

ing an intractable problem for dynamic scale-free networks, re-

cent solutions proposed greedy approaches for forwarding (also

called geometric routing) to cope with this problem [7, 14]. Par-

ticularly, the idea is to embed dynamic scale-free networks into

the hyperbolic space of the negative curvature, i.e., assign vir-

tual coordinates to each node. Once coordinates are assigned, a

geometric routing uses a gradient descent of the distance func-

tion to deliver packets, i.e., each node forwards packets to the

next closest to the destination node [11, 14]. The resulting rout-

ing strategy requires only O∗(1) amortized space-time complex-

ity (i.e., only local information about k neighbors) stored on

nodes and introduces no communication overhead [7].1 Fig. 1

illustrates our case study: a map of US Tier1 core network is

embedded in a hyperbolic space with negative curvature, that in

turn is used by geometric routing to deliver packets without a

global topology knowledge.

In addition to routing, providers deploy different Traffic En-

gineering (TE) algorithms to optimally orchestrate their net-

work traffic under a set of physical and application constraints.

For instance, they may wish to minimize the maximum link uti-

lization to balance their network load and minimize its overall

congestion probability [15], or they can attempt to share fairly

their network capacity among known applications to increase

the overall utilization [16, 17]. For applications that pose strong

latency requirements, providers may also need to take into ac-

count time-sensitive networking constraints [18, 19, 20]. We

classify existing TE approaches that exist today into two main

types: oblivious and demands-aware. The former uses only

a global topology knowledge for the traffic optimization [15],

whereas the latter uses both global network and application de-

mands knowledge [16, 17]; all TE approaches need at least

O∗(N) space-time complexity on average to store information

used for TE optimizations. To the best of our knowledge, there

is no suitable TE solution that can operate with data of O∗(1)

space-time complexity on average (i.e., that can use only a local

information) to optimize traffic in dynamic scale-free networks.

Note that in this paper, by scale-free TE we do not intend to

propose or replace what is currently used in every Wide-Area-

Networks of the Internet, since large segments are subject to

local ISP or IXP policies [5]. However, scale-free TE can be

crucial for the next-generation Internet segments of hardly con-

trollable, large dynamic subnetworks, namely, those made by

edge [6, 13] and IoT devices [1].

Our contributions. In this paper, we propose REpulsive-BAsed

Traffic Engineering (REBATE) — the first to our knowledge

dynamic scale-free TE protocol. To optimize traffic with RE-

BATE, we utilize fundamental properties of hyperbolic metric

spaces2 as well as dual principles of the optimal demands-aware

TE. Particularly, we use the theory of potentials [21] to build a

metric whose gradient descent allows to (i) deliver packets and

(ii) preserve the dual feasibility of the optimal TE in a best-

1Note that similarly to conventional routing approaches the size of coordi-

nates (or size of node addresses) is considered to be fixed.
2Note that maintaining hyperbolic coordinates in presence of network dy-

namics has been studied in prior works [12]. Thus, finding the best such tech-

nique to use with REBATE is out of scope for this paper.

effort manner. Intuitively, we use potential fields to ‘repeal’

traffic away from routes that may unnecessarily make TE per-

formance worse, e.g., unnecessarily increase the network max-

imum link utilization.

Furthermore, using an actual US Tier-1 core network case

study in our trace-driven numerical simulations (see Fig. 1), we

found how our REBATE is superior to a traffic steering tech-

nique that utilizes commonly adopted Gravity Pressure Greedy

Forwarding (GPGF) algorithm [7, 14].3 Particularly, REBATE

can reduce the maximum link utilization in the network up to

25% when using the hyperbolic mapping coordinate assign-

ment technique [11], and gain up to 20% of such reduction

when greedy embedding assignment technique is used instead [14].

Despite our REBATE performs worse compared to both demands-

aware and (common) oblivious TE, we think that our results are

promising and should pave the way for more efficient TE in fu-

ture networks with a dynamic scale-free nature.

Paper organization. The rest of the paper is organized as fol-

lows: In Section 2, we discuss related work. Section 3 outlines

TE problem and motivation. Section 4 describes our REBATE

model, and in Section 5, we build on this model to propose

a practical REBATE protocol. Section 6 presents our perfor-

mance evaluation results that show pros and cons of our pro-

posed approach. Section 7 concludes the paper.

2. Related Work

The overall TE optimization problem is to assign flows with

specified demands to a set of paths within a given capacitated

network while optimizing some function, e.g., minimizing the

maximum link utilization. This problem is known in optimiza-

tion literature as the multi-commodity flow problem and can

be solved in polynomial time using linear programming (LP) if

flows are splittable (i.e., can be assigned to multiple paths) [22].

In this paper, we roughly divide all approaches to demands-

aware TE (if flow demands are known) and oblivious TE (if

such demands are unknown).

Demands-aware TE: Due to practical hardware granularity lim-

itations, flows have finite quantization constraints, and thus the

NP-hard integer programming has to be used to solve the multi-

commodity flow problem [16, 17]. To avoid potential complex-

ity intractabilities, the authors in [16] have proposed a greedy

algorithm that selects paths taking into account practical flow

quantization granularities. Their algorithm is 25x faster than

corresponding LP solution with a good optimality performance.

SWAN [17] instead reduces a feasible space of the general multi-

commodity flow problem by decomposing it to a set of k-shortest

path candidates for each specified flow. In our evaluation, we

use (best possible) LP-based demands-aware TE algorithm for

the general multi-commodity flow problem assuming no flow

quantization constraints to achieve the maximum link utiliza-

tion lower-bound.

3Note that only geometric routing-based traffic steering solutions can be cur-

rently applied in dynamic scale-free networks. Thus, in our simulations (avail-

able at https://github.com/duman190/rebate), we omit compari-

son with other common TE approaches [15, 16, 17] and only use (lower-bound)

demands-aware TE solution to access optimality performance of REBATE.

2

Table 1: REBATE comparison with relevant TE approaches.

TE

Scheme: Demands- Need global Space-time

aware network knowledge complexity

B4 [16] 3 3 O∗(N)

SWAN [17] 3 3 O∗(N)

COYOTE [15] 7 3 O∗(N)

SMORE [23] 7 3 O∗(N)

PATHBOOK [24] 7 3 O∗(N)

REBATE 7 7 O∗(1)

Oblivious TE: In contrast to demands-aware TE, oblivious TE

has no a priori knowledge on flow demands which is common

for most Internet providers today [23]. The first remarkable re-

sult in the oblivious routing has been shown by Räcke [25] —

there exists an oblivious routing scheme with the worst conges-

tion ratio ofΩ(logN) factor from the optimum (demands-aware)

routing. To further improve traffic optimization, recent oblivi-

ous TE scheme COYOTE [15] takes directed acyclic graphs of

the network (that requires at least O(N) space-time complexity)

constructed at each node as an input to compute path weights

with the use of geometric programming. To further overcome

potential expressiveness limitations of existing protocols such

as Open Shortest Path First (commonly used for Equal-Cost

Multi-Path forwarding), COYOTE inserts ‘lies’ to adjust their

path weights. To find paths for their subsequent weights op-

timization, the recent semi-oblivious TE scheme SMORE [23]

uses both a special ‘routing tree’ structure and the network graph.

Thus, SMORE similarly to COYOTE needs at least O(N) space-

time complexity to optimize traffic. Another recent oblivious

TE scheme in [24] aims to generate a ‘pathbook’ – a small set

of paths which minimize routing costs. Specifically, the au-

thors use a multi-commodity flow problem to find pathbooks

for all commodities, and hence, their solution also requires at

least O(N) space-time complexity.

