization and occlusion rate calcu-
lation. In our approach, we only consider two types of occlusion i.e.,
blurring rate and stalling rate, and use the same algorithm settings
to calculate both.

The classifier endpoint. This endpoint includes motion classifier
and moving object counter function. This endpoint (objectClassi-
fier) features a YOLOv3 classifier running on TensorFlow that was
pre-trained on COCO [21]. It receives a frame from an image as
input, and is able to quickly carry out object recognition on it and
return bounding boxes and labels for all the objects occurring in the
frame. In addition, this endpoint is also responsible for processing
counting methods and for returning results on moving objects with
the results from a pre-processing endpoint.

The function chain definition endpoint. This endpoint (Next
Server) is used to dynamically determine which server is called
to execute the next function. This allows programmatic access to
define where the classifier is executed. The same Docker image is
supported by all nodes, including controller drone, GCS with edge

server, and a cloud server.
Occlusion .
/Blurring /47/GrayScaling/4—[Server]
oving Object /47/0|assifie/
Counter

Figure 4: Image processing pipeline for video analytics.

Input Video
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Motion
Detection

4 DYNAMIC COMPUTATION OFF-LOADING
DECISION MAKING SCHEME

In this section, we introduce our novel dynamic computation off-
loading decision making scheme. This scheme allows us to not
only facilitate trade-offs in performance vs. processing speed of
real-time drone video analytics, but also aids in making decisions in
selecting edge, cloud or FCC for data processing. We also consider
network failure and recovery time in the drone video transmission.
For real-time processing and the high-quality of video analysis, we
calculate a occlusion rate metric during drone flying and transmis-
sion guidance.
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4.1 Network delays in dynamic decision
making

In this section, we characterize the impact of network failure on a
drone-based surveillance system. In our proposed scheme, drone
fleet and GCS are connected with a wireless edge network, which
is intermittently unstable and experiences frequent network failure
events. In other words, the computation off-loading will have a
significant problem with unexpected network failure events that
can be caused by e.g., mobility of the drone, weather conditions
and occlusion caused by low-resolution video capture. To address
this problem, the network recovery time {,, is estimated before we
make computation off-loading decisions on the application pipeline
tasks. If the recovery time { is less than the network recovery time
{a, then FCC is adopted for the given application. This dynamic
off-loading decision based on network condition for FCC enables us
to reduce the overall processing time. If there is no network failure,
then the off-loading is directed to any available high-performance
edge computing resources.

The network recovery time j is calculated as follows: Let the
network error rate be A; at time i. For a given network, if we define
the response time from the drone to the GCS server as ¢, then
E[{] follows the Poisson distribution [15]. If E[{] is defined as
the response time for the network without any failure, then it is
identical to ¢. It is assumed that during a network failure event,
the network will retry to obtain connectivity continuously after
waiting for a recovery time g. Then E[{] is represented by three
distinct terms p,q,E[{], respectively; where p is defined as the time
interval between the point of initiation of the task and the network
failure event occurrence.

_riepo POt ED ifp<gq
{a =E[{] = :
4 otherwise

1)

By the law of total expectation E[{] = fog(p +q+E[{]) fp(p)dp +
/;o { fp(p)dp, E[{] can be represented by:

e+ a-Dfpyp+ ¢
1 Jy frle)dp

By substituting 1;e~i¥ for fp(p), where A; is always greater
than 0, we obtain

E[¢] )

Fe+a-retv ¢
1- /05 /11‘8_’11' x

During network recovery, drones with computation resources
on-board can be controlled to be responsible for taking a part in the
video analytics work. The processing could be executed in parallel
by the fleet of drones if the communication links are capable of
handling the underlying message passing. We suppose that some of
the workload tasks (i.e., those tasks that cannot be decoupled) must
be done on the edge servers with high-performance computing
resources. In such cases, we buffer the video data instead of pursing
off-loading. Thus, our proposed scheme can handle network failure
events without compromising the accuracy as well as tracking
performance, as opposed to performing the computations using the
drone-only or edge-GCS computation off-loading options.

