
1

Predictive Cyber Foraging for Visual Cloud

Computing in Large-scale IoT Systems
Jon Patman, Dmitrii Chemodanov, Prasad Calyam, Kannappan Palaniappan,

Claudio Sterle, Maurizio Boccia

Abstract—Cyber foraging has been shown to be especially
effective for augmenting low-power Internet-of-Thing (IoT) de-
vices by offloading video processing tasks to nearby edge/cloud
computing servers. Factors such as dynamic network conditions,
concurrent user access, and limited resource availability, cause
offloading decisions that negatively impact overall processing
throughput and end-user delays. Moreover, edge/cloud platforms
currently offer both Virtual Machine (VM) and serverless
computing pricing models, but many existing edge offloading
approaches only investigate single VM-based offloading perfor-
mance. In this paper, we propose a predictive (NP-complete)
scheduling-based offloading framework and a heuristic-based
counterpart that use machine learning to dynamically decide
what combinations of functions or single VM needs to be
deployed so that tasks can be efficiently scheduled. We collected
over 10,000 network and device traces in a series of realistic
experiments relating to a protest crowds incident management
application. We then evaluated the practicality of our predictive
cyber foraging approach using trace-driven simulations for up
to 1000 devices. Our results indicate that predicting single VM
offloading costs: (a) leads to near-optimal scheduling in 70%
of the cases for service function chaining, and (b) offers a
40% gain in performance over traditional baseline estimation
techniques that rely on simple statistics for estimations in the case
of single VM-offloading. Considering a series of visual computing
offloading scenarios, we also validate our approach benefits of
using online versus offline machine learning models for predicting
offloading delays.

Index Terms—computation offloading, cyber foraging,
edge/cloud computing, machine learning, online job scheduling

I. INTRODUCTION

The recent advances in cloud computing technologies and

smart mobile devices have given rise to new systems that

bring cloud-like applications and services to users on mobile

devices. The maturing Internet of Things (IoT) paradigm has

also provided an avenue for offering new video processing

services to users on low-power, and often wireless, embedded

devices [1]. One of the major challenges for full realization

of IoT-based video processing is how best to orchestrate

user devices and edge resources that have limited processing

capabilities and operate in potentially unreliable networks [2].

As the capability for IoT applications to employ deep

neural networks for complex video processing tasks increases,

scalability of those services becomes challenging due to device

heterogeneity, limited communication and processing capabil-

ities of devices, and dynamic user policies [3]. Cyber foraging

is a technique that can augment low-power devices with access

This work is supported by the National Science Foundation (NSF) under
Award Numbers: CNS-1647182 and CNS-1359125. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those
of the authors and do not necessarily reflect the views of the NSF.

Corresponding author: calyamp@missouri.edu.

to more cloud-like services. These services can be leveraged

to overcome these limitations by offloading computational

workloads from devices to nearby resources at the network

edge to reduce application latency and energy consumption of

IoT devices [4], [5]. These edge resources known as cloudlets

are discoverable, generic, stateless nodes located in single-

hop proximity and are virtual-machine (VM)-based in order

to promote flexibility, mobility, scalability, and elasticity [6].

However, many edge computing solutions to realize cy-

ber foraging rely on consistent network connectivity to the

edge/cloud resources, and on strategies that tightly couple

mobile clients with servers at deployment time [5], [7]. Such

a reliance hinders their adoption for use in critical IoT-based

video processing applications such as crisis management in

austere network environments [8]. Moreover, with the advent

of Serverless Architectures [9] that allow delegating managing

the execution environment of an application (in the form of

microservice functions) to the infrastructure provider, there is

also a lack of policy-based edge computing solutions capable

of both single VM and chain of functions offloading strategies.

In this paper, we propose a predictive cyber foraging

approach that is not only capable of handling edge networks

and IoT dynamics, but it also allows different pricing/compute

models based on user’s policies (e.g., high- vs. low-resolution

data) for large-scale IoT-based video processing. Our ap-

proach builds upon our recent prior work [10] and allows for

a single VM offloading or a service deterministic estimation

processing pipeline. More specifically, our contributions are as

follows:

(i) Data-driven offloading parameters prediction. Many ex-

isting offloading approaches are only evaluated using synthetic

data or are only evaluated in small-scale testbeds (e.g., for a

single client-server or a few devices). To better understand the

complexities involved in real-world multi-edge systems, we

have collected over 10,000 traces publicly available at [11]

in a series of realistic experiments featuring edge hardware

and wireless ad-hoc networking in a protest crowd incident

management application setting. Specifically, our collected

data includes processing and transmission parameters for a

computationally-intensive pedestrian and facial recognition

pipeline in order to capture ground truth of user workloads

being offloaded as a single VM or a chain of functions.

To address the challenges of predicting offloading param-

eters for various offloading scenarios with different server-

less pricing/compute models, we trained and benchmarked

the performance of various state-of-the-art offline and online

Machine Learning (ML) models. We also gathered insights

from these models on performance and operational overhead

2

trade-offs. We devised several experiments using IoT devices

that offloaded low- and high-resolution imagery data streams

to nearby cloudlets. Out results show that ML-based predictors

outperform traditional network quality estimators with regards

to accurately predicting offloading times. We also investigate

the performance trade-offs between online and offline learning

when: (a) new data becomes available for training, and (b)

new data arrives but has a different distribution of values.

The performance evaluation results indicate how ML-based

prediction can: (a) lead to near-optimal offloading in 70% of

cases for service function chaining, and (b) offer a 40% gain in

performance when compared to traditional baseline estimation

techniques that rely on simple statistics for estimations in

the case of single VM-offloading. Our results also show that

online learning in our predictive cyber foraging approach

can outperform state-of-the-art offline methods in dynamic

environments. In particular, we validate the benefits in cases

where the online model is allowed to be updated incrementally

as new data becomes available. The online model also on

average has ˜90% faster times for both training and prediction

over traditional batch-based training.

(ii) Policy-based edge computing scheme. We develop a

policy-based edge computing scheme for a large amount of

IoT devices and edge nodes. Specifically, we have generalized

our previous job shop scheduling model for single VM of-

floading [10] to now be capable of offloading function chains

involved in video data processing pipelines. We still seek to

minimize the ‘maximum schedule time’ when all the tasks

have finished processing (also known as the makespan) across

all distributed edge servers. We remark that such an objective

minimization allows us to better balance the available physical

resources. This in turn increases the acceptance ratio for future

offloading requests [12].

However, we found that an optimal solution of our general-

ized model is intractable and highly complex when considering

offloading of few function chains to a couple of edge servers.

To address this challenge, we also propose a simple heuristic-

based offloading solution for our generalized model. Finally,

we perform large-scale trace-driven simulations with up to

1000 devices and edge servers using our real-world datasets.

Our results show how our heuristic is able to derive job

processing schedules that are well within the upper bounds

of the maximum makespan and also demonstrate acceptable

optimality performance for offloading function chains.

Paper organization: Section II discusses the related work.

Section III describes our proposed predictive cyber foraging

approach. Section IV describes collected data and applied

ML algorithms, and Section V formulates the online job

shop scheduling problem extended to offload function chains.

Section VI discusses prediction and offloading results based on

trace-driven simulations from our real-world datasets. Lastly,

Section VII concludes the paper.

II. RELATED WORK

A. Computation Offloading

Computation offloading is one of the most adopted forms

of cyber foraging, and helps in efficient management of

resources in edge networks while augmenting the computa-

tional capabilities of user devices. The underlying principle

in computation offloading involves migrating IoT data and

workloads from low-power devices to nearby edge clouds.

Heuristic-based algorithms offer negligible overhead for pro-

viding estimates, however, they typically perform poorly in

dynamic and distributed environments [5]. The recent popular

offloading approaches tend to be data-driven, meaning they

use historical information or domain expertise to model future

behavior [13]. In this work, we refer to predictive as explicitly

using machine learning to not only accurately model target

variables but also adapt to changing IoT system environments.

A major challenge of edge computing involves task of-

floading which is the scheduling of incoming offloading re-

quests from user devices to nearby cloudlets [14], [15]. Task

offloading in mobile edge networks is particularly difficult

due to the lack of future information about the system and

the network instability associated with large-scale IoT net-

works [16], [3], [10]. Algorithms that schedule offloading

decisions based on historical device and network information

have been shown to perform significantly better than those that

assume a static network model [10], [17], [15]. There has also

been much success with modeling offloading problems using

heuristics and statistical estimation methods where objectives

can be optimizing latency [18], energy consumption [19], [20],

and throughput [21], [22].

The ability of offloading frameworks to properly scale for

larger networks is essential for the full realization of pervasive

edge computing. Several frameworks have been proposed for

modeling and optimizing large-scale IoT Networks [14], [23].

However, many existing offloading approaches have practical

limitations that are worth considering such as only being

evaluated on a small number of devices [24], [25], and often

involving simple offloading decisions (i.e., deciding to process

locally versus offloading [26], or are concerned with offloading

a single service [27]) which may make them difficult to adopt

in real world IoT computing environments.