We found no TE approach with amortized O∗(1) space-time

complexity that can be used in dynamic scale-free networks. In

this paper, we propose the first to our knowledge TE protocol

called REBATE that operates only with a local network infor-

mation and can be used in the next-generation Internet segments

of dynamic scale-free networks.

Geometric routing in hyperbolic metric spaces. Compass

routing is the first known geometric routing approach where

each node forwards packets to the closest to their destination

neighbor. As it is subject to the local minimum problem —

packets can stuck at nodes that have no closer to the destination

neighbors than themselves [26] — several stateless and stateful

recovery approaches have been proposed.

Stateful routing: In stateful routing, some network knowledge

is used to recover packets from local minima. Thus, the au-

thors in [27, 28] propose Greedy Distributed Spanning Tree

Routing which requires a distributed spanning tree construc-

tion (of O∗(logN) space-time complexity on average) to guar-

antee delivery and recover from a local minimum. More re-

cent works [29, 30, 31] show that spanning trees are sensitive to

network dynamic topologies and mobility, e.g., within IoT net-

works. Thus, they can be subject to large communication costs

Table 2: REBATE comparison with relevant geometric routing approaches.

Geometric routing

Protocol: Relies on Space-time Costs of

network state complexity communication

GDSTR [27, 28] 3 O∗(logN) O(N)

MDT [29] 3 O∗(1) O(N)

WEAVE [30] 3 O∗(1) ?

GPGF [14] 7 O∗(1) N/A

REBATE 7 O∗(1) N/A

?: difficult to bound without considering topology dynamics (failures/mobility).

of O(N) [31]. More recent geometric routing approaches such

as MDT and WEAVE [29, 30] can cope with topology dynam-

ics to some extent. For example MDT constructs Delaunay tri-

angulation (DT) graphs to make nodes aware of their Delaunay

neighbors (with amortized O∗(1) space-time complexity) for a

local minimum recovery. In contrast to MDT, WEAVE protocol

relies on partial paths (of amortized O∗(1) space-time complex-

ity) stored in packet headers whereas learns them when greedy

forwarding packets. The down-side of these techniques is that

the maintenance of either Delaunay neighbors or partial routing

tables can be subject to large communication costs [29]. For in-

stance, MDT’s per node communication cost can be bounded as

O(N) - the maximum length of the loop-free path [29]. At the

same time, the authors of WEAVE [30] do not expose such costs

which are hard to bound without considering different topology

dynamics such as failures and mobility. Finally, neither MDT

nor WEAVE has been previously applied for hyperbolic metric

spaces.

Stateless routing: In contrast to stateful routing, stateless rout-

ing does not rely on any network knowledge (i.e., has O∗(1)

space-time complexity on average) for packets recovery. One

of the first stateless geometric routing solution which guaran-

tees delivery was Greedy Perimeter Stateless Routing [32]. To

recover from a local minimum, this protocol uses face routing

which requires strong assumptions such as unit disk and planar

graphs. This however cannot be guaranteed in hyperbolic met-

ric spaces [33]. To avoid packets recovery, Kleinberg et al. [33]

use spanning d-regular trees for greedy embedding, i.e., for an

assignment of hyperbolic space coordinates to greedy forward

a packet without facing a local minimum. The authors in [14]

extend the work of Kleinberg et al. [33] and propose the greedy

embedding scheme for general irregular trees. Moreover, they

show that due to inaccurate greedy embedding caused by topol-

ogy dynamics, packets can still get stuck in local minima. To

this aim, they propose GPGF protocol which is shown to have

guaranteed packet delivery [14]. To recover from local minima,

GPGF counts the number of node visits (storing that informa-

tion in packet headers) to press packets from local minima until

greedy forwarding can resume. The key idea beyond pressure

recovery is a greedy forwarding gradient descent property —

once a packet reaches a location closer to the destination, there

is no way how the packet can be forwarded back to the previous

location of a local minimum.

Although the authors in [31] indicate that such a recov-

ery ‘imposes a large overhead to the packets header especially

in large-scale topologies’, we found no proof to support this

3

[X-Y] Flow,
5 Gbps

Unfeasible

[B-Y] Flow,
2 Gbps

A
5

10

10

10

5

5

10

10

10

5

5

10

10

10

5

Feasible Optimal

A

XX

B

Y Y

B B

A

XY

Figure 2: Illustrative example of a TE flow assignment to paths (numbers de-

note link capacities in Gbps) while minimizing the maximum link utilization:

(left) an unfeasible flow assignment due to a link B−Y capacity violation; (cen-

ter) a feasible but suboptimal flow assignment due to the link X − A maximum

link utilization of 1; (right) the feasible and optimal flow assignment with the

minimum possible maximum link utilization of 0.5.

argument in the literature. Thus, similarly to prior work [7,

14] we use GPGF to steer traffic in scale-free networks em-

bedded in hyperbolic metric spaces and compare its optimiza-

tion performance with REBATE. Finally, we also use GPGF

pressure mode within our REBATE protocol to recover packets

from local minima and propose a hash function that identifies

the uniqueness of visited nodes to reduce the protocol header

size. By using trace-driven simulations, we assess this header

size under practical Time-To-Leave (TTL) constraints and show

how it does not introduce a significant overhead.

3. Traffic Engineering Problem and Motivation

In this section, we give an overview of our Traffic Engineer-

ing (TE) problem. We then define what we mean by optimal TE

and how we will try to achieve it with our REBATE approach.

Finally, we discuss a few challenges in TE for scale-free net-

works, and how duality theory can help overcoming some of

them.

3.1. Traffic Optimization Objective and Example

Today, TE is especially beneficial for providers who con-

trols both network infrastructure and applications that use this

network. For instance, large companies such as Google and Mi-

crosoft use TE techniques to fairly share their inter-datacenter

network among their services to drive their link utilization to

near 100% [16, 17]. In this paper, we focus however on a

more traditional goal of minimizing the maximum link utiliza-

tion to better balance the network load and minimize a conges-

tion probability common for oblivious TE [15, 23].

Fig. 2 illustrates an example of a traffic optimization process

that assigns 2 flows with specified demands to a set of path in

the capacitated network of 4 nodes. The goal is to minimize

the maximum link utilization, and in the first case (see Fig. 2,

left) we can see an unfeasible flow assignment due to capacity

violations of B − Y link. In the second case (see Fig. 2, center),

the flow assignment is now feasible but is still suboptimal with

the maximum link X − A utilization of 1. Finally, the third case

(see Fig. 2, right) illustrates the optimal flow assignment where

the maximum link utilization of 0.5 is achieved.

3.2. Optimal demands-aware TE Problem

The problem of assigning flows with specified demands on

top of the capacitated network is known as the multi-commodity

flow problem. It can be formulated as a linear program assum-

ing that flows are splittable and can be assigned to multiple

paths. [22]. Formally, to minimize the maximum link utiliza-

tion we solve the below linear program which we denote as

primal (P).

Problem 1 (P). Given a network graph G = (N, L), where N

is set of nodes and L is the set of links, and a set of flows F,

let f st
i j

be a positive variable denoting an amount of st flow with

demand Dst on the link i j that has capacity Ci j, and let α be a

positive variable denoting the maximum link utilization, the pri-

mal (P) TE optimization problem can be formulated as follows:

minimize α (1)

subject to

Link Utilization Constraints:

α −
∑

st∈F

f st
i j /Ci j ≥ 0,∀i j ∈ L (2)

Flow Conservation Constraints:

∑

k∈N

f st
ik −

∑

l∈N

f st
li =



























Dst, i = s

0, i < {s, t}

−Dst, i = t

,∀i ∈ N, st ∈ F (3)

where symbols and notations of sets, parameters and variables

are summarized in Table 3.

Note that the optimal solution of P with α ≥ 1 means that no

feasible solution exists in practical settings.

