Predictive Cyber Foraging for Visual Cloud
Computing in Large-scale IoT Systems

Jon Patman, Dmitrii Chemodanov, Prasad Calyam, Kannappan Palaniappan,
Claudio Sterle, Maurizio Boccia

Abstract—Cyber foraging has been shown to be especially
effective for augmenting low-power Internet-of-Thing (IoT) de-
vices by offloading video processing tasks to nearby edge/cloud
computing servers. Factors such as dynamic network conditions,
concurrent user access, and limited resource availability, cause
offloading decisions that negatively impact overall processing
throughput and end-user delays. Moreover, edge/cloud platforms
currently offer both Virtual Machine (VM) and serverless
computing pricing models, but many existing edge offloading
approaches only investigate single VM-based offloading perfor-
mance. In this paper, we propose a predictive (NP-complete)
scheduling-based offloading framework and a heuristic-based
counterpart that use machine learning to dynamically decide
what combinations of functions or single VM needs to be
deployed so that tasks can be efficiently scheduled. We collected
over 10,000 network and device traces in a series of realistic
experiments relating to a protest crowds incident management
application. We then evaluated the practicality of our predictive
cyber foraging approach using trace-driven simulations for up
to 1000 devices. Our results indicate that predicting single VM
offloading costs: (a) leads to near-optimal scheduling in 70%
of the cases for service function chaining, and (b) offers a
40% gain in performance over traditional baseline estimation
techniques that rely on simple statistics for estimations in the case
of single VM-offloading. Considering a series of visual computing
offloading scenarios, we also validate our approach benefits of
using online versus offline machine learning models for predicting
offloading delays.

Index Terms—computation offloading, cyber foraging,
edge/cloud computing, machine learning, online job scheduling

I. INTRODUCTION

The recent advances in cloud computing technologies and
smart mobile devices have given rise to new systems that
bring cloud-like applications and services to users on mobile
devices. The maturing Internet of Things (IoT) paradigm has
also provided an avenue for offering new video processing
services to users on low-power, and often wireless, embedded
devices [1]. One of the major challenges for full realization
of IoT-based video processing is how best to orchestrate
user devices and edge resources that have limited processing
capabilities and operate in potentially unreliable networks [2].

As the capability for IoT applications to employ deep
neural networks for complex video processing tasks increases,
scalability of those services becomes challenging due to device
heterogeneity, limited communication and processing capabil-
ities of devices, and dynamic user policies [3]. Cyber foraging
is a technique that can augment low-power devices with access

This work is supported by the National Science Foundation (NSF) under
Award Numbers: CNS-1647182 and CNS-1359125. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those
of the authors and do not necessarily reflect the views of the NSF.

Corresponding author: calyamp@missouri.edu.

to more cloud-like services. These services can be leveraged
to overcome these limitations by offloading computational
workloads from devices to nearby resources at the network
edge to reduce application latency and energy consumption of
IoT devices [4], [S]. These edge resources known as cloudlets
are discoverable, generic, stateless nodes located in single-
hop proximity and are virtual-machine (VM)-based in order
to promote flexibility, mobility, scalability, and elasticity [6].

However, many edge computing solutions to realize cy-
ber foraging rely on consistent network connectivity to the
edge/cloud resources, and on strategies that tightly couple
mobile clients with servers at deployment time [5], [7]. Such
a reliance hinders their adoption for use in critical loT-based
video processing applications such as crisis management in
austere network environments [8]. Moreover, with the advent
of Serverless Architectures [9] that allow delegating managing
the execution environment of an application (in the form of
microservice functions) to the infrastructure provider, there is
also a lack of policy-based edge computing solutions capable
of both single VM and chain of functions offloading strategies.

In this paper, we propose a predictive cyber foraging

approach that is not only capable of handling edge networks
and IoT dynamics, but it also allows different pricing/compute
models based on user’s policies (e.g., high- vs. low-resolution
data) for large-scale IoT-based video processing. Our ap-
proach builds upon our recent prior work [10] and allows for
a single VM offloading or a service deterministic estimation
processing pipeline. More specifically, our contributions are as
follows:
(7) Data-driven offloading parameters prediction. Many ex-
isting offloading approaches are only evaluated using synthetic
data or are only evaluated in small-scale testbeds (e.g., for a
single client-server or a few devices). To better understand the
complexities involved in real-world multi-edge systems, we
have collected over 10,000 traces publicly available at [11]
in a series of realistic experiments featuring edge hardware
and wireless ad-hoc networking in a protest crowd incident
management application setting. Specifically, our collected
data includes processing and transmission parameters for a
computationally-intensive pedestrian and facial recognition
pipeline in order to capture ground truth of user workloads
being offloaded as a single VM or a chain of functions.

To address the challenges of predicting offloading param-
eters for various offloading scenarios with different server-
less pricing/compute models, we trained and benchmarked
the performance of various state-of-the-art offline and online
Machine Learning (ML) models. We also gathered insights
from these models on performance and operational overhead

trade-offs. We devised several experiments using IoT devices
that offloaded low- and high-resolution imagery data streams
to nearby cloudlets. Out results show that ML-based predictors
outperform traditional network quality estimators with regards
to accurately predicting offloading times. We also investigate
the performance trade-offs between online and offline learning
when: (a) new data becomes available for training, and (b)
new data arrives but has a different distribution of values.
The performance evaluation results indicate how ML-based
prediction can: (a) lead to near-optimal offloading in 70% of
cases for service function chaining, and (b) offer a 40% gain in
performance when compared to traditional baseline estimation
techniques that rely on simple statistics for estimations in
the case of single VM-offloading. Our results also show that
online learning in our predictive cyber foraging approach
can outperform state-of-the-art offline methods in dynamic
environments. In particular, we validate the benefits in cases
where the online model is allowed to be updated incrementally
as new data becomes available. The online model also on
average has 90% faster times for both training and prediction
over traditional batch-based training.

(i) Policy-based edge computing scheme. We develop a
policy-based edge computing scheme for a large amount of
IoT devices and edge nodes. Specifically, we have generalized
our previous job shop scheduling model for single VM of-
floading [10] to now be capable of offloading function chains
involved in video data processing pipelines. We still seek to
minimize the ‘maximum schedule time’ when all the tasks
have finished processing (also known as the makespan) across
all distributed edge servers. We remark that such an objective
minimization allows us to better balance the available physical
resources. This in turn increases the acceptance ratio for future
offloading requests [12].

However, we found that an optimal solution of our general-

ized model is intractable and highly complex when considering
offloading of few function chains to a couple of edge servers.
To address this challenge, we also propose a simple heuristic-
based offloading solution for our generalized model. Finally,
we perform large-scale trace-driven simulations with up to
1000 devices and edge servers using our real-world datasets.
Our results show how our heuristic is able to derive job
processing schedules that are well within the upper bounds
of the maximum makespan and also demonstrate acceptable
optimality performance for offloading function chains.
Paper organization: Section II discusses the related work.
Section III describes our proposed predictive cyber foraging
approach. Section IV describes collected data and applied
ML algorithms, and Section V formulates the online job
shop scheduling problem extended to offload function chains.
Section VI discusses prediction and offloading results based on
trace-driven simulations from our real-world datasets. Lastly,
Section VII concludes the paper.

II. RELATED WORK
A. Computation Offloading

Computation offloading is one of the most adopted forms
of cyber foraging, and helps in efficient management of

resources in edge networks while augmenting the computa-
tional capabilities of user devices. The underlying principle
in computation offloading involves migrating IoT data and
workloads from low-power devices to nearby edge clouds.
Heuristic-based algorithms offer negligible overhead for pro-
viding estimates, however, they typically perform poorly in
dynamic and distributed environments [5]. The recent popular
offloading approaches tend to be data-driven, meaning they
use historical information or domain expertise to model future
behavior [13]. In this work, we refer to predictive as explicitly
using machine learning to not only accurately model target
variables but also adapt to changing IoT system environments.

A major challenge of edge computing involves task of-
floading which is the scheduling of incoming offloading re-
quests from user devices to nearby cloudlets [14], [15]. Task
offloading in mobile edge networks is particularly difficult
due to the lack of future information about the system and
the network instability associated with large-scale IoT net-
works [16], [3], [10]. Algorithms that schedule offloading
decisions based on historical device and network information
have been shown to perform significantly better than those that
assume a static network model [10], [17], [15]. There has also
been much success with modeling offloading problems using
heuristics and statistical estimation methods where objectives
can be optimizing latency [18], energy consumption [19], [20],
and throughput [21], [22].

The ability of offloading frameworks to properly scale for
larger networks is essential for the full realization of pervasive
edge computing. Several frameworks have been proposed for
modeling and optimizing large-scale IoT Networks [14], [23].
However, many existing offloading approaches have practical
limitations that are worth considering such as only being
evaluated on a small number of devices [24], [25], and often
involving simple offloading decisions (i.e., deciding to process
locally versus offloading [26], or are concerned with offloading
a single service [27]) which may make them difficult to adopt
in real world IoT computing environments.

B. Policy-based edge computing

Video processing applications are traditionally designed
without decomposability in mind as their code is tightly
coupled to the system hardware specifications and software
libraries. As a result, most of IoT-based video processing
applications find traditional single VM offloading strategy to
be the most practical [21]. For this reason, authors in [28] pro-
posed a cost-aware cloud placement for simulated mobile edge
computing scenarios. Similarly, the authors in [29] proposed a
delay aware policy for the loT-fog-cloud network to minimize
the service delay for applications. These frameworks however,
assume that application requests are homogeneous and then
allocate the workloads among edge/cloud resources utilizing
single VMs to minimize the response time of requests. The
work in [30] proposed an application aware workload allo-
cation scheme that is capable of assigning different types of
workloads to processing servers as single VMs. All of the
previously mentioned frameworks however, do not consider
the case where a workload may need to be assigned to a set
of functions utilizing multiple resources [31], [32]).