B. Policy-based edge computing

Video processing applications are traditionally designed

without decomposability in mind as their code is tightly

coupled to the system hardware specifications and software

libraries. As a result, most of IoT-based video processing

applications find traditional single VM offloading strategy to

be the most practical [21]. For this reason, authors in [28] pro-

posed a cost-aware cloud placement for simulated mobile edge

computing scenarios. Similarly, the authors in [29] proposed a

delay aware policy for the IoT-fog-cloud network to minimize

the service delay for applications. These frameworks however,

assume that application requests are homogeneous and then

allocate the workloads among edge/cloud resources utilizing

single VMs to minimize the response time of requests. The

work in [30] proposed an application aware workload allo-

cation scheme that is capable of assigning different types of

workloads to processing servers as single VMs. All of the

previously mentioned frameworks however, do not consider

the case where a workload may need to be assigned to a set

of functions utilizing multiple resources [31], [32]).

4

Fig. 2. Predictive cyber foraging approach: as requests arrive from IoT
devices at the edge of the network, an analytics engine profiles available
network and device resources. Predictive models then make estimates about
the associated offloading costs which are then fed into the runtime scheduler
in order to derive task schedules and placement of functions. Metadata from
these operations can then be uploaded to the cloud for remote interaction.

persons of interest recognized by a facial recognition service.

Additionally, scheduling policies can be implemented on the

scheduling middleware for diverse edge computing scenar-

ios (e.g., energy-aware and prioritized scheduling). Software-

Defined Networking (SDN) can achieve logically centralized

control over a distributed network of nodes and mobile de-

vices, thus making SDN a viable option for centralized control

of edge computing resources [36]. SDN architectures have

also been recently proposed specifically for orchestrating task

offloading in mobile edge computing environments [14].

IV. OPTIMIZATION ENGINE: PREDICTIVE MODELS

A major challenge in deriving optimal offloading schedules

involves estimating resource consumption (e.g., latency, en-

ergy consumption, bandwidth utilization) for large amounts

of users in dynamic IoT system environments. This chal-

lenge is further exacerbated when considering the complexities

involved with fluctuations in wireless transmission quality,

network congestion, server overburdening, parallel processing

capabilities, and scheduling precedence constraints such as

those present in microservice chains.

A. Limitations of Estimation-based Workload Profilers

Prior to workload placement, information about the data to

be processed can be used to estimate execution times. Histor-

ical data can allow for accurate modeling but is sensitive to

variance and outliers. Furthermore, given the ad-hoc nature of

edge computing environments, historical datasets may not be

available or feasible to maintain due to e.g., statistical outliers

or changing distributions that make it difficult to determine

acceptable windows for collecting statistics on historical data.

The ability to provide accurate and reliable estimates about

workload processing behavior is crucial for achieving efficient

schedules especially when prior data is limited.

Static transmission rate estimators can degrade the quality

of calculated schedules over time, particularly when relying on

measuring the link bitrate or using the iperf utility to calculate

the transmission time of data [37]. These inaccuracies can pre-

vent scheduling algorithms from making efficient offloading

800x600 1024x768 1600x1200 1920x1440

Image Resolution

0.05

0.5

5

11

P
ro

ce
ss

in
g

 S
p

ee
d

 [
fp

s]

Benchmark

RaspberryPi

XOMedium

XOLarge

(a)

800x600 1024x768 1600x1200 1920x1440

Image Resolution

10
-2

10
-1

10
0

T
ra

n
sm

is
si

o
n

 T
im

e
[s

]

Actual

Iperf

SNR

Theoretical

(b)

Fig. 3. Experimental analysis for a set of image resolutions relating to:
(a) processing speed characteristics for various hardware profiles used in
our experiments, and (b) transmission time estimates compared with various
measurement estimators such as iperf, Signal-to-Noise Ratio (SNR) that
uses the Hartley theorem to calculate the upper-bound bandwidth, and the
theoretical minimum.

decisions, especially in situations where network and device

states are dynamic. Another common issue with traditional

estimation techniques is that they are not able to make pre-

dictions a priori, and therefore need to take measurements

periodically. This can lead to increases in network overhead

and subsequent delays in scheduling a large number of tasks.

We collected ≈ 10k traces of offloading data available

at [11] in a protest crowd incident management application

setting. We use this data to evaluate estimation-based versus

prediction-based techniques by transferring and processing

various image datasets of differing resolution on a variety

of ExoGENI testbed [38] nodes arranged in a star topology,

as well as a client-server configuration using a Raspberry

Pi IoT device. The plots in Figure 3 show the transmission

and processing characteristics for a variety of machine types

and network conditions collected in our experiments. The

benchmark used in Figure 3(a) is from an experiment that used

dlib for face detection [39] on the same image dataset [40]

used in our facial recognition application based on the dlib

library [41]. As expected, there is a positive correlation be-

tween processing speed and hardware type. Additionally, we

observe small differences in processing speed between image

resolutions as well as a small variance within each image

resolution group which suggest that the appearance of faces

is not a compounding factor in resulting processing times. In

Figure 3(b), each method provides estimates that are much

faster than the actual transmission time measured. However,

because iperf provides the most accurate estimates over the

other techniques we surveyed, we chose to use it as our

baseline estimation method. Note that iperf is a lightweight

and widely-used tool for estimating network quality [42], [43].

B. General Learning Problem

We use Machine Learning to predict the transmission or

communication time (tc) and processing time (tp) of data

to be transmitted and processed by a single VM or a chain

of functions and then use these estimates for offloading. We

also seek to investigate the prediction performance between

different approaches to learning: incremental (online) versus

batch (offline) learning. Generally speaking, batch learning

refers to training a predictive model on the entire training

dataset, whereas an online algorithm learns from training data

that arrive in a sequential stream, without having the entire

dataset available from the start. Additionally, online learning

can be used as an algorithm that adapts to new data without

5

forgetting its existing knowledge [44]. We focus on regression-

based models in this framework due to the fact that continuous-

valued metrics used for offloading decision making such as the

transmission time or processing time, is a continuous value and

not a categorical one.

The general problem of learning can be formulated as

follows:

Given a set of training examples (x1, y1), ..., (xT , yT) where

xt ∈ R
m and yt ∈ R (for the regression case) is the target

label assigned to xt. The goal of learning is then to learn a

predictive function F : Rm → R
|y| where F (x) is a linear

function of the form: F (x) = wTx, where w ∈ R. The

performance of the learned function is usually evaluated based

on the cumulative penalty suffered by the prediction model.

To learn a prediction function that minimizes this penalty over

T instances, a loss function denoted as L(F (x), y) is often

chosen for minimization. As instances xt, t = 1, ..., T arrive,

a prediction ŷt is made. This is followed by the environment

revealing the true target yt that is then used as feedback to

update the parameters of F (x) [45].

C. Offline Learning

The manner in which machine learning models are trained

offline is typically performed via batch learning. This exposes

the entire dataset or large portions of the dataset to the

model which does not change its approximation of the target

function once the initial training phase has begun. Offline

learning generally performs quite well but does so at the

cost of increased training and inference times. It also leads to

increased hardware demands such as memory and processing

allocation. Based on our previous results in [10], we have

chosen to employ the popular Random Forest algorithm as it

has been shown to outperform other contemporary algorithms

for predicting offloading costs [26], [37].

Random Forests (RF) are a popular ensemble model be-

longing to the decision-tree class of ML algorithms. Random

forests work by fitting a number of decision trees (100 were

used in our experiments) to various subsamples of the dataset

that are then averaged to improve accuracy and reduce over-

fitting in a popular process known as ”bagging”. Random

forests have a variety of useful properties such as the advan-

tage of being able to use the same model for both regression

and classification tasks. Random forests also have the ability

to learn features that are most important from a collection of

features from the training set [46].

D. Online Learning

Online learning algorithms present several benefits over

batch learning methods, particularly in the area of computation

offloading [26]. Online learning algorithms are also known to

scale well to extremely large datasets [47], which makes them

desirable candidates for predictive modeling in large-scale IoT

serverless edge computing systems.

We employ the popular first-order Passive-Aggressive (PA)

learning algorithm that makes trade-offs between being: (i)

passive: preventing the new model deviating too much from

the existing one, and (ii) aggressive: updating the model by

correcting the prediction mistake as much as possible [48].

The optimization of PA learning follows the update rule:

wt+1 ← wt +
max(0, |yt − wTxt| − ε)

‖xt‖
2
+ 1

2C

sign(yt − wTxt)xt

(1)

where ε is the difference between the current prediction and

correct value used as a threshold for updating the model, and

C is the maximum step size parameter for regularization.

E. Model Asymptotic Complexity

The asymptotic complexity for a Random Forest which is an

ensemble of decision trees is as follows. The time complexity

for building a random forest is:

O(MKÑ log(Ñ2)) = O(MKN logN) (2)

where M is the number of randomized trees and K is the

number samples required to split a tree node. Ñ = 0.632N due

to the fact that bootstrap samples draw, on average, 63.2% of

unique samples [49]. Estimating the depth of a tree is difficult

however, as the nodes are expanded until all leaves are pure or

until all leaves contain less than K samples. Lastly, the space

complexity for the random forest is O(MlogN). The time

complexity of making a prediction for a single input sample

amounts to the number of operations for traversing each of

the M trees, from the root to one of the leaves. Therefore, the

time complexity for prediction is θ(log(MN)) for the best

and average cases, and is O(MN) in the worst-case.