3.3. Scale-Free TE Challenges and Dual Problem Relevance

While observing TE primal problem, one can notice that

its solution requires global knowledge of the network graph

(G = G(N, L)) as well as of the flow demands (Dst) which

requires application awareness [16, 17]. Thus, solving P for

dynamic scale-free TE is intractable due to the fact that the

latter operates on the knowledge of O(1) size. For example,

each node can use only local information of one-hop neighbors

to make routing decisions due to scale-free networking limita-

tions. As a result, even without an application demands aware-

ness, we cannot store the entire network graph on a single node,

i.e., we cannot use oblivious TE [15] too. That is what makes

the dynamic scale-free TE problem unique.

To solve the dynamic scale-free TE problem, we aim to ben-

efit from knowledge mined from hyperbolic metric spaces to

route packets. Our goal is to use this knowledge to behave sim-

ilarly to optimizers that solve the demands-aware TE problem

while routing packets. However, our dynamic scale-free TE

protocol cannot behave as optimizers (e.g., network simplex)

that solve P. The optimizer starts improving solutions from a

feasible point. Thus, when solving P we can try to mimic its be-

havior only when all flow demands are met by redirecting them

through better alternative paths. This procedure can be hard

due to the scale-free networking nature — we may never get to

a state in which all flow demands are satisfied. Fortunately, we

can solve P by solving its dual problem (D) as follows:

4

Table 3: Symbols and Notations

Sets:

N , Set of network graph nodes

L , Set of network graph links

F , Set of network flows

Variables:

α , Positive variable that denotes the maximum link utilization

f st
i j

, Positive variable that denotes an amount of st flow on the link

i j

yi j , Dual positive variable that corresponds to the primal link uti-

lization constraints (see Eq, 2)

wst
i

, Dual unrestricted variable that corresponds to the primal flow

conservation constraints (see Eq, 3)
Parameters:

Ci j , Link i j capacity

Dst , Demand of st flow

Problem 2 (D). Given a network graph G = (N, L), where N

is set of nodes and L is the set of links and a set of flows F, let

yi j be a positive dual variable corresponding to the primal link

utilization constraint (see Eq. 2), and let wst
i

be an unrestricted

dual variable corresponding to the primal flow conservation

constraint (see Eq. 3), the dual (D) TE optimization problem

can be formulated as follows:

maximizey,w

∑

st∈F

Dst(wst
s − wst

t) (4)

subject to

Dual Utilization Constraint:
∑

i j∈L

yi j ≤ 1 (5)

Dual Node Constraints:

wst
i − wst

j ≤ yi j/Ci j, ∀st ∈ F, i j ∈ L (6)

where symbols and notations of sets, parameters and variables

are summarized in Table 3.

To solve D we can start from a feasible solution when all

dual variables are initialized to zero, i.e., when none of the cor-

responding flow packets are sent. Our goal is to route packets

while trying to satisfy flow demands and preserve feasibility of

problem D. If we can do so, than, once all flow demands are

satisfied, we can reach P optimality due to the strong duality

theorem — at optimality P=D [34].

In the next section, we build a metric whose gradient de-

scent allows to forward packets in a way that (i) delivers them to

their destinations and (ii) preserves feasibility of the dual prob-

lem D in a best-effort manner.

4. REBATE: Model

In this section, we build our REBATE approach for scale-

free TE based on the duality principles presented in the pre-

vious section. To this end, we first consider two common hy-

perbolic coordinate assignment techniques for dynamic scale-

free networks [7, 14, 11]. Our goal is to understand to what

extent greedy forwarding in hyperbolic metric spaces matches

with a TE optimization process. Based on duality principles and

hyperbolic space properties we then derive a metric to deliver

packets and preserve D feasibility.

4.1. Hyperbolic Properties and Coordinates Assignment

It has been shown that to route a packet without global

topology knowledge, it is sufficient for each node to know merely

its own and all its neighbors coordinates [7, 14] (greedy for-

warding or geometric routing). Note that this information has

O(1) space complexity. Once a packet with the destination co-

ordinates arrives, it is forwarded to the neighbor closest to the

destination. If no such neighbor exists, we say that the node

faces the local minimum and apply corresponding actions, e.g.,

drop the packet. To assign coordinates to each node in the net-

work so that no local minima exist, a greedy embedding can

be used [7, 14, 33]. The greedy embedding can be defined as

follows [33]:

Definition 1 (greedy embedding). Given a network graph G(N)

where N is a set of nodes, and given a metric space (M, d), the

greedy embedding is a mapping function E : N → M where for

any distinct pair of nodes (u, v), node u has a neighbor l such

that d(E(l),E(v)) < d(E(u),E(v)).

It has been shown that 2-D coordinates (i.e., of R2 plane)

are sufficient for greedy embedding if the hyperbolic space of

a negative curvature is used. As in prior work [14, 33], we use

the Poincaré Disk model to construct the R
2 hyperbolic plane.

In this model, the coordinates are represented by complex num-

bers from a set {zi ∈ C : |zi| ≤ 1}. Points located at the Poincaré

Disk border |zi| = 1 are said to be located at ∞. The distance

between any two arbitrary points zi and z j can be found as fol-

lowing:

d(i, j) = cosh−1

(

1 +
2|zi − z j|

2

(1 + |zi|
2)(1 + |z j|

2)

)

(7)

Greedy Embedding Assignment Technique. To greedy em-

bed an arbitrary network in the Poincaré Disk hyperbolic plane,

existing solutions (e.g., in [14, 33]) require a (distributed) con-

struction of a spanning tree. In this paper, we use a greedy

embedding algorithm proposed in [14] to embed networks, i.e.,

assign virtual hyperbolic coordinates zi to each node i. Fig. 3

shows an example of greedy embedding of a simple tree-like

network (that comprises 15 nodes) to the Poincaré Disk hyper-

bolic plane. Note that if network dynamics (e.g., failures/mobility)

affect an underlying spanning tree, the greedy embedding prop-

erty (see Def 1) is not guaranteed [14].

Hyperbolic Mapping by Replaying Network Growth. Al-

though the above coordinates assignment strategy ensures that

greedy embedding property (see Def. 1) is satisfied, in practice,

if tree links of the underlying spanning tree fail, the property

defined in Def. 1 is violated [14]. Alternatively, hyperbolic co-

ordinates zi can be assigned to each node i by replaying the

network growth [11]. This technique is called ‘hyperbolic map-

ping’ and has the goal of trying to place nodes with higher node

degree closer to the origin of the hyperbolic coordinate system.

In our evaluation, we use this hyperbolic mapping technique on

real traces of the US Tier1 network (see Fig. 1b).

Space complexity of hyperbolic coordinates assignment tech-

niques. The core network requires at least O(N) space com-

plexity for its initial either greedy embedding or hyperbolic

5

positive counterpart contribution to ϕst
i

. We estimate the best

approximate of n empirically in Section 6.

We only need to derive Q before we are ready to engineer

our REBATE protocol. To this end, we need to satisfy the fol-

lowing condition ϕst
j
− ϕst

i
≤ yi j/Ci j (see Eq. 6). To this aim,

we bound with γ = max
i j∈E
{yi j/Ci j} the maximum possible dif-

ference of a potential function. Fig. 4b illustrates this situation

when node j is located at the minimum possible distance from

the origin o (i.e., Rmin), and node i is located on the radius R

of the maximum link utilization zone defined in the previous

subsection. Moreover, both nodes are located on the opposite

side of the diameter w.r.t. the destination t. By substitution

of Eq. 9 to the dual node constraint of D in Eq. 6, we have
Q

Rn
min

−
Q

Rn = γ +
1

Rmin+d(o,t)
− 1

R+d(o,t)
. Q can then be computed as

following:

Q =
Rn

min
Rn(γ(Rmin + d(o, t))(R + d(o, t)) + R − Rmin)

(Rn − Rn
min

)(Rmin + d(o, t))(R + d(o, t))
(11)

where the maximum link utilization zone radius can be com-

puted as R = α(Rmax − Rmin) + Rmin due to α ∝ f (R). Finally, as

at optimality (when P = D) we have α =
∑

st∈F

Dst((wst
s − wst

i
) +

(wst
i
−...−wst

j
)+(wst

j
−wst

t)), we can approximate γ ≈ α/min
st∈F
{Dst},

where min
st∈F
{Dst} can be assumed a unitary flow due to the lack

of the flow demand-awareness. As a result, when α→ 0, γ → 0

and R→ 0, and hence Q→ 0.