E[¢] ®)
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4.2 Policy-based Function-Centric Computing
in dynamic decision making

In our recent prior work [6], we assume that the both the drone
and GCS edge computation resources will be leveraged to perform
tasks such as pre-processing in the video analytics pipeline. Hence,
the decision of scheduling a task/function to be executed at a suit-
able location is an optimization problem. For the pre-condition, we
assumed that the computation resources on-board a drone is less
in terms of computation power than at a GCS that is co-located
with a high-performance computing edge server. If the GCS has
access to high-performace computation resources, we assume that
the resources are abundant and real-time video processing can be
achieved without waiting time. In the following, we first describe
our supported policies, and then detail our occlusion-based compu-
tation off-loading algorithm that uses FCC.

The polices that we consider include: (i) the real-time control
policy, which is required during the video streaming. A dynamic
control strategy must be determined for the drone fleet and the GCS
in real-time based on the response time with low-latency; (ii) the
FCC availability policy ensures that a video analytics application is
function-based or microservices-based, and the individual functions
can be executed at different locations; and (iii) the video performance
policy, which calculates the occlusion rate of the video during
transmission as well as the processing speed. A few metrics that
we use to implement this policy include: tracking rate, accuracy
rate, and system response time; note that we describe these metrics
later in detail in Section 5.

4.3 Occlusion-based dynamic decision making
in drone control

The real-time control relies on estimating the quality of the video
streamed by the drones. The level of occlusion is detected at the
drone by estimating the peak signal-to-noise ratio (PSNR), as shown
in Equation 5. We remark that PSNR is a widely used metric to
estimate the quality of images that undergo degradation when
being transmitted on a communication link. PSNR is estimated
by using mean square error (MSE), and the image quality at the
destination of a communication link can be estimated as:

ZM,N[Il(mv I’l) - IZ(m’ Tl)]Z

MSE = @
M= N
where M, N define the size of the image, and m, n are pixels.
Vi
Threshold = PSNR = 20logy Peak )

MSE

Here we assume that impairments in the video can be rectified ef-
fectively if the PSNR is less than or equal to a fixed threshold (<30%).
If the PSNR value is within such limits, then the impairments in the
video can be mitigated by instructing the drone to stream higher-
resolution video through the drone controller as shown in Figure 4.
If the PSNR threshold is (>30%), then the drone communicates to
a nearby drone to capture the required high-quality video in the
FANET [12]. This process iterates until the required high-resolution
quality of the video is streamed as part of the video farming process.

Further, the drone control (as shown in Figure 5) checks if the
quality of the streamed video from drone has a PSNR threshold of
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(<30 %). In such cases, the impairments in the video can be rectified
by the actions of camera control directed by navigation control
to get the necessary high-resolution video streams in the video
farming. Depending on the purpose that the drone is for, either of
the above two actions are performed on the drone to satisfy user
QoE expectations dynamically. For application pipelines involving
object tracking or object detection, the drone can be instructed
by the drone control module to shift to a low-resolution (to save
on-board drone storage when high accuracy is not necessary for
object recognition/counting) or a high-resolution (for increasing
accuracy of object recognition/counting) setting.

4.4 Algorithm for dynamic computation
off-loading and decision making

To detect occlusions and direct computation off-loading, the drone

controller and GCS execute our proposed dynamic computation

off-loading decision making as per the scheme shown in Figure 5

and the corresponding steps outlined in Algorithms 2 and 3.

Algorithm 2: D-FCC: Network Failure Module

Input: Video:= video data to analyze; Drone:= IP:Port; Networkssqrus:=1if
Network failure, 0 Otherwise; Recoverysime:=t

Output: URI:= off-loading RESTful API UR; Network_strength_function,
Buffer_on_drone:= raw data ready to off-load

1 begin

2 URI « http://

3 Data « Video

4 if Networkssqrus == 1then

5 if P.fcc_availability == 1 then

6 URI < URI U Drone/functionCentricProcessing
7 Data « Data U Recoverysime

8 end

9 else

10 | Buffer_on_drone « Data

1 end

12 end

13 else

14 | Network_strength_function «— URIU Data
15 end
16 end

We start by checking if a network failure event occurs at the
beginning of the application (line 4 in Algorithm 2). If the network
fails, and if the application can be decoupled into functions, we will
execute part of the low computation resources needing functions
on the drone and wait for network to be recovered (line 6, 7 in
Algorithm 2). On the contrary, if the application is highly coupled,
we will store the streaming video data into an on-board drone buffer
to avoid packet/information loss (line 10 in Algorithm 2).