The IoT-based video processing applications can thus ben-
efit from decomposing their functionality into ‘microservices’
rather than optimizing a single monolithic application. Mi-
croservice functions can be executed independently and can
communicate with each other to accomplish the original
functionality of the application [31], [32], [33]. Commercial
services such as Amazon’s Rekognition API and AWS Lambda
offer related serverless computing capabilities. They however
require users to possess hardware expertise for effective use,
and also assume that users have reliable network connectivity
to centralized cloud data centers. In urban or rural areas
experiencing crowds protests or emergency situations [34],
applications not only need to operate at the edge of the network
infrastructure, but are also prone to operate devices with lim-
ited computing resources, intermittent network connectivity,
and high levels of stress.

However, a challenge of using serverless computing model
involves function decomposition/fusion and function place-
ment. Microservices also bring their own set of unique prob-
lems such as increased CPU cycles and network overhead in
order to communicate with one another through API calls.
Many microservices use the Docker container technology
which relies on functions of operating systems to isolate
individual containers but in turn can generate more pressure on
the operating-system layer [35]. As nodes or network pathways
become unreliable, microservices can be deployed within the
operating constraints of the available local resources.

As mobile video streaming traffic is anticipated to account
for more than 70% of the overall traffic generated by mobile
devices by 2019 and may need require computationally-
intensive computer-vision analytics, our goal is to devise
a policy-based edge computing approach that can be used
by IoT applications for both single VM and function chain
computation offloading. In this context, our work focus is
not concerned about comparing which offloading strategy is
better as found in [31], [32]. We specifically focus on how
to better derive offloading parameters to improve optimality
performance of both offloading strategies.

III. PREDICTIVE CYBER FORAGING APPROACH

In this paper, we consider a protest crowd incident manage-
ment case study, where a set of remote devices are incapable
of processing data locally and instead offload computation to
nearby edge resources in order to provide situational aware-
ness for emergency personnel. The protest crowds incident
management case study is depicted in Figure 1 shows how
edge resources can be orchestrated in order to provide high-
throughput processing for distributed resources in a large
geospatial area. Our approach’s main components are shown
in Figure 2 and consist of: Analytics, Deployment and Opti-
mization engines.

A. Analytics Engine

Application: the main service or chain of services that users are
subscribed to. In our protest crowds incident management case
study, the application is a visual processing pipeline composed
of various image processing and facial recognition operations.

Centralized Public Cloud
T —

/

Edge-Cloud A Edge-Cloud B

~ Compute
Nodes

'

—_—— e ———— — Processed Data

Compute -
Nodes Face Detection

o9 .
i

1 Information ! Information[
R a1 7
Data Caching

‘ Preprocessing
I Object Detection
|
|

[Orchestrator,

q

- | -
Face Database |4 ? 2\ \ \e/ Pose Estimation
________ Data Transfer) @duling - - -—- -
1

-
n

(" ‘incidentSite1 Y IncidentSite2 Y Incident Site 3~
- 3 - e B

(~ T =y

Fig. 1. Conceptual diagram depicting how a protest crowds incident man-
agement system can be orchestrated on a set of distributed edge resources.
Large numbers of IoT devices upload data via Wi-Fi to nearby access points
that are connected by a centralized middleware that can optimally schedule
user requests and video data to be processed on available edge hardware.
The visual data events can be uploaded to a central cloud via LTE or similar
technology and later analyzed by public safety personnel.

Network profiler: captures network information at runtime
(e.g., signal strength). The monitoring of network quality is
critical for edge networks since poor network performance
can cause undesired packet loss and delay between devices
and edge resources.

App and device profiler: monitors and collects applica-
tion/hardware context data asynchronously at runtime. Infor-
mation such as the size of data to be offloaded, geospatial
location, and device battery life are profiled.

Context database: Manages network, device, and context
states such as the number of jobs waiting to be processed,
the CPU/RAM load for edge nodes, and functions available
for processing.

B. Deployment Engine

Virtual Function Instantiation: multiple functions can be de-
ployed on nodes with multi-threading capabilities or can be
deployed on nodes determined to be most compatible given
the nodes’ computing performance.

Container/VM Migration: single VMs and/or functions (Vir-
tual Network Functions (VNFs), microservices) with their
corresponding data can be migrated to different parts of the
network to better serve geographically distributed IoT device
users who may be mobile.

C. Optimization Engine

Predictive Models: information from the network, device pro-
filer, and the context database can be used for training machine
learning models with the goal of providing offloading cost
predictions that are then used by the runtime scheduler.
Runtime Scheduler: offloading costs from predictive models
and meta-data from the context database can be used to derive
optimal schedules for batches of incoming IoT video data
workloads using combinatorial optimization methods that can
be tailored to favor optimality over scalability.

D. Offsite Public Cloud

Remote personnel can also interact with the scheduling
middleware by receiving notifications such as the location of

Offsite Public Cloud
(T ot oo ey B T —

Context | [| | Predictive Models |

Database | || | ‘ . ‘ | B
Device-1 State | | - =

- Functions
App and Device - CPU Load (%)

Profiler - Jobs Waiting

Runtime Scheduler
Task Queue

Q@O —+ O

|| Completed Tasks

<@ +— O

— = <
. | Container/VM
Deployment Engine | ™o oo,

S A .

([T
Task queue .

Machine-M

([T
. Task queue

Machine-1

= Incoming data stream —_/

Fig. 2. Predictive cyber foraging approach: as requests arrive from IoT
devices at the edge of the network, an analytics engine profiles available
network and device resources. Predictive models then make estimates about
the associated offloading costs which are then fed into the runtime scheduler
in order to derive task schedules and placement of functions. Metadata from
these operations can then be uploaded to the cloud for remote interaction.

persons of interest recognized by a facial recognition service.
Additionally, scheduling policies can be implemented on the
scheduling middleware for diverse edge computing scenar-
ios (e.g., energy-aware and prioritized scheduling). Software-
Defined Networking (SDN) can achieve logically centralized
control over a distributed network of nodes and mobile de-
vices, thus making SDN a viable option for centralized control
of edge computing resources [36]. SDN architectures have
also been recently proposed specifically for orchestrating task
offloading in mobile edge computing environments [14].

IV. OPTIMIZATION ENGINE: PREDICTIVE MODELS

A major challenge in deriving optimal offloading schedules
involves estimating resource consumption (e.g., latency, en-
ergy consumption, bandwidth utilization) for large amounts
of users in dynamic IoT system environments. This chal-
lenge is further exacerbated when considering the complexities
involved with fluctuations in wireless transmission quality,
network congestion, server overburdening, parallel processing
capabilities, and scheduling precedence constraints such as
those present in microservice chains.

A. Limitations of Estimation-based Workload Profilers

Prior to workload placement, information about the data to
be processed can be used to estimate execution times. Histor-
ical data can allow for accurate modeling but is sensitive to
variance and outliers. Furthermore, given the ad-hoc nature of
edge computing environments, historical datasets may not be
available or feasible to maintain due to e.g., statistical outliers
or changing distributions that make it difficult to determine
acceptable windows for collecting statistics on historical data.
The ability to provide accurate and reliable estimates about
workload processing behavior is crucial for achieving efficient
schedules especially when prior data is limited.

Static transmission rate estimators can degrade the quality
of calculated schedules over time, particularly when relying on
measuring the link bitrate or using the iperf utility to calculate
the transmission time of data [37]. These inaccuracies can pre-
vent scheduling algorithms from making efficient offloading

i w
—Benchmark > XOMedium
© RaspberryPi x XOLarge
T T

0.5

Processing Speed [fps]

Transmission Time [s]

2 d i

— Actual © SNR

* Iperf —--Theoretical
1024x768 1600x1200 1920x1440
Image Resolution

0.05

800x600
Image Resolution

(a) (b)

Fig. 3. Experimental analysis for a set of image resolutions relating to:
(a) processing speed characteristics for various hardware profiles used in
our experiments, and (b) transmission time estimates compared with various
measurement estimators such as iperf, Signal-to-Noise Ratio (SNR) that
uses the Hartley theorem to calculate the upper-bound bandwidth, and the
theoretical minimum.

decisions, especially in situations where network and device
states are dynamic. Another common issue with traditional
estimation techniques is that they are not able to make pre-
dictions a priori, and therefore need to take measurements
periodically. This can lead to increases in network overhead
and subsequent delays in scheduling a large number of tasks.

We collected ~ 10k traces of offloading data available
at [11] in a protest crowd incident management application
setting. We use this data to evaluate estimation-based versus
prediction-based techniques by transferring and processing
various image datasets of differing resolution on a variety
of ExoGENI testbed [38] nodes arranged in a star topology,
as well as a client-server configuration using a Raspberry
Pi IoT device. The plots in Figure 3 show the transmission
and processing characteristics for a variety of machine types
and network conditions collected in our experiments. The
benchmark used in Figure 3(a) is from an experiment that used
dlib for face detection [39] on the same image dataset [40]
used in our facial recognition application based on the d1ib
library [41]. As expected, there is a positive correlation be-
tween processing speed and hardware type. Additionally, we
observe small differences in processing speed between image
resolutions as well as a small variance within each image
resolution group which suggest that the appearance of faces
is not a compounding factor in resulting processing times. In
Figure 3(b), each method provides estimates that are much
faster than the actual transmission time measured. However,
because iperf provides the most accurate estimates over the
other techniques we surveyed, we chose to use it as our
baseline estimation method. Note that iperf is a lightweight
and widely-used tool for estimating network quality [42], [43].

B. General Learning Problem

We use Machine Learning to predict the transmission or
communication time (f.) and processing time (¢,) of data
to be transmitted and processed by a single VM or a chain
of functions and then use these estimates for offloading. We
also seek to investigate the prediction performance between
different approaches to learning: incremental (online) versus
batch (offline) learning. Generally speaking, batch learning
refers to training a predictive model on the entire training
dataset, whereas an online algorithm learns from training data
that arrive in a sequential stream, without having the entire
dataset available from the start. Additionally, online learning
can be used as an algorithm that adapts to new data without

forgetting its existing knowledge [44]. We focus on regression-
based models in this framework due to the fact that continuous-
valued metrics used for offloading decision making such as the
transmission time or processing time, is a continuous value and
not a categorical one.