4.3. Examples of ‘Attraction’ and ‘Repulsion’ Cases

To demonstrate the difference between attraction and re-

pulsion cases, let us consider our greedy embedding example

of a simple tree-like network in Fig. 3. When we greedy for-

ward a packet using a potential in the attraction case, we try

only to deliver it to the destination, i.e., preserve P feasibility

in a best-effort manner. As a result, the packet is routed along

the shortest path in terms of hyperbolic distance (see Eq. 7) and

traverses nodes located in the maximum link utilization zone

(closer to the root node) as shown in Fig 5a. When we greedy

forward this packet using a potential in the repulsion case in-

stead, we now try to also preserve D feasibility in a best-effort

manner by repealing the packet away from the origin as defined

by packet’s positive potential counterpart (see Eq. 10). The re-

sulting packet’s route avoids nodes in the (current) maximum

link utilization zone by traversing nodes located further away

from the root as shown in Fig 5b.

In the next section, we use our REBATE model to propose

a practical protocol that uses both potentials from Eq. 8 and 9,

referred to as ‘attractive’ and ‘repulsive’ based on their perfor-

mance, respectively. We remark that the former aims only at de-

livering packets to preserve P feasibility (i), whereas the latter

aims at delivering packets (i) while also preserving D feasibility

(ii) in a best-effort manner.

5. REBATE: Protocol

In this section, we first outline our REBATE protocol algo-

rithm and discuss its practical implications. We then describe

its packet header.

max util. link regular link path link

(a) Attraction Case

(b) Repulsion Case

Figure 5: Illustration of a packet forwarding within a greedy embedded net-

work example (see Fig. 3) in both attraction (a) and repulsion (b) cases: by

greedy forwarding packets in the attraction case, we aim only to deliver them

to their destinations, and route packets among the shortest (hyperbolic distance)

paths; by greedy forwarding packets in the repulsion case, we now try to also

preserve D feasibility (in a best-effort manner) by repealing packets away from

the origin to avoid nodes in the maximum link utilization zone.

5.1. Algorithm

Note how gradient descent of both ‘attractive’ and ‘repul-

sive’ potentials (see Eq. 8 and 9) is subject to the local minimum

problem similar to the gradient descent of d(i, t) distance func-

tion [14]. As a result, packets may not be delivered to the des-

tination. To maximize a chance of packets delivery in dynamic

scale-free networks, we propose a solution that alternates pack-

ets forwarding using both ‘repulsive’ and ‘attractive’ potentials.

We remark that greedy forwarding using the ‘repulsive’ poten-

tial tries to deliver packets (i) while preserving D feasibility

(ii), whereas greedy forwarding based on the ‘attractive’ po-

tential aims to achieve only (i). Finally, we also add a greedy

forwarding in ‘pressure’ mode, as proposed in [14], to recover

packets that are simultaneously stuck in local minima of both

‘repulsive’ and ‘attractive’ modes.

Algorithm 1 outlines the REBATE greedy forwarding logic:

upon receiving a packet Pst going from source s to destination t

to be forwarded at node i, i first retrieves the current maximum

link utilization α (line 2). We later discuss a simple technique

that can avoid the need of using a global α knowledge. Once

α is retrieved, node i checks if Pst should proceed further in

‘repulsive’, ‘attractive’ or ‘pressure’ mode. To do so, node i

first checks that the best known potential in ‘repulsive’ mode

attached to packet Pst ϕrep is greater than ϕst
i

, potential of node i

(line 4). This step is important to ensure that packets progress in

‘repulsive’ mode towards the destination without the possibility

of returning to previously encountered local minima. Thus, if

Pst ϕrep > ϕ
st
i

, i attaches its ‘repulsive’ potential to the packet

header (line 5) and computes neighbors j ∈ Nbrs potential ϕst
j

(line 6) via Eq. 9.

7

If no neighbor j has a potential ϕst
j
< ϕst

i
, i switches to

the ‘attractive’ mode, where it computes its own (ϕst
i

) and all

neighbors j ∈ Nbrs’s potential (ϕst
j
) using Eq. 8 (line 12). If

node i in ‘attractive’ mode is unavailable to find next hop j, i

also saves the last best known potential of the ‘attractive’ mode

to the ϕst attr of the packet header (line 13). This step is also

needed to ensure progress in ‘attractive’ mode. When both ‘re-

pulsive’ and ‘attractive’ forwarding modes fail to find the next

hop j, REBATE switches to ‘pressure’ mode (line 20). The key

idea behind recovery in ‘pressure’ mode is to forward packet to

j neighbor with minimal potential computed via Eq. 9 among

the least visited neighbors (line 23).

Algorithm 1: REBATE

/* Upon receiving a packet Pst at node i */

1 if i , dst then

2 retrieve α

3 next ← NIL

4 if Pst ϕrep > ϕ
st
i

(using Eq. 9) then

/* repulsive mode */

5 P ϕrep ← ϕ
st
i

(using Eq. 9)

6 j← argmin
j∈Nbrs(i)

ϕst
j

(using Eq. 9)

7 if ϕst
j
< ϕst

i
then

8 next ← j

9 f orward(Pst , next)

10 end

11 end

12 if next == NIL and P ϕattr > ϕ
st
i

(using Eq. 8) then

/* attractive mode */

13 P ϕattr ← ϕ
st
i

(using Eq. 8)

14 j← argmin
j∈Nbrs(i)

ϕst
j

(using Eq. 8)

15 if ϕst
j
< ϕst

i
then

16 next ← j

17 f orward(Pst , next)

18 end

19 end

20 if next == NIL then

/* pressure mode */

21 visitsmin ← min
j∈Nbrs(i)

Pst visits(j)

22 Candidates← { j ∈ Nbrs(i) and Pst visits(j) == visitsmin}

23 j← argmin
j∈Candidates

ϕst
j

(using Eq. 9)

24 Pst visits(j)← Pst visits(j) + 1

25 next ← j

26 f orward(P, next)

27 end

28 else

29 terminate

30 end

5.2. Global vs Local α Knowledge

On one hand, we need the maximum link utilization α (see

Alg. 1, line 2) to calculate the intensity of the repulsion field

(see Eq. 10 and 11). On the other hand, we need to repeal

only those flows that contributes to the maximum link utiliza-

tion based on D node constraints (see Eq. 6), i.e., flows that

traverse edges with yi j > 0. Thus, we hypothesis that repealing

all flows based on the ‘global’ maximum link utilization α can

lead to a worse satisfaction of D feasibility. Instead, we aim to

calculate the intensity of the repulsion field based on the local

0 1000 2000 3000 4000 5000

num. of nodes

2

4

6

8

10

12

co
o

rd
in

at
e

si
ze

 [
B

]

loglogN

logN

GE

Figure 6: Minimal coordinate sizes for GE of both real US Tier-1 and generated

based on Waxman model networks.

α awareness of the flow. Intuitively, if a flow contributes to the

actual (i.e., global) α, it will be aware of it making its repulsion

field stronger, or weaker otherwise.

