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Abstract

Nowadays the abundance of IoT devices has the potential of changing our lives dramatically, but brings new routing and traffic
orchestration challenges for the next-generation Internet providers: core routers are already overwhelmed, see e.g., the routing table
size growth problem. Although some researchers still argue whether or not the next-generation networks should feature scale-free
properties, recent results have shown benefits of embedding such scale-free networks in a hyperbolic space of negative curvature.
Specifically, this allows geometrically route packets by using only a local topology knowledge (i.e., with average O*(1) space-time
complexity) at no extra communication overhead (i.e., without routing protocols). To our knowledge, however, there is no Traffic
Engineering (TE) protocol with the aforementioned properties that can be used in dynamic scale-free networks. In this paper,
we propose the first to our knowledge REpulsive-BAsed Traffic Engineering (REBATE) protocol for dynamic scale-free networks.
REBATE is built upon dual principles of the demand-aware TE and fundamentals properties of hyperbolic spaces. Using trace-
driven numerical simulations, we then show how REBATE can reduce the maximum link utilization up to 25% when compared
to a common geometric routing-based traffic steering. Although REBATE can perform worse than common demands-aware and
oblivious TE approaches, we think that our work should pave the way for more efficient TE in the next-generation dynamic scale-
free networks.
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1. Introduction

The advent of Internet of Things (IoT) changes our world
dramatically [1]. Nowadays, a large pletora of Internet-connected
sensors is available on the market, attempting to make any-
thing ‘smart’, including entire cities [2]. Such abundance of
IoT devices creates new routing and traffic orchestration chal-
lenges for the next-generation Internet providers. Particularly,
Internet today already struggles from large routing tables in its
core routers [3, 4]. This is due to the fact that current Inter-
net routing best practices linearly depend on the number of de-

vices N, and thus have O(N) Space complex1ty [5]. In the case Figure 1: (a) A core network of the current US Internet segment that spans 7

when Internet-like networks (e.g., the next-generation edge net- Tier-1 US providers and comprises of 286 Point of Presence (PoP) nodes and
works [6]) feature a scale-free nature [7, 8], they can benefit 534 links. (b) Its augmented with IoT version embedded in the hyperbolic space

from a tree-based routing schemes that operates on the data of ~ ©f negative curvature using Poincare Disk model.
O(logN) space complexity [5].

To avoid potential confusion, by scale-free networks we
mean networks whose average node degree k follows a power
law, e.g., P(k)~k™" and have strong clustering properties [7].
Thus, if some parts of network have the average node degree
k that does not depend on N (i.e., have amortized O*(1) space
complexity to store information about neighbors), we can say
that these parts of the network feature scale-free properties.
Although some researchers argue that current Internet doesn’t
have a scale-free nature [9], or that such network properties are
rare in the real-world [10], other recent studies keep showing
benefits of utilizing scale-free properties for Internet [7, 11, 12].

As it is still questionable whether or not next-generation net-
works should feature scale-free properties, in this paper we just
hypothesize that this is possible (at least for some parts of these
networks) and further investigate scale-free benefits.

Compact routing solutions such as [5] mainly operate on
static networks. On the contrary, the next-generation (core)
scale-free network augmented with IoT may be highly dynamic [13].
It has been shown that for such dynamic scale-free networks we
need at least O(N) number of control messages to converge to
a new (routing) network state using compact routing [5]. Be-
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ing an intractable problem for dynamic scale-free networks, re-
cent solutions proposed greedy approaches for forwarding (also
called geometric routing) to cope with this problem [7, 14]. Par-
ticularly, the idea is to embed dynamic scale-free networks into
the hyperbolic space of the negative curvature, i.e., assign vir-
tual coordinates to each node. Once coordinates are assigned, a
geometric routing uses a gradient descent of the distance func-
tion to deliver packets, i.e., each node forwards packets to the
next closest to the destination node [11, 14]. The resulting rout-
ing strategy requires only O*(1) amortized space-time complex-
ity (i.e., only local information about k£ neighbors) stored on
nodes and introduces no communication overhead [7].! Fig. 1
illustrates our case study: a map of US Tierl core network is
embedded in a hyperbolic space with negative curvature, that in
turn is used by geometric routing to deliver packets without a
global topology knowledge.

In addition to routing, providers deploy different Traffic En-
gineering (TE) algorithms to optimally orchestrate their net-
work traffic under a set of physical and application constraints.
For instance, they may wish to minimize the maximum link uti-
lization to balance their network load and minimize its overall
congestion probability [15], or they can attempt to share fairly
their network capacity among known applications to increase
the overall utilization [16, 17]. For applications that pose strong
latency requirements, providers may also need to take into ac-
count time-sensitive networking constraints [18, 19, 20]. We
classify existing TE approaches that exist today into two main
types: oblivious and demands-aware. The former uses only
a global topology knowledge for the traffic optimization [15],
whereas the latter uses both global network and application de-
mands knowledge [16, 17]; all TE approaches need at least
O*(N) space-time complexity on average to store information
used for TE optimizations. To the best of our knowledge, there
is no suitable TE solution that can operate with data of O*(1)
space-time complexity on average (i.e., that can use only a local
information) to optimize traffic in dynamic scale-free networks.

Note that in this paper, by scale-free TE we do not intend to
propose or replace what is currently used in every Wide-Area-
Networks of the Internet, since large segments are subject to
local ISP or IXP policies [5]. However, scale-free TE can be
crucial for the next-generation Internet segments of hardly con-
trollable, large dynamic subnetworks, namely, those made by
edge [6, 13] and IoT devices [1].

Our contributions. In this paper, we propose REpulsive-BAsed
Traffic Engineering (REBATE) — the first to our knowledge
dynamic scale-free TE protocol. To optimize traffic with RE-
BATE, we utilize fundamental properties of hyperbolic metric
spaces’ as well as dual principles of the optimal demands-aware
TE. Particularly, we use the theory of potentials [21] to build a
metric whose gradient descent allows to (i) deliver packets and
(ii) preserve the dual feasibility of the optimal TE in a best-

Note that similarly to conventional routing approaches the size of coordi-
nates (or size of node addresses) is considered to be fixed.

Note that maintaining hyperbolic coordinates in presence of network dy-
namics has been studied in prior works [12]. Thus, finding the best such tech-
nique to use with REBATE is out of scope for this paper.

effort manner. Intuitively, we use potential fields to ‘repeal’
traffic away from routes that may unnecessarily make TE per-
formance worse, e.g., unnecessarily increase the network max-
imum link utilization.

Furthermore, using an actual US Tier-1 core network case

study in our trace-driven numerical simulations (see Fig. 1), we
found how our REBATE is superior to a traffic steering tech-
nique that utilizes commonly adopted Gravity Pressure Greedy
Forwarding (GPGF) algorithm [7, 14].% Particularly, REBATE
can reduce the maximum link utilization in the network up to
25% when using the hyperbolic mapping coordinate assign-
ment technique [11], and gain up to 20% of such reduction
when greedy embedding assignment technique is used instead [14].
Despite our REBATE performs worse compared to both demands-
aware and (common) oblivious TE, we think that our results are
promising and should pave the way for more efficient TE in fu-
ture networks with a dynamic scale-free nature.
Paper organization. The rest of the paper is organized as fol-
lows: In Section 2, we discuss related work. Section 3 outlines
TE problem and motivation. Section 4 describes our REBATE
model, and in Section 5, we build on this model to propose
a practical REBATE protocol. Section 6 presents our perfor-
mance evaluation results that show pros and cons of our pro-
posed approach. Section 7 concludes the paper.