The general problem of learning can be formulated as
follows:
Given a set of training examples (z1,¥1), ..., (z7, yr) Where
ry € R™ and y; € R (for the regression case) is the target
label assigned to x;. The goal of learning is then to learn a
predictive function F' : R™ — RIY| where F(z) is a linear
function of the form: F(z) = w”x, where w € R. The
performance of the learned function is usually evaluated based
on the cumulative penalty suffered by the prediction model.
To learn a prediction function that minimizes this penalty over
T instances, a loss function denoted as L(F'(x),y) is often
chosen for minimization. As instances z¢,t = 1,...,T" arrive,
a prediction y; is made. This is followed by the environment
revealing the true target y, that is then used as feedback to
update the parameters of F(x) [45].

C. Offline Learning

The manner in which machine learning models are trained
offline is typically performed via batch learning. This exposes
the entire dataset or large portions of the dataset to the
model which does not change its approximation of the target
function once the initial training phase has begun. Offline
learning generally performs quite well but does so at the
cost of increased training and inference times. It also leads to
increased hardware demands such as memory and processing
allocation. Based on our previous results in [10], we have
chosen to employ the popular Random Forest algorithm as it
has been shown to outperform other contemporary algorithms
for predicting offloading costs [26], [37].

Random Forests (RF) are a popular ensemble model be-
longing to the decision-tree class of ML algorithms. Random
forests work by fitting a number of decision trees (100 were
used in our experiments) to various subsamples of the dataset
that are then averaged to improve accuracy and reduce over-
fitting in a popular process known as “bagging”. Random
forests have a variety of useful properties such as the advan-
tage of being able to use the same model for both regression
and classification tasks. Random forests also have the ability
to learn features that are most important from a collection of
features from the training set [46].

D. Online Learning

Online learning algorithms present several benefits over
batch learning methods, particularly in the area of computation
offloading [26]. Online learning algorithms are also known to
scale well to extremely large datasets [47], which makes them
desirable candidates for predictive modeling in large-scale IoT
serverless edge computing systems.

We employ the popular first-order Passive-Aggressive (PA)
learning algorithm that makes trade-offs between being: (i)
passive: preventing the new model deviating too much from
the existing one, and (ii) aggressive: updating the model by

correcting the prediction mistake as much as possible [48].
The optimization of PA learning follows the update rule:

max(0, |y — wlzy| — €)

2
lzell” + 56

sign(y, — wat)QTt
(D
where € is the difference between the current prediction and

correct value used as a threshold for updating the model, and
C' is the maximum step size parameter for regularization.

Wiy < Wt +

E. Model Asymptotic Complexity

The asymptotic complexity for a Random Forest which is an
ensemble of decision trees is as follows. The time complexity
for building a random forest is:

O(MK Nlog(N?)) = O(MK NlogN) 2)

where M is the number of randomized trees and K is the
number samples required to split a tree node. N = 0.632N due
to the fact that bootstrap samples draw, on average, 63.2% of
unique samples [49]. Estimating the depth of a tree is difficult
however, as the nodes are expanded until all leaves are pure or
until all leaves contain less than K samples. Lastly, the space
complexity for the random forest is O(MlogN). The time
complexity of making a prediction for a single input sample
amounts to the number of operations for traversing each of
the M trees, from the root to one of the leaves. Therefore, the
time complexity for prediction is 0(log(M N)) for the best
and average cases, and is O(M N) in the worst-case.

One of the main advantages of PA-based machine learning
is its efficiency, which is basically linear based on the number
of training examples. For instance, if X is a matrix of size
(N x P), training has a time complexity of:

O(KNP) 3)

where K is the number of iterations (epochs), N is the number
of training samples, and P is the average number of features
per sample. PA-based models are therefore well-suited for
large-scale machine learning problems.

V. OPTIMIZATION ENGINE: ONLINE SCHEDULER

The mobile edge offloading problem that is used in our
protest crowd incident management case study can be formu-
lated as the common online job shop scheduling problem [50].
To this aim, we model mobile IoT devices that request
compute offloading fasks as a single VM (modeled as a single
function) or a chain of functions for scheduling, and (mobile)
edge servers are modeled as machines that process these tasks.
The optimization goal is then to schedule each of these tasks
onto the appropriate machines in order to finish in the shortest
time possible, also known as the minimum makespan [51].
A. Modeling online scheduling

We start our formulation by introducing the following binary
variable:

1, if task ¢ function s is assigned
:cyk’s) = at machine j position k, “)

0, otherwise,

where ¢ € N is a set of independent tasks, s € S; is a chain of
dependent functions for task ¢ (or can be a single function to
model a VM), j € M is a set of all machines with k € N - S

positions and S = max.JS;.
iEN

Having binary variables defined in (4), we start by de-
scribing assignment constraints which are essential for the job
scheduling problem. The first constraint type ensures that each
task function is assigned to exactly one machine position:

1:5”)—1%6]\7565 (5)

Let us introduce another binary variable p’} that equals to
1 if exactly m tasks are going to be processed in parallel
at machine j position k£ and O otherwise. Thus, the second
constraint type ensures that at most M tasks processing are
assigned to each machine position as follows:

szm) _
,L_lé—/i/l
Zpﬁ=1,VjeM7keN-5.

m=0

M
> m-phVjeMkEeN-S
m=0 (6)

Note that in general when the edge cloud provider policy M >
1, multiple task functions can be processed in parallel at the
position k of the machine j.

The third constraint is to ensure that at each machine
position we can execute only one function type:

ey 2 <1 ViieNtifisseS:8>skeNS.

(7
Let us also introduce a positive continuous variable ¥, that
denotes the time when m tasks at position k£ of machine j will
finish being processed. This time should be greater or equal
to the sum of the time when machine j finishes processing
of the previous position £ — 1 (preceding constraint) and the
processing/communication time of m tasks. Thus, we have to
satisfy the following set of nonlinear constraints:

(i
Tk

M k—
Yik = Z it tc“ ach(; Dy Z " Pk .a:yk’s),
j=1k=1
Vie NyseS,je M,ke NS,
®)
where tp;;* and tc are tasks’ processing and communication
times.

To avoid non-linearity, we can use a big M method, denoted
from here as €. In order to constrain our optimality conditions
within a finite number (typically big M is a very large integer
value) [52]. Thus, we can generate the following larger set of

TABLE I

SYMBOLS AND NOTATIONS FOR THE ONLINE OPTIMIZATION PROBLEM

Sets:

N £ Set of tasks (offloading mobile devices)

Si £ Set of task i functions (e.g., pre-processing, face detection,
etc.)

M £ Set of machines (edge servers with only one VM instance)

Variables:

;23) £ Binary variable that equals to 1 if task 7 function s is assigned
at machine j position k£ and 0 otherwise

p;.’}€ £ Binary variable that equals to 1 if exactly m tasks are going
to be processed in parallel at machine j position k and 0

. otherwise])

Yik = Positive continuous variable that denotes the time when m
tasks at position k of machine j will finish being processed

« £ Continuous variable that denotes the maximum makespan

Parameters:

tpi+® ¥ £ Task 4 function s processing time at machine 5 for m functions
processed in parallel

tets £ Task ¢ communication (data transfer) time between functions

79 s—1 and s and from machine j to machine j (or from device
to machine j if task s = 1)

Policies:

M £ The maximum number of tasks that can be processed in
parallel at the same machine position (note that tasks can be
processed in parallel at the same position only if they share
the same function)

linear inequalities to substitute (8):

i(s—1) 1,8
Pt 2 ((k gk)-2),

M
y;ﬁt%jt;:ltp?} AN

VieN,seS,],jeM,k,keN.S
Yite—1) + f_:ltp?} P+ Q- (2l - 1),

Vig;V,sES,jeM,keN.g
Yjk—1),Vj € M,k € N - S

Yik =

(€))

Note also that y;o > 0 is a machine offset time - the time when

machine j finishes processing the previously scheduled tasks

which come online, and y;o = 0 for the offline job scheduling
problem when all tasks are known in advance.

Let us finally introduce a continuous variable « that denotes

the maximum makespan among all machines. Thus, « has to

satisfy the following set of constraints:
a>y;N.s,Vj € M. (10)

Having both variables and constraints discussed, the online
job shop scheduling problem that minimizes the maximum
makespan « can be formulated as follows:
minimize «
subject to (5-7), (9-10)

(”)6{01} Vic N,scS,jeMkecN-S
i €{0,1}, Vme{0.M},je Mke N S
Yk > 0, Vie M,ke N-S,
a>0

(1D
where all variables, parameters and sets are summarized in
Table I. Note that if we use a single VM offloading for all IoT-
based video processing tasks, the above job shop scheduling
problem formulation can be simplified which allows its near-
optimal solution in practical time for mid-scale offloading

scenarios. The complete reduced formulation can be found
in our prior work [10].

B. Heuristic-based online scheduling

To schedule all task functions based on user policies for
VM-based or serverless computing at the edge cloud, we
can directly solve Problem (11) by using an optimization
software package such as CPLEX [53]. However, as we show
in Section V, this problem is NP-hard to solve - even for small
scale offloading settings it takes several hours on average.