We propose a simple scheme on how to use a local knowl-

edge of α stored on packet Pst which is forwarded from s to t.

In particular, we store two additional values α cur and α next.

During Pst forwarding each node i uses α = α cur, and updates

α next if one of its adjacent links has higher utilization than

α next. The idea is to benefit from common two-way commu-

nications (e.g., transport protocols like TCP). At the beginning,

node s decides on α cur based on the last received information

from t (e.g., upon receiving an ACK message). To this end, s

computes α cur as follows:

α cur =















α next, if α next ≥ α cur

λα next + (1 − λ)α cur, otherwise
(12)

where λ ∈ [0, 1] represents a network “cold-down” property,

i.e., the larger is λ, the faster the maximum link utilization of

the network diminishes.

In the evaluation section, we empirically validate our intu-

ition on a local α knowledge, i.e., we show how such knowledge

(see Eq. 12) is sufficient for our REBATE.

5.3. Complexity Analysis

In the worst case scenario, Algorithm 1 proceeds exactly

once in all three modes: ‘attractive’, ‘repulsive’ and ‘pressure’

modes. The asymptotic computational complexity of each mode

is O(k), where k is an average node degree. This is because each

node estimates its own potential ϕst
i

and ϕst
j

potential of all of

its neighbors to make a forwarding decision. Thus, Algorithm 1

has the following complexity:

O(3 · k) = O(k). (13)

Note that for networks that features a scale-free nature, k on

average is of constant size O∗(1). Hence, REBATE has amor-

tized O∗(1) space-time complexity based on Equation 13 simi-

lar to common hyperbolic geometric routing solutions [7]. At

the same time, for the arbitrary graphs k (and hence the RE-

BATE space-time complexity) is O(N) inthe worst case.

Aside from space complexity due to number of entries stored

on routers, there is another potential problem related to the size

of coordinates. It is obvious that with the increase of the net-

work size the precision of coordinates {zi ∈ C : |zi| ≤ 1}

8

should increase too to make sure all coordinates are unique.

Figure 6 illustrates such coordinate size dependency on the net-

work size when both real US Tier-1 and generated based on

Waxman model [35] networks are greedy embedded. GE can

be considered as less efficient hyperbolic coordinates assign-

ment technique in terms of required coordinates precision. This

is due to the fact that chosen GE method [14] uses only the half

Poincare plane and rapidly pushes node coordinates closer to

|zi| = 1 boundary (e.g., see Figure 3b). However, we can see

how even in this case node coordinates are in between O(logN)

and O(loglogN) size. As designing the best hyperbolic coor-

dinate assignment technique is out of scope for this paper, we

just fixed 6 bytes for each real and imaginary parts of zi to al-

low unique hyperbolic coordinate assignment for networks with

≈ 106 to 1020 nodes depending on the network topology. Note

that when network node address/coordinates are fixed (as in

conventional routing or TE), REBATE space-time complexity

doesn’t depend on it.

5.4. Protocol

Having both REBATE model and its algorithm discussed,

we now describe REBATE protocol and its header. Our pro-

tocol is supposed to operate on Layer 2.5 w.r.t. OSI model —

common for non-IP routing solutions [36, 37]. Thus, routers

check if REBATE can be used first, and if not, they forward

packets using standard IP techniques. Each node i has to know

its own coordinate (zi) as well as all its neighbors’ coordinates.

In addition to that, our REBATE algorithm needs knowledge of

both the minimum (Rmin) and the maximum (Rmax) hyperbolic

radiuses of the embedded core network. The above informa-

tion is static and requires no communication costs to update. It

can be stored on each node during its embedding process, e.g.,

when node retrieves its coordinate from the default router [7].

All other required information needs to be stored in the RE-

BATE packet header itself.

Firstly, our REBATE header needs to store source and desti-

nation coordinates. We remark that each node i has a hyperbolic

coordinate represented by a complex number zi ∈ C : |zi| ≤ 1.

To store this information we can use 6 bytes to represent the

real (real(zi)) and imagery (imag(zi)) parts of the complex num-

ber zi as discussed in Section 5.3. Hence, we need 12 bytes to

store the source (zsrc) and 12 bytes to store the destination (zdst)

coordinates. Note that such information is common for all geo-

metric routing protocols.

Secondly, we need to store REBATE-specific information:

we need 4 bytes (regular float precision) to store both (known)

potentials in attractive (ϕattr) and repulsive (ϕrep) modes com-

puted via Eq. 8 and 9, respectively; we also need 2 bytes (half

precision) to store the current maximum link utilization (αcur)

and the next proposed maximum link utilization (αnext) used to

retrieve α (see Eq. 12).

Finally, we need to store GPGF-specific information to track

number of the unique node visits during a packet recovery from

local minima in the pressure mode [14]. Each node unique-

ness can be identified by its coordinate zi (16 byte information).

Alternatively, one can use IPv6 (128 bit) or MAC (48 bit) ad-

dresses to this aim. However, all such information can be ex-

pensive to store within a dynamic part of the header [31]. To

avoid potential intractabilities caused by a large size of the dy-

namic header part, we propose a simple hash function for the

node i coordinate zi:

hash (i) = 2
N
2 · round

(

(2
N
2 − 1) ·

d(o, i) − Rmin

Rmax − Rmin

)

+ round

(

(2
N
2 − 1) ·

φi

2π

)

(14)

where N is a number of bits of the hash key, and φi is an angular

coordinate of zi complex number computed as:

φi =















tan−1(
imag(zi)

real(zi)
), real(zi) ≥ 0

tan−1(
imag(zi)

real(zi)
) + π, otherwise

(15)

For example, if we hash node i with 8-bit keys, Eq. 14 produces

integer numbers from 0 to 255. Similarly, Eq. 14 produces in-

teger numbers from 0 to 65535 for 16-bit keys.

The resulting REBATE packet header is shown in Table 4,

where n is a number of unique nodes visited in the pressure

mode, and N is a number of bits of the hash key.

Table 4: REBATE Packet Header.

src z dst z repulsive attractive α α hash keys # of

coord. coord. potential potential current next of nodes visits

2 · 6 B 2 · 6 B 4 B 4 B 2 B 2 B n · N/23 B n B

We conclude that, if REBATE packet does not enter the

pressure mode (does not face a local minimum), its static packet

header size is equal to (12+4+2) ·2 = 36 bytes. In the next, we

show how the dynamic REBATE header part does not introduce

intractabilities under practical TTL and when hash functions are

used. We also show how our hash function performance is suf-

ficient for 16-bit keys.

6. Performance Evaluation

In this section, we establish the practicality of our REBATE

approach by evaluating its performance using traces from the

US Tier-1 core network [38, 39]. 4

Simulation Settings. Our Java-based simulations are run on

an Ubuntu 16.04 OS GNU/Linux x86 64 machine with an Intel

Core i5 2.4 GHz CPU and 8GB RAM. We use both Internet

Topology Zoo [38] and Atlas [39] topology databases to re-

create the US Tier-1 providers’ network as shown in Fig. 1a.

We assume that this network has 10 Gbps capacity links. We

also assume that each US Tier-1 (i.e., core) network node has

attached from 10 to 1000 IoT devices that generate from 100 to

1000 concurrent flows. Each flow has a demand ranging from

10 Mbps to 1 Gbps and following a Pareto distribution — 20%

of the flows have demand closer to 1 Gbps whereas the rest 80%

have demand near 10 Mbps. This flow demand distribution

4The source code of our trace-driven simulations is publicly available at

https://github.com/duman190/rebate.