2. Related Work

The overall TE optimization problem is to assign flows with
specified demands to a set of paths within a given capacitated
network while optimizing some function, e.g., minimizing the
maximum link utilization. This problem is known in optimiza-
tion literature as the multi-commodity flow problem and can
be solved in polynomial time using linear programming (LP) if
flows are splittable (i.e., can be assigned to multiple paths) [22].
In this paper, we roughly divide all approaches to demands-
aware TE (if flow demands are known) and oblivious TE (if
such demands are unknown).

Demands-aware TE: Due to practical hardware granularity lim-

itations, flows have finite quantization constraints, and thus the

NP-hard integer programming has to be used to solve the multi-

commodity flow problem [16, 17]. To avoid potential complex-

ity intractabilities, the authors in [16] have proposed a greedy

algorithm that selects paths taking into account practical flow

quantization granularities. Their algorithm is 25x faster than

corresponding LP solution with a good optimality performance.

SWAN [17] instead reduces a feasible space of the general multi-
commodity flow problem by decomposing it to a set of k-shortest
path candidates for each specified flow. In our evaluation, we

use (best possible) LP-based demands-aware TE algorithm for

the general multi-commodity flow problem assuming no flow

quantization constraints to achieve the maximum link utiliza-

tion lower-bound.

3Note that only geometric routing-based traffic steering solutions can be cur-
rently applied in dynamic scale-free networks. Thus, in our simulations (avail-
able at https://github.com/dumanl90/rebate), we omit compari-
son with other common TE approaches [15, 16, 17] and only use (lower-bound)
demands-aware TE solution to access optimality performance of REBATE.



Table 1: REBATE comparison with relevant TE approaches.

TE

Scheme: Demands- Need global Space-time

aware network knowledge | complexity
B4 [16] v v O*(N)
SWAN [17] v v O*(N)
COYOTE [15] X 4 O*(N)
SMORE [23] X 4 O*(N)
PATHBOOK [24] X 4 O*(N)
REBATE X X o (1)

Oblivious TE: In contrast to demands-aware TE, oblivious TE
has no a priori knowledge on flow demands which is common
for most Internet providers today [23]. The first remarkable re-
sult in the oblivious routing has been shown by Ricke [25] —
there exists an oblivious routing scheme with the worst conges-
tion ratio of Q(logN) factor from the optimum (demands-aware)
routing. To further improve traffic optimization, recent oblivi-
ous TE scheme COYOTE [15] takes directed acyclic graphs of
the network (that requires at least O(N) space-time complexity)
constructed at each node as an input to compute path weights
with the use of geometric programming. To further overcome
potential expressiveness limitations of existing protocols such
as Open Shortest Path First (commonly used for Equal-Cost
Multi-Path forwarding), COYOTE inserts ‘lies’ to adjust their
path weights. To find paths for their subsequent weights op-
timization, the recent semi-oblivious TE scheme SMORE [23]

uses both a special ‘routing tree’ structure and the network graph.

Thus, SMORE similarly to COYOTE needs at least O(NV) space-
time complexity to optimize traffic. Another recent oblivious
TE scheme in [24] aims to generate a ‘pathbook’ — a small set
of paths which minimize routing costs. Specifically, the au-
thors use a multi-commodity flow problem to find pathbooks
for all commodities, and hence, their solution also requires at
least O(N) space-time complexity.

We found no TE approach with amortized O*(1) space-time
complexity that can be used in dynamic scale-free networks. In
this paper, we propose the first to our knowledge TE protocol
called REBATE that operates only with a local network infor-
mation and can be used in the next-generation Internet segments
of dynamic scale-free networks.

Geometric routing in hyperbolic metric spaces. Compass
routing is the first known geometric routing approach where
each node forwards packets to the closest to their destination
neighbor. As it is subject to the local minimum problem —
packets can stuck at nodes that have no closer to the destination
neighbors than themselves [26] — several stateless and stateful
recovery approaches have been proposed.

Stateful routing: In stateful routing, some network knowledge
is used to recover packets from local minima. Thus, the au-
thors in [27, 28] propose Greedy Distributed Spanning Tree
Routing which requires a distributed spanning tree construc-
tion (of O*(logN) space-time complexity on average) to guar-
antee delivery and recover from a local minimum. More re-
cent works [29, 30, 31] show that spanning trees are sensitive to
network dynamic topologies and mobility, e.g., within IoT net-
works. Thus, they can be subject to large communication costs

Table 2: REBATE comparison with relevant geometric routing approaches.

Geometric routing
Protocol: Relies on Space-time Costs of
network state complexity communication

GDSTR [27, 28] v O*(logN) O(N)
MDT [29] v 0*(1) O(N)
WEAVE [30] v o (1) ?
GPGF [14] X o*(1) N/A
REBATE X o (1) N/A

?: difficult to bound without considering topology dynamics (failures/mobility).

of O(N) [31]. More recent geometric routing approaches such
as MDT and WEAVE [29, 30] can cope with topology dynam-
ics to some extent. For example MDT constructs Delaunay tri-
angulation (DT) graphs to make nodes aware of their Delaunay
neighbors (with amortized O*(1) space-time complexity) for a
local minimum recovery. In contrast to MDT, WEAVE protocol
relies on partial paths (of amortized O*(1) space-time complex-
ity) stored in packet headers whereas learns them when greedy
forwarding packets. The down-side of these techniques is that
the maintenance of either Delaunay neighbors or partial routing
tables can be subject to large communication costs [29]. For in-
stance, MDT’s per node communication cost can be bounded as
O(N) - the maximum length of the loop-free path [29]. At the
same time, the authors of WEAVE [30] do not expose such costs
which are hard to bound without considering different topology
dynamics such as failures and mobility. Finally, neither MDT
nor WEAVE has been previously applied for hyperbolic metric
spaces.
Stateless routing: In contrast to stateful routing, stateless rout-
ing does not rely on any network knowledge (i.e., has O*(1)
space-time complexity on average) for packets recovery. One
of the first stateless geometric routing solution which guaran-
tees delivery was Greedy Perimeter Stateless Routing [32]. To
recover from a local minimum, this protocol uses face routing
which requires strong assumptions such as unit disk and planar
graphs. This however cannot be guaranteed in hyperbolic met-
ric spaces [33]. To avoid packets recovery, Kleinberg et al. [33]
use spanning d-regular trees for greedy embedding, i.e., for an
assignment of hyperbolic space coordinates to greedy forward
a packet without facing a local minimum. The authors in [14]
extend the work of Kleinberg et al. [33] and propose the greedy
embedding scheme for general irregular trees. Moreover, they
show that due to inaccurate greedy embedding caused by topol-
ogy dynamics, packets can still get stuck in local minima. To
this aim, they propose GPGF protocol which is shown to have
guaranteed packet delivery [14]. To recover from local minima,
GPGF counts the number of node visits (storing that informa-
tion in packet headers) to press packets from local minima until
greedy forwarding can resume. The key idea beyond pressure
recovery is a greedy forwarding gradient descent property —
once a packet reaches a location closer to the destination, there
is no way how the packet can be forwarded back to the previous
location of a local minimum.