Algorithm 1 Greedy Serverless Edge Offloading

Step 1: Init the priority queue (Q with first functions of all known tasks based
on their estimated maximum makespan using (10) and repeat Steps 2-5 until
Q is empty

Step 2: Retrieve and remove the head of () - function s of task ¢

Step 3: Find the best scheduling position k for tasks ¢ function s based on
currently scheduled task functions to minimize the maximum makespan as
follows:

e Find position k& of machine j with the minimum of the maximum
makespan if function s of tasks % is scheduled as the new function
VieM) .

e Find position k& of machine j with the minimum of the maximum
makespan if function s of tasks ¢ qualifies to be consolidated with
prior scheduled tasks of type s (Vi € N)

o Select the best scheduling position based on the maximum makespan
between k of machine j and k of machine j

Step 4: Schedule function s of task ¢ at the position and update the
corresponding machine makespan
Step 5: Update @) as follows:

o If exists, estimate the maximum makespan of successive function s+ 1

of tasks ¢ when it is scheduled at the best position as in Step 3 and

insert it to @ N
o Update all successive functions s+ 1 in Q@ V2 € N if consolidated with
task ¢

o Update all successive task functions § + 1 in @ if task functions § are
scheduled at the right-hand-side position from task 7 function s

Thus, we propose a polynomial greedy heuristic outlined in
Algorithm 1 for our policy-based edge computing scheme. Our
algorithm starts by initializing a queue () with first functions
of each task (e.g., Aj.3) sorted in ascending order based
on their estimated maximum makespan (Step 1) as shown in
Figure 4(a). At each iteration until) is empty, we first retrieve
and remove the head of) (Step 2), then schedule this task ¢
function s (Step 4) at the position that minimizes the maximum
makespan across all machines (Step 3), and finally update @

Priorit .
ST T i
‘.) " “l’ Al ‘: g - 2 :

e e
a) 2
Priority Queue Q r= 7 .
- 1 \A1,3} B, |A3I H ‘/=1
O) B,) As):' B, | k=1 2 3 a4 ..
20 15)10/ = |)
b) ‘ A, || As | H H ‘1:2

Fig. 4. Heuristic-based scheduling of tasks and functions to various machines.
A queue is initialized containing each task sorted in ascending order based
on estimated maximum makespan. Each task is removed from the queue
and placed at the position that minimizes the makespan across all machines.
The queue is finally updated by inserting this task’s successive functions and
updating the remaining affected task functions in the queue.

by inserting this task ¢ successive function s + 1 as well as
update all affected task functions in @ (Step 5).

For example, if we schedule A3 to position 1 of machine 1,
we need to update the successive functions of A; and Bs. The
former’s successive function needs to be updated in (), because
consolidation of A; with A3 can increase the A; completion
time. The latter’s successive function needs to be updated
in @), because Bs is located at the right-hand-side position
from 1 (i.e., at 2), and thus increasing the completion time of
position 1 of machine 1 can increase the completion time of
all right-hand-side positions of machine 1 based on (9). We
can schedule a task function either at the idle position of some
machine or consolidate it with prior scheduled functions if it
qualifies. We first describe function consolidation qualification
conditions, then follow up with a discussion of the asymptotic
complexity of Algorithm 1.

Function consolidation qualification. Function s of task ¢
qualifies for consolidation with other scheduled functions at
position k£ of machine j if the following conditions are met:

e Scheduled task functions at position £ of machine j are
of the type s

e Number of scheduled task functions at position k of
machine j is < M

o None of scheduled task functions at positions Vk > k of
machine j have their successive functions scheduled at
machines Vj # j.

The first two conditions are necessary to ensure that con-

solidation of task ¢ function s is feasible. The last condition
is needed to ensure that consolidation of task ¢ function s at
position k£ of machine j does not increase the makespan of
other machines, i.e., Vj e M : j # j. For example, consider
scheduling of function A task 3 shown in Figure 4(b). Aside
from two idle positions £ = 3 and k = 2 of machines 1 and 2,
respectively, A3 can be also consolidated with A; at position
k = 1 of machine 1. This is because A; successive function
B is not scheduled yet, and By has no successive function.
At the same time, we cannot consolidate A3 with A,, because
Ag successive function By has been already scheduled. As a
result, we can increase the maximum makespan of machine 1,
which in turn requires computationally expensive reconstruc-
tion of Q.
Asymptotic complexity of Algorithm 1. At any time @
size in Algorithm 1 is at most N. When @ is based on the
Fibonacci Heap [54], Step 2 complexity is O(logN). At the
same time, Step 3 complexity can be asymptotically bound
as O(N + M), and Step 4 complexity is O(1) based on (9).
Finally, Step 5 complexity has the following components: the
next function insertion to @ is O(1), however we also need to
find its best position which has O(N + M) complexity; due to
the fact that scheduling of the current task only increases the
maximum makespan for all affected functions in) (at most
N — 1), we can use a decrease key operation which is O(1)
complexity. As we need to schedule NNV - S task functions, the
total complexity of our algorithm is:

O(NS(logN+2(N+M)+N)) = O(NS(logN + N+ M)).
(12)

F1: Preprocessing
- Noise reduction
- Histogram equalizing

Data stream input >
I— Image Retrieval

| F4: Face Database
- Store face into DB
- Store event metadata

FACE DETECTED

—

F2: Object Detection
- Segmentation
- Pedestrian recognition

F3: Face Detection
- Segmentation
- Facial recognition

PERSON DETECTED

Fig. 5. Face recognition pipeline used in our experiments: the pipeline is
either deployed as a single monolithic application (Case I) or as a function
chain where each computational function (preprocessing, object detection, face
detection, face database) is distributed across multiple resources (Cases II and
).

When S < M and S < N, (12) can be simplified as:

O(NlogN + N? + NM). (13)

We show our algorithm execution time quadratic dependency
on the number of tasks and servers in Section VI-D.

VI. EVALUATION RESULTS
A. Case Study Experiments

We conducted several experiments to collect realistic data
for our protest crowds incident management case study. The
experiments resulted in three separate datasets (with a to-
tal of ~ 10k traces publicly available at [11]): processing,
transmission-EC (edge-cloud), and transmission-AP (access
point), all of which have different input and target features
used for training and evaluating our predictive models. The
face recognition processing pipeline used in our case study
is illustrated in Figure 5. It was deployed in an ExoGENI
testbed [38] using a ring topology consisting of 5 nodes with
differing computing and storage capabilities [10]. One XOS-
mall node serves as the client followed by a node dedicated
to either a single VM that handles the entire pipeline or to
each image processing function (F1-F4) of a chain described
in Figure 5.

Images from the “Robust Multi-Person Tracking from Mo-
bile Platforms” dataset were used and consisted of RGB
images collected from a camera mounted to a moving vehicle
navigating various urban areas with pedestrians present [55].
This dataset was chosen as it is representative of the type
of remote images that could be collected in a protest crowds
incident management scenario. Moreover, the image dataset
contains front-facing pedestrians as well as partially occluded
ones which means that for some images, function F2 will
detect pedestrians but function F3 will not detect a valid
face. This variability allows the predictive models to better
generalize for a given set of images instead of learning features
correlated with a valid detection in every image.

Table II shows the features that were collected for each
dataset during our experiments. The single VM offloading
dataset was partitioned into four groups of differing image res-
olutions (800x600, 1024x768, 1600x1200, 1920x1440), with
100 images per group. For the function chain offloading
dataset, we created two subsets of the transmission datasets
(lowres and highres) of contrasting resolution (640x480,
2048x1536) with 100 images each, that were then transferred

TABLE II
FEATURES COLLECTED AND USED FOR TRAINING MODELS

Transmission Datasets Processing Dataset

Data Attributes:

Image Height (pixels)
Image Width (pixels) Image Width (pixels)
Data Size (bytes) Data Size (bytes)
- Number of Persons Detected
- Number of Faces Detected

Image Height (pixels)

Hardware Parameters:

Signal Level (dB) Processor Speed (GHz)
Noise Level (dB) RAM (GB)
Link Quality (%) Cores per CPU
Bitrate (Mb/s) Threads per Core
Packet Loss (%) -
Mean RTT (s) -
Jitter (s) -

Mobility:
Distance (5, 50, & 100 m) & 15 m |

N/A

Prediction Parameters:

Function Transmission Time (s)
Wireless AP Upload Time (s)

Function Processing Time (s)
Total Processing Time (s)

and processed through all of the functions, with the corre-
sponding transmission and processing times measured. We
then collected features related to the networking hardware,
processing capabilities of the machines, and attributes of the
data being offloaded. Signal level and link quality are both
measures of the strength of the connection, while noise,
packet loss, and jitter are measures of connection interrup-
tions. Bitrate and mean Round-Trip Time (RTT) are valuable
measurements of the capacity and speed of the connection. We
also measured processing time on machines with single and
multi-threading capabilities in order to represent the parallel
processing functionality of executing simultaneous microser-
vices on a single machine.

Processing time was measured for a single VM as well as for
each function where the computation and software involved is
specific to that particular function. During the Preprocessing
stage (F1), noise reduction and histogram equalization are
performed on images to improve detection capability. In the
Object Detection stage (F2), images are scanned and detected
persons are localized on the image (segmentation) using the
Tensorflow’s deep learning object detection API. The images
are then processed in the Face Detection stage (F3) in order
to segment faces using the Haar Cascades method available in
OpenCV library. Lastly, in the Face Storage stage (F4), each
face is cropped and stored in a central database where images
and meta data such as the location of the image source can be
retrieved at a later time.

To measure transmission time for the Transmission-AP
dataset, we configured a Mikrotik router using the standard
mesh routing protocol. A Raspberry Pi served as an IoT-based
cloudlet while using a wireless laptop to vary the distance
between the client and server at 5, 50, and 100 meters,
resulting in 2400 transmission delay samples being collected.
Preliminary experiments revealed that distances greater than
100 meters resulted in unstable connections or considerably

longer transmission times. For the Transmission-EC dataset,
we measured the time to transmit the images to each function
in our wired ExoGENI testbed where we assume a high-speed
connection, therefore delay due to bandwidth is negligible.