One of the main advantages of PA-based machine learning

is its efficiency, which is basically linear based on the number

of training examples. For instance, if X is a matrix of size

(N × P), training has a time complexity of:

O(KNP̃) (3)

where K is the number of iterations (epochs), N is the number

of training samples, and P̃ is the average number of features

per sample. PA-based models are therefore well-suited for

large-scale machine learning problems.

V. OPTIMIZATION ENGINE: ONLINE SCHEDULER

The mobile edge offloading problem that is used in our

protest crowd incident management case study can be formu-

lated as the common online job shop scheduling problem [50].

To this aim, we model mobile IoT devices that request

compute offloading tasks as a single VM (modeled as a single

function) or a chain of functions for scheduling, and (mobile)

edge servers are modeled as machines that process these tasks.

The optimization goal is then to schedule each of these tasks

onto the appropriate machines in order to finish in the shortest

time possible, also known as the minimum makespan [51].

A. Modeling online scheduling

We start our formulation by introducing the following binary

variable:

x
(i,s)
jk =





1, if task i function s is assigned

at machine j position k,

0, otherwise,

(4)

6

where i ∈ N is a set of independent tasks, s ∈ Si is a chain of

dependent functions for task i (or can be a single function to

model a VM), j ∈M is a set of all machines with k ∈ N · S
positions and S = max

i∈N
Si.

Having binary variables defined in (4), we start by de-

scribing assignment constraints which are essential for the job

scheduling problem. The first constraint type ensures that each

task function is assigned to exactly one machine position:

M∑

j=1

N ·S∑

k=1

x
(i,s)
jk = 1, ∀i ∈ N, s ∈ Si. (5)

Let us introduce another binary variable pmjk that equals to

1 if exactly m tasks are going to be processed in parallel

at machine j position k and 0 otherwise. Thus, the second

constraint type ensures that at most M tasks processing are

assigned to each machine position as follows:

N∑

i=1

Si∑

s=1

x
(i,s)
jk =

M∑

m=0

m · pmjk, ∀j ∈M,k ∈ N · S

M∑

m=0

pmjk = 1, ∀j ∈M,k ∈ N · S.

(6)

Note that in general when the edge cloud provider policyM≥
1, multiple task functions can be processed in parallel at the

position k of the machine j.

The third constraint is to ensure that at each machine

position we can execute only one function type:

x
(i,s)
jk + x

(̂i,ŝ)

jk̂
≤ 1, ∀i, î ∈ N : i 6= î, s, ŝ ∈ S : ŝ > s, k ∈ N ·S.

(7)

Let us also introduce a positive continuous variable yjk that

denotes the time when m tasks at position k of machine j will

finish being processed. This time should be greater or equal

to the sum of the time when machine j finishes processing

of the previous position k − 1 (preceding constraint) and the

processing/communication time of m tasks. Thus, we have to

satisfy the following set of nonlinear constraints:

yjk ≥




M∑

ĵ=1

k−1∑

k̂=1

(y
ĵk̂

+ tcis
ĵj
) · x

i(s−1)

ĵk̂
+

M∑

m=0

tpms
ij · p

m
jk


 · x(i,s)

jk ,

∀i ∈ N, s ∈ S, j ∈M,k ∈ N · S,
(8)

where tpms
ij and tcis

ĵj
are tasks’ processing and communication

times.

To avoid non-linearity, we can use a big M method, denoted

from here as Ω. In order to constrain our optimality conditions

within a finite number (typically big M is a very large integer

value) [52]. Thus, we can generate the following larger set of

TABLE I
SYMBOLS AND NOTATIONS FOR THE ONLINE OPTIMIZATION PROBLEM

Sets:

N , Set of tasks (offloading mobile devices)

Si , Set of task i functions (e.g., pre-processing, face detection,
etc.)

M , Set of machines (edge servers with only one VM instance)

Variables:

x
(i,s)
jk

, Binary variable that equals to 1 if task i function s is assigned
at machine j position k and 0 otherwise

pm
jk

, Binary variable that equals to 1 if exactly m tasks are going
to be processed in parallel at machine j position k and 0
otherwise

yjk , Positive continuous variable that denotes the time when m
tasks at position k of machine j will finish being processed

α , Continuous variable that denotes the maximum makespan

Parameters:

tpms
ij , Task i function s processing time at machine j for m functions

processed in parallel

tcis
ĵj

, Task i communication (data transfer) time between functions
s−1 and s and from machine ĵ to machine j (or from device
to machine j if task s = 1)

Policies:

M , The maximum number of tasks that can be processed in
parallel at the same machine position (note that tasks can be
processed in parallel at the same position only if they share
the same function)

linear inequalities to substitute (8):

yjk ≥





y
ĵk̂
+tcis

ĵj
+
M∑

m=1
tpms

ij · p
m
jk+Ω · (x

i(s−1)

ĵk̂
+x

(i,s)
jk −2),

∀i ∈ N, s ∈ S, j, ĵ ∈M,k, k̂ ∈ N · S

yj(k−1) +
M∑

m=1
tpms

ij · p
m
jk +Ω · (xis

jk − 1),

∀i ∈ N, s ∈ S, j ∈M,k ∈ N · S

yj(k−1), ∀j ∈M,k ∈ N · S
(9)

Note also that yj0 ≥ 0 is a machine offset time - the time when

machine j finishes processing the previously scheduled tasks

which come online, and yj0 = 0 for the offline job scheduling

problem when all tasks are known in advance.

Let us finally introduce a continuous variable α that denotes

the maximum makespan among all machines. Thus, α has to

satisfy the following set of constraints:

α ≥ yjN ·S , ∀j ∈M. (10)

Having both variables and constraints discussed, the online

job shop scheduling problem that minimizes the maximum

makespan α can be formulated as follows:

minimize α

subject to (5-7), (9-10)

x
(i,s)
jk ∈ {0, 1}, ∀i ∈ N, s ∈ S, j ∈M,k ∈ N · S

pmjk ∈ {0, 1}, ∀m ∈ {0..M}, j ∈M,k ∈ N · S

yjk ≥ 0, ∀j ∈M,k ∈ N · S,

α ≥ 0
(11)

where all variables, parameters and sets are summarized in

Table I. Note that if we use a single VM offloading for all IoT-

based video processing tasks, the above job shop scheduling

problem formulation can be simplified which allows its near-

optimal solution in practical time for mid-scale offloading

7

scenarios. The complete reduced formulation can be found

in our prior work [10].

B. Heuristic-based online scheduling

To schedule all task functions based on user policies for

VM-based or serverless computing at the edge cloud, we

can directly solve Problem (11) by using an optimization

software package such as CPLEX [53]. However, as we show

in Section V, this problem is NP-hard to solve - even for small

scale offloading settings it takes several hours on average.

Algorithm 1 Greedy Serverless Edge Offloading

Step 1: Init the priority queue Q with first functions of all known tasks based
on their estimated maximum makespan using (10) and repeat Steps 2-5 until
Q is empty
Step 2: Retrieve and remove the head of Q - function s of task i
Step 3: Find the best scheduling position k for tasks i function s based on
currently scheduled task functions to minimize the maximum makespan as
follows:

• Find position k of machine j with the minimum of the maximum
makespan if function s of tasks i is scheduled as the new function
(∀j ∈ M)

• Find position k̂ of machine ĵ with the minimum of the maximum
makespan if function s of tasks i qualifies to be consolidated with

prior scheduled tasks of type s (∀î ∈ N)
• Select the best scheduling position based on the maximum makespan

between k of machine j and k̂ of machine ĵ

Step 4: Schedule function s of task i at the position and update the
corresponding machine makespan
Step 5: Update Q as follows:

• If exists, estimate the maximum makespan of successive function s+1

of tasks i when it is scheduled at the best position as in Step 3 and
insert it to Q

• Update all successive functions s+1 in Q ∀î ∈ N if consolidated with
task i

• Update all successive task functions ŝ+ 1 in Q if task functions ŝ are
scheduled at the right-hand-side position from task i function s

Thus, we propose a polynomial greedy heuristic outlined in

Algorithm 1 for our policy-based edge computing scheme. Our

algorithm starts by initializing a queue Q with first functions

of each task (e.g., A1..3) sorted in ascending order based

on their estimated maximum makespan (Step 1) as shown in

Figure 4(a). At each iteration until Q is empty, we first retrieve

and remove the head of Q (Step 2), then schedule this task i
function s (Step 4) at the position that minimizes the maximum

makespan across all machines (Step 3), and finally update Q

Fig. 4. Heuristic-based scheduling of tasks and functions to various machines.
A queue is initialized containing each task sorted in ascending order based
on estimated maximum makespan. Each task is removed from the queue
and placed at the position that minimizes the makespan across all machines.
The queue is finally updated by inserting this task’s successive functions and
updating the remaining affected task functions in the queue.

by inserting this task i successive function s + 1 as well as

update all affected task functions in Q (Step 5).

For example, if we schedule A3 to position 1 of machine 1,

we need to update the successive functions of A1 and B2. The

former’s successive function needs to be updated in Q, because

consolidation of A1 with A3 can increase the A1 completion

time. The latter’s successive function needs to be updated

in Q, because B2 is located at the right-hand-side position

from 1 (i.e., at 2), and thus increasing the completion time of

position 1 of machine 1 can increase the completion time of

all right-hand-side positions of machine 1 based on (9). We

can schedule a task function either at the idle position of some

machine or consolidate it with prior scheduled functions if it

qualifies. We first describe function consolidation qualification

conditions, then follow up with a discussion of the asymptotic

complexity of Algorithm 1.