Although the authors in [31] indicate that such a recov-
ery ‘imposes a large overhead to the packets header especially
in large-scale topologies’, we found no proof to support this
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Figure 2: Illustrative example of a TE flow assignment to paths (numbers de-
note link capacities in Gbps) while minimizing the maximum link utilization:
(left) an unfeasible flow assignment due to a link B—Y capacity violation; (cen-
ter) a feasible but suboptimal flow assignment due to the link X — A maximum
link utilization of 1; (right) the feasible and optimal flow assignment with the
minimum possible maximum link utilization of 0.5.

argument in the literature. Thus, similarly to prior work [7,
14] we use GPGEF to steer traffic in scale-free networks em-
bedded in hyperbolic metric spaces and compare its optimiza-
tion performance with REBATE. Finally, we also use GPGF
pressure mode within our REBATE protocol to recover packets
from local minima and propose a hash function that identifies
the uniqueness of visited nodes to reduce the protocol header
size. By using trace-driven simulations, we assess this header
size under practical Time-To-Leave (TTL) constraints and show
how it does not introduce a significant overhead.

3. Traffic Engineering Problem and Motivation

In this section, we give an overview of our Traffic Engineer-
ing (TE) problem. We then define what we mean by optimal TE
and how we will try to achieve it with our REBATE approach.
Finally, we discuss a few challenges in TE for scale-free net-
works, and how duality theory can help overcoming some of
them.

3.1. Traffic Optimization Objective and Example

Today, TE is especially beneficial for providers who con-
trols both network infrastructure and applications that use this
network. For instance, large companies such as Google and Mi-
crosoft use TE techniques to fairly share their inter-datacenter
network among their services to drive their link utilization to
near 100% [16, 17]. In this paper, we focus however on a
more traditional goal of minimizing the maximum link utiliza-
tion to better balance the network load and minimize a conges-
tion probability common for oblivious TE [15, 23].

Fig. 2 illustrates an example of a traffic optimization process
that assigns 2 flows with specified demands to a set of path in
the capacitated network of 4 nodes. The goal is to minimize
the maximum link utilization, and in the first case (see Fig. 2,
left) we can see an unfeasible flow assignment due to capacity
violations of B — Y link. In the second case (see Fig. 2, center),
the flow assignment is now feasible but is still suboptimal with
the maximum link X — A utilization of 1. Finally, the third case
(see Fig. 2, right) illustrates the optimal flow assignment where
the maximum link utilization of 0.5 is achieved.

3.2. Optimal demands-aware TE Problem

The problem of assigning flows with specified demands on
top of the capacitated network is known as the multi-commodity
flow problem. It can be formulated as a linear program assum-
ing that flows are splittable and can be assigned to multiple
paths. [22]. Formally, to minimize the maximum link utiliza-
tion we solve the below linear program which we denote as
primal (P).

Problem 1 (P). Given a network graph G = (N, L), where N
is set of nodes and L is the set of links, and a set of flows F,
let fl;’ be a positive variable denoting an amount of st flow with
demand D* on the link ij that has capacity C;j, and let « be a
positive variable denoting the maximum link utilization, the pri-
mal (P) TE optimization problem can be formulated as follows:

minimize (1)
subject to
Link Utilization Constraints:
Q_Zﬁ;f/c,-jzo,vljeL 2

steF

Flow Conservation Constraints:

DY, i=s
D fi=40. ig¢lsVieNste F (3)
keN leN -D% i=t

where symbols and notations of sets, parameters and variables
are summarized in Table 3.

Note that the optimal solution of P with @ > 1 means that no
feasible solution exists in practical settings.

3.3. Scale-Free TE Challenges and Dual Problem Relevance

While observing TE primal problem, one can notice that
its solution requires global knowledge of the network graph
(G = G(N, L)) as well as of the flow demands (D) which
requires application awareness [16, 17]. Thus, solving P for
dynamic scale-free TE is intractable due to the fact that the
latter operates on the knowledge of O(1) size. For example,
each node can use only local information of one-hop neighbors
to make routing decisions due to scale-free networking limita-
tions. As a result, even without an application demands aware-
ness, we cannot store the entire network graph on a single node,
i.e., we cannot use oblivious TE [15] too. That is what makes
the dynamic scale-free TE problem unique.

To solve the dynamic scale-free TE problem, we aim to ben-
efit from knowledge mined from hyperbolic metric spaces to
route packets. Our goal is to use this knowledge to behave sim-
ilarly to optimizers that solve the demands-aware TE problem
while routing packets. However, our dynamic scale-free TE
protocol cannot behave as optimizers (e.g., network simplex)
that solve P. The optimizer starts improving solutions from a
feasible point. Thus, when solving P we can try to mimic its be-
havior only when all flow demands are met by redirecting them
through better alternative paths. This procedure can be hard
due to the scale-free networking nature — we may never get to
a state in which all flow demands are satisfied. Fortunately, we
can solve P by solving its dual problem (D) as follows:



Table 3: Symbols and Notations

Sets:

N £ Set of network graph nodes

L £ Set of network graph links

F £ Set of network flows

Variables:

a £ Positive variable that denotes the maximum link utilization

ff,’ £ Positive variable that denotes an amount of sz flow on the link
Ly

yij = Dual positive variable that corresponds to the primal link uti-
lization constraints (see Eq, 2)

wit £ Dual unrestricted variable that corresponds to the primal flow
conservation constraints (see Eq, 3)

Parameters:

Cij £ Link ij capacity

D 2 Demand of st flow

Problem 2 (D). Given a network graph G = (N, L), where N
is set of nodes and L is the set of links and a set of flows F, let
yij be a positive dual variable corresponding to the primal link
utilization constraint (see Eq. 2), and let wis’ be an unrestricted
dual variable corresponding to the primal flow conservation
constraint (see Eq. 3), the dual (D) TE optimization problem
can be formulated as follows:

maximizey,, ZD‘” w —w 4
. steF
subject to

Dual Utilization Constraint:
PRIES )
ijeL

Dual Node Constraints:

Wft - w;t <ij/Cij, ¥Yste F,ijeL (©)

where symbols and notations of sets, parameters and variables
are summarized in Table 3.

To solve D we can start from a feasible solution when all
dual variables are initialized to zero, i.e., when none of the cor-
responding flow packets are sent. Our goal is to route packets
while trying to satisfy flow demands and preserve feasibility of
problem D. If we can do so, than, once all flow demands are
satisfied, we can reach P optimality due to the strong duality
theorem — at optimality P=D [34].

In the next section, we build a metric whose gradient de-
scent allows to forward packets in a way that (i) delivers them to
their destinations and (ii) preserves feasibility of the dual prob-
lem D in a best-effort manner.

4. REBATE: Model

In this section, we build our REBATE approach for scale-
free TE based on the duality principles presented in the pre-
vious section. To this end, we first consider two common hy-
perbolic coordinate assignment techniques for dynamic scale-
free networks [7, 14, 11]. Our goal is to understand to what
extent greedy forwarding in hyperbolic metric spaces matches
with a TE optimization process. Based on duality principles and
hyperbolic space properties we then derive a metric to deliver
packets and preserve D feasibility.