B. Comparisons to other methods

To the best of our knowledge, we are the only approach
currently focused on using Machine Learning-based tech-
niques to predict offloading costs in order to derive more
accurate schedules in a large-scale IoT network. Furthermore,
we are the only existing approach to investigate large-scale IoT
offloading for more than a single function (i.e. using chains
of functions). Implementing other existing approaches for per-
formance comparison has proven difficult as many offloading
models and data are incompatible with our study (e.g. they
instead focus on optimizing energy consumption [56], content
caching [23], or use measurements not collected for our
study (e.g. device energy consumption [14], wireless channel
frequency [27], [56]). More importantly, a lot of offloading
approaches do not contain a predictive component, meaning
the computation and communication delays are known prior
to scheduling, which may not be a practical assumption in a
large distributed edge network. One could argue that simple
statistics could be used to provide a baseline for initializing
these optimizers, however, we counter this argument by point-
ing out that in a real-world scenario, distributions of incoming
requests and network characteristics can change very quickly
overtime, rendering statistical analyses obsolete, thus leading
to degradation of scheduling optimality.

To illustrate the limitations of such an approach, and provide
a comparison between the ML-based estimators with a base-
line method, we can use a standard equation for calculating
the transmission delay [42], trqns = L/Rr, where L is the
number of bits of each file and R is the transmission rate
of the data link measured in bits per second. Calculating the
processing time for a given file size on machines with varying
hardware specifications, however, proves to be more difficult.
Without using historical data, this type of measurement would
require knowing how many instructions are executed for each
program (which can vary drastically in image processing
applications). For this reason, we use the average time, t,,oc,
spent processing a file of L bits on a machine with a given
hardware specification.

C. Predicting Offloading Parameters with Machine Learning

1) Model implementation and settings: We have imple-
mented and evaluated a mixture of linear and nonlinear ap-
proaches in order to best survey the accuracy of ML models
for predicting transmission and processing times. Specifically,
we chose Linear Regression, Multi-Layer Perceptron, Support
Vector Regression, Decision Tree, k-Nearest Neighbor, Ran-
dom Forest (RF) and Passive-Aggressive (PA) algorithms as
our models. The RF and PA machine learning models are
described in more detail in Section IV and the remaining
models are thoroughly described in our previous work [37]. All
input feature values were normalized, and the models were im-
plemented using the popular Scikit-learn Python library [S7].

TABLE III
MACHINE LEARNING PREDICTOR RESULTS (RMSE) FOR CASE I

Transmission Time (s) Processing Speed (s)

Model Type

RMSE RMSE
Baseline Estimate 2.700 £ 2.223 8.285 £ 6.520
Decision Tree 0.877 £ 0.227 0.231 + 0.040
k-Nearest Neighbors 0.826 + 0.174 0.250 £+ 0.041
Linear Regression 0.835 + 0.139 0.748 + 0.041
Multi-Layer Perceptron 0.814 + 0.179 0.307 £+ 0.055
Random Forest Regressor 0.813 + 0.263 0.741 4+ 0.147
Support Vector Machine 0.837 + 0.269 0.878 + 0.079

Because most ML models in Scikit-learn assume that individ-
ual features are normally distributed, that is, Gaussian with a
mean of zero and unit variance, we standardized our dataset to
remove the negative effects for variances orders of magnitude
larger than others. We initialize the RF model to have 100
trees in the forest and use two samples as the number for
splitting a node. The number of trees were chosen based on
the RF initialization suggestions in [57] and the experimental
study in [58] that found large performance increases going
from 10 to 250 trees, but found minimal improvements as the
number of trees increased beyond 250. For the PA model we
use the L2 regularization metric, with the huber loss that is
more robust and less sensitive to outliers in the data than the
traditional squared-error loss.

2) Single VM offloading scenario: Our first set of results
is shown in Table III and is dedicated to a single VM
offloading parameters prediction using offline ML algorithms.
Most offloading approaches use this type of scenario as it
is the simplest in terms of hardware configuration, network
overhead, and offloading task complexity. These results show
the benefits of using data-driven models for predicting trans-
mission and processing speed over the baseline estimate that
used the iperf utility, and the facial recognition benchmark.
Not only do the ML models on average have a much lower
RMSE than the baseline estimate and benchmark, they also
have much better precision in terms of the variance observed
for predictions. These findings suggest that using data-driven
models for predicting offloading costs may lead to improved
and more reliable scheduling performance as they are signifi-
cantly closer to the actual times encountered.

We hypothesize that the RF and Decision Tree models per-
form the best in our experiments due to several underlying fac-
tors inherent in their design. For instance, decision trees have
the ability to produce fine-grained decision branches which
tend to perform well for modeling complex relationships. For
more complicated relationships such as those exhibited in
wireless networks, the RF is ideal because it is composed
of a collection of decision trees, also known as an ensemble
learning method. In this method, each tree’s output is used in
a voting system to determine the final output of the forest.
This voting system, known as bagging reduces the bias and
variance of the model [46]. Conversely, the large variance and
inaccuracy of the baseline estimate can be attributed to the
inadequacy in modeling of the non-linear mapping of features
for the processing and transmission data sets.

3) Function chain offloading scenario: In this scenario,
we aim to predict offloading parameters for a more compli-

cated function chain offloading scenario to reflect the real-
istic scenario. In our scenario, some computing nodes may
be incapable of processing certain kinds of functions, or
depending on current load, may be made more efficient by
partitioning the workload. Based on the performance results
in Table III, the ML-based estimation methods significantly
outperform the baseline estimations for the simpler single
VM offloading scenario. Thus moving forward, we specifically
investigate the performance trade-offs between the offline (RF)
and online (PA) machine learning algorithms for the more
complex scenarios involved in function chain offloading.

In order to properly evaluate an online model against an
offline model, we devised a set of different cases that represent
ways in which incoming data streams can be aggregated for
training purposes and at what frequency re-training/updates
occur. We devised the following cases based that evaluate the
different characteristics of each model such as generalization
accuracy, robustness, and adaptability:

e Case I: All data is available at runtime or that subsequent
updates are not needed or feasible. Both the online and
offline models are trained on the same dataset prior to
runtime.

e Case II: The online and offline models are trained before
being deployed but the online model is allowed to update
based on incoming data streams that may or may not have
the same distribution of features.

e Case III: The distribution of the incoming data stream’s
features changes (e.g., nodes go offline/online, new types
of data are requesting to be offloaded). The online and
offline models are initially trained but as the distribution
of features change, the online model is allowed to update
on any newly collected data.

Case I is clearly the best-case scenario for the offline model
as it guarantees the largest amount of data available for training
as long as the number of outliers are small. For Case II, we
divided the entire training dataset by half and initially trained
each model using the 50% subset of data. The online model
was then allowed to update its parameters by two subsequent
streams that consisted of 50% splits of the remaining subset of
training data. For Case III, both models were initially trained
on only lowres data which comprised approximately 50% of
the total training dataset. The online model was then allowed
to update itself using two subsequent streams that consisted
of 50% splits of the remaining training data. The update
data here consisted entirely of highres data and thus had a
different distribution of features (e.g., data size, processing
times), which are not part of the initial model training. For
practical purposes, we assume that features from the data (see
Table II) used for online training purposes are measurable and
labeled prior to training.

Our performance results in Table IV show the trade-offs
between online and offline learning approaches for Cases
II & II. We evaluate the predictive performance of each
model using the Root Mean Squared Error (RMSE) where
lower RMSE values indicate better model performance. For
Cases II & III, the PA model outperforms the RF model
on the processing dataset, except in the case of function F2

TABLE IV
CHAIN OFFLOADING PREDICTION RESULTS (RMSE) FOR CASES I & III

Case II: Data stream update Case III: Distribution change

Function RF (Offline) PA (Online) RF (Offline) PA (Online)
RMSE RMSE RMSE RMSE
Processing Dataset
Fl1 0.067 £ 0.034 0.046 + 0.002 0.066 + 0.002 0.057 + 0.004
F2 0.163 +0.011 3.512 + 1.542 0.154 + 0.008 0.461 + 0.033
F3 1.529 £ 0.385 1.496 +£0.271 2.824 4+ 0.096 1.956 + 0.216
F4 0.049 £+ 0.025 0.049 £ 0.005 0.089 £ 0.002 0.064 £+ 0.005
Transmission-AP Dataset
Fl 0.446 +0.110 0.852 + 0.232 0.658 4 0.023 0.387 £+ 0.057
F2 0.452 +0.108 0.876 + 0.232 0.725 4+ 0.030 0.379 £+ 0.049
F3 0.451 +0.109 0.816 + 0.227 0.725 4+ 0.031 0.386 + 0.052
F4 0.457 + 0.106 0.817 +0.219 0.672 +0.031 0.389 + 0.050
Transmission-EC Dataset
Fl — F2 | 0.028 +0.003 0.724 + 0.351 0.041 + 0.007 0.066 + 0.011
F2 — F3 | 0.039 + 0.005 0.724 + 0.344 0.026 + 0.008 0.065 + 0.011
F3 — F4 | 0.048 +0.006 0.791 + 0.386 0.042 + 0.007 0.090 + 0.009
TABLE V

MODEL TRAINING AND PREDICTION TIMES FOR CASE |

Training Time (ms)

ML Model Processing Transmission-AP ~ Transmission-EC
RF 33.33£0.72 31.42 +0.46 30.59 £ 0.32
PA 6.14+0.73 2.35+0.10 1.00 £+ 0.00
Prediction Time (ms)
ML Model Processing Transmission-AP ~ Transmission-EC
RF 3.14 +0.49 2.794+0.32 2.324+0.26
PA 0.25 £+ 0.42 0.30 £0.43 0.20 £0.01

(object detection). The reason for this is because - F2 case
has the most non-linear behavior and is difficult to predict
when sample size is small. However, for the Transmission-AP
dataset, the RF model can adequately model the transmission
time even with a limited amount of training data but is
unable to outperform the PA model when the distribution of
features changes over time. Thus, we can conclude that more
representative data is needed for the RF model to capture the
changing data distribution. For the Transmission-EC dataset,
the RF model outperforms the PA model in both cases, owing
to the fact that the RF model is able to more accurately model
the transmission time even with a limited amount of data.