Function consolidation qualification. Function s of task i
qualifies for consolidation with other scheduled functions at

position k of machine j if the following conditions are met:

• Scheduled task functions at position k of machine j are

of the type s
• Number of scheduled task functions at position k of

machine j is <M
• None of scheduled task functions at positions ∀k̂ ≥ k of

machine j have their successive functions scheduled at

machines ∀ĵ 6= j.

The first two conditions are necessary to ensure that con-

solidation of task i function s is feasible. The last condition

is needed to ensure that consolidation of task i function s at

position k of machine j does not increase the makespan of

other machines, i.e., ∀ĵ ∈ M : ĵ 6= j. For example, consider

scheduling of function A task 3 shown in Figure 4(b). Aside

from two idle positions k = 3 and k = 2 of machines 1 and 2,

respectively, A3 can be also consolidated with A1 at position

k = 1 of machine 1. This is because A1 successive function

B1 is not scheduled yet, and B2 has no successive function.

At the same time, we cannot consolidate A3 with A2, because

A2 successive function B2 has been already scheduled. As a

result, we can increase the maximum makespan of machine 1,

which in turn requires computationally expensive reconstruc-

tion of Q.

Asymptotic complexity of Algorithm 1. At any time Q
size in Algorithm 1 is at most N . When Q is based on the

Fibonacci Heap [54], Step 2 complexity is O(logN). At the

same time, Step 3 complexity can be asymptotically bound

as O(N +M), and Step 4 complexity is O(1) based on (9).

Finally, Step 5 complexity has the following components: the

next function insertion to Q is O(1), however we also need to

find its best position which has O(N+M) complexity; due to

the fact that scheduling of the current task only increases the

maximum makespan for all affected functions in Q (at most

N − 1), we can use a decrease key operation which is O(1)
complexity. As we need to schedule N · S task functions, the

total complexity of our algorithm is:

O(NS(logN +2(N +M)+N)) = O(NS(logN +N +M)).
(12)

8

Fig. 5. Face recognition pipeline used in our experiments: the pipeline is
either deployed as a single monolithic application (Case I) or as a function
chain where each computational function (preprocessing, object detection, face
detection, face database) is distributed across multiple resources (Cases II and
III).

When S �M and S � N , (12) can be simplified as:

O(N logN +N2 +NM). (13)

We show our algorithm execution time quadratic dependency

on the number of tasks and servers in Section VI-D.

VI. EVALUATION RESULTS

A. Case Study Experiments

We conducted several experiments to collect realistic data

for our protest crowds incident management case study. The

experiments resulted in three separate datasets (with a to-

tal of ≈ 10k traces publicly available at [11]): processing,

transmission-EC (edge-cloud), and transmission-AP (access

point), all of which have different input and target features

used for training and evaluating our predictive models. The

face recognition processing pipeline used in our case study

is illustrated in Figure 5. It was deployed in an ExoGENI

testbed [38] using a ring topology consisting of 5 nodes with

differing computing and storage capabilities [10]. One XOS-

mall node serves as the client followed by a node dedicated

to either a single VM that handles the entire pipeline or to

each image processing function (F1-F4) of a chain described

in Figure 5.

Images from the “Robust Multi-Person Tracking from Mo-

bile Platforms” dataset were used and consisted of RGB

images collected from a camera mounted to a moving vehicle

navigating various urban areas with pedestrians present [55].

This dataset was chosen as it is representative of the type

of remote images that could be collected in a protest crowds

incident management scenario. Moreover, the image dataset

contains front-facing pedestrians as well as partially occluded

ones which means that for some images, function F2 will

detect pedestrians but function F3 will not detect a valid

face. This variability allows the predictive models to better

generalize for a given set of images instead of learning features

correlated with a valid detection in every image.

Table II shows the features that were collected for each

dataset during our experiments. The single VM offloading

dataset was partitioned into four groups of differing image res-

olutions (800x600, 1024x768, 1600x1200, 1920x1440), with

100 images per group. For the function chain offloading

dataset, we created two subsets of the transmission datasets

(lowres and highres) of contrasting resolution (640x480,

2048x1536) with 100 images each, that were then transferred

TABLE II
FEATURES COLLECTED AND USED FOR TRAINING MODELS

Transmission Datasets Processing Dataset

Data Attributes:

Image Height (pixels) Image Height (pixels)
Image Width (pixels) Image Width (pixels)

Data Size (bytes) Data Size (bytes)
- Number of Persons Detected
- Number of Faces Detected

Hardware Parameters:

Signal Level (dB) Processor Speed (GHz)
Noise Level (dB) RAM (GB)
Link Quality (%) Cores per CPU

Bitrate (Mb/s) Threads per Core
Packet Loss (%) -
Mean RTT (s) -

Jitter (s) -

Mobility:

Distance (5, 50, & 100 m) ± 15 m N/A

Prediction Parameters:

Function Transmission Time (s) Function Processing Time (s)
Wireless AP Upload Time (s) Total Processing Time (s)

and processed through all of the functions, with the corre-

sponding transmission and processing times measured. We

then collected features related to the networking hardware,

processing capabilities of the machines, and attributes of the

data being offloaded. Signal level and link quality are both

measures of the strength of the connection, while noise,

packet loss, and jitter are measures of connection interrup-

tions. Bitrate and mean Round-Trip Time (RTT) are valuable

measurements of the capacity and speed of the connection. We

also measured processing time on machines with single and

multi-threading capabilities in order to represent the parallel

processing functionality of executing simultaneous microser-

vices on a single machine.

Processing time was measured for a single VM as well as for

each function where the computation and software involved is

specific to that particular function. During the Preprocessing

stage (F1), noise reduction and histogram equalization are

performed on images to improve detection capability. In the

Object Detection stage (F2), images are scanned and detected

persons are localized on the image (segmentation) using the

Tensorflow’s deep learning object detection API. The images

are then processed in the Face Detection stage (F3) in order

to segment faces using the Haar Cascades method available in

OpenCV library. Lastly, in the Face Storage stage (F4), each

face is cropped and stored in a central database where images

and meta data such as the location of the image source can be

retrieved at a later time.

To measure transmission time for the Transmission-AP

dataset, we configured a Mikrotik router using the standard

mesh routing protocol. A Raspberry Pi served as an IoT-based

cloudlet while using a wireless laptop to vary the distance

between the client and server at 5, 50, and 100 meters,

resulting in 2400 transmission delay samples being collected.

Preliminary experiments revealed that distances greater than

100 meters resulted in unstable connections or considerably

9

longer transmission times. For the Transmission-EC dataset,

we measured the time to transmit the images to each function

in our wired ExoGENI testbed where we assume a high-speed

connection, therefore delay due to bandwidth is negligible.

B. Comparisons to other methods

To the best of our knowledge, we are the only approach

currently focused on using Machine Learning-based tech-

niques to predict offloading costs in order to derive more

accurate schedules in a large-scale IoT network. Furthermore,

we are the only existing approach to investigate large-scale IoT

offloading for more than a single function (i.e. using chains

of functions). Implementing other existing approaches for per-

formance comparison has proven difficult as many offloading

models and data are incompatible with our study (e.g. they

instead focus on optimizing energy consumption [56], content

caching [23], or use measurements not collected for our

study (e.g. device energy consumption [14], wireless channel

frequency [27], [56]). More importantly, a lot of offloading

approaches do not contain a predictive component, meaning

the computation and communication delays are known prior

to scheduling, which may not be a practical assumption in a

large distributed edge network. One could argue that simple

statistics could be used to provide a baseline for initializing

these optimizers, however, we counter this argument by point-

ing out that in a real-world scenario, distributions of incoming

requests and network characteristics can change very quickly

overtime, rendering statistical analyses obsolete, thus leading

to degradation of scheduling optimality.

To illustrate the limitations of such an approach, and provide

a comparison between the ML-based estimators with a base-

line method, we can use a standard equation for calculating

the transmission delay [42], ttrans = L/RT , where L is the

number of bits of each file and RT is the transmission rate

of the data link measured in bits per second. Calculating the

processing time for a given file size on machines with varying

hardware specifications, however, proves to be more difficult.

Without using historical data, this type of measurement would

require knowing how many instructions are executed for each

program (which can vary drastically in image processing

applications). For this reason, we use the average time, tproc,

spent processing a file of L bits on a machine with a given

hardware specification.

C. Predicting Offloading Parameters with Machine Learning

1) Model implementation and settings: We have imple-

mented and evaluated a mixture of linear and nonlinear ap-

proaches in order to best survey the accuracy of ML models

for predicting transmission and processing times. Specifically,

we chose Linear Regression, Multi-Layer Perceptron, Support

Vector Regression, Decision Tree, k-Nearest Neighbor, Ran-

dom Forest (RF) and Passive-Aggressive (PA) algorithms as

our models. The RF and PA machine learning models are

described in more detail in Section IV and the remaining

models are thoroughly described in our previous work [37]. All

input feature values were normalized, and the models were im-

plemented using the popular Scikit-learn Python library [57].