9

0.5 0.75 1 1.25 1.5

n (attenuation order)

0

3

6

9

12

m
a
x

 u
ti

l
re

d
u

c
ti

o
n

[%
]

G,HM

L,HM

G,GE

L,GE

(a)

0 0.25 0.5 0.75 1

0

0.5

1

1.5

2

2.5

m
a
x
 u

ti
l.

 i
n
c
re

a
se

[%
]

HM

GE

(b)

16 32 64 128 256

60

120

240

576

1500

h
e
a
d
e
r

si
z
e
 [

B
]

max IP header

2xIP header

MTU (Ethernet v2)

MTU (Default IP)

IPv6,128bit

MAC,48bit

hash,16bit

hash,8bit

(c)

0 1 2 3 4 5 6 7 8

num. of hash collisions

0

0.01

0.05

0.25

1

c
c
d
f

8-bit

12-bit

16-bit

(d)

Figure 7: (a) REBATE percentage reduction of the maximum link utilization α for 100 concurrent flows and different attenuation orders n w.r.t. its performance

under n = 0.5 and the global (G) α knowledge: REBATE performance improves under a local (L) α knowledge, as less unnecessary packets are repealed from

the origin. (b) Local REBATE performance for 100 concurrent flows: REBATE is not sensitive to either greedy embedded (GE) or hyperbolically mapped (HM)

network cold-down property λ, but properly adjusted λ in Eq. 12 can slightly improve its performance.(c) Dynamic header size of REBATE for packets routed in

hyperbolically mapped network (it is static size of 36 bytes when the pressure mode is not used, e.g., within greedy embedded network): using 16-bit hash function

in Eq. 14 allows REBATE packet header to not exceed doubled maximum IP header size in 95% cases. (d) The hash function (see Eq. 14) complementary CDF

(i.e., P(X≥x) = y) of collisions w.r.t. its hash key size in bits under TTL=256.

reflects a common traffic aggregation from end-devices into a

single flow also known as a flow group or a tunnel [16, 17].

Under the maximum (practical) packet’s TTL of 256 hops, we

attempt to deliver IoT traffic of these flows among their associ-

ated src − dst pairs.

Our main goal is to evaluate performance of our REBATE

when balancing the core network load by minimizing the max-

imum link utilization under stress. We remark that the main

challenge for the dynamic scale-free TE is to do such opti-

mization without both network topology knowledge and flow

demand awareness. All our results show 95% confidence inter-

val over 100 trials, and our randomness lies in both the source-

destination flow pairs and their demands.

Comparison Methods and Metrics. To empirically evaluate

which potential field best approximates dual node prices, we

tested the performance of our REBATE under different poten-

tial field attenuation orders n. We then leverage our finding (n =

1 when the network is Greedy Embedded (GE) and n = 1.25

when it is Hyperbolically Mapped (HM) in our other experi-

ments. We then compare our REBATE scale-free TE with the

optimal demand-aware TE (by solving P with CPLEX [40]) and

the traffic steering that utilizes common scale-free routing pro-

tocol — GPGF [14]. Note that while comparing with GPGF-

based traffic steering, we use both GE and HM hyperbolic co-

ordinates assignment techniques. Our goal is to show that RE-

BATE statistically outperforms GPGF-based traffic steering in

the traffic optimization. Furthermore, we assess REBATE op-

timality gaps, and we estimate the impact of GE and HM on

our REBATE performance. The related solutions are compared

across the following metrics: the maximum link utilization (the

lower the better), the maximum link utilization increase (the

lower the better) and its reduction (the higher the better) mea-

sured in %. We also compare complimentary CDFs (CCDFs)

of algorithms path hop count, their satisfied flows ratio as well

as the link utilization CDF. Finally, we compare CCDFs of our

proposed hash function (see Eq. 14) using different hash key

sizes.

Results. Our evaluation results fall under three salient find-

ings: (i.a) The local REBATE knowledge of the maximum link

utilization is “enough”. (i.b) Dynamic REBATE packet header

size does not introduce intractabilities under practical TTL and

when hash functions are used. (ii) REBATE can decrease the

maximum link utilization by 25% when compared with a traf-

fic steering based on a scale-free routing. (iii) We should hy-

perbolically map to better balance the network load under high

workloads/network dynamics and greedy embed to minimize the

maximum utilization otherwise. (iv) REBATE is suboptimal to

both demands-aware and oblivious TE.

(i.a) Local REBATE knowledge of the maximum link uti-

lization is enough. Note how Figure 7a confirms our hypoth-

esis that our REBATE approach is not affected by a lack of

global knowledge on the current maximum link utilization in

the network (see Section 5.2). As expected, we can see how

in all cases REBATE with a local α knowledge slightly outper-

forms its variant with a global α awareness. Moreover, RE-

BATE achieves the minimum of the maximum link utilization

when attenuation order n = 1 while operating with its either

global or local knowledge in the greedy embedded network.

This attenuation order matches the one generated by a potential

field created by the destination. At the same time, for the hyper-

bolically mapped network, REBATE shows the minimum of the

maximum link utilization when attenuation order is n = 1.25.

This result is due to the fact that HM cannot guarantee packets

delivery by the greedy forwarding and needs a recovery scheme

which increases path stretches in the network. Thus, by slightly

increasing attenuation order n, we can mitigate an additional

path stretch due to REBATE packets repulsion. We use n = 1

and n = 1.25 for GE and HM for the rest of simulations, re-

spectively.

An additional evaluation has been conducted to estimate the

local REBATE sensitivity to the network cold-down property λ

accuracy used to retrieve α (see Eq. 12). Fig. 7b shows how

during network ‘peak hours’ (i.e., λ = 0), the maximum link

utilization achieved by our (local) REBATE slightly increases

(e.g., up to 1.5%) if λ is incorrectly specified. We conclude that

properly adjusted λ can slightly improve our REBATE perfor-

mance and has an insignificant impact. Note that infrastructure

providers can tune REBATE parameters to improve its perfor-

mance based on the infrastructure topology, utilized hardware,

and specific traffic demands, e.g., orchestrating traffic during

the day hours can be based on different parameters w.r.t. the

traffic orchestration at night.

10

100 250 500 1000

num. of concur. flows

0
5

10
15
20
25
30
35

m
a
x

 u
ti

l
re

d
u

c
ti

o
n

[%
]

HM

GE

(a)

2 4 8 16 32 64 128 256

path hop count

0

0.2

0.4

0.6

0.8

1

cc
d

f

R,HM

R,GE

G,HM

G,GE

(b)

0 10 20 30

link failures[%]

0

0.5

0.8

.95

1

sa
ti

sf
.

fl
o

w
s

ra
ti

o G,HM

R,HM

G,GE

R,GE

(c)

0 10 20 30

link failures [%]

0
3
6
9

12
15
18
21

m
a
x
 u

ti
l

re
d
u
c
ti

o
n
[%

]

HM

GE

(d)

Figure 8: REBATE (R) reduction percentage of the maximum link utilization

(a,d) compared to GPGF-based traffic steering (G); corresponding Complement

CDFs of 1000 concurrent flows associated path hop counts (b) satisfied flow

ratios under different link failure rates (c) using both hyperbolic mapping (HM)

and greedy embedding (GE): REBATE can better optimize traffic and has the

same quality of packets routing as GPGF.

(i.b) Dynamic REBATE packet header size does not intro-

duce intractabilities under practical TTL and when hash

functions are used. Due to use of GPGF pressure mode that

tracks node visits to recover packets from local minima, our

REBATE protocol header has a dynamic size. From Fig. 7c

we can see how our REBATE header size does not introduce

large overhead for packets routed in a hyperbolically mapped

network under practical TTL. For example, under TTL= 256

and when 16-bit hash function is used (see Eq. 14), our rebate

packet header size is no more than twice of the maximum IP

header size (i.e., < 120 bytes) in 95%. This is by an order of

magnitude less than the common MTU size. We remark that we

use hash functions to identify node uniqueness while tracking

their visits. We can further reduce our REBATE packet header

size at expense of a small number of hash collisions as shown in

Fig 7d. At the same time, identifying node uniqueness via use

of MAC or IPv6 addresses can lead to large packet header sizes

of the REBATE protocol. Thus, we use 16-bit hash function in

Eq. 14 within our REBATE protocol for the rest of simulations.