To better understand the operational overhead of using one
learning approach over another, we measured the training and
prediction times between each model on each of the datasets
and report the results in Table V. Even when using the full
training dataset (Case I), the PA model outperforms the RF
model on each of the datasets by several orders of magnitude.
Consequently, this makes the PA model ideal for situations
where the distribution of the data is quickly changing and
models need to be updated. It is intuitive to suggest that the RF
model could just be re-trained from scratch instead of using
an online approach. However, as described in Section IV-E,
RF have a much larger time complexity. This in turn, makes
the choice of RF impractical because it significantly affects
scheduling times when trained on larger datasets, which is the
typical case encountered in real-world application settings.

Tl - S T
’E““ ¢ Device
: Lus| A Server
E,
| e

ter

> [i
i L
.

(a)

el " e s
e Device e Device |
ws| A Server |} A Server [
¥ Epicenter Y Epicenter !

0 3 i

)

(b) (©

Fig. 6. Geospatial maps showing an example of device and server placement during trace-driven simulations for the case of: 1(a), 3(b), and 5(c) Epicenters,
respectively. In our protest crowd incident management case study, we represent each protest site as an Epicenter, with a set of heterogeneous resources

(servers) available for processing offloading requests from remote devices.

TABLE VI
EXPERIMENT SETTINGS AND PARAMETERS FOR CASES I, II, & III

Simulation Settings

Experiment Area 1 km?
Incident Epicenters 1-5
Device-to-Server ratio 10

No. of image offloaded per device 1-10

Device distribution Normal with 0 = = km

1
6

Single VM offloading (Case I)

No. of devices 50
Resolution range of data 800p, 1024p, 1600p, 1920p

Function Chain Offloading (Case II & Case III)

1000
640p, 2048p

No. of devices
Resolution range of data

D. Protest Crowd Incident Management Case Study Results

In this section, we first describe our results in the case
when all application functions are consolidated within a single
virtual machine and no parallel thread processing is allowed. In
this case, the generalized edge offloading problem in Section V
can be significantly simplified (as a job shop scheduling
problem) as described in our prior work [10]. We found that
estimation inaccuracies can significantly impact scheduling
optimality and how machine learning-based predictors can
improve the optimality of such scheduling. We then show the
complexity of the generalized offloading problem for function
chains with allowed parallel processing to give evidence to
its current intractability even for small-scale offloading. Addi-
tionally, we show how our proposed greedy heuristic algorithm
has acceptable (well within the upper bound of the maximum
allowable makespan) optimality performance and scalability.
Finally, we show optimality trade-offs between offline and
online machine learning algorithms for scheduling in different
scenarios.

1) General simulation settings: Our Java-based simulation
environment is composed of the latest IBM ILOG CPLEX
v.12.8 [53] and a High Performance Computing (HPC) Cloud
server with two 16-core Intel Xeon Gold 6142 CPUs at 2.6
GHz, 384GB ECC DDR4-2666 RAM running Linux Ubuntu

18.04 STD allocated in the CloudLab infrastructure [59].

Motivated by the challenges of protest crowds incident
management described in Section II-B, we generate a 1 km?
area similar to a typical university campus scale as shown
in Figure 6. We then uniformly generate 1 to 5 protest
incident epicenters within this area. After that, we place both
servers and devices following a normal sampling distribution
N (e{n’, o2), where the mean corresponds to protest epicenter
coordinates efn', and the standard deviation o = % km (see
Table VI for experiment settings and parameters).

In the single VM offloading simulation scenario, we place
a total of 50 devices, and use a device-to-server ratio of 10
(unless stated otherwise) to estimate benefits of offloading
parameters prediction versus their estimation using mid-scale
settings. In the function chain offloading scenario, we use
a total of 1000 devices, and use a device-to-server ratio
of 10 (unless stated otherwise) to demonstrate our heuristic
algorithm performance at large scale settings. Each device also
offloads from 1 to 10 images of some resolution: uniformly
selected from a set {800p, 1024p, 1600p, 1920p} for a single
VM offloading, or from a set {highres (2048p), lowres
(640p)} for a function chain offloading. We then select a
corresponding trace for each device ¢ and server j based on the
image resolution, server and device proximity, and server type.
We use these traces to obtain ground truth communication ¢c%®
and processing tp;;* times (see Table II) as well as use the
predicted times from ML algorithms.

After the environment setup, we offload all currently known
task functions by taking into account their precedence con-
straints as well as any parallel processing policies. As a
result, task functions can be offloaded as a single VM or a
service chain by either consolidating them on one server or
by spreading them across many servers in order to minimize
the maximum makespan. In this simulation, our main goal is
to understand how the prediction/estimation techniques used
for offloading parameters affect the optimal scheduling when
ground-truth data is used instead. We also aim to evaluate our
proposed heuristic performance on function chain offloading
settings in large-scale IoT application systems, as well as un-
derstand how our proposed online and offline ML algorithms
prediction affects the offloading optimality in this case.

]03 L — -Est
—P1
102k ---P2
=10t
[}
£ 10%
&=
10
) ~
10 “~o
10—3 L L L I L L L L 0 L L hJ}
10 20 50 100 2 5 10 25 50 0 1 10 100 1000
Num. of Devices Device-to-Server Ratio Optimality Gap [%]
(a) (b) (©)

Fig. 7. Evaluation results from trace-driven simulations for single VM offloading comparing the performance between the Optimal, Estimated, Random Forest
(P1), and the Multi-Layer Perceptron (P2). (a) Scalability results of Equation 11 for the optimal solution versus 1% optimality gap solutions with respect to the
min/max scheduling makespan (MS). (b) Resulting maximum makespan based on a server availability, i.e., device-to-server ratio. (¢) Complement Cumulative

Distribution Function (CCDF) of the ground-truth optimality gap for baseline estimation versus prediction-based offloading methods.

2) Comparison methods and metrics: We compare the
solution to (11) when ground-truth parameters of tci® and
tp;;® are known in advance (intractable in practicegj with
its solutions when these parameters are either estimated or
predicted. We refer to the ground-truth-based (11) solution as
the optimal solution Opt.

To estimate the communication time tci! for a single VM
offloading, we use the following formula:
data,_size;

tell =

_ _catasue 14
73 throughput;;’ (14

where the average throughput;; value between device 7 and
server j is estimated using the iperf utility. We then estimate

the processing time tp}j1 for a single VM offloading as follows:

1 _ N
processing_speed’

5)

where N is a number of images, and processing_speed is an
average face recognition speed for a specific image resolution
obtained from prior benchmark results [39]. We refer to the
solution of (11) that is estimated via (14) and (15) parameters
as the estimated solution E'st.

For a single VM offloading simulation scenario, we then use
our offline ML models to predict offloading parameters, and
represent the two best pairs of predictors as (P1) and (P2).
For predicting single VM offloading parameters, we use the
RF model as (P1) and the Multi-Layer Perceptron as (P2),
respectively. Finally, for a function chain offloading simu-
lation scenario, we first use ground truth parameters of tc;ﬁ,j.
and tp;;* that are known from (11) as evidence of the current
intractability of the solution even for small scale offloading
settings. Using this same scenario, we also demonstrate how
our proposed heuristic has satisfactory results with regard
to scalability performance. Subsequently, we predict values
of tci® and tpi;® with either RF or PA methods to show
the impact on offloading optimality (i.e., on the maximum
makespan) of offline and online learning, respectively.

The related solutions are compared using two metrics: the
(11) objective — the maximum makespan « (the lower the
better) and its optimality gap measured as a percentage (i.e.,
the maximum allowable gap between the optimal solution
of Problem (11) and the solution obtained by the solver).

We measure the optimality gap by substitution of ground-
truth offloading parameters to the final schedule produced in
order to calculate « (i.e. the maximum makespan achievable).
We then estimate the increase in percentage of the ML-
based solutions with respect to this new solution, denoted in
Figure 7 as Opt. In the general case (service function chain
offloading) Equation (11) is hard to solve even for 2 servers.
However, in the specific case of the VM-offloading model,
the combinatorial complexity reduces significantly, and we can
solve this model with 50 servers in practical (near make-span)
time.

3) Offloading performance: Our trace-driven simulations
produced the following three significant results:
(i) Predictive cyber foraging approach matches the
ground-truth optimal in 70% of cases and has an « value
no more than 3 times higher in the worst case. From our
simulations, we found that estimation based edge offloading
solutions produce significantly worse scheduling results with
respect to both the optimal ground-truth solution and our
data-driven approach for a single VM offloading as shown
in Figure 7(b). Figure 7(c) shows estimation-based offloading
only matches the optimal scheduling in 50% of cases, and
can have a maximum makespan over ten times higher in the
worst case. In comparison, our predictive approach matches
the optimal ground-truth offloading 70% of the time and
produces 2-3 times higher maximum makespan in the worst
case scenario. Both ML models perform similarly due to
the less complex single VM offloading problem (i.e., single
function versus a function chain).
(7i.a) The branch-and-bound-based solution to (11) scales
sufficiently for moderate wireless network sizes of up
to 100 nodes when only a single VM offloading and a
1% optimality gap policies are allowed. Our simulations
indicate that even when only single VM offloading is allowed,
optimally solving (11) is NP-hard and can be intractable for
moderate scale networks of 50-100 nodes. To address this
intractability, we can allow a 1% optimality gap that enables
the branch-and-bound-based solution using IBM CPLEX to
scale sufficiently for a large number of nodes. Figure 7(a)
shows that for a 100-node edge network, a solution to (11)
with a 1% optimality gap can be produced in an order of
magnitude less time than either the minimum or maximum
makespan requires. Because the optimization problem can