TABLE III
MACHINE LEARNING PREDICTOR RESULTS (RMSE) FOR CASE I

Model Type
Transmission Time (s)

RMSE
Processing Speed (s)

RMSE

Baseline Estimate 2.700 ± 2.223 8.285 ± 6.520
Decision Tree 0.877 ± 0.227 0.231 ± 0.040

k-Nearest Neighbors 0.826 ± 0.174 0.250 ± 0.041
Linear Regression 0.835 ± 0.139 0.748 ± 0.041

Multi-Layer Perceptron 0.814 ± 0.179 0.307 ± 0.055
Random Forest Regressor 0.813 ± 0.263 0.741 ± 0.147
Support Vector Machine 0.837 ± 0.269 0.878 ± 0.079

Because most ML models in Scikit-learn assume that individ-

ual features are normally distributed, that is, Gaussian with a

mean of zero and unit variance, we standardized our dataset to

remove the negative effects for variances orders of magnitude

larger than others. We initialize the RF model to have 100

trees in the forest and use two samples as the number for

splitting a node. The number of trees were chosen based on

the RF initialization suggestions in [57] and the experimental

study in [58] that found large performance increases going

from 10 to 250 trees, but found minimal improvements as the

number of trees increased beyond 250. For the PA model we

use the L2 regularization metric, with the huber loss that is

more robust and less sensitive to outliers in the data than the

traditional squared-error loss.

2) Single VM offloading scenario: Our first set of results

is shown in Table III and is dedicated to a single VM

offloading parameters prediction using offline ML algorithms.

Most offloading approaches use this type of scenario as it

is the simplest in terms of hardware configuration, network

overhead, and offloading task complexity. These results show

the benefits of using data-driven models for predicting trans-

mission and processing speed over the baseline estimate that

used the iperf utility, and the facial recognition benchmark.

Not only do the ML models on average have a much lower

RMSE than the baseline estimate and benchmark, they also

have much better precision in terms of the variance observed

for predictions. These findings suggest that using data-driven

models for predicting offloading costs may lead to improved

and more reliable scheduling performance as they are signifi-

cantly closer to the actual times encountered.

We hypothesize that the RF and Decision Tree models per-

form the best in our experiments due to several underlying fac-

tors inherent in their design. For instance, decision trees have

the ability to produce fine-grained decision branches which

tend to perform well for modeling complex relationships. For

more complicated relationships such as those exhibited in

wireless networks, the RF is ideal because it is composed

of a collection of decision trees, also known as an ensemble

learning method. In this method, each tree’s output is used in

a voting system to determine the final output of the forest.

This voting system, known as bagging reduces the bias and

variance of the model [46]. Conversely, the large variance and

inaccuracy of the baseline estimate can be attributed to the

inadequacy in modeling of the non-linear mapping of features

for the processing and transmission data sets.

3) Function chain offloading scenario: In this scenario,

we aim to predict offloading parameters for a more compli-

10

cated function chain offloading scenario to reflect the real-

istic scenario. In our scenario, some computing nodes may

be incapable of processing certain kinds of functions, or

depending on current load, may be made more efficient by

partitioning the workload. Based on the performance results

in Table III, the ML-based estimation methods significantly

outperform the baseline estimations for the simpler single

VM offloading scenario. Thus moving forward, we specifically

investigate the performance trade-offs between the offline (RF)

and online (PA) machine learning algorithms for the more

complex scenarios involved in function chain offloading.

In order to properly evaluate an online model against an

offline model, we devised a set of different cases that represent

ways in which incoming data streams can be aggregated for

training purposes and at what frequency re-training/updates

occur. We devised the following cases based that evaluate the

different characteristics of each model such as generalization

accuracy, robustness, and adaptability:

• Case I: All data is available at runtime or that subsequent

updates are not needed or feasible. Both the online and

offline models are trained on the same dataset prior to

runtime.

• Case II: The online and offline models are trained before

being deployed but the online model is allowed to update

based on incoming data streams that may or may not have

the same distribution of features.

• Case III: The distribution of the incoming data stream’s

features changes (e.g., nodes go offline/online, new types

of data are requesting to be offloaded). The online and

offline models are initially trained but as the distribution

of features change, the online model is allowed to update

on any newly collected data.

Case I is clearly the best-case scenario for the offline model

as it guarantees the largest amount of data available for training

as long as the number of outliers are small. For Case II, we

divided the entire training dataset by half and initially trained

each model using the 50% subset of data. The online model

was then allowed to update its parameters by two subsequent

streams that consisted of 50% splits of the remaining subset of

training data. For Case III, both models were initially trained

on only lowres data which comprised approximately 50% of

the total training dataset. The online model was then allowed

to update itself using two subsequent streams that consisted

of 50% splits of the remaining training data. The update

data here consisted entirely of highres data and thus had a

different distribution of features (e.g., data size, processing

times), which are not part of the initial model training. For

practical purposes, we assume that features from the data (see

Table II) used for online training purposes are measurable and

labeled prior to training.

Our performance results in Table IV show the trade-offs

between online and offline learning approaches for Cases

II & III. We evaluate the predictive performance of each

model using the Root Mean Squared Error (RMSE) where

lower RMSE values indicate better model performance. For

Cases II & III, the PA model outperforms the RF model

on the processing dataset, except in the case of function F2

TABLE IV
CHAIN OFFLOADING PREDICTION RESULTS (RMSE) FOR CASES II & III

Case II: Data stream update Case III: Distribution change

Function RF (Offline) PA (Online) RF (Offline) PA (Online)
RMSE RMSE RMSE RMSE

Processing Dataset

F1 0.067± 0.034 0.046± 0.002 0.066± 0.002 0.057± 0.004
F2 0.163± 0.011 3.512± 1.542 0.154± 0.008 0.461± 0.033
F3 1.529± 0.385 1.496± 0.271 2.824± 0.096 1.956± 0.216
F4 0.049± 0.025 0.049± 0.005 0.089± 0.002 0.064± 0.005

Transmission-AP Dataset

F1 0.446± 0.110 0.852± 0.232 0.658± 0.023 0.387± 0.057
F2 0.452± 0.108 0.876± 0.232 0.725± 0.030 0.379± 0.049
F3 0.451± 0.109 0.816± 0.227 0.725± 0.031 0.386± 0.052
F4 0.457± 0.106 0.817± 0.219 0.672± 0.031 0.389± 0.050

Transmission-EC Dataset

F1 → F2 0.028± 0.003 0.724± 0.351 0.041± 0.007 0.066± 0.011
F2 → F3 0.039± 0.005 0.724± 0.344 0.026± 0.008 0.065± 0.011
F3 → F4 0.048± 0.006 0.791± 0.386 0.042± 0.007 0.090± 0.009

TABLE V
MODEL TRAINING AND PREDICTION TIMES FOR CASE I

Training Time (ms)

ML Model Processing Transmission-AP Transmission-EC

RF 33.33± 0.72 31.42± 0.46 30.59± 0.32
PA 6.14± 0.73 2.35± 0.10 1.00± 0.00

Prediction Time (ms)

ML Model Processing Transmission-AP Transmission-EC

RF 3.14± 0.49 2.79± 0.32 2.32± 0.26
PA 0.25± 0.42 0.30± 0.43 0.20± 0.01

(object detection). The reason for this is because - F2 case

has the most non-linear behavior and is difficult to predict

when sample size is small. However, for the Transmission-AP

dataset, the RF model can adequately model the transmission

time even with a limited amount of training data but is

unable to outperform the PA model when the distribution of

features changes over time. Thus, we can conclude that more

representative data is needed for the RF model to capture the

changing data distribution. For the Transmission-EC dataset,

the RF model outperforms the PA model in both cases, owing

to the fact that the RF model is able to more accurately model

the transmission time even with a limited amount of data.

To better understand the operational overhead of using one

learning approach over another, we measured the training and

prediction times between each model on each of the datasets

and report the results in Table V. Even when using the full

training dataset (Case I), the PA model outperforms the RF

model on each of the datasets by several orders of magnitude.

Consequently, this makes the PA model ideal for situations

where the distribution of the data is quickly changing and

models need to be updated. It is intuitive to suggest that the RF

model could just be re-trained from scratch instead of using

an online approach. However, as described in Section IV-E,

RF have a much larger time complexity. This in turn, makes

the choice of RF impractical because it significantly affects

scheduling times when trained on larger datasets, which is the

typical case encountered in real-world application settings.

11

Device

Server

Epicenter

(a)

Device

Server

Epicenter

(b)

Device

Server

Epicenter

(c)

Fig. 6. Geospatial maps showing an example of device and server placement during trace-driven simulations for the case of: 1(a), 3(b), and 5(c) Epicenters,
respectively. In our protest crowd incident management case study, we represent each protest site as an Epicenter, with a set of heterogeneous resources
(servers) available for processing offloading requests from remote devices.