If the network health status is good for transmission, we will
choose to use the edge high-performance computing resources for
computation off-loading, if they are available. This in turn will
result in better performance on tracking and accuracy in the object
detection application pipeline. In this case, we will also choose off-
loading to cloud resources (if they are available in order to increase
the accuracy), instead of using low performance edge resources
(line 6 in Algorithm 3).

In situations where there are no high-performance computing
resources available at the edge, we choose to perform real-time
control if we detect occlusions in the video frames. The occlusion-
detection thus influences the subsequent real-time video farming
and processing steps. Our scheme will provide guidance to the video
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Figure 5: Illustration showing our dynamic computation off-loading and control policy based on occlusion detection using
FCC off-loading scheme for FANET-based real-time drone video analytics.

capturing drone to change the drone location, speed, or change
the resolution and networking protocol settings to guarantee the
fluency and sharpness of the video streaming (line 19 in Algorithm
3). Further, we check whether the video analytics application is
amenable to FCC (i.e., it can be decoupled into functions for place-
ment of computation at different locations) (line 21 in Algorithm 3)
to improve both its performance and the processing speed. Thus, by
utilizing the high-performance computing resources intelligently
during network failure events or cases of occlusion detection due
to low-resolution video capture occurring in the drones, we can
increase the tracking speed and accuracy in the object detection
pipeline.

5 PERFORMANCE EVALUATION

In this section, we first describe the experimental setup. Follow-
ing this, we discuss the evaluation results using metrics such as
occlusion rate and stalling rate for different networking protocols
under a variety of network health conditions considering different
computation off-loading architectures for a drone video analytics
pipeline involving object tracking and counting.

5.1 Experimental Setup

Our experiments consider several drone surveillance video streams
from a VisDrone dataset [30] with different VGA resolutions (1080p:
1920 x 1080; 720p: 1280 x 720; 480p: 854 x 480; 360p: 640 x 360) in
an analytics pipeline (see Figure 4) to track and count moving ob-
jects (e.g., cars, trucks and pedestrians). According to the VisDrone
project, the videos are acquired by various drone platforms, i.e.,
DJI Mavic, Phantom series (3, 3A, 3SE, 3P, 4, 4A, 4P), including
different scenarios across 14 different cites in China. The analytics
application we use in our experiments is publicly available at [20].
As illustrated earlier in Figure 1, the farmed video data from a fleet
of drones is captured and stored at different resolutions.

Our geo-distributed drone/GCS/cloud testbed setup includes 2
micro-processors, 1 edge server and 1 cloud server reserved in a
GENI rack [16] at the Missouri InstaGENI site; 2 micro-processors
and 1 HPC edge server. Micro-processors are NVIDIA Jetson Nano
[19] with a configuration of 128-core Maxwell GPU, Quad-core
ARM A57 CPU and 4G RAM. Edge server without HPC capabilities
has 12 cores Intel Xeon CPU and 16 GB RAM and has the same
settings on a cloud server at the Missouri InstaGENI site. Edge
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Algorithm 3: D-FCC: Impairment detection and policy

module
Input: Video:= video data to analyze; P:= set of policies; Edge:= IP:Port; Cloud:=
IP:Port; Drone:=IP:Port; Impairmentygte:=p;
Impairment_threshold:=30%; Edgegrpc:= 1 if Edge HPC is available, 0
otherwise
Output: URI:= off-loading RESTful API URL; Data:= JSON data to off-load

1 begin

URI « http://

Data « Video

if Edgerpc == 1then

if P.real _time == 0 then

| URI < URIUCloud
end

else
| URI < URIU Edge
end
URI <= URI U /fullVideoProcessing

PN W R BN

R
= =

end

-
s

else

-
=

if P.real _time == 0 then
//without real-time control policy
URI < URI U Cloud U /fullVideoProcessing