4.1. Hyperbolic Properties and Coordinates Assignment

It has been shown that to route a packet without global
topology knowledge, it is sufficient for each node to know merely
its own and all its neighbors coordinates [7, 14] (greedy for-
warding or geometric routing). Note that this information has
O(1) space complexity. Once a packet with the destination co-
ordinates arrives, it is forwarded to the neighbor closest to the
destination. If no such neighbor exists, we say that the node
faces the local minimum and apply corresponding actions, e.g.,
drop the packet. To assign coordinates to each node in the net-
work so that no local minima exist, a greedy embedding can
be used [7, 14, 33]. The greedy embedding can be defined as
follows [33]:

Definition 1 (greedy embedding). Given a network graph G(N)
where N is a set of nodes, and given a metric space (M, d), the
greedy embedding is a mapping function & : N — M where for
any distinct pair of nodes (u,v), node u has a neighbor | such
that d(E(D), E(v)) < d(E(w), EW)).

It has been shown that 2-D coordinates (i.e., of R? plane)
are sufficient for greedy embedding if the hyperbolic space of
a negative curvature is used. As in prior work [14, 33], we use
the Poincaré Disk model to construct the R? hyperbolic plane.
In this model, the coordinates are represented by complex num-
bers from a set {z; € C : |z < 1}. Points located at the Poincaré
Disk border |z;] = 1 are said to be located at co. The distance
between any two arbitrary points z; and z; can be found as fol-
lowing:

d(i, j) = cosh™ |1 +

2z - 2P
ki — ) %)

(1 + 1z +1z;1?)

Greedy Embedding Assignment Technique. To greedy em-
bed an arbitrary network in the Poincaré Disk hyperbolic plane,
existing solutions (e.g., in [14, 33]) require a (distributed) con-
struction of a spanning tree. In this paper, we use a greedy
embedding algorithm proposed in [14] to embed networks, i.e.,
assign virtual hyperbolic coordinates z; to each node i. Fig. 3
shows an example of greedy embedding of a simple tree-like
network (that comprises 15 nodes) to the Poincaré Disk hyper-
bolic plane. Note that if network dynamics (e.g., failures/mobility)
affect an underlying spanning tree, the greedy embedding prop-

erty (see Def 1) is not guaranteed [14].

Hyperbolic Mapping by Replaying Network Growth. Al-

though the above coordinates assignment strategy ensures that

greedy embedding property (see Def. 1) is satisfied, in practice,

if tree links of the underlying spanning tree fail, the property

defined in Def. 1 is violated [14]. Alternatively, hyperbolic co-

ordinates z; can be assigned to each node i by replaying the

network growth [11]. This technique is called ‘hyperbolic map-

ping’ and has the goal of trying to place nodes with higher node

degree closer to the origin of the hyperbolic coordinate system.

In our evaluation, we use this hyperbolic mapping technique on

real traces of the US Tierl network (see Fig. 1b).

Space complexity of hyperbolic coordinates assignment tech-
niques. The core network requires at least O(N) space com-

plexity for its initial either greedy embedding or hyperbolic
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Figure 3: Illustrative example of a simple tree-like network (a) greedy em-
bedded in the Poincaré Disk hyperbolic plane after the minimum spanning tree
construction (b): as shown in [14, 33], greedy forwarding always delivers pack-
ets in the Poincaré Disk plane when using distance function in Eq. 7.

mapping [11, 14]. However, once embedded or mapped, both
techniques have efficient distributed algorithms that use only
knowledge limited to a local topology (i.e., of O(1) complex-
ity) for dynamic node coordinate updates [7, 14]. Alternatively,
one can use a recent geohyperbolic scheme that uses only a lo-
cal topology knowledge for the entire (scale-free) network co-
ordinates assignment [12].

TE in Hyperbolic Space. The negative curvature makes straight
lines in Euclidean space curved towards the origin of a hyper-
bolic plane. For instance, links that are straight line segments
in Euclidean space are circumference segments in the Poincaré
Disk as shown in Figs. 1b and 3b. Thus, by greedy forward-
ing packets while minimizing their distance to the destination,
nodes located closer to the origin are expected to statistically
carry more traffic than nodes located further away from it (see
Fig. 4a). We use this hyperbolic space property for our dynamic
scale-free TE problem: we approximate the maximum link uti-
lization « being statistically proportional to some function of a
distance from the hyperbolic space origin, i.e., that @ o« f(R),
where R € [Ryin, Rnax] 1s defined as the maximum link utiliza-
tion zone radius, and R,,;, and R,,,, are minimum and maximum
node distances from the origin, respectively.

4.2. Model based on Dual Principles

Considering a network embedded in the continuous hyper-
bolic R? plane (e.g., Poincaré Disk) and assuming its & o f(R)
property, we remind the reader that our goal is to create a met-
ric whose gradient descent allows packets forwarding that (i)
delivers them to destinations and (ii) preserves (in a best-effort
manner) D feasibility. To preserve dual feasibility, we have to
satisfy Eq. 5 and 6. Their satisfaction requires both global net-
work and flow demands knowledge to compute dual variables
yij and wi’. As having this knowledge is practically intractable
for scale-free TE, instead of computing these dual variables di-
rectly, we can try to mimic their behavior by utilizing knowl-
edge mined from hyperbolic metric spaces.

Let us start by closely considering dual variables y;; and w;’
and their properties. We start by observing unrestricted dual
variables wf’ € [—o0, o0] that corresponds to node i. To mimic
this variable, we aim at finding node i metric ¢!' o« —w?’. Our
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Figure 4: (a) Percent of packets forwarded by nodes in the US Tierl net-

work w.r.t. nodes’ distances from the origin: when packets forwarded in either
hyperbolically mapped (HM) or greedy embedded (GE) network, its negative
curvature forces nodes located closer to the origin to forward more packets. (b)
Illustration of bounded potential difference (wjﬁ’ . tpj" < ) of nodes i and j,
located on the opposite side from the destination ?.

first goal is to use ¢! as the metric for gradient descent dur-
ing packet forwarding. Thus, we need ¢" to take its minimal
value (i.e., —o0) at the destination z. To preserve D feasibil-
ity instead, let us consider positive dual variable y;; that corre-
sponds to link ij. Due to P and D complementary slackness,
yijla = % fl:j.’/ Cij) = 0 [34]. Thus, if the utilization of a net-

steF
work link ij is not equal to a, y;; = 0, and y;; is bounded by

Eq. 5 (yi; £ 1), otherwise.
Attraction Case ( ), fff /Cij < @): By substituting ¢ in Eq. 6,

steF
we need to ensure that ¢ = —o0 and ¢} < ¢} for the packet

being forwarded from node i to node j. To this aim, we can
apply the ‘potential theory’ and define ¢" with the following
potential function [21]:
1
St

T G ©
where d(i, t) is a distance function defined in Eq 7. Note how
;" minimization gains —co at the destination that better aligns
with the unrestricted variable w;." nature, and it is in contrast to
common d(i, f) minimization, where d(¢,7) = 0. The potential
function in Eq. 8 can be also used in situations when we need
just to deliver packets by ‘attracting’ them to their destinations
without @ minimization.
Repulsion Case (EF fli’ /Cij < a): In the general case, forc-
ing go‘j‘.’ < ¢} can lead to suboptimalitlies, i.e., ¢ — ¢ < 0 <
vij/Cij, when y;; > 0. Thus, we need to add a positive counter-
effect to the node potential ¢?":

st

_ 1 st
@' = s ©)

where y{" is a positive potential that can ‘repeal’ packets from
some places in the hyperbolic plane. Due to the property of
hyperbolic spaces (@ o« f(R)), we need to repeal packets from
the origin o € C to minimize their contribution to the maximum
link utilization @. Thus, we envision Xft to be of the following

form:
a__ @
X = @G, o)
where Q is an intensity of the positive potential field (to be de-
rived later), and n € (0, o0) is an attenuation order of the de-
caying potential y;* — the larger n the faster diminishes the

(10)



positive counterpart contribution to ¢. We estimate the best
approximate of n empirically in Section 6.