TABLE VI
EXPERIMENT SETTINGS AND PARAMETERS FOR CASES I, II, & III

Simulation Settings

Experiment Area 1 km2

Incident Epicenters 1-5
Device-to-Server ratio 10

No. of image offloaded per device 1-10

Device distribution Normal with σ =
1
6

km

Single VM offloading (Case I)

No. of devices 50
Resolution range of data 800p, 1024p, 1600p, 1920p

Function Chain Offloading (Case II & Case III)

No. of devices 1000
Resolution range of data 640p, 2048p

D. Protest Crowd Incident Management Case Study Results

In this section, we first describe our results in the case

when all application functions are consolidated within a single

virtual machine and no parallel thread processing is allowed. In

this case, the generalized edge offloading problem in Section V

can be significantly simplified (as a job shop scheduling

problem) as described in our prior work [10]. We found that

estimation inaccuracies can significantly impact scheduling

optimality and how machine learning-based predictors can

improve the optimality of such scheduling. We then show the

complexity of the generalized offloading problem for function

chains with allowed parallel processing to give evidence to

its current intractability even for small-scale offloading. Addi-

tionally, we show how our proposed greedy heuristic algorithm

has acceptable (well within the upper bound of the maximum

allowable makespan) optimality performance and scalability.

Finally, we show optimality trade-offs between offline and

online machine learning algorithms for scheduling in different

scenarios.

1) General simulation settings: Our Java-based simulation

environment is composed of the latest IBM ILOG CPLEX

v.12.8 [53] and a High Performance Computing (HPC) Cloud

server with two 16-core Intel Xeon Gold 6142 CPUs at 2.6

GHz, 384GB ECC DDR4-2666 RAM running Linux Ubuntu

18.04 STD allocated in the CloudLab infrastructure [59].

Motivated by the challenges of protest crowds incident

management described in Section II-B, we generate a 1 km2

area similar to a typical university campus scale as shown

in Figure 6. We then uniformly generate 1 to 5 protest

incident epicenters within this area. After that, we place both

servers and devices following a normal sampling distribution

N (~epi, σ2), where the mean corresponds to protest epicenter

coordinates ~epi, and the standard deviation σ = 1
6 km (see

Table VI for experiment settings and parameters).

In the single VM offloading simulation scenario, we place

a total of 50 devices, and use a device-to-server ratio of 10
(unless stated otherwise) to estimate benefits of offloading

parameters prediction versus their estimation using mid-scale

settings. In the function chain offloading scenario, we use

a total of 1000 devices, and use a device-to-server ratio

of 10 (unless stated otherwise) to demonstrate our heuristic

algorithm performance at large scale settings. Each device also

offloads from 1 to 10 images of some resolution: uniformly

selected from a set {800p, 1024p, 1600p, 1920p} for a single

VM offloading, or from a set {highres (2048p), lowres
(640p)} for a function chain offloading. We then select a

corresponding trace for each device i and server j based on the

image resolution, server and device proximity, and server type.

We use these traces to obtain ground truth communication tcis
ĵj

and processing tpms
ij times (see Table II) as well as use the

predicted times from ML algorithms.

After the environment setup, we offload all currently known

task functions by taking into account their precedence con-

straints as well as any parallel processing policies. As a

result, task functions can be offloaded as a single VM or a

service chain by either consolidating them on one server or

by spreading them across many servers in order to minimize

the maximum makespan. In this simulation, our main goal is

to understand how the prediction/estimation techniques used

for offloading parameters affect the optimal scheduling when

ground-truth data is used instead. We also aim to evaluate our

proposed heuristic performance on function chain offloading

settings in large-scale IoT application systems, as well as un-

derstand how our proposed online and offline ML algorithms

prediction affects the offloading optimality in this case.

12

10 20 50 100

Num. of Devices

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

T
im

e
[s

]

Max MS

Min MS

1% Gap

Opt

(a)

2 5 10 25 50

Device-to-Server Ratio

150

300

450

600

M
ax

 M
ak

es
p
an

 [
s]

Opt

Est

P1

P2

(b)

0 1 10 100 1000

Optimality Gap [%]

0

0.2

0.4

0.6

0.8

1

C
C

D
F

Est

P1

P2

(c)

Fig. 7. Evaluation results from trace-driven simulations for single VM offloading comparing the performance between the Optimal, Estimated, Random Forest
(P1), and the Multi-Layer Perceptron (P2). (a) Scalability results of Equation 11 for the optimal solution versus 1% optimality gap solutions with respect to the
min/max scheduling makespan (MS). (b) Resulting maximum makespan based on a server availability, i.e., device-to-server ratio. (c) Complement Cumulative
Distribution Function (CCDF) of the ground-truth optimality gap for baseline estimation versus prediction-based offloading methods.

2) Comparison methods and metrics: We compare the

solution to (11) when ground-truth parameters of tcis
ĵj

and

tpms
ij are known in advance (intractable in practice) with

its solutions when these parameters are either estimated or

predicted. We refer to the ground-truth-based (11) solution as

the optimal solution Opt.

To estimate the communication time tci1
ĵj

for a single VM

offloading, we use the following formula:

tci1
ĵj

=
data sizei

throughputij
, (14)

where the average throughputij value between device i and

server j is estimated using the iperf utility. We then estimate

the processing time tp11ij for a single VM offloading as follows:

tp11ij =
N

processing speed
, (15)

where N is a number of images, and processing speed is an

average face recognition speed for a specific image resolution

obtained from prior benchmark results [39]. We refer to the

solution of (11) that is estimated via (14) and (15) parameters

as the estimated solution Est.

For a single VM offloading simulation scenario, we then use

our offline ML models to predict offloading parameters, and

represent the two best pairs of predictors as (P1) and (P2).

For predicting single VM offloading parameters, we use the

RF model as (P1) and the Multi-Layer Perceptron as (P2),

respectively. Finally, for a function chain offloading simu-

lation scenario, we first use ground truth parameters of tcis
ĵj

and tpms
ij that are known from (11) as evidence of the current

intractability of the solution even for small scale offloading

settings. Using this same scenario, we also demonstrate how

our proposed heuristic has satisfactory results with regard

to scalability performance. Subsequently, we predict values

of tcis
ĵj

and tpms
ij with either RF or PA methods to show

the impact on offloading optimality (i.e., on the maximum

makespan) of offline and online learning, respectively.

The related solutions are compared using two metrics: the

(11) objective — the maximum makespan α (the lower the

better) and its optimality gap measured as a percentage (i.e.,

the maximum allowable gap between the optimal solution

of Problem (11) and the solution obtained by the solver).

We measure the optimality gap by substitution of ground-

truth offloading parameters to the final schedule produced in

order to calculate α (i.e. the maximum makespan achievable).

We then estimate the increase in percentage of the ML-

based solutions with respect to this new solution, denoted in

Figure 7 as Opt. In the general case (service function chain

offloading) Equation (11) is hard to solve even for 2 servers.

However, in the specific case of the VM-offloading model,

the combinatorial complexity reduces significantly, and we can

solve this model with 50 servers in practical (near make-span)

time.

3) Offloading performance: Our trace-driven simulations

produced the following three significant results:

(i) Predictive cyber foraging approach matches the

ground-truth optimal in 70% of cases and has an α value

no more than 3 times higher in the worst case. From our

simulations, we found that estimation based edge offloading

solutions produce significantly worse scheduling results with

respect to both the optimal ground-truth solution and our

data-driven approach for a single VM offloading as shown

in Figure 7(b). Figure 7(c) shows estimation-based offloading

only matches the optimal scheduling in 50% of cases, and

can have a maximum makespan over ten times higher in the

worst case. In comparison, our predictive approach matches

the optimal ground-truth offloading 70% of the time and

produces 2-3 times higher maximum makespan in the worst

case scenario. Both ML models perform similarly due to

the less complex single VM offloading problem (i.e., single

function versus a function chain).

(ii.a) The branch-and-bound-based solution to (11) scales

sufficiently for moderate wireless network sizes of up

to 100 nodes when only a single VM offloading and a

1% optimality gap policies are allowed. Our simulations

indicate that even when only single VM offloading is allowed,

optimally solving (11) is NP-hard and can be intractable for

moderate scale networks of 50-100 nodes. To address this

intractability, we can allow a 1% optimality gap that enables

the branch-and-bound-based solution using IBM CPLEX to

scale sufficiently for a large number of nodes. Figure 7(a)

shows that for a 100-node edge network, a solution to (11)

with a 1% optimality gap can be produced in an order of

magnitude less time than either the minimum or maximum

makespan requires. Because the optimization problem can

13

be solved in significantly less time, producing solutions will

not increase the blocking probability of our online offloading

schemes. The relatively shorter scheduling time also allows

for the scheduling middleware to begin another batch of tasks

while the previous batch is still being processed. Note however

that for the case of more than 100 nodes, (polynomial) greedy

or approximation algorithms should be used instead.

(ii.b) The proposed heuristic-based solution of (11) shows

satisfactory online performance and scales for large wire-

less edge network sizes of up to 1000 devices over 1000 edge

servers when all policies are allowed. The plots in Figure 8

show the evaluation results from our trace-driven simulations.

In Figure 8(a), the optimal solution computed using (11) is

currently intractable even for small offloading settings (i.e.,

3 devices). To address this issue, we show the evaluation

of our heuristic-based offloading approach in Figure 8(b).

Our heuristic is able to outperform by over one order of

magnitude the maximum makespan of the produced schedule

(necessary for the real-time scheduling) in terms of scheduling

time for different device-to-server ratios, and approaches it

only for the worst case scenario where only a single device-

server pair is considered. Figure 8(c) shows the optimality

assessment for our heuristic-based solution with only three

devices where we reach ≤ 20% optimality gap for 70% of the

cases and 30% of cases where multiple servers are used. We

argue that this optimality performance is sufficient due to the

overall complexity and intractability of computing the optimal

solution for the general problem. Further, this performance is

also acceptable when considering the possible scale of multi-

edge networks seen in data collection/processing scenarios

within the protest incident crowds management case study that

we considered for the purposes of this study.