-
=3

16 end

17 else if Impairmentyqte <= Impairment_threshold then

18 //drone-control policy

19 Droneconirol < Dronecontror U (P.resolution_change N
P.protocol _change)if P.fcc_availability == 1 then

20 //ECC avaliablity policy

21 URI < URI U Edge U /functionCentricProcessing

22 Data <« Data U {"NextFunction" : Cloud}

23 end

24 else

25 | URI < URI U Edge U /fullVideoProcessing

26 end

27 end

28 else

29 | Request_nearest_drone < Impairmentyqte U Data

30 end

31 end

32 end

server with HPC settings is a NVIDIA Jetson AGX Xavier [19] that
has a configuration of 8-Core ARM v8.2 64-bit NVIDIA Carmel
CPU, 16GB RAM and 512-core GPU with 64 Tensor Cores. All the
servers above support Docker containers and can execute a video
analytics function without running an entire application pipeline.
We evaluated the performance of our video analytics by com-
paring results of 3 types of computation off-loading strategies and
the computation on-boarding strategy. More specifically, we com-
pared: cloud computing (Cloud), full off-loading (edge computing
with/without HPC (Edge/Edge HPC), Function-centric computing
(FCC) and full on-boarding onto a drone compute edge (Drone).

5.2 Evaluation Results

5.2.1 TCP and UDP Protocols Comparison. We conducted a series
of experiments in our testbed to validate the effectiveness of our
proposed FCC scheme by collecting the impairment rate and distor-
tion rate for a given video stream captured by drones in a FANET
setting. Figure 6 shows the performance trade-off between the TCP
and UDP protocol configurations on the drones for the application
pipeline under different conditions. The drone cameras resolution is
fixed at 720 pixels. As shown in Figure 6a, we consider the tracking
rate is always 100% for UDP for high-speed network bandwidth
conditions. The performance of tracking rate is not satisfactory for
the TCP protocol even for higher network bandwidth conditions.
However, the tracking rate increases by increasing the available
network bandwidth between the drones and the GCS. Moreover, we
can observe from the experiments that choosing the UDP Protocol
over TCP is more suited for applications such as object tracking.
From Figure 6a, we can note for applications such as object recog-
nition that the accuracy rate is always satisfactory for the video
streamed by using the TCP protocol. However, for higher network
bandwidth availability conditions, the accuracy rate is better when
choosing the UDP Protocol. Moreover, for applications such as
object recognition, choosing the TCP protocol at lower network
bandwidth availability conditions is more suited than choosing the
UDP protocol on the drone. The significant difference can be seen
in the cases of limited network bandwidth availability conditions
where we observe that the TCP protocol performance is better
for fixed resolution cases (i.e., 720 pixels) than the UDP protocol
performance.

5.2.2  Occlusion Rate Results. Figure 6b shows the performance
results related to the different types of occlusions, and the corre-
sponding processing times for various pixels ranges. Occlusion
caused by video frame stalling occurs during the transmission of
video by either TCP or QUIC networking protocols. Whereas occlu-
sions caused by blurring occurs during the transmission of video by
either UDP or RTP networking protocols. Our experiments use the
original video sequences with 720 pixels and also the corresponding
video sequences with varying pixels ranges. From the experiment
results, we can conclude that the processing time increases with
respect to increase in the pixel range for all type of networking
protocols, and for all types of occlusions as well. However, video
with 480 pixels processing time shows ideal performance in all
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conditions, irrespective of the type of occlusion and the networking
protocol used for the video transmission.

The occlusion rate results corresponding to stalling and blurring
for various available network bandwidth conditions is shown in
Figure 6c. In this set of experiments, we use live streaming the
between source (drone) and the destination (GCS) for various avail-
able network bandwidth conditions. A similar setup is repeated for
networking protocols such as TCP, UDP, RTP and QUIC. We can
conclude from the results shown in Figure 6c that - under high-
speed network bandwidth connections, the occlusion rate decrease
irrespective of its type. In specific conditions with bottleneck net-
work link bandwidth conditions with occlusions, we find that the
suggested protocol for satisfactory video streaming performance
is obtained for the QUIC protocol with 420 pixels in the object
recognition application context, and for the UDP protocol with 420
pixels in the object tracking application context.