We only need to derive Q before we are ready to engineer
our REBATE protocol. To this end, we need to satisfy the fol-
lowing condition ¢} — ¢ < y;;/Cj; (see Eq. 6). To this aim,
we bound with y = rir}gg({y,- ;/Cij} the maximum possible dif-

ference of a potential function. Fig. 4b illustrates this situation
when node j is located at the minimum possible distance from
the origin o (i.e., Ryy), and node i is located on the radius R
of the maximum link utilization zone defined in the previous
subsection. Moreover, both nodes are located on the opposite
side of the diameter w.r.t. the destination ¢. By substitution
of Eq. 9 to the dual node constraint of D in Eq. 6, we have

0 o _ 1 1
o i Y+ Rideon ~ Ko Q can then be computed as
following:

0 R R (Y(Rpin + d(0,D))(R + d(0,1)) + R — Rypin) (11
- (R = R, Y(Rpin + d(0, D)(R + d(0, 1))
where the maximum link utilization zone radius can be com-
puted as R = @(Ryux — Riin) + Rnin due to @ o« f(R). Finally, as
at optimality (when P = D) we have @ = ¥, D*((wy' — w{") +
steF

(wf’—...—w;’)+(w§’—w,“)), we can approximate y ~ a/mi;l{DS,},
E E ste

where mi}l{Ds,} can be assumed a unitary flow due to the lack
Ste

of the flow demand-awareness. As aresult, whena — 0,y — 0
and R — 0, and hence Q — 0.

4.3. Examples of ‘Attraction’ and ‘Repulsion’ Cases

To demonstrate the difference between attraction and re-
pulsion cases, let us consider our greedy embedding example
of a simple tree-like network in Fig. 3. When we greedy for-
ward a packet using a potential in the attraction case, we try
only to deliver it to the destination, i.e., preserve P feasibility
in a best-effort manner. As a result, the packet is routed along
the shortest path in terms of hyperbolic distance (see Eq. 7) and
traverses nodes located in the maximum link utilization zone
(closer to the root node) as shown in Fig 5a. When we greedy
forward this packet using a potential in the repulsion case in-
stead, we now try to also preserve D feasibility in a best-effort
manner by repealing the packet away from the origin as defined
by packet’s positive potential counterpart (see Eq. 10). The re-
sulting packet’s route avoids nodes in the (current) maximum
link utilization zone by traversing nodes located further away
from the root as shown in Fig 5b.

In the next section, we use our REBATE model to propose
a practical protocol that uses both potentials from Eq. 8 and 9,
referred to as ‘attractive’ and ‘repulsive’ based on their perfor-
mance, respectively. We remark that the former aims only at de-
livering packets to preserve P feasibility (i), whereas the latter
aims at delivering packets (i) while also preserving D feasibility
(ii) in a best-effort manner.

5. REBATE: Protocol

In this section, we first outline our REBATE protocol algo-
rithm and discuss its practical implications. We then describe
its packet header.

—regular link

—max util. link =—path link

(a) Attraction Case

(b) Repulsion Case

Figure 5: Illustration of a packet forwarding within a greedy embedded net-
work example (see Fig. 3) in both attraction (a) and repulsion (b) cases: by
greedy forwarding packets in the attraction case, we aim only to deliver them
to their destinations, and route packets among the shortest (hyperbolic distance)
paths; by greedy forwarding packets in the repulsion case, we now try to also
preserve D feasibility (in a best-effort manner) by repealing packets away from
the origin to avoid nodes in the maximum link utilization zone.

5.1. Algorithm

Note how gradient descent of both ‘attractive’ and ‘repul-
sive’ potentials (see Eq. 8 and 9) is subject to the local minimum
problem similar to the gradient descent of d(i, r) distance func-
tion [14]. As a result, packets may not be delivered to the des-
tination. To maximize a chance of packets delivery in dynamic
scale-free networks, we propose a solution that alternates pack-
ets forwarding using both ‘repulsive’ and ‘attractive’ potentials.
We remark that greedy forwarding using the ‘repulsive’ poten-
tial tries to deliver packets (i) while preserving D feasibility
(i1), whereas greedy forwarding based on the ‘attractive’ po-
tential aims to achieve only (i). Finally, we also add a greedy
forwarding in ‘pressure’ mode, as proposed in [14], to recover
packets that are simultaneously stuck in local minima of both
‘repulsive’ and ‘attractive’ modes.

Algorithm 1 outlines the REBATE greedy forwarding logic:
upon receiving a packet P* going from source s to destination ¢
to be forwarded at node i, i first retrieves the current maximum
link utilization « (line 2). We later discuss a simple technique
that can avoid the need of using a global @ knowledge. Once
«a is retrieved, node i checks if P should proceed further in
‘repulsive’, ‘attractive’ or ‘pressure’ mode. To do so, node i
first checks that the best known potential in ‘repulsive’ mode
attached to packet P*'_¢,,,, is greater than ¢", potential of node i
(line 4). This step is important to ensure that packets progress in
‘repulsive’ mode towards the destination without the possibility
of returning to previously encountered local minima. Thus, if
P @, > @, i attaches its ‘repulsive’ potential to the packet
header (line 5) and computes neighbors j € Nbrs potential go';.’
(line 6) via Eq. 9.



If no neighbor j has a potential go;’ < ¢, i switches to
the ‘attractive’ mode, where it computes its own (¢!) and all
neighbors j € Nbrs’s potential (gaj’) using Eq. 8 (line 12). If
node i in ‘attractive’ mode is unavailable to find next hop j, i
also saves the last best known potential of the ‘attractive’ mode
to the ¢* _attr of the packet header (line 13). This step is also
needed to ensure progress in ‘attractive’ mode. When both ‘re-
pulsive’ and ‘attractive’ forwarding modes fail to find the next
hop j, REBATE switches to ‘pressure’ mode (line 20). The key
idea behind recovery in ‘pressure’ mode is to forward packet to
Jj neighbor with minimal potential computed via Eq. 9 among
the least visited neighbors (line 23).