(ii) REBATE can decrease the maximum link utilization by

25% in comparison with GPGF traffic steering. Fig. 8a

shows how our REBATE statistically outperforms a traffic steer-

ing with the common GPGF geometric routing (designed for

dynamic scale-free networks) when the core network is embed-

ded in the hyperbolic space of the negative curvature [14, 11].

Particularly, REBATE can decrease the maximum link utiliza-

tion by 10% or 25% when GE or HM coordinate assignment

techniques are used, respectively. This is due to the fact that

REBATE repeals excess traffic away from the maximum link

utilization zone. Moreover, REBATE can further reduce the

maximum link utilization up to 20% w.r.t. GPGF-based traffic

steering under greedy embedded network dynamics. For ex-

ample, observe a case of 20% link failures for 1000 concurrent

flows in Figure 8d; this is due to the fact that tree link failures

100 250 500 1000

num. of concur. flows

0

0.1

0.2

0.3

0.4

0.5

m
ax

 l
in

k
 u

ti
l. HM

GE

Opt

(a)

0 0.02 0.1 0.5 1

link utilization

0

0.2

0.4

0.6

0.8

1

cd
f

HM

GE

Opt

(b)

Figure 9: Maximum link utilization (a) and link utilization CDFs to host 1000

flows (b) results of REBATE (using both hyperbolic mapping (HM) and greedy

embedding (GE)) compared to the optimal demand-aware TE (Opt): REBATE

is subject to large optimality gaps in practice; it is recommended to use HM for

high network workloads to better balance it, and GE otherwise.

revoke the packet delivery guarantees of GE, repealing traffic

away from the origin reduces packets routing over such links.

As a result, we do not observe similar improvements for hyper-

bolically mapped networks, as HM does not use spanning trees

for coordinate assignments.

We can also see that the reduction in the maximum link uti-

lization of REBATE is not caused by its worse flow demands

satisfaction (see Fig. 8c) as well as by the path stretch increase

that affects packet latency (see Fig. 8b) compared to the GPGF.

Moreover, flow demands satisfaction depends more on a coor-

dinate assignment technique — the larger are paths stretches

in the network due to poor greedy forwarding performance the

lower is the scale-free routing packet delivery ratio under prac-

tical TTL.

(iii) Hyperbolically map to better balance the network load

under high workloads/dynamics, greedy embed to minimize

the maximum utilization otherwise. When observing Fig. 8c

and 9a, we found that by greedy embedding a network in hy-

perbolic spaces and under low network dynamics (≤ 10% of

link failures), REBATE better copes with flow demand satisfac-

tion and better minimizes the maximum link utilization. This is

due to a lower path stretch of the greedy forwarding (see Fig-

ure 8b). However, the higher the workload or network dynam-

ics the higher is the link utilization of the underlying spanning

tree used by GE. As a result, at high workload/dynamics levels

(e.g., at 1000 concurrent flows or for ≥ 10% of failures), RE-

BATE balances the network load better when this network is

hyperbolically mapped (Fig. 9b).

(iv) REBATE is suboptimal to both demands-aware and obliv-

ious TE. The lack of a flow demand awareness in oblivious TE

introduces a large theoretical optimality gap [15], but does not

prevent it from achieving a low optimality gap in practice. For

instance, the recent semi-oblivious TE approach reaches opti-

mality in 75-80% practical cases [23]. In contrast with obliv-

ious TE, our REBATE is subject to large practical optimality

gaps compared to demands-aware TE, even though it signif-

icantly improves TE performance in comparison with GPGF

traffic steering. For example, in the case of 500 concurrent

flows, our REBATE for hyperbolically mapped network achieves

a maximum link utilization of ≈ 0.3 whereas the optimal is

≈ 0.1 (see Figs. 9a and 9b).

This result is due to the fact that our REBATE does not use

neither global network knowledge nor flow demand awareness,

11

and motivates the need for more research in both TE and scale-

free networking areas to further improve dynamic scale-free TE

performance which can be essential for the next-generation In-

ternet augmented with IoT.

7. Conclusion

In this paper, we have proposed the first to our knowledge

Traffic Engineering protocol that can be used within dynamic

scale-free networks. We hypothesize that our protocol can be

particularly crucial for next-generation Internet segments aug-

mented with edge [6, 13] and IoT devices [1] to optimize traf-

fic in their hardly controllable, dynamic and large core subnet-

works. We called our solution REpulsive-BAsed Traffic Engi-

neering (REBATE); REBATE operates only with a local knowl-

edge of the topology, i.e., it needs only O(1) space complexity

to optimize traffic. To do so, we leveraged dual principles of the

optimal demand-aware TE as well as fundamental properties of

hyperbolic metric spaces. Using real US Tier-1 network traces

in our simulator, we have found that REBATE can reduce the

maximum link utilization of the network by 25% in comparison

with a traffic steering technique that uses commonly adopted

GPGF geometric routing [7, 14]. However, we found that our

REBATE can be still subject to large optimality gaps in prac-

tice when compared to both demand-aware and oblivious TE.

Thus, we conclude that REBATE is the first step towards an ef-

ficient TE protocol that can serve needs of dynamic scale-free

networks.

As an open question we leave the use of oblivious TE prin-

ciples while operating with a local (topology) knowledge of

O∗(1) amortized space-time complexity. Another promising di-

rection can be designing a hyperbolic coordinates assignment

technique that is better congruent with the traffic optimization

process itself — similarly to how existing greedy embedding

schemes are congruent with greedy packet forwarding [7, 33].

We remark that the current version of the protocol has other

major limitations aside from the lack of optimality guarantees.

For instance, REBATE currently supports only MLU minimiza-

tion and orchestrates traffic on a per-packet basis which itself

can be subject to high CPU utilization of switches and packets

re-ordering. Thus, other future interesting avenues to explore

are the following: supporting other objectives with better op-

timization performance; using different address schemes (e.g.,

one that yield simple bit-wise operations as opposite to math

calculations over complex numbers); and developing comple-

mentary mechanisms to cope with packets re-ordering (e.g., in

addition to native TCP mechanisms).

Acknowledgments

This material is based upon work supported by the National

Science Foundation (NSF) under Award Number CNS1647182,

Coulter Foundation Translational Partnership Program and Rus-

sian Foundation for Basic Research 13-07-00381a. Any opin-

ions, findings or conclusions expressed in this publication are

those of the author(s) and do not necessarily reflect the views

of the funding agencies.

References

[1] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of things (iot): A vision, architectural elements,
and future directions. Future generation computer systems, 29(7):1645–
1660, 2013.

[2] Taewoo Nam and Theresa A Pardo. Conceptualizing smart city with
dimensions of technology, people, and institutions. In Proceedings of
conference on digital government innovation in challenging times, pages
282–291. ACM, 2011.

[3] Qing Li, Dan Wang, Mingwei Xu, and Jiahai Yang. On the scalability
of router forwarding tables: Nexthop-selectable fib aggregation. In Pro-
ceedings of INFOCOM, pages 321–325. IEEE, 2011.

[4] Garegin Grigoryan, Yaoqing Liu, Michael Leczinsky, and Jun Li. Verita-
ble: Fast equivalence verification of multiple large forwarding tables. In
Proceedings of IEEE INFOCOM, pages 621–629. IEEE, 2018.

[5] Dmitri Krioukov, Kevin Fall, Arthur Brady, et al. On compact routing
for the internet. ACM SIGCOMM Computer Communication Review,
37(3):41–52, 2007.

[6] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of work-
shop on mobile cloud computing, pages 13–16. ACM, 2012.

[7] Fragkiskos Papadopoulos, Dmitri Krioukov, Marián Boguñá, and Amin
Vahdat. Greedy forwarding in dynamic scale-free networks embedded in
hyperbolic metric spaces. In 2010 Proceedings IEEE INFOCOM, pages
1–9. IEEE, 2010.

[8] Albert-László Barabási. Scale-free networks: a decade and beyond. sci-
ence, 325(5939):412–413, 2009.

[9] Walter Willinger, David Alderson, and John C Doyle. Mathematics and
the internet: A source of enormous confusion and great potential. Notices
of the American Mathematical Society, 56(5):586–599, 2009.

[10] Anna D Broido and Aaron Clauset. Scale-free networks are rare. Nature
communications, 10(1):1017, 2019.

[11] Fragkiskos Papadopoulos, Constantinos Psomas, and Dmitri Krioukov.
Network mapping by replaying hyperbolic growth. IEEE/ACM Transac-
tions on Networking, 23(1):198–211, 2015.

[12] Ivan Voitalov, Rodrigo Aldecoa, Lan Wang, and Dmitri Krioukov. Geo-
hyperbolic routing and addressing schemes. ACM SIGCOMM Computer
Communication Review, 47(3):11–18, 2017.

[13] Niroshinie Fernando, Seng W Loke, and Wenny Rahayu. Mobile cloud
computing: A survey. Future generation computer systems, 29(1):84–
106, 2013.

[14] Andrej Cvetkovski and Mark Crovella. Hyperbolic embedding and rout-
ing for dynamic graphs. In Proceedings of INFOCOM, pages 1647–1655.
IEEE, 2009.

[15] Marco Chiesa, Gábor Rétvári, and Michael Schapira. Lying your way
to better traffic engineering. In Proceedings of conference on emerging
Networking EXperiments and Technologies, pages 391–398. ACM, 2016.

[16] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou,
Min Zhu, et al. B4: Experience with a globally-deployed software defined
wan. In ACM SIGCOMM Computer Communication Review, volume 43,
pages 3–14. ACM, 2013.

[17] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay
Gill, Mohan Nanduri, and Roger Wattenhofer. Achieving high utilization
with software-driven wan. In ACM SIGCOMM Computer Communica-
tion Review, volume 43, pages 15–26. ACM, 2013.

[18] Frederick Prinz, Michael Schoeffler, Armin Lechler, and Alexander Verl.
Dynamic real-time orchestration of i4. 0 components based on time-
sensitive networking. Procedia CIRP, 72:910–915, 2018.

[19] Polona Štefanič, Matej Cigale, Andrew C Jones, Louise Knight, Ian Tay-
lor, Cristiana Istrate, George Suciu, Alexandre Ulisses, Vlado Stankovski,
Salman Taherizadeh, et al. Switch workbench: A novel approach for the
development and deployment of time-critical microservice-based cloud-
native applications. Future Generation Computer Systems, 99:197–212,
2019.

[20] Hossam Farag, Mikael Gidlund, and Patrik Österberg. A delay-bounded
mac protocol for mission-and time-critical applications in industrial wire-
less sensor networks. IEEE Sensors Journal, 18(6):2607–2616, 2018.

[21] Oliver Dimon Kellogg. Foundations of potential theory, volume 31.
Springer Science & Business Media, 2012.

[22] Eva Tardos. A strongly polynomial algorithm to solve combinatorial lin-
ear programs. Operations Research, 34(2):250–256, 1986.

[23] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg,
Petr Lapukhov, Chiun Lin Lim, and Robert Soulé. Semi-oblivious traffic
engineering: The road not taken. In USENIX NSDI, 2018.

[24] Mathieu Leconte, Apostolos Destounis, and Georgios Paschos. Traffic

12

engineering with precomputed pathbooks. In Proceedings of IEEE IN-
FOCOM, pages 234–242. IEEE, 2018.

[25] Harald Racke. Minimizing congestion in general networks. In Proceed-
ings of Symposium on Foundations of Computer Science, pages 43–52.
IEEE, 2002.

[26] Harvinder Singh. Compass routing on geometric graphs. University of
Ottawa (Canada), 1999.

[27] Ben Leong, Barbara Liskov, and Robert Morris. Geographic routing with-
out planarization. In USENIX NSDI, volume 6, page 25, 2006.

[28] Jiangwei Zhou, Yu Chen, Ben Leong, and Pratibha Sundar Sundaramoor-
thy. Practical 3d geographic routing for wireless sensor networks. In Pro-
ceedings of Conference on Embedded Networked Sensor Systems, pages
337–350. ACM, 2010.

[29] Simon S Lam and Chen Qian. Geographic routing in d-dimensional
spaces with guaranteed delivery and low stretch. IEEE/ACM Transac-
tions on Networking, 21(2):663–677, 2013.

[30] Michal Król, Eryk Schiller, Franck Rousseau, and Andrzej Duda. Weave:
Efficient geographical routing in large-scale networks. In EWSN, pages
89–100, 2016.

[31] Sahel Sahhaf, Wouter Tavernier, Didier Colle, Mario Pickavet, and Piet
Demeester. Experimental validation of resilient tree-based greedy geo-
metric routing. Computer Networks, 82:156–171, 2015.

[32] Brad Karp and Hsiang-Tsung Kung. Gpsr: Greedy perimeter stateless
routing for wireless networks. In Proceedings of MobiCom, pages 243–
254. ACM, 2000.

[33] Robert Kleinberg. Geographic routing using hyperbolic space. In Pro-
ceedings of INFOCOM, pages 1902–1909. IEEE, 2007.

[34] Mokhtar S Bazaraa, John J Jarvis, and Hanif D Sherali. Linear program-
ming and network flows. John Wiley & Sons, 2011.

[35] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. Brite:
An approach to universal topology generation. In MASCOTS 2001, Pro-
ceedings Ninth International Symposium on Modeling, Analysis and Sim-
ulation of Computer and Telecommunication Systems, pages 346–353.
IEEE, 2001.

[36] Braulio Dumba, Guobao Sun, Hesham Mekky, and Zhi-Li Zhang. Ex-
perience in implementing & deploying a non-ip routing protocol viro in
geni. In Proceedings of ICNP, pages 533–539. IEEE, 2014.

[37] Deep Medhi and Karthik Ramasamy. Network routing: algorithms, pro-
tocols, and architectures. Morgan Kaufmann, 2017.

[38] Simon Knight, Hung X Nguyen, Nick Falkner, Rhys Bowden, and
Matthew Roughan. The internet topology zoo. Journal on Selected Areas
in Communications, 29(9):1765–1775, 2011.

[39] Ramakrishnan Durairajan, Subhadip Ghosh, Xin Tang, Paul Barford, and
Brian Eriksson. Internet atlas: a geographic database of the internet. In
Proceedings of workshop on HotPlanet, pages 15–20. ACM, 2013.

[40] Ibm cplex solver. http://www-01.ibm.com/software/

commerce/optimization/cplex-optimizer/index.html.
Accessed: July, 2018.

13

	Introduction
	Related Work
	Traffic Engineering Problem and Motivation
	Traffic Optimization Objective and Example
	Optimal demands-aware TE Problem
	Scale-Free TE Challenges and Dual Problem Relevance

	REBATE: Model
	Hyperbolic Properties and Coordinates Assignment
	Model based on Dual Principles
	Examples of `Attraction' and `Repulsion' Cases

	REBATE: Protocol
	Algorithm
	Global vs Local Knowledge
	Complexity Analysis
	Protocol

	Performance Evaluation
	Conclusion

