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ABSTRACT

The frequency stability is a key parameter to determine
the performance of a micro-electro-mechanical (MEM)
resonator. In this study, we utilized the mechanism of 1:2
internal resonance (IR) in a hermetically encapsulated
beam resonator with a high Q-factor (>4000) to improve
the frequency stability. When a MEM resonator is driven
by a single-frequency actuation and conditions for IR are
satisfied, two engaged modes are simultaneously resonated
with their phases locked together through a strong and
effective intermodal energy transfer. The increased inertia
of these two active resonant modes leads to the frequency
stabilization in both frequency outputs. In an open-loop
experimental setting, we demonstrated that the IR achieved
a six-fold improvement in the frequency stability. This
paper reports the first implementation of IR in an
encapsulated high-Q beam resonator.
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INTRODUCTION

Micro-electro-mechanical systems (MEMS) attract
great interest due to their compact dimensions, fast
response, high sensitivity, and low power consumption,
and are widely used in many industrial, commercial, and
scientific applications [1]. MEM resonators are one
category of MEMS that are designed to operate at or near
their resonant frequencies. Because they are easy to
integrate seamlessly with CMOS electronics and have
diverse actuation/detection mechanisms, MEM resonators
have been developed as a key element in MEM oscillators
and sensors for providing reference frequencies and high
sensitivity [2]. One of the most important attributes of
resonators is the frequency stability, which determines
their performance of sensitivity and reliability. However,
when their dimensions shrink to micro- and even nano-
scale, the frequency can fluctuate due to various noise
sources even with tiny energy such as thermal noise,
absorbing/desorbing molecules, and additive noises from
actuation and transduction circuits [3]. Besides, especially
for capacitive transduction with relatively low
displacement sensitivity, the high driving power required
to reach a detectable signal strength further degrades their
frequency stability by introducing nonlinear behavior [4].

A recent report [5] shed light on the importance of
mechanical domain in a MEM resonator as a main
component inducing frequency fluctuations. By examining
contributions of various noise sources on the resulting
frequency stability, authors concluded that addressing the
fluctuation of a mechanical resonator itself is essential to
reach the ultimate thermomechanical noise limit. As such,
we aim to improve stability of the mechanical resonator by
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utilizing the mechanism of internal resonance (IR). IR can
happen in a nonlinear system with its mode frequencies
commensurate into an integer frequency ratio. In such a
system, IR is triggered when the oscillation energy of the
driven mode is larger than a critical value. Given all
conditions of IR realized, the nonlinear coupling between
the engaged modes can transfer energy effectively to
induce these two (or more) modes into resonant states
simultaneously [6-8]. From our previous analytical and
experimental study [9], it was confirmed that a strong 1:2
or 2:1 IR between the second and third flexural modes
could be achieved in a stepped-beam resonator. Such a
strong IR mechanism can provide a stronger nonlinear
energy transfer and wider IR operational range [7],
compared to the relatively weaker 1:3 IR reported in [10].
In this previous study, however, the experimental
demonstration was based on the laser vibrometry
measurement on a low Q-factor resonator (~300), which
did not reflect the practical conditions of a MEM resonator.
In this paper, we fabricated a hermetically encapsulated
beam resonator that was electrostatically actuated and
detected, while the beam resonator was designed into a
stepped beam with the dimensions required for the 1:2
frequency commensurability.

DEVICE DESCRITION AND OPERATION
To internally couple the second and third vibrational
modes, the dimensions of a stepped-beam resonator (cf.,
Fig. la) were first determined to enforce a 1:2 ratio
between these mode frequencies. A linear modal analysis