Algorithm 1: REBATE

/+ Upon receiving a packet P¥ at node i */
1 if i # dst then
2 retrieve @
3 next < NIL
4 if P e > @) (using Eq. 9) then
/+ repulsive mode x/
5 P_prep ¢} (using Eq. 9)
: 4 St <]
6 J e el./regﬁ[}rr;(i) @5 (using Eq. 9)
7 if go‘;’ < ¢} then
8 next « j
9 forward(PS',next)
10 end
11 end
12 if next == NIL and P_@uur > @' (using Eq. 8) then
/+ attractive mode */
13 P_anr < ' (using Eq. 8)
. . e
14 Jj e a]regz\’%r;(i) @5 (using Eq. 8)
15 if goj’ < ¢! then
16 next « j
17 forward(P*', next)
18 end
19 end
20 if next == NIL then
/* pressure mode */
21 VisitSyin < min P _visits(j)
JENDbrs(i)
22 Candidates < {j € Nbrs(i) and P¥ _visits(j) == visitSmi}
23 j < argnin  ¢* (using Eq. 9)
JjeCandidates "/
24 P visits(j) « P visits(j) + 1
25 next « j
26 forward(P, next)
27 end
28 else
29 | terminate
30 end

5.2. Global vs Local @ Knowledge

On one hand, we need the maximum link utilization « (see
Alg. 1, line 2) to calculate the intensity of the repulsion field
(see Eq. 10 and 11). On the other hand, we need to repeal
only those flows that contributes to the maximum link utiliza-
tion based on D node constraints (see Eq. 6), i.e., flows that
traverse edges with y;; > 0. Thus, we hypothesis that repealing
all flows based on the ‘global’ maximum link utilization a can
lead to a worse satisfaction of D feasibility. Instead, we aim to
calculate the intensity of the repulsion field based on the local
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Figure 6: Minimal coordinate sizes for GE of both real US Tier-1 and generated
based on Waxman model networks.

a awareness of the flow. Intuitively, if a flow contributes to the
actual (i.e., global) a, it will be aware of it making its repulsion
field stronger, or weaker otherwise.

We propose a simple scheme on how to use a local knowl-
edge of a stored on packet P* which is forwarded from s to z.
In particular, we store two additional values @_cur and a_next.
During P* forwarding each node i uses @ = @ _cur, and updates
a_next if one of its adjacent links has higher utilization than
a_next. The idea is to benefit from common two-way commu-
nications (e.g., transport protocols like TCP). At the beginning,
node s decides on a_cur based on the last received information
from ¢ (e.g., upon receiving an ACK message). To this end, s
computes a_cur as follows:

12)

a_next, if a_next > a_cur
a_cur = )
Aa_next + (1 — A)a_cur, otherwise

where A € [0, 1] represents a network “cold-down” property,
i.e., the larger is A, the faster the maximum link utilization of
the network diminishes.

In the evaluation section, we empirically validate our intu-
ition on a local @ knowledge, i.e., we show how such knowledge
(see Eq. 12) is sufficient for our REBATE.

5.3. Complexity Analysis

In the worst case scenario, Algorithm 1 proceeds exactly
once in all three modes: ‘attractive’, ‘repulsive’ and ‘pressure’
modes. The asymptotic computational complexity of each mode
is O(k), where k is an average node degree. This is because each
node estimates its own potential ¢;* and goji’ potential of all of
its neighbors to make a forwarding decision. Thus, Algorithm 1
has the following complexity:

03 - k) = O(k). (13)

Note that for networks that features a scale-free nature, k on
average is of constant size O*(1). Hence, REBATE has amor-
tized O*(1) space-time complexity based on Equation 13 simi-
lar to common hyperbolic geometric routing solutions [7]. At
the same time, for the arbitrary graphs k (and hence the RE-
BATE space-time complexity) is O(N) inthe worst case.

Aside from space complexity due to number of entries stored
on routers, there is another potential problem related to the size
of coordinates. It is obvious that with the increase of the net-
work size the precision of coordinates {z; € C : |z < 1}



should increase too to make sure all coordinates are unique.
Figure 6 illustrates such coordinate size dependency on the net-
work size when both real US Tier-1 and generated based on
Waxman model [35] networks are greedy embedded. GE can
be considered as less efficient hyperbolic coordinates assign-
ment technique in terms of required coordinates precision. This
is due to the fact that chosen GE method [14] uses only the half
Poincare plane and rapidly pushes node coordinates closer to
|zl = 1 boundary (e.g., see Figure 3b). However, we can see
how even in this case node coordinates are in between O(logN)
and O(loglogN) size. As designing the best hyperbolic coor-
dinate assignment technique is out of scope for this paper, we
just fixed 6 bytes for each real and imaginary parts of z; to al-
low unique hyperbolic coordinate assignment for networks with
~ 10° to 10%° nodes depending on the network topology. Note
that when network node address/coordinates are fixed (as in
conventional routing or TE), REBATE space-time complexity
doesn’t depend on it.

5.4. Protocol

Having both REBATE model and its algorithm discussed,
we now describe REBATE protocol and its header. Our pro-
tocol is supposed to operate on Layer 2.5 w.r.t. OSI model —
common for non-IP routing solutions [36, 37]. Thus, routers
check if REBATE can be used first, and if not, they forward
packets using standard IP techniques. Each node i has to know
its own coordinate (z;) as well as all its neighbors’ coordinates.
In addition to that, our REBATE algorithm needs knowledge of
both the minimum (R,,;,;) and the maximum (R,,,,) hyperbolic
radiuses of the embedded core network. The above informa-
tion is static and requires no communication costs to update. It
can be stored on each node during its embedding process, e.g.,
when node retrieves its coordinate from the default router [7].
All other required information needs to be stored in the RE-
BATE packet header itself.

Firstly, our REBATE header needs to store source and desti-
nation coordinates. We remark that each node i has a hyperbolic
coordinate represented by a complex number z; € C : |z] < 1.
To store this information we can use 6 bytes to represent the
real (real(z;)) and imagery (imag(z;)) parts of the complex num-
ber z; as discussed in Section 5.3. Hence, we need 12 bytes to
store the source (z,.) and 12 bytes to store the destination (z4)
coordinates. Note that such information is common for all geo-
metric routing protocols.

Secondly, we need to store REBATE-specific information:
we need 4 bytes (regular float precision) to store both (known)
potentials in attractive (¢q) and repulsive (¢r.,) modes com-
puted via Eq. 8 and 9, respectively; we also need 2 bytes (half
precision) to store the current maximum link utilization (a.,,)
and the next proposed maximum link utilization (@;.,,) used to
retrieve « (see Eq. 12).

Finally, we need to store GPGF-specific information to track
number of the unique node visits during a packet recovery from
local minima in the pressure mode [14]. Each node unique-
ness can be identified by its coordinate z; (16 byte information).
Alternatively, one can use IPv6 (128 bit) or MAC (48 bit) ad-
dresses to this aim. However, all such information can be ex-

pensive to store within a dynamic part of the header [31]. To
avoid potential intractabilities caused by a large size of the dy-
namic header part, we propose a simple hash function for the
node i coordinate z;:

YR
hash (i) = 2% ~round((2§ -1)- M)
Rmax _Rmin
(14
+ round((Z% -1)- ﬂ)
2n

where N is a number of bits of the hash key, and ¢; is an angular
coordinate of z; complex number computed as:

—1imag(z;) i
¢l = tan (!’Eal(zz') )’ real(z,) 2 0 (15)
tan‘l(l:f,f;((z.‘i)) +m, otherwise
%)

For example, if we hash node i with 8-bit keys, Eq. 14 produces
integer numbers from 0 to 255. Similarly, Eq. 14 produces in-
teger numbers from 0 to 65535 for 16-bit keys.