be solved in significantly less time, producing solutions will
not increase the blocking probability of our online offloading
schemes. The relatively shorter scheduling time also allows
for the scheduling middleware to begin another batch of tasks
while the previous batch is still being processed. Note however
that for the case of more than 100 nodes, (polynomial) greedy
or approximation algorithms should be used instead.
(7i.b) The proposed heuristic-based solution of (11) shows
satisfactory online performance and scales for large wire-
less edge network sizes of up to 1000 devices over 1000 edge
servers when all policies are allowed. The plots in Figure 8
show the evaluation results from our trace-driven simulations.
In Figure 8(a), the optimal solution computed using (11) is
currently intractable even for small offloading settings (i.e.,
3 devices). To address this issue, we show the evaluation
of our heuristic-based offloading approach in Figure 8(b).
Our heuristic is able to outperform by over one order of
magnitude the maximum makespan of the produced schedule
(necessary for the real-time scheduling) in terms of scheduling
time for different device-to-server ratios, and approaches it
only for the worst case scenario where only a single device-
server pair is considered. Figure 8(c) shows the optimality
assessment for our heuristic-based solution with only three
devices where we reach < 20% optimality gap for 70% of the
cases and 30% of cases where multiple servers are used. We
argue that this optimality performance is sufficient due to the
overall complexity and intractability of computing the optimal
solution for the general problem. Further, this performance is
also acceptable when considering the possible scale of multi-
edge networks seen in data collection/processing scenarios
within the protest incident crowds management case study that
we considered for the purposes of this study.
(7i7) Offline for moderate edge network offloading with
available historical data, online for large-scale offloading
with limited data. The plots in Figure 9 show the resulting
cumulative distribution functions (CDFs) using prediction data
generated from Cases I, II, and III described in Section VI-C.
Figure 9(a) shows the resulting CDF when using predictions
trained on the entire dataset and as expected, both models
are much more accurate when the entire dataset is available
for training. Another interesting point is that the RF model
outperforms the PA model with regard to the actual ground
truth measurements when the entire dataset is available.
Conversely, as expected from the results in Table IV, the PA
model outperforms the RF model for part of Figure 9(b) (Case
II) and all of Figure 9(c) (Case III) although both methods have
considerable error with regard to the actual ground truth (GT)
measurements when they are not trained on the entire dataset.
Therefore, we have to better evaluate the performance between
each learning method while also minimizing the error between
model predictions and the actual measurements. For this, a
much larger dataset would be required so that when models are
initially trained, the initial performance is acceptable before
model updates are allowed to take place.

VII. CONCLUSION

In this paper, we proposed a novel predictive cyber foraging
approach for providing policy-based computation offloading

for visual data processing tasks in a large-scale IoT system.
Our novelty is in the consideration of multi-edge network
scenarios allowing for a policy-based single VM or function
chain offloading strategies. We have collected ~ 10K real-
world data traces [11]) using a pedestrian and facial recogni-
tion pipeline. We decomposed this computer vision pipeline
into microservices to run on a combination of wireless and
virtualized hardware. We then benchmarked several state-of-
the-art ML models in order to identify the trade-offs between
each model, and evaluated the models to find the most
appropriate ones for the data processing needs. Specifically,
using an in-depth analysis of the trade-offs between offline
and online learning mechanisms, we presented robust and
adaptable predictions of offloading costs for diverse edge
computing cases.

We also investigated the scalability of our approach in
a multi-edge system testbed setup by performing a set of
trace-driven simulations for a large number of devices and
machines. Our analyses of trace-driven simulations indicated
that the optimal solution for the general problem is currently
intractable when both single VM and function chain offloading
strategies are allowed. Thus, we designed a greedy heuristic
solution which can achieve satisfactory schedule makespan
outputs well within the upper bound of the maximum allow-
able makespan. We found that the combination of our pre-
dictive cyber foraging approach and our heuristic scheduling
scheme is a robust and scalable solution for a variety of edge
computing scenarios for IoT video data processing.

REFERENCES

[1] J. Gillis, P. Calyam, A. Bartels, M. Popescu, S. Barnes, J. Doty,
D. Higbee, and S. Ahmad, “Panacea’s glass: Mobile cloud framework
for communication in mass casualty disaster triage,” in 2015 3rd IEEE
International Conference on Mobile Cloud Computing, Services, and
Engineering. 1EEE, 2015, pp. 128-134.

[2] G. Akpakwu et. al, “A survey on 5G networks for the Internet of Things:
Communication technologies and challenges,” IEEE Access, vol. 6, pp.
3619-3647, 2018.

[3] H. Li, et. al, “Learning iot in edge: Deep learning for the internet of
things with edge computing,” IEEE network, vol. 32, no. 1, pp. 96-101,
2018.

[4] M. Satyanarayanan et. al, “Cloudlets: at the leading edge of mobile-
cloud convergence,” in 2014 6th International Conference on Mobile
Computing, Applications and Services (MobiCASE). 1EEE, 2014, pp.
1-9.

[5] F. Samie et. al, “Computation offloading and resource allocation for low-
power iot edge devices,” in Internet of Things (WF-IoT), 2016 IEEE 3rd
World Forum on. 1EEE, 2016, pp. 7-12.

[6] M. Satyanarayanan et. al, “The case for vm-based cloudlets in mobile
computing,” IEEE pervasive Computing, 2009.

[7]1 S. Sthapit et. al, “Offloading to neighbouring nodes in smart camera
network,” in Signal Processing Conference (EUSIPCO), 2016 24th
European. 1EEE, 2016, pp. 1823-1827.

[8] G. Lewis et. al, “Tactical cloudlets: Moving cloud computing to the
edge,” in Military Communications Conference (MILCOM), 2014 IEEE.
IEEE, 2014, pp. 1440-1446.

[9] L. Baresi et. al, “Empowering low-latency applications through a server-
less edge computing architecture,” in European Conference on Service-
Oriented and Cloud Computing. Springer, 2017, pp. 196-210.

[10] J. Patman et. al, “Data-driven edge computing resource scheduling for
protest crowds incident management,” in 2018 IEEE 17th International
Symposium on Network Computing and Applications (NCA). 1EEE,
2018, pp. 1-8.

“Edge computing data,” https://bitbucket.org/naas_cloud_computing_
project/nm-of-controller/overview, accessed: August, 2019.

[11]

10 200l AL
10% ¢ i
2 = 150+ AR
@ J3)
E 10} E 100} i
= -O-1 Server, Time =
10°F L -%-2 Servers, Time sol
. -A-1 Server, Max MS
10t -0-2 Servers, Max MS
: | : oo o . | | | | | | :
1 2 3 20 10 5 2 1 5 10 15 20 25 30 35
Num. of Devices Device-to-Server Ratio Optimality Gap [%]
(@) (b) (©)

Fig. 8. Trace-driven simulation results for a function chain offloading. (a) Eqn. 11 scalability results for the theoretical optimal solution for up to 2 servers.
(b) Scalability results of our heuristic-based solution for 1000 devices and different device-to-server ratios. (¢) Complement Cumulative Distribution Function
(CCDF) for assessing optimality of our heuristic-based solution for various optimality gaps for up to 3 devices.

1F - g - 1 v —
/ Ve -
’ 1
0.8+ s 0.8} ; 0.8} [
g 1 ’
0.6 P m06F 1 = 0.6 l
5 5. I
0.4} 4 04 ! 04+ 1
s/] / i I
gy - -GT , - -GT] - -GT
0.2r , 4 ;’ —Online 0.2¢ 1] —Online 0.27 J g —Online
P —--Offline . —--Offline ’ R —=--Offline
L e==PT L L L T T Lt Lt L L L L T T (= 4 L L L L S E——
180 190 200 210 220 230 240 150 200 250 300 350 400 450 500 220 250 280 310 340 370 400
Maximum makespan [s] Maximum makespan [s] Maximum makespan [s]
(a) () ()

Fig. 9. Cumulative Distribution Functions of the makespans produced using predictions from the online and offline models as well as the Ground Truth (GT)
values. (a) Case I: both models are allowed to be trained on the entire training dataset prior to scheduling. (b) Case II: both models are initially trained on
half of the training dataset and the online model is allowed to make subsequent updates on the remaining dataset. (c) Case III: both models are trained on
the subset of lowres images and the online model is allowed to update on incoming data from the highres dataset.

[12] D. Chemodanov et. al, “A constrained shortest path scheme for virtual International Conference on Modelling, Analysis and Simulation of
network service management,” IEEE Transactions on Network and Wireless and Mobile Systems, 2017, pp. 109-116.
Service Management, vol. 16, no. 1, pp. 127-142, 2018. [25] S. Kosta, et. al, “Thinkair: Dynamic resource allocation and parallel
[13] B. Mukherjee, R. L. Neupane, and P. Calyam, “End-to-end iot security execution in the cloud for mobile code offloading,” in 2012 Proceedings
middleware for cloud-fog communication,” in 2017 IEEE 4th Interna- IEEE Infocom. 1EEE, 2012, pp. 945-953.
tional Conference on Cyber Security and Cloud Computing (CSCloud). [26] H. Eom et. al, “MALMOS: Machine Learning-Based Mobile Offloading
IEEE, 2017, pp. 151-156.)) o Scheduler with Online Training,” in 3rd IEEE International Conference
[14] M. Chen and Y. Hao, “Task offloading for mobile edge computing in on Mobile Cloud Computing, Services, and Engineering, March 2015,
software defined ultra-dense network,” IEEE Journal on Selected Areas pp. 51-60.
in Communications, vol. 3§, no. 3, pp. 587-597, 2018. [27] Y. Hao, et. al, “Smart-edge-cocaco: Ai-enabled smart edge with joint
[15] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra, computation, caching, and communication in heterogeneous iot,” IEEE
“Edge cloud offloading algorithms: Issues, methods, and perspectives,”’ Network, vol. 33, no. 2, pp. 58-64, 2019.
ACM Computing Surveys (CSUR), vol. 52, no. 1, pp. 1-23, 2019. . [28] Q. Fan et. al, “Cost aware cloudlet placement for big data processing at
[16] Z. Al L..JIELO, T. Baker, G. Abbas, Z H. Abbas,' and S. Kha}f, A the edge,” in 2017 IEEE International Conference on Communications
deep learning approach for energy efficient computational offloading in (ICC). IEEE, 2017, pp. 1-6.
rzr:)olbglle edge computing,” IEEE Access, vol. 7, pp. 149623-149 633, [29] A. Yousefpour et. al, “Fog computing: Towards minimizing delay in

the internet of things,” in 2017 IEEE int tional d,
[17] Z. Liu et. al, “Framework for Context-Aware Computation Offloading computing (EDGE)% IEEE. 2017 pp.ml;t;i.wna conference on edge

in Mobile Cloud Computing,” in 2016 15th International Symposium on
Parallel and Distributed Computing (ISPDC), July 2016, pp. 172-177.
[18] M. Alsheikh et. al, “Machine Learning in Wireless Sensor Networks:
Algorithms, Strategies, and Applications,” IEEE Communications Sur-
veys Tutorials, vol. 16, no. 4, pp. 1996-2018, Fourthquarter 2014.