Figure 1: (a) Schematic of the micromechanical
resonator and electrodes. The resonant beam vibrates
in the flexural mode in the lateral direction (b) SEM
image of the cross section of the resonator. The scale
bar is 20 um. (c) FEA predicted mode shape of second
mode with mode frequency of 1835kHz. (d) FEA
predicted mode shape of third mode with mode
frequency of 3671kHz.
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Figure 2: Schematic of RF/LO mixing measurement
setup

was conducted by a commercial FEA software COMSOL
on a doubly clamped stepped beam for various sets of width
and length of the beam. The stepped beam with the
dimensions of a wider part of L;=172pm, W;=5um and a
narrower part of L,=50um, W,=3um with a uniform
thickness of 40 pm gives the second of third mode
frequencies of 1835kHz and 3671kHz, respectively, with
their mode shapes shown in Figs. 1c-d. The devices were
fabricated  through  Stanford-Bosch  wafer-scale
encapsulation process and a scanning electron microscopy
(SEM) image on its cross-section is shown in Fig. 1b. The
resonator and electrodes are sealed within its own vacuum
chamber protecting the resonator from environmental
disturbances. The advanced fabrication technique results in
a high-quality structure to provide high Q-factor of
fabricated resonators.

To operate the device in a straightforward way, a DC
bias voltage was applied to a bias electrode, while an AC
voltage was applied to an actuation electrode, resulting in
an electrostatic force to actuate the beam in the lateral
direction. The dynamic motion of beam, in turn, introduced
a time-varying capacitance between the beam and detection
electrode. Finally, the AC current including the motional
signal was sensed from the output electrode by a trans-
impedance amplifier (TIA) to convert and amplify the
current signal to a voltage signal.

In such a capacitive transduction, it is essential to
eliminate the parasitic feedthrough capacitance that can
mask the motional current. As such, we used a mixing
measurement system, so called RF/LO measurement setup
[11], as shown in Fig. 2. The lock-in amplifier provided a
sweeping RF signal to the actuation electrode of system,
while a local oscillator (LO) signal provided by a function
generator was connected to the bias electrode via bias-T.
The mixing of RF and LO signals results in a sinusoidal
force with a frequency that equals to the frequency
difference of RF and LO signals. When the frequency
difference of RF and LO signals is set to be around the
mode frequency (i.e., Wrr — Wrp = W, ), this sinusoidal
force can be used to actuate the beam. Through the TIA,
the output current was converted to an amplified voltage
signal and measured by either a spectrum analyzer or a
lock-in amplifier. The principle of this RF/LO mixing
measurement is to circumvent parasitic feedthrough signal,
because the parasitic signals exist on RF and LO
frequencies rather than the frequency of driving force.

Here, the DC bias voltage can influence the mid-plane
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stretching of beam and, thus, change its modal frequencies.
By tuning the DC bias, we were able to reach or escape the
IR range that satisfies the required 1:2 frequency
commensurate condition between second and third flexural
mode frequencies. We used this DC-tuning strategy to
overcome fabrication variances in devices.

It is noted that the single global electrode design for
actuation/detection electrodes was an inadequacy, because
it was not ideal to actuate/detect higher flexural modes than
the first mode. As the mode shape of the third flexural
mode is one and a half sinusoids with two nodes along the
electrode, only one third of the structure (half sinusoidal)
can be effectively actuated/detected by the global
electrode. This problem is even worse for the second mode.
As a result, the actuation/detection scheme was not
efficient as it was supposed to be, and thus there is more
room for the result to be improved.

RESULTS
INTERNAL RESONANCE REALIZATION

We first experimentally characterized the mode
frequencies and Q-factors of the first three flexural modes
and compared them with the FEA simulation results, as
summarized in Table 1. The experimentally obtained mode
frequencies of first three flexural modes are very close to
the ones estimated by FEA modal analysis. By tuning the
DC bias to 22V, the ratio between the second and third
flexural mode frequencies was achieved to be very close to
1:2. To verify if the IR was triggered, the drive frequency
(Q) was swept around the third mode frequency (~3.966
MHz) and the amplitudes of output signal were measured
at the drive frequency () and one-half of the drive
frequency (0.5Q) simultaneously on the spectrum analyzer.
As shown in Fig. 3, it was confirmed that the strong
nonlinear energy transfer from the third to second mode
happened to generate a strong IR peak around ~1.983 MHz.
Here, the third flexural mode was resonated by the external
source (i.e., electrostatic force), while the second mode was
resonated by the internal energy transfer. The internal
energy exchange happened within a narrow frequency
ranges ~ 1.983 MHz where the IR conditions were realized
(i.e., 1:2 ratio and oscillation amplitude in the driven mode
larger than a critical point), to reduce the amplitude of the
driven mode (i.e., third mode) and increase the amplitude
of the internally resonated mode (i.e., second mode).