(iii) Offline for moderate edge network offloading with

available historical data, online for large-scale offloading

with limited data. The plots in Figure 9 show the resulting

cumulative distribution functions (CDFs) using prediction data

generated from Cases I, II, and III described in Section VI-C.

Figure 9(a) shows the resulting CDF when using predictions

trained on the entire dataset and as expected, both models

are much more accurate when the entire dataset is available

for training. Another interesting point is that the RF model

outperforms the PA model with regard to the actual ground

truth measurements when the entire dataset is available.

Conversely, as expected from the results in Table IV, the PA

model outperforms the RF model for part of Figure 9(b) (Case

II) and all of Figure 9(c) (Case III) although both methods have

considerable error with regard to the actual ground truth (GT)

measurements when they are not trained on the entire dataset.

Therefore, we have to better evaluate the performance between

each learning method while also minimizing the error between

model predictions and the actual measurements. For this, a

much larger dataset would be required so that when models are

initially trained, the initial performance is acceptable before

model updates are allowed to take place.

VII. CONCLUSION

In this paper, we proposed a novel predictive cyber foraging

approach for providing policy-based computation offloading

for visual data processing tasks in a large-scale IoT system.

Our novelty is in the consideration of multi-edge network

scenarios allowing for a policy-based single VM or function

chain offloading strategies. We have collected ≈ 10K real-

world data traces [11]) using a pedestrian and facial recogni-

tion pipeline. We decomposed this computer vision pipeline

into microservices to run on a combination of wireless and

virtualized hardware. We then benchmarked several state-of-

the-art ML models in order to identify the trade-offs between

each model, and evaluated the models to find the most

appropriate ones for the data processing needs. Specifically,

using an in-depth analysis of the trade-offs between offline

and online learning mechanisms, we presented robust and

adaptable predictions of offloading costs for diverse edge

computing cases.

We also investigated the scalability of our approach in

a multi-edge system testbed setup by performing a set of

trace-driven simulations for a large number of devices and

machines. Our analyses of trace-driven simulations indicated

that the optimal solution for the general problem is currently

intractable when both single VM and function chain offloading

strategies are allowed. Thus, we designed a greedy heuristic

solution which can achieve satisfactory schedule makespan

outputs well within the upper bound of the maximum allow-

able makespan. We found that the combination of our pre-

dictive cyber foraging approach and our heuristic scheduling

scheme is a robust and scalable solution for a variety of edge

computing scenarios for IoT video data processing.

REFERENCES

[1] J. Gillis, P. Calyam, A. Bartels, M. Popescu, S. Barnes, J. Doty,
D. Higbee, and S. Ahmad, “Panacea’s glass: Mobile cloud framework
for communication in mass casualty disaster triage,” in 2015 3rd IEEE

International Conference on Mobile Cloud Computing, Services, and

Engineering. IEEE, 2015, pp. 128–134.

[2] G. Akpakwu et. al, “A survey on 5G networks for the Internet of Things:
Communication technologies and challenges,” IEEE Access, vol. 6, pp.
3619–3647, 2018.

[3] H. Li, et. al, “Learning iot in edge: Deep learning for the internet of
things with edge computing,” IEEE network, vol. 32, no. 1, pp. 96–101,
2018.

[4] M. Satyanarayanan et. al, “Cloudlets: at the leading edge of mobile-
cloud convergence,” in 2014 6th International Conference on Mobile

Computing, Applications and Services (MobiCASE). IEEE, 2014, pp.
1–9.

[5] F. Samie et. al, “Computation offloading and resource allocation for low-
power iot edge devices,” in Internet of Things (WF-IoT), 2016 IEEE 3rd

World Forum on. IEEE, 2016, pp. 7–12.

[6] M. Satyanarayanan et. al, “The case for vm-based cloudlets in mobile
computing,” IEEE pervasive Computing, 2009.

[7] S. Sthapit et. al, “Offloading to neighbouring nodes in smart camera
network,” in Signal Processing Conference (EUSIPCO), 2016 24th

European. IEEE, 2016, pp. 1823–1827.

[8] G. Lewis et. al, “Tactical cloudlets: Moving cloud computing to the
edge,” in Military Communications Conference (MILCOM), 2014 IEEE.
IEEE, 2014, pp. 1440–1446.

[9] L. Baresi et. al, “Empowering low-latency applications through a server-
less edge computing architecture,” in European Conference on Service-

Oriented and Cloud Computing. Springer, 2017, pp. 196–210.

[10] J. Patman et. al, “Data-driven edge computing resource scheduling for
protest crowds incident management,” in 2018 IEEE 17th International

Symposium on Network Computing and Applications (NCA). IEEE,
2018, pp. 1–8.

[11] “Edge computing data,” https://bitbucket.org/naas cloud computing
project/nm-of-controller/overview, accessed: August, 2019.

14

1 2 3

Num. of Devices

10
-1

10
0

10
1

10
2

10
3

T
im

e
[s

]

1 Server, Time

2 Servers, Time

1 Server, Max MS

2 Servers, Max MS

(a)

20 10 5 2 1

Device-to-Server Ratio

0

50

100

150

200

T
im

e
[s

]

Time

Max MS

(b)

5 10 15 20 25 30 35

Optimality Gap [%]

0

0.2

0.4

0.6

0.8

1

C
C

D
F

1 Server

2 Servers

(c)
Fig. 8. Trace-driven simulation results for a function chain offloading. (a) Eqn. 11 scalability results for the theoretical optimal solution for up to 2 servers.
(b) Scalability results of our heuristic-based solution for 1000 devices and different device-to-server ratios. (c) Complement Cumulative Distribution Function
(CCDF) for assessing optimality of our heuristic-based solution for various optimality gaps for up to 3 devices.

180 190 200 210 220 230 240

Maximum makespan [s]

0

0.2

0.4

0.6

0.8

1

C
D

F

GT

Online

Offline

(a)

150 200 250 300 350 400 450 500

Maximum makespan [s]

0

0.2

0.4

0.6

0.8

1
C

D
F

GT

Online

Offline

(b)

220 250 280 310 340 370 400

Maximum makespan [s]

0

0.2

0.4

0.6

0.8

1

C
D

F

GT

Online

Offline

(c)
Fig. 9. Cumulative Distribution Functions of the makespans produced using predictions from the online and offline models as well as the Ground Truth (GT)
values. (a) Case I: both models are allowed to be trained on the entire training dataset prior to scheduling. (b) Case II: both models are initially trained on
half of the training dataset and the online model is allowed to make subsequent updates on the remaining dataset. (c) Case III: both models are trained on
the subset of lowres images and the online model is allowed to update on incoming data from the highres dataset.

[12] D. Chemodanov et. al, “A constrained shortest path scheme for virtual
network service management,” IEEE Transactions on Network and

Service Management, vol. 16, no. 1, pp. 127–142, 2018.
[13] B. Mukherjee, R. L. Neupane, and P. Calyam, “End-to-end iot security

middleware for cloud-fog communication,” in 2017 IEEE 4th Interna-

tional Conference on Cyber Security and Cloud Computing (CSCloud).
IEEE, 2017, pp. 151–156.

[14] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE Journal on Selected Areas

in Communications, vol. 36, no. 3, pp. 587–597, 2018.
[15] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra,

“Edge cloud offloading algorithms: Issues, methods, and perspectives,”
ACM Computing Surveys (CSUR), vol. 52, no. 1, pp. 1–23, 2019.

[16] Z. Ali, L. Jiao, T. Baker, G. Abbas, Z. H. Abbas, and S. Khaf, “A
deep learning approach for energy efficient computational offloading in
mobile edge computing,” IEEE Access, vol. 7, pp. 149 623–149 633,
2019.

[17] Z. Liu et. al, “Framework for Context-Aware Computation Offloading
in Mobile Cloud Computing,” in 2016 15th International Symposium on

Parallel and Distributed Computing (ISPDC), July 2016, pp. 172–177.
[18] M. Alsheikh et. al, “Machine Learning in Wireless Sensor Networks:

Algorithms, Strategies, and Applications,” IEEE Communications Sur-

veys Tutorials, vol. 16, no. 4, pp. 1996–2018, Fourthquarter 2014.
[19] Q. Ju, et. al, “Collaborative in-network processing for internet of battery-

less things,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5184–
5195, 2019.

[20] Y. Mao, et. al, “Dynamic computation offloading for mobile-edge
computing with energy harvesting devices,” IEEE Journal on Selected

Areas in Communications, vol. 34, no. 12, pp. 3590–3605, 2016.
[21] P. Mach et. al, “Mobile Edge Computing: A Survey on Architecture

and Computation Offloading,” IEEE Communications Surveys Tutorials,
vol. 19, no. 3, pp. 1628–1656, thirdquarter 2017.

[22] P. Agrawal, et. al, “Energy-aware scheduling of distributed systems,”
IEEE Transactions on Automation Science and Engineering, vol. 11,
no. 4, pp. 1163–1175, 2014.