[30] Q. Fan et. al, “Application aware workload allocation for edge
computing-based iot,” IEEE Internet of Things Journal, vol. 5, no. 3,
pp. 2146-2153, 2018.

[31] R. Gargees et. al, “Incident-supporting visual cloud computing utiliz-

[19] Q. Ju, et. al, “Collaborative in-network processing for internet of battery- ing software-defined networking,” JEEE Transactions on Circuits and

less things,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5184— Systems for Video Technolog.y, vol. 27, no. ,1’ pp- 18,2_197’ 2016,'
5195. 2019 [32] D. Chemodanov et. al, “Policy-based function-centric computation of-

floading for real-time drone video analytics,” in 2019 IEEE International

[20] Y. Mao, et. al, “Dynamic computation offloading for mobile-edge 3 ;
Symposium on Local and Metropolitan Area Networks (LANMAN).

computing with energy harvesting devices,” IEEE Journal on Selected

Areas in Communications, vol. 34, no. 12, pp. 3590-3605, 2016. IEEE, 2019, pp. 1-6. _ , .

[21] P. Mach et. al, “Mobile Edge Computing: A Survey on Architecture [33] D. Chemodanov et al, “On qoe-oriented cloud service orchestration for
and Computation Offloading,” IEEE Communications Surveys Tutorials, application providers,” IEEE Transactions on Services Computing, 2018.
vol. 19, no. 3, pp. 1628-1656, thirdquarter 2017. [34] J. Moghaddam et. al, “A device-to-device communication based disaster

[22] P. Agrawal, et. al, “Energy-aware scheduling of distributed systems,” response network,” IEEE Transactions on Cognitive Communications
IEEE Transactions on Automation Science and Engineering, vol. 11, and Networking, 2018.
no. 4, pp. 1163-1175, 2014. [35] T. Ueda et. al, “Workload characterization for microservices,” in Work-

[23] X. Li, et. al, “Hierarchical edge caching in device-to-device aided load Characterization (IISWC), 2016 IEEE International Symposium on.
mobile networks: Modeling, optimization, and design,” IEEE Journal IEEE, 2016, pp. 1-10.
on Selected Areas in Communications, vol. 36, no. 8, pp. 17681785, [36] Y. Zhao, et. al, “A survey of networking applications applying the
2018. software defined networking concept based on machine learning,” IEEE

[24] M. Jia, et. al, “Qos-aware task offloading in distributed cloudlets with Access, vol. 7, pp. 95385-95405, 2019.

virtual network function services,” in Proceedings of the 20th ACM [37] J. Patman et. al, “Predictive Analytics for Fog Computing using Ma-

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

(471

[48]

[49]

(501

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

chine Learning and GENI,” in Computer Communications Workshops
(INFOCOM WKSHPS), 2017 IEEE Conference on. 1EEE, 2018.

M. Berman et. al, “Geni: A federated testbed for innovative network
experiments,” Computer Networks, vol. 61, pp. 5-23, 2014.

Y. An et. al, “CNNs for Face Detection and Recognition,” https://github.
com/fusio-wu/CS231A_project, 2017.

W. Yongkang et. al, “Patch-based Probabilistic Image Quality Assess-
ment for Face Selection and Improved Video-based Face Recognition,”
in [EEE Biometrics Workshop, Computer Vision and Pattern Recognition
(CVPR) Workshops. IEEE, June 2011, pp. 81-88.

D. E. King, “Dlib-ml: A Machine Learning Toolkit,” Journal of Machine
Learning Research, vol. 10, pp. 1755-1758, 2009.

J. E Kurose and K. W. Ross, Computer networking: a top-down
approach. Addison Wesley.

R. Durner, et. al, “Performance study of dynamic qos management
for openflow-enabled sdn switches,” in 2015 IEEE 23rd International
Symposium on Quality of Service (IWQoS). 1EEE, 2015, pp. 177-182.

J. Kelleher et. al, Fundamentals of machine learning for predictive data
analytics: algorithms, worked examples, and case studies. MIT Press,
2015.

C. Bishop, Pattern recognition and machine learning. springer, 2006.

W. Loh, “Classification and regression trees,” Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, vol. 1, no. 1, pp. 14—
23, 2011.

J. Ma et. al, “ldentifying suspicious urls: an application of large-
scale online learning,” in Proceedings of the 26th annual international
conference on machine learning. ACM, 2009, pp. 681-688.

K. Crammer et. al, “Online passive-aggressive algorithms,” Journal of
Machine Learning Research, vol. 7, no. Mar, pp. 551-585, 2006.

G. Louppe, “Understanding random forests: From theory to practice,”
arXiv preprint arXiv:1407.7502, 2014.

M. L. Pinedo, Scheduling: theory, algorithms, and systems. Springer,
2016.

D. Applegate and W. Cook, “A computational study of the job-shop
scheduling problem,” ORSA Journal on computing, vol. 3, no. 2, pp.
149-156, 1991.

S. I. Gass and C. M. Harris, “Encyclopedia of operations research and
management science,” Journal of the Operational Research Society,
vol. 48, no. 7, pp. 759-760, 1997.

IBM, “ILOG CPLEX v.12.8. User’s Manual for CPLEX,” https://www.
ibm.com/products/ilog-cplex-optimization-studio, 2018.

M. Fredman, et. al, “Fibonacci heaps and their uses in improved network
optimization algorithms,” Journal of the ACM (JACM), vol. 34, no. 3,
pp. 596-615, 1987.

A. Ess et. al, “A mobile vision system for robust multi-person tracking,”
in Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on. 1EEE, 2008, pp. 1-8.

X. Chen, et. al, “Efficient multi-user computation offloading for mobile-
edge cloud computing,” IEEE/ACM Transactions on Networking, vol. 24,
no. 5, pp. 2795-2808, 2015.

F. Pedregosa et. al, “Scikit-learn: Machine Learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

P. Probst and A.-L. Boulesteix, “To tune or not to tune the number of
trees in random forest,” The Journal of Machine Learning Research,
vol. 18, no. 1, pp. 6673-6690, 2017.

R. Ricci, et. al, “Introducing cloudlab: Scientific infrastructure for
advancing cloud architectures and applications,” ; login:: the magazine
of USENIX & SAGE, vol. 39, no. 6, pp. 36-38, 2014.

B. Chun et. al, “Clonecloud: elastic execution between mobile device
and cloud,” in Proceedings of the sixth conference on Computer systems.
ACM, 2011, pp. 301-314.

Jon Patman received his dual-BS degree in Com-
puter Science and Electronics Engineering from
Eastern New Mexico University in 2016. He recently
received his M.S. in Computer Science from the Uni-
versity of Missouri-Columbia where he worked as a
Research Assistant in the Virtualization, Multimedia
and Networking (VIMAN) lab. His current research
interests involve designing intelligent systems using
the synergy between machine learning, cloud com-
puting, and computer vision.

Dmitrii Chemodanov received his both BS and
MS degrees in applied Math and Physics from
the Samara State Aerospace University, Russia in
2012 and 2014, respectively. He received his PhD
degree in Computer Science from the University of
Missouri-Columbia in 2019 and is currently em-
ployed with Google. His current research interests
include distributed and cloud computing, network
and service management, and peer-to-peer networks.

Prasad Calyam received his MS and PhD degrees
from the Department of Electrical and Computer
Engineering at The Ohio State University in 2002
and 2007, respectively. He is currently an Associate
Professor in the Department of Electrical Engineer-
ing and Computer Science at University of Missouri-
Columbia and directs the VIMAN lab. His current
research interests include distributed and cloud com-
puting, computer networking, and cyber security. He
is a Senior Member of IEEE.

Kannappan Palaniappan received his PhD from
the University of Illinois at Urbana-Champaign, and
MS and BS degrees in Systems Design Engineering
from the University of Waterloo, Canada. He is a
Full Professor in Department of Electrical Engi-
neering and Computer Science at the University of
Missouri-Columbia. He directs the Computational
Imaging and VisAnalysis (CIVA) Lab. He is a Senior
Member of IEEE.

Claudio Sterle received his Ph.D. in Computer
Science and Automatic Control from University of
Naples Federico II in 2009. He was previously with
the Inter-university Research Centre on Enterprise
Network, Logistics, and Transportation, Montreal,
Canada. He is currently Assistant Professor in Op-
erations Research at DIETI, University Federico II
of Naples. His current research interests include
exact and heuristic solving methods for complex
combinatorial and network optimization problems.

Maurizio Boccia received his Ph.D. in Operations
Research from the University of Naples Federico
II, Naples, Italy, in 2002. He is currently an As-
sociate Professor in the Department of Electrical
Engineering and Information Technology, University
Federico II of Naples. His current research interests
include computational mixed-integer programming,
in particular he worked on network location, network
design, routing problems and scheduling problems.

