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Abstract—The emerging network function virtualization is migrating traditional middleboxes, e.g., firewalls, load balancers, proxies,
from dedicated hardware to virtual network functions (VNFs) running on commercial servers defined as network points of presence
(N-PoPs). VNFs further chain up for more complex network services called service function chains (SFCs). SFCs introduce new
flexibility and scalability which greatly reduce expenses and rolling out time of network services. However, chasing the lowest cost may
lead to congestion on popular N-PoPs and links, thus resulting in performance degradation or violation of service-level agreements. To
address this problem, we propose a novel scheme that reduces the operating cost and controls network congestion at the same time. It
does so by placing VNFs and routing flows among them jointly. Given the problem is NP-hard, we design an approximation algorithm
named candidate path selection (CPS) with a theoretical performance guarantee. We then consider cases when SFC demands
fluctuate frequently. We propose an online candidate path selection (OCPS) algorithm to handle such cases considering the VNF
migration cost. OCPS is designed to preserve good performance under various migration costs and prediction errors. Extensive
simulation results highlight that CPS and OCPS algorithms perform better than baselines and comparably to the optimal solution.
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1 INTRODUCTION

The development of virtual network functions (VNFs)
moves network services, e.g., Routers, Firewalls, NATs, from
specialized hardware to commercial servers. Clusters of
such servers supporting VNFs are called network points
of presence (N-PoPs) [1]. For some complex network ser-
vices, corresponding VNFs are chained together to provide
services as a whole called service function chains (SFCs).
SFCs may operate on multiple N-PoPs connected by a
communication network and can be easily installed, deleted,
scaled up and down, updated, or even migrated among N-
PoPs. Such features largely reduce the operating cost and
rolling out time of network services.

ETSI standard [2] and realized VNF platforms [3], [4] in-
dicate that different VNFs may demand different resources
of servers and some may require specific licenses to operate.
Therefore, the operating cost of a VNF is affected by the
N-PoP picked to support it. This is especially the case for
hybrid N-PoPs consisted of both commercial servers and
dedicated hardware [5]. Thus, it is not surprising to see
some previous work proposes to place VNFs over N-PoPs
with the lowest cost to reduce the operating expenditure.

However, the operating cost of VNFs is not the only
consideration when determining the placement and routing
of SFCs. In particular, the load on each N-PoP and network
link should be carefully balanced to eliminate possible con-
gestion. Simply using constraints to limit the maximum load
on each N-PoP and link, as most existing work does [6],
[7], is not enough. Consider a simple example with two N-
PoPs and two VNFs where each VNF requests for half of the
resources of one N-PoP. Clearly, placing one VNF on an N-

PoP each may bring much better performance compared to
placing both VNFs on the same N-PoP, even though both
strategies satisfy the constraints. In other words, placing
VNFs on N-PoPs with lower operating costs may incur
congestion. Therefore, a thoughtful tradeoff between re-
ducing the operating cost and minimizing N-PoP/network
congestion is in great need.

It is also worth noting that the placement of SFCs
involves not only placement of VNFs but also routing of
flows among VNFs. Jointly optimizing VNF placement and
flow routing is crucial when considering congestion of both
N-PoPs and links. For instance, there exist N-PoPs with
sufficient VNF resources but limited bandwidth on some
of its connecting links. In this way, placing VNFs on these
N-PoPs