5.2.3 Dynamic Decision Making Scheme Results. In the first set of
results from Figure 7b, we find that our dynamic decision making
scheme is an optimal choice w.r.t. tracking rate and accuracy on
object detection factors, if real-time guidance is needed. From the
Figure 7b, we can see that the drone level processing can process
only at a processing speed of < 0.01 FPS, which is not suitable for
computation purpose in real time application contexts. However,
drone level processing is suited for decision making purposes. In
comparison, the proposed FCC approach has a processing speed of
> 0.03 FPS, when compared with the edge GCS and cloud architec-
tures. Thus, we can conclude that our proposed FCC scheme is an
optimal choice w.r.t tracking rate and accuracy.

In our second set of results from Figures 7a and 7c, we find that
our dynamic decision making scheme is superior than the drone-
only, edge-GCS and cloud-only cases in terms of the processing
speed. By sacrificing 20% of accuracy and tracking rate for the frame
processing, our proposed scheme performs the best for the video
analytics application considered. From Figures 7a and 7c, we can
conclude that the choice of drone-only or edge-GCS is a suitable
when there are cases of network failure that causes occlusion de-
tection. Our proposed scheme achieves 25% accuracy improvement
and 82% improvement on tracking rate than the other approaches
by limiting the resources consumed by switching to a low quality
of video frame resolution.

In our third and final set of results from Figures 8a, 8b and 8c,
we find that our dynamic decision making scheme has the best per-
formance based on occlusion detection under bottleneck network
conditions, and in terms of the processing speed. In the first stage,
the network connection quality is estimated and accordingly the
decision to off-load the computation is done dynamically. If the
response time is less, a portion of the function/task is offloaded onto
FCC or it is stored in the local drone buffer. The proposed dynamic
off-loading scheme shows improvement over the other offloading
strategies under a variety of bottleneck network conditions. First, if
anetwork failure occurs at the beginning of the application pipeline
or during the video streaming, our proposed scheme will check if
the FCC policy can be used. If so, a set of pre-processing functions
in drone are invoked that utilize the drone’s on-board computation
resources. Alternately, the video stream is buffered on the drone
storage to avoid packet/information loss, which in turn improves
the tracking rate as well as the accuracy rate. On the contrary, when
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we are concerned about the accuracy and tracking rate of the object,
both drone-only and our proposed scheme are suitable choices.

6 CONCLUSION

In this paper, we presented a novel dynamic computation off-loading
and control scheme that detects occlusions and coordinates intel-
ligent processing in drone video analytics. Our scheme takes into
account not only the computation workload and processing time,
but also the dynamic parameters that affect drone video analytics
performance in a real-time manner. We handle network bottlenecks
with regards to drone mobility, data transmission protocol in video
streaming, and various occlusion types resulting from changes in
these dynamic parameters. Our evaluation results collected from
a near realistic testbed show how our dynamic computation off-
loading scheme can intelligently balance the trade-offs between
tracking/accuracy rate vs. processing time using a novel Function-
centric Computing (FCC) architecture with regards to different
networking protocols under different available bandwidth network
connections between the drones and a GCS. Our results also demon-
strated how the FCC architecture efficiently utilizes the drone edge,
GCS edge and cloud computing resources while optimally offload-
ing any decomposable application functions/tasks in the form of mi-
croservices among these resources. Lastly, we demonstrated object
recognition and tracking results with our approach under different
types of occlusion rates measured using PSNR thresholds. Specifi-
cally, we showed how our approach can significantly improve users’
QoE levels in terms of tracking/accuracy within drone-based video
streaming services as part of the video collection/analysis steps of
an object detection pipeline application.

Future work could focus on performance evaluation studies on
handling additional QoE factors related to the occlusion detection
on drone captured videos, e.g., blocking of the object of interest
by other objects and night vision based occlusions due to lack of
visible light. In the same context, additional system parameters
can be handled that could impact computation off-loading decision
making in a real scenario, e.g., energy consumption on the drone
devices in object tracking and/or geo-location reconstruction.
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