Frequency stabilization

The inter-modal coupling of IR mechanism has a
direct impact on frequency stability. When two modes are
coupled and resonating with their phases locked together,
the inertia of the mechanical domain, the tendency to
remain at rest, increases and thus its fluctuation is reduced

Table 1. Comparison of mode frequencies between
simulation and experiment

Ist 2nd 3rd
mode | mode | mode
Experiment (w,;/2m) [kHz] 716 1983 | 3966
Experiment (Q) 18000 | 6600 | 4100
Simulation (w,;/2m) [kHz] 662 1835 | 3671
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Figure 3: The system is driven near the third mode
frequency (~3.966 MHz) by applying Vrr=5V,
Vpc=22V, and Vio=10V. The amplitudes of the output
signal were measure at (a) the drive frequency and (b)
at one-half of the drive frequency.

at the same energy level of noise. To experimentally verify
frequency stabilization through the IR mechanism, we
connect the output of TIA to a frequency counter and
measure the open loop short-term frequency stability of the
third mode up to 3000 seconds. The frequency fluctuation
with IR is plotted in Fig. 4a and the frequency stability is

estimated to be , =11.9 p.p.m. Then, we

tuned the DC bias to 5V, where the commensurate
condition was no longer satisfied and IR was not triggered.
In this case, the frequency stability of the third mode
degraded to 68.1ppm and the frequency fluctuation
increased as shown in Fig. 4b.

Open loop Allan deviations with IR and without IR are
also plotted in Fig. 4c for ¢, (7) expressed by:

1 N-l,—7T T,
o-y(r)_\/z(N—l)z':1 (yi+17yl)

where J;means the averaged frequency fluctuation during

the i-th discrete time interval of 7. Note that these open loop
Allan deviations cannot reflect the random walk of
frequency. Because the phase locked loop (PLL) is not
compatible with the RF/LO mixing setting and thus, we
fixed the frequency of the driving signal. The Allan
deviations for both cases continue decreasing with
averaging time until they reach the limit of instrumentation
rather than resonator itself. However, we can still compare
the frequency fluctuation for both cases under same
averaging time. Fig. 4c clearly shows the frequency
fluctuation is stabilized by about an order when the IR is
excited. By improving the experimental methodology,
there is more room for the stability to be further improved
by the closed-loop experiment.

CONCLUSION

We design and fabricate a batch of micromechanical
resonators which can implement the IR. By controlling the
DC bias, we achieve the commensurate relationship
between second and third flexural modes, which is the
prerequisite of IR. To experimental characterize IR and
study frequency stability, we setup a RF/LO mixing
measurement system to avoid influence from the parasitic
feedthrough current and acquire unmasked motional signal.
In this setting, we verify that the IR happens in the stepped-
beam resonator and its frequency stability improves by six-
fold. The mechanism of IR stabilizes the frequency from the
mechanical domain, which is the main source of frequency
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Figure 4: The short-term frequency fluctuation is
plotted for 3000 seconds when the IR is triggered (a)
and not triggered (b). The condition to realize the IR
was controlled by tuning the applied DC bias. The
frequency stability improved by 6 times from 68.1ppm
to 11.9ppm. The Allen deviation with and without the
IR in (c) also clearly shows the stability enhancement
by an order.

fluctuation. Our study could enlighten further studies to
address the frequency stability of MEM oscillators and
sensors from the mechanical domain to reach the ultimate
thermo-mechanical noise limit.
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