[23] X. Li, et. al, “Hierarchical edge caching in device-to-device aided
mobile networks: Modeling, optimization, and design,” IEEE Journal

on Selected Areas in Communications, vol. 36, no. 8, pp. 1768–1785,
2018.

[24] M. Jia, et. al, “Qos-aware task offloading in distributed cloudlets with
virtual network function services,” in Proceedings of the 20th ACM

International Conference on Modelling, Analysis and Simulation of

Wireless and Mobile Systems, 2017, pp. 109–116.

[25] S. Kosta, et. al, “Thinkair: Dynamic resource allocation and parallel
execution in the cloud for mobile code offloading,” in 2012 Proceedings

IEEE Infocom. IEEE, 2012, pp. 945–953.

[26] H. Eom et. al, “MALMOS: Machine Learning-Based Mobile Offloading
Scheduler with Online Training,” in 3rd IEEE International Conference

on Mobile Cloud Computing, Services, and Engineering, March 2015,
pp. 51–60.

[27] Y. Hao, et. al, “Smart-edge-cocaco: Ai-enabled smart edge with joint
computation, caching, and communication in heterogeneous iot,” IEEE

Network, vol. 33, no. 2, pp. 58–64, 2019.

[28] Q. Fan et. al, “Cost aware cloudlet placement for big data processing at
the edge,” in 2017 IEEE International Conference on Communications

(ICC). IEEE, 2017, pp. 1–6.

[29] A. Yousefpour et. al, “Fog computing: Towards minimizing delay in
the internet of things,” in 2017 IEEE international conference on edge

computing (EDGE). IEEE, 2017, pp. 17–24.

[30] Q. Fan et. al, “Application aware workload allocation for edge
computing-based iot,” IEEE Internet of Things Journal, vol. 5, no. 3,
pp. 2146–2153, 2018.

[31] R. Gargees et. al, “Incident-supporting visual cloud computing utiliz-
ing software-defined networking,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 27, no. 1, pp. 182–197, 2016.

[32] D. Chemodanov et. al, “Policy-based function-centric computation of-
floading for real-time drone video analytics,” in 2019 IEEE International

Symposium on Local and Metropolitan Area Networks (LANMAN).
IEEE, 2019, pp. 1–6.

[33] D. Chemodanov et al, “On qoe-oriented cloud service orchestration for
application providers,” IEEE Transactions on Services Computing, 2018.

[34] J. Moghaddam et. al, “A device-to-device communication based disaster
response network,” IEEE Transactions on Cognitive Communications

and Networking, 2018.

[35] T. Ueda et. al, “Workload characterization for microservices,” in Work-

load Characterization (IISWC), 2016 IEEE International Symposium on.
IEEE, 2016, pp. 1–10.

[36] Y. Zhao, et. al, “A survey of networking applications applying the
software defined networking concept based on machine learning,” IEEE

Access, vol. 7, pp. 95 385–95 405, 2019.

[37] J. Patman et. al, “Predictive Analytics for Fog Computing using Ma-

15

chine Learning and GENI,” in Computer Communications Workshops

(INFOCOM WKSHPS), 2017 IEEE Conference on. IEEE, 2018.

[38] M. Berman et. al, “Geni: A federated testbed for innovative network
experiments,” Computer Networks, vol. 61, pp. 5–23, 2014.

[39] Y. An et. al, “CNNs for Face Detection and Recognition,” https://github.
com/fusio-wu/CS231A project, 2017.

[40] W. Yongkang et. al, “Patch-based Probabilistic Image Quality Assess-
ment for Face Selection and Improved Video-based Face Recognition,”
in IEEE Biometrics Workshop, Computer Vision and Pattern Recognition

(CVPR) Workshops. IEEE, June 2011, pp. 81–88.

[41] D. E. King, “Dlib-ml: A Machine Learning Toolkit,” Journal of Machine

Learning Research, vol. 10, pp. 1755–1758, 2009.

[42] J. F. Kurose and K. W. Ross, Computer networking: a top-down

approach. Addison Wesley.

[43] R. Durner, et. al, “Performance study of dynamic qos management
for openflow-enabled sdn switches,” in 2015 IEEE 23rd International

Symposium on Quality of Service (IWQoS). IEEE, 2015, pp. 177–182.

[44] J. Kelleher et. al, Fundamentals of machine learning for predictive data

analytics: algorithms, worked examples, and case studies. MIT Press,
2015.

[45] C. Bishop, Pattern recognition and machine learning. springer, 2006.

[46] W. Loh, “Classification and regression trees,” Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, vol. 1, no. 1, pp. 14–
23, 2011.

[47] J. Ma et. al, “Identifying suspicious urls: an application of large-
scale online learning,” in Proceedings of the 26th annual international

conference on machine learning. ACM, 2009, pp. 681–688.

[48] K. Crammer et. al, “Online passive-aggressive algorithms,” Journal of

Machine Learning Research, vol. 7, no. Mar, pp. 551–585, 2006.

[49] G. Louppe, “Understanding random forests: From theory to practice,”
arXiv preprint arXiv:1407.7502, 2014.

[50] M. L. Pinedo, Scheduling: theory, algorithms, and systems. Springer,
2016.

[51] D. Applegate and W. Cook, “A computational study of the job-shop
scheduling problem,” ORSA Journal on computing, vol. 3, no. 2, pp.
149–156, 1991.

[52] S. I. Gass and C. M. Harris, “Encyclopedia of operations research and
management science,” Journal of the Operational Research Society,
vol. 48, no. 7, pp. 759–760, 1997.

[53] IBM, “ILOG CPLEX v.12.8. User’s Manual for CPLEX,” https://www.
ibm.com/products/ilog-cplex-optimization-studio, 2018.

[54] M. Fredman, et. al, “Fibonacci heaps and their uses in improved network
optimization algorithms,” Journal of the ACM (JACM), vol. 34, no. 3,
pp. 596–615, 1987.

[55] A. Ess et. al, “A mobile vision system for robust multi-person tracking,”
in Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE

Conference on. IEEE, 2008, pp. 1–8.

[56] X. Chen, et. al, “Efficient multi-user computation offloading for mobile-
edge cloud computing,” IEEE/ACM Transactions on Networking, vol. 24,
no. 5, pp. 2795–2808, 2015.

[57] F. Pedregosa et. al, “Scikit-learn: Machine Learning in Python,” Journal

of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[58] P. Probst and A.-L. Boulesteix, “To tune or not to tune the number of
trees in random forest,” The Journal of Machine Learning Research,
vol. 18, no. 1, pp. 6673–6690, 2017.

[59] R. Ricci, et. al, “Introducing cloudlab: Scientific infrastructure for
advancing cloud architectures and applications,” ; login:: the magazine

of USENIX & SAGE, vol. 39, no. 6, pp. 36–38, 2014.

[60] B. Chun et. al, “Clonecloud: elastic execution between mobile device
and cloud,” in Proceedings of the sixth conference on Computer systems.
ACM, 2011, pp. 301–314.

Jon Patman received his dual-BS degree in Com-
puter Science and Electronics Engineering from
Eastern New Mexico University in 2016. He recently
received his M.S. in Computer Science from the Uni-
versity of Missouri-Columbia where he worked as a
Research Assistant in the Virtualization, Multimedia
and Networking (VIMAN) lab. His current research
interests involve designing intelligent systems using
the synergy between machine learning, cloud com-
puting, and computer vision.

Dmitrii Chemodanov received his both BS and
MS degrees in applied Math and Physics from
the Samara State Aerospace University, Russia in
2012 and 2014, respectively. He received his PhD
degree in Computer Science from the University of
Missouri-Columbia in 2019 and is currently em-
ployed with Google. His current research interests
include distributed and cloud computing, network
and service management, and peer-to-peer networks.

Prasad Calyam received his MS and PhD degrees
from the Department of Electrical and Computer
Engineering at The Ohio State University in 2002
and 2007, respectively. He is currently an Associate
Professor in the Department of Electrical Engineer-
ing and Computer Science at University of Missouri-
Columbia and directs the VIMAN lab. His current
research interests include distributed and cloud com-
puting, computer networking, and cyber security. He
is a Senior Member of IEEE.

Kannappan Palaniappan received his PhD from
the University of Illinois at Urbana-Champaign, and
MS and BS degrees in Systems Design Engineering
from the University of Waterloo, Canada. He is a
Full Professor in Department of Electrical Engi-
neering and Computer Science at the University of
Missouri-Columbia. He directs the Computational
Imaging and VisAnalysis (CIVA) Lab. He is a Senior
Member of IEEE.

Claudio Sterle received his Ph.D. in Computer
Science and Automatic Control from University of
Naples Federico II in 2009. He was previously with
the Inter-university Research Centre on Enterprise
Network, Logistics, and Transportation, Montreal,
Canada. He is currently Assistant Professor in Op-
erations Research at DIETI, University Federico II
of Naples. His current research interests include
exact and heuristic solving methods for complex
combinatorial and network optimization problems.

Maurizio Boccia received his Ph.D. in Operations
Research from the University of Naples Federico
II, Naples, Italy, in 2002. He is currently an As-
sociate Professor in the Department of Electrical
Engineering and Information Technology, University
Federico II of Naples. His current research interests
include computational mixed-integer programming,
in particular he worked on network location, network
design, routing problems and scheduling problems.

