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ABSTRACT 

The frequency stability is a key parameter to determine 
the performance of a micro-electro-mechanical (MEM) 
resonator. In this study, we utilized the mechanism of 1:2 
internal resonance (IR) in a hermetically encapsulated 
beam resonator with a high Q-factor (>4000) to improve 
the frequency stability. When a MEM resonator is driven 
by a single-frequency actuation and conditions for IR are 
satisfied, two engaged modes are simultaneously resonated 
with their phases locked together through a strong and 
effective intermodal energy transfer. The increased inertia 
of these two active resonant modes leads to the frequency 
stabilization in both frequency outputs. In an open-loop 
experimental setting, we demonstrated that the IR achieved 
a six-fold improvement in the frequency stability. This 
paper reports the first implementation of IR in an 
encapsulated high-Q beam resonator.                                                                                                                                                            

KEYWORDS 
Micro-electro-mechanical resonator, internal 

resonance, frequency stabilization 
 

INTRODUCTION 
Micro-electro-mechanical systems (MEMS) attract 

great interest due to their compact dimensions, fast 
response, high sensitivity, and low power consumption, 
and are widely used in many industrial, commercial, and 
scientific applications [1]. MEM resonators are one 
category of MEMS that are designed to operate at or near 
their resonant frequencies. Because they are easy to 
integrate seamlessly with CMOS electronics and have 
diverse actuation/detection mechanisms, MEM resonators 
have been developed as a key element in MEM oscillators 
and sensors for providing reference frequencies and high 
sensitivity [2]. One of the most important attributes of 
resonators is the frequency stability, which determines 
their performance of sensitivity and reliability. However, 
when their dimensions shrink to micro- and even nano-
scale, the frequency can fluctuate due to various noise 
sources even with tiny energy such as thermal noise, 
absorbing/desorbing molecules, and additive noises from 
actuation and transduction circuits [3]. Besides, especially 
for capacitive transduction with relatively low 
displacement sensitivity, the high driving power required 
to reach a detectable signal strength further degrades their 
frequency stability by introducing nonlinear behavior [4]. 

A recent report [5] shed light on the importance of 
mechanical domain in a MEM resonator as a main 
component inducing frequency fluctuations. By examining 
contributions of various noise sources on the resulting 
frequency stability, authors concluded that addressing the 
fluctuation of a mechanical resonator itself is essential to 
reach the ultimate thermomechanical noise limit. As such, 
we aim to improve stability of the mechanical resonator by 

utilizing the mechanism of internal resonance (IR). IR can 
happen in a nonlinear system with its mode frequencies 
commensurate into an integer frequency ratio. In such a 
system, IR is triggered when the oscillation energy of the 
driven mode is larger than a critical value. Given all 
conditions of IR realized, the nonlinear coupling between 
the engaged modes can transfer energy effectively to 
induce these two (or more) modes into resonant states 
simultaneously [6-8]. From our previous analytical and 
experimental study [9], it was confirmed that a strong 1:2 
or 2:1 IR between the second and third flexural modes 
could be achieved in a stepped-beam resonator. Such a 
strong IR mechanism can provide a stronger nonlinear 
energy transfer and wider IR operational range [7],  
compared to the relatively weaker 1:3 IR reported in [10]. 
In this previous study, however, the experimental 
demonstration was based on the laser vibrometry 
measurement on a low Q-factor resonator (~300), which 
did not reflect the practical conditions of a MEM resonator. 
In this paper, we fabricated a hermetically encapsulated 
beam resonator that was electrostatically actuated and 
detected, while the beam resonator was designed into a 
stepped beam with the dimensions required for the 1:2 
frequency commensurability. 

 
DEVICE DESCRITION AND OPERATION 

To internally couple the second and third vibrational 
modes, the dimensions of a stepped-beam resonator (cf., 
Fig. 1a) were first determined to enforce a 1:2 ratio 
between these mode frequencies. A linear modal analysis 

 
Figure 1: (a) Schematic of the micromechanical 
resonator and electrodes. The resonant beam vibrates 
in the flexural mode in the lateral direction (b) SEM 
image of the cross section of the resonator. The scale 
bar is 20 µm. (c) FEA predicted mode shape of second 
mode with mode frequency of 1835kHz. (d) FEA 
predicted mode shape of third mode with mode 
frequency of 3671kHz. 
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was conducted by a commercial FEA software COMSOL 
on a doubly clamped stepped beam for various sets of width 
and length of the beam. The stepped beam with the 
dimensions of a wider part of L1=172µm, W1=5µm and a 
narrower part of L2=50µm, W2=3µm with a uniform 
thickness of 40 µm gives the second of third mode 
frequencies of 1835kHz and 3671kHz, respectively, with 
their mode shapes shown in Figs. 1c-d. The devices were 
fabricated through Stanford-Bosch wafer-scale 
encapsulation process and a scanning electron microscopy 
(SEM) image on its cross-section is shown in Fig. 1b. The 
resonator and electrodes are sealed within its own vacuum 
chamber protecting the resonator from environmental 
disturbances. The advanced fabrication technique results in 
a high-quality structure to provide high Q-factor of 
fabricated resonators.  

To operate the device in a straightforward way, a DC 
bias voltage was applied to a bias electrode, while an AC 
voltage was applied to an actuation electrode, resulting in 
an electrostatic force to actuate the beam in the lateral 
direction. The dynamic motion of beam, in turn, introduced 
a time-varying capacitance between the beam and detection 
electrode. Finally, the AC current including the motional 
signal was sensed from the output electrode by a trans-
impedance amplifier (TIA) to convert and amplify the 
current signal to a voltage signal.  

In such a capacitive transduction, it is essential to 
eliminate the parasitic feedthrough capacitance that can 
mask the motional current. As such, we used a mixing 
measurement system, so called RF/LO measurement setup 
[11], as shown in Fig. 2. The lock-in amplifier provided a 
sweeping RF signal to the actuation electrode of system, 
while a local oscillator (LO) signal provided by a function 
generator was connected to the bias electrode via bias-T. 
The mixing of RF and LO signals results in a sinusoidal 
force with a frequency that equals to the frequency 
difference of RF and LO signals. When the frequency 
difference of RF and LO signals is set to be around the 
mode frequency (i.e., ߱ோி െ ߱௅ை ൎ ߱௢ ), this sinusoidal 
force can be used to actuate the beam. Through the TIA, 
the output current was converted to an amplified voltage 
signal and measured by either a spectrum analyzer or a 
lock-in amplifier. The principle of this RF/LO mixing 
measurement is to circumvent parasitic feedthrough signal, 
because the parasitic signals exist on RF and LO 
frequencies rather than the frequency of driving force.  

Here, the DC bias voltage can influence the mid-plane 

stretching of beam and, thus, change its modal frequencies. 
By tuning the DC bias, we were able to reach or escape the 
IR range that satisfies the required 1:2 frequency 
commensurate condition between second and third flexural 
mode frequencies. We used this DC-tuning strategy to 
overcome fabrication variances in devices.  

It is noted that the single global electrode design for 
actuation/detection electrodes was an inadequacy, because 
it was not ideal to actuate/detect higher flexural modes than 
the first mode. As the mode shape of the third flexural 
mode is one and a half sinusoids with two nodes along the 
electrode, only one third of the structure (half sinusoidal) 
can be effectively actuated/detected by the global 
electrode. This problem is even worse for the second mode. 
As a result, the actuation/detection scheme was not 
efficient as it was supposed to be, and thus there is more 
room for the result to be improved. 

RESULTS 
INTERNAL RESONANCE REALIZATION 

We first experimentally characterized the mode 
frequencies and Q-factors of the first three flexural modes 
and compared them with the FEA simulation results, as 
summarized in Table 1. The experimentally obtained mode 
frequencies of first three flexural modes are very close to 
the ones estimated by FEA modal analysis. By tuning the 
DC bias to 22V, the ratio between the second and third 
flexural mode frequencies was achieved to be very close to 
1:2. To verify if the IR was triggered, the drive frequency 
(Ω) was swept around the third mode frequency (~3.966 
MHz) and the amplitudes of output signal were measured 
at the drive frequency (Ω) and one-half of the drive 
frequency (0.5Ω) simultaneously on the spectrum analyzer. 
As shown in Fig. 3, it was confirmed that the strong 
nonlinear energy transfer from the third to second mode 
happened to generate a strong IR peak around ~1.983 MHz. 
Here, the third flexural mode was resonated by the external 
source (i.e., electrostatic force), while the second mode was 
resonated by the internal energy transfer. The internal 
energy exchange happened within a narrow frequency 
ranges ~ 1.983 MHz where the IR conditions were realized 
(i.e., 1:2 ratio and oscillation amplitude in the driven mode 
larger than a critical point), to reduce the amplitude of the 
driven mode (i.e., third mode) and increase the amplitude 
of the internally resonated mode (i.e., second mode).   

Frequency stabilization 
The inter-modal coupling of IR mechanism has a 

direct impact on frequency stability. When two modes are 
coupled and resonating with their phases locked together, 
the inertia of the mechanical domain, the tendency to 
remain at rest, increases and thus its fluctuation is reduced 

 
Figure 2: Schematic of RF/LO mixing measurement 
setup 

Table 1. Comparison of mode frequencies between 
simulation and experiment 
 1st 

mode 
2nd 
mode 

3rd 
mode 

Experiment (߱௢௜/2ߨ) [kHz] 716 1983 3966 

Experiment (Q) 18000 6600 4100 
Simulation (߱௢௜/2ߨ) [kHz] 662 1835 3671 
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at the same energy level of noise. To experimentally verify 
frequency stabilization through the IR mechanism, we 
connect the output of TIA to a frequency counter and 
measure the open loop short-term frequency stability of the 
third mode up to 3000 seconds. The frequency fluctuation 
with IR is plotted in Fig. 4a and the frequency stability is 

estimated to be 2
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tuned the DC bias to 5V, where the commensurate 
condition was no longer satisfied and IR was not triggered. 
In this case, the frequency stability of the third mode 
degraded to 68.1ppm and the frequency fluctuation 
increased as shown in Fig. 4b.  

Open loop Allan deviations with IR and without IR are 
also plotted in Fig. 4c for ( )yσ τ  expressed by: 
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where iy means the averaged frequency fluctuation during 
the i-th discrete time interval of τ. Note that these open loop 
Allan deviations cannot reflect the random walk of 
frequency. Because the phase locked loop (PLL) is not 
compatible with the RF/LO mixing setting and thus, we 
fixed the frequency of the driving signal. The Allan 
deviations for both cases continue decreasing with 
averaging time until they reach the limit of instrumentation 
rather than resonator itself. However, we can still compare 
the frequency fluctuation for both cases under same 
averaging time. Fig. 4c clearly shows the frequency 
fluctuation is stabilized by about an order when the IR is 
excited. By improving the experimental methodology, 
there is more room for the stability to be further improved 
by the closed-loop experiment. 

CONCLUSION 
We design and fabricate a batch of micromechanical 

resonators which can implement the IR. By controlling the 
DC bias, we achieve the commensurate relationship 
between second and third flexural modes, which is the 
prerequisite of IR. To experimental characterize IR and 
study frequency stability, we setup a RF/LO mixing 
measurement system to avoid influence from the parasitic 
feedthrough current and acquire unmasked motional signal. 
In this setting, we verify that the IR happens in the stepped-
beam resonator and its frequency stability improves by six-
fold. The mechanism of IR stabilizes the frequency from the 
mechanical domain, which is the main source of frequency 

fluctuation. Our study could enlighten further studies to 
address the frequency stability of MEM oscillators and 
sensors from the mechanical domain to reach the ultimate 
thermo-mechanical noise limit. 

ACKNOWLEDGEMENTS 
This work was financially supported in part by Defense 

Advanced Research Projects Agency (Young Faculty 
Award D16AP00110). The contents of this paper are those 
of the authors and do not necessarily reflect the position or 
the policy of the government. This work is also supported 
by NSF Award # 1662464 - Collaborative Research: 
Nonlinear Coupling and Relaxation Mechanisms in Micro-
mechanics. Special thanks to all the Stanford 
Nanofabrication Facility (SNF) staff for their help during 
fabrication. 

REFERENCES 
[1] A. Z. Hajjaj, N. Jaber, S. Ilyas, F. K. Alfosail, and M. 

I. Younis, “Linear and nonlinear dynamics of micro 
and nano-resonators: Review of recent advances,” 
Int. J. Non-Linear Mech., Oct. 2019. 

[2] C. T. -c. Nguyen, “MEMS technology for timing and 
frequency control,” IEEE Trans. Ultrason. 
Ferroelectr. Freq. Control, vol. 54, no. 2, pp. 251–
270, Feb. 2007. 

[3] J. R. Vig and Yoonkee Kim, “Noise in 
microelectromechanical system resonators,” IEEE 
Trans. Ultrason. Ferroelectr. Freq. Control, vol. 46, 
no. 6, pp. 1558–1565, Nov. 1999. 

Figure 3: The system is driven near the third mode 
frequency (~3.966 MHz) by applying VRF=5V, 
VDC=22V, and VLO=10V. The amplitudes of the output 
signal were measure at (a) the drive frequency and (b) 
at one-half of the drive frequency. 

 
Figure 4: The short-term frequency fluctuation is 
plotted for 3000 seconds when the IR is triggered (a) 
and not triggered (b). The condition to realize the IR 
was controlled by tuning the applied DC bias. The 
frequency stability improved by 6 times from 68.1ppm 
to 11.9ppm. The Allen deviation with and without the 
IR in (c) also clearly shows the stability enhancement 
by an order.  

1193

Authorized licensed use limited to: Stanford University. Downloaded on December 31,2020 at 15:55:44 UTC from IEEE Xplore.  Restrictions apply. 



[4] J. M. Miller, N.E. Bousse, D.B. Heinz, H.J.K. Kim, 
H.K. Kwon, G.D. Vukasin, and T.W. Kenny, 
“Thermomechanical-Noise-Limited Capacitive 
Transduction of Encapsulated MEM Resonators,” J. 
Microelectromechanical Syst., pp. 1–12, 2019. 

[5] M. Sansa, E. Sage, E.C. Bullard, M.Gely, T.Alava, E. 
Colinet, A.k. Naik, L.G. Villanueva, L. Duraffourg, 
M.L. Roukes and G. Jourdan “Frequency fluctuations 
in silicon nanoresonators,” Nat. Nanotechnol., vol. 
11, no. 6, pp. 552–558, Jun. 2016. 

[6] A. Eichler, M. del Álamo Ruiz, J. A. Plaza, and A. 
Bachtold. "Strong coupling between mechanical 
modes in a nanotube resonator." Physical review 
letters 109, no. 2 (2012): 025503.  

[7]   A.H. Nayfeh and D.T. Mook, "Nonlinear       
Oscillations,'' John Wiley & Sons, 2008 

[8] K. Asadi, J. Yu, and H. Cho, “Nonlinear couplings 
and energy transfers in micro- and nano-mechanical 
resonators: intermodal coupling, internal resonance 
and synchronization,” Philos. Trans. R. Soc. Math. 
Phys. Eng. Sci., vol. 376, no. 2127, p. 20170141, 
Aug. 2018. 

[9] J. Yu, K. Asadi, H. Brahmi, H. Cho, S. Nezmi, and S. 
Lee, “Frequency Stabilization in a MEMS Oscillator 
with 1:2 Internal Resonance,” in 2019 IEEE 
International Symposium on Inertial Sensors and 
Systems (INERTIAL), 2019, pp. 1–4. 

[10] D. Antonio, D. H. Zanette, and D. López, 
“Frequency stabilization in nonlinear 
micromechanical oscillators,” Nat. Commun., vol. 3, 
no. 1, pp. 1–6, May 2012. 

[11] J. R. Clark, W.-T. Hsu, M. A. Abdelmoneum, and C. 
T.-C. Nguyen, “High-Q UHF micromechanical 
radial-contour mode disk resonators,” J. 
Microelectromechanical Syst., vol. 14, no. 6, pp. 
1298–1310, Dec. 2005. 

 
CONTACT 

*J. Yu, tel: +1-929-2707662; yu.1768@osu.edu 

1194

Authorized licensed use limited to: Stanford University. Downloaded on December 31,2020 at 15:55:44 UTC from IEEE Xplore.  Restrictions apply. 