The resulting REBATE packet header is shown in Table 4,
where n is a number of unique nodes visited in the pressure
mode, and N is a number of bits of the hash key.

Table 4: REBATE Packet Header.

srcz | dstz |repulsive | attractive a a |hash keys | # of
coord. | coord. | potential | potential | current | next | of nodes | visits
[2-6B[2-6B] 4B | 4B | 2B [2B[n-N/2°B][ nB]

We conclude that, if REBATE packet does not enter the
pressure mode (does not face a local minimum), its static packet
header size is equal to (12+4+2)-2 = 36 bytes. In the next, we
show how the dynamic REBATE header part does not introduce
intractabilities under practical TTL and when hash functions are
used. We also show how our hash function performance is suf-
ficient for 16-bit keys.

6. Performance Evaluation

In this section, we establish the practicality of our REBATE
approach by evaluating its performance using traces from the
US Tier-1 core network [38, 39]. *

Simulation Settings. Our Java-based simulations are run on
an Ubuntu 16.04 OS GNU/Linux x86_64 machine with an Intel
Core i5 2.4 GHz CPU and 8GB RAM. We use both Internet
Topology Zoo [38] and Atlas [39] topology databases to re-
create the US Tier-1 providers’ network as shown in Fig. la.
We assume that this network has 10 Gbps capacity links. We
also assume that each US Tier-1 (i.e., core) network node has
attached from 10 to 1000 IoT devices that generate from 100 to
1000 concurrent flows. Each flow has a demand ranging from
10 Mbps to 1 Gbps and following a Pareto distribution — 20%
of the flows have demand closer to 1 Gbps whereas the rest 80%
have demand near 10 Mbps. This flow demand distribution

4The source code of our trace-driven simulations is publicly available at
https://github.com/dumanl90/rebate.
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Figure 7: (a) REBATE percentage reduction of the maximum link utilization @ for 100 concurrent flows and different attenuation orders n w.r.t. its performance
under n = 0.5 and the global (G) a knowledge: REBATE performance improves under a local (L) o knowledge, as less unnecessary packets are repealed from
the origin. (b) Local REBATE performance for 100 concurrent flows: REBATE is not sensitive to either greedy embedded (GE) or hyperbolically mapped (HM)
network cold-down property A, but properly adjusted A in Eq. 12 can slightly improve its performance.(c) Dynamic header size of REBATE for packets routed in
hyperbolically mapped network (it is static size of 36 bytes when the pressure mode is not used, e.g., within greedy embedded network): using 16-bit hash function
in Eq. 14 allows REBATE packet header to not exceed doubled maximum IP header size in 95% cases. (d) The hash function (see Eq. 14) complementary CDF

(i.e., P(X>x) = y) of collisions w.r.t. its hash key size in bits under TTL=256.

reflects a common traffic aggregation from end-devices into a
single flow also known as a flow group or a tunnel [16, 17].
Under the maximum (practical) packet’s TTL of 256 hops, we
attempt to deliver IoT traffic of these flows among their associ-
ated src — dst pairs.

Our main goal is to evaluate performance of our REBATE
when balancing the core network load by minimizing the max-
imum link utilization under stress. We remark that the main
challenge for the dynamic scale-free TE is to do such opti-
mization without both network topology knowledge and flow
demand awareness. All our results show 95% confidence inter-
val over 100 trials, and our randomness lies in both the source-
destination flow pairs and their demands.

Comparison Methods and Metrics. To empirically evaluate
which potential field best approximates dual node prices, we
tested the performance of our REBATE under different poten-
tial field attenuation orders n. We then leverage our finding (n =
1 when the network is Greedy Embedded (GE) and n = 1.25
when it is Hyperbolically Mapped (HM) in our other experi-
ments. We then compare our REBATE scale-free TE with the
optimal demand-aware TE (by solving P with CPLEX [40]) and
the traffic steering that utilizes common scale-free routing pro-
tocol — GPGF [14]. Note that while comparing with GPGF-
based traffic steering, we use both GE and HM hyperbolic co-
ordinates assignment techniques. Our goal is to show that RE-
BATE statistically outperforms GPGF-based traffic steering in
the traffic optimization. Furthermore, we assess REBATE op-
timality gaps, and we estimate the impact of GE and HM on
our REBATE performance. The related solutions are compared
across the following metrics: the maximum link utilization (the
lower the better), the maximum link utilization increase (the
lower the better) and its reduction (the higher the better) mea-
sured in %. We also compare complimentary CDFs (CCDFs)
of algorithms path hop count, their satisfied flows ratio as well
as the link utilization CDF. Finally, we compare CCDFs of our
proposed hash function (see Eq. 14) using different hash key
sizes.

Results. Our evaluation results fall under three salient find-
ings: (i.a) The local REBATE knowledge of the maximum link
utilization is “enough”. (i.b) Dynamic REBATE packet header
size does not introduce intractabilities under practical TTL and

10

when hash functions are used. (ii) REBATE can decrease the
maximum link utilization by 25% when compared with a traf-
fic steering based on a scale-free routing. (iii) We should hy-
perbolically map to better balance the network load under high
workloads/network dynamics and greedy embed to minimize the
maximum utilization otherwise. (iv) REBATE is suboptimal to
both demands-aware and oblivious TE.

(i.a) Local REBATE knowledge of the maximum link uti-
lization is enough. Note how Figure 7a confirms our hypoth-
esis that our REBATE approach is not affected by a lack of
global knowledge on the current maximum link utilization in
the network (see Section 5.2). As expected, we can see how
in all cases REBATE with a local @ knowledge slightly outper-
forms its variant with a global @ awareness. Moreover, RE-
BATE achieves the minimum of the maximum link utilization
when attenuation order n = 1 while operating with its either
global or local knowledge in the greedy embedded network.
This attenuation order matches the one generated by a potential
field created by the destination. At the same time, for the hyper-
bolically mapped network, REBATE shows the minimum of the
maximum link utilization when attenuation order is n = 1.25.
This result is due to the fact that HM cannot guarantee packets
delivery by the greedy forwarding and needs a recovery scheme
which increases path stretches in the network. Thus, by slightly
increasing attenuation order n, we can mitigate an additional
path stretch due to REBATE packets repulsion. We use n = 1
and n = 1.25 for GE and HM for the rest of simulations, re-
spectively.

An additional evaluation has been conducted to estimate the
local REBATE sensitivity to the network cold-down property A
accuracy used to retrieve a (see Eq. 12). Fig. 7b shows how
during network ‘peak hours’ (i.e., 4 = 0), the maximum link
utilization achieved by our (local) REBATE slightly increases
(e.g., up to 1.5%) if A is incorrectly specified. We conclude that
properly adjusted A can slightly improve our REBATE perfor-
mance and has an insignificant impact. Note that infrastructure
providers can tune REBATE parameters to improve its perfor-
mance based on the infrastructure topology, utilized hardware,
and specific traffic demands, e.g., orchestrating traffic during
the day hours can be based on different parameters w.r.t. the
traffic orchestration at night.
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Figure 8: REBATE (R) reduction percentage of the maximum link utilization
(a,d) compared to GPGF-based traffic steering (G); corresponding Complement
CDFs of 1000 concurrent flows associated path hop counts (b) satisfied flow
ratios under different link failure rates (c) using both hyperbolic mapping (HM)
and greedy embedding (GE): REBATE can better optimize traffic and has the
same quality of packets routing as GPGF.

(i.b) Dynamic REBATE packet header size does not intro-
duce intractabilities under practical TTL and when hash
functions are used. Due to use of GPGF pressure mode that
tracks node visits to recover packets from local minima, our
REBATE protocol header has a dynamic size. From Fig. 7c
we can see how our REBATE header size does not introduce
large overhead for packets routed in a hyperbolically mapped
network under practical TTL. For example, under TTL= 256
and when 16-bit hash function is used (see Eq. 14), our rebate
packet header size is no more than twice of the maximum IP
header size (i.e., < 120 bytes) in 95%. This is by an order of
magnitude less than the common MTU size. We remark that we
use hash functions to identify node uniqueness while tracking
their visits. We can further reduce our REBATE packet header
size at expense of a small number of hash collisions as shown in
Fig 7d. At the same time, identifying node uniqueness via use
of MAC or IPv6 addresses can lead to large packet header sizes
of the REBATE protocol. Thus, we use 16-bit hash function in
Eq. 14 within our REBATE protocol for the rest of simulations.

(ii) REBATE can decrease the maximum link utilization by
25% in comparison with GPGF traffic steering. Fig. 8a
shows how our REBATE statistically outperforms a traffic steer-
ing with the common GPGF geometric routing (designed for
dynamic scale-free networks) when the core network is embed-
ded in the hyperbolic space of the negative curvature [14, 11].
Particularly, REBATE can decrease the maximum link utiliza-
tion by 10% or 25% when GE or HM coordinate assignment
techniques are used, respectively. This is due to the fact that
REBATE repeals excess traffic away from the maximum link
utilization zone. Moreover, REBATE can further reduce the
maximum link utilization up to 20% w.r.t. GPGF-based traffic
steering under greedy embedded network dynamics. For ex-
ample, observe a case of 20% link failures for 1000 concurrent
flows in Figure 8d; this is due to the fact that tree link failures
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Figure 9: Maximum link utilization (a) and link utilization CDFs to host 1000
flows (b) results of REBATE (using both hyperbolic mapping (HM) and greedy
embedding (GE)) compared to the optimal demand-aware TE (Opt): REBATE
is subject to large optimality gaps in practice; it is recommended to use HM for
high network workloads to better balance it, and GE otherwise.

revoke the packet delivery guarantees of GE, repealing traffic
away from the origin reduces packets routing over such links.
As a result, we do not observe similar improvements for hyper-
bolically mapped networks, as HM does not use spanning trees
for coordinate assignments.

We can also see that the reduction in the maximum link uti-
lization of REBATE is not caused by its worse flow demands
satisfaction (see Fig. 8c) as well as by the path stretch increase
that affects packet latency (see Fig. 8b) compared to the GPGF.
Moreover, flow demands satisfaction depends more on a coor-
dinate assignment technique — the larger are paths stretches
in the network due to poor greedy forwarding performance the
lower is the scale-free routing packet delivery ratio under prac-
tical TTL.

(iii) Hyperbolically map to better balance the network load
under high workloads/dynamics, greedy embed to minimize
the maximum utilization otherwise. When observing Fig. 8c
and 9a, we found that by greedy embedding a network in hy-
perbolic spaces and under low network dynamics (< 10% of
link failures), REBATE better copes with flow demand satisfac-
tion and better minimizes the maximum link utilization. This is
due to a lower path stretch of the greedy forwarding (see Fig-
ure 8b). However, the higher the workload or network dynam-
ics the higher is the link utilization of the underlying spanning
tree used by GE. As a result, at high workload/dynamics levels
(e.g., at 1000 concurrent flows or for > 10% of failures), RE-
BATE balances the network load better when this network is
hyperbolically mapped (Fig. 9b).

(iv) REBATE is suboptimal to both demands-aware and obliv-
ious TE. The lack of a flow demand awareness in oblivious TE
introduces a large theoretical optimality gap [15], but does not
prevent it from achieving a low optimality gap in practice. For
instance, the recent semi-oblivious TE approach reaches opti-
mality in 75-80% practical cases [23]. In contrast with obliv-
ious TE, our REBATE is subject to large practical optimality
gaps compared to demands-aware TE, even though it signif-
icantly improves TE performance in comparison with GPGF
traffic steering. For example, in the case of 500 concurrent
flows, our REBATE for hyperbolically mapped network achieves
a maximum link utilization of ~ 0.3 whereas the optimal is
~ 0.1 (see Figs. 9a and 9b).

This result is due to the fact that our REBATE does not use
neither global network knowledge nor flow demand awareness,



and motivates the need for more research in both TE and scale-
free networking areas to further improve dynamic scale-free TE
performance which can be essential for the next-generation In-
ternet augmented with IoT.

7. Conclusion

In this paper, we have proposed the first to our knowledge
Traffic Engineering protocol that can be used within dynamic
scale-free networks. We hypothesize that our protocol can be
particularly crucial for next-generation Internet segments aug-
mented with edge [6, 13] and IoT devices [1] to optimize traf-
fic in their hardly controllable, dynamic and large core subnet-
works. We called our solution REpulsive-BAsed Traffic Engi-
neering (REBATE); REBATE operates only with a local knowl-
edge of the topology, i.e., it needs only O(1) space complexity
to optimize traffic. To do so, we leveraged dual principles of the
optimal demand-aware TE as well as fundamental properties of
hyperbolic metric spaces. Using real US Tier-1 network traces
in our simulator, we have found that REBATE can reduce the
maximum link utilization of the network by 25% in comparison
with a traffic steering technique that uses commonly adopted
GPGF geometric routing [7, 14]. However, we found that our
REBATE can be still subject to large optimality gaps in prac-
tice when compared to both demand-aware and oblivious TE.
Thus, we conclude that REBATE is the first step towards an ef-
ficient TE protocol that can serve needs of dynamic scale-free
networks.

As an open question we leave the use of oblivious TE prin-
ciples while operating with a local (topology) knowledge of
O*(1) amortized space-time complexity. Another promising di-
rection can be designing a hyperbolic coordinates assignment
technique that is better congruent with the traffic optimization
process itself — similarly to how existing greedy embedding
schemes are congruent with greedy packet forwarding [7, 33].
We remark that the current version of the protocol has other
major limitations aside from the lack of optimality guarantees.
For instance, REBATE currently supports only MLU minimiza-
tion and orchestrates traffic on a per-packet basis which itself
can be subject to high CPU utilization of switches and packets
re-ordering. Thus, other future interesting avenues to explore
are the following: supporting other objectives with better op-
timization performance; using different address schemes (e.g.,
one that yield simple bit-wise operations as opposite to math
calculations over complex numbers); and developing comple-
mentary mechanisms to cope with packets re-ordering (e.g., in
addition to native TCP mechanisms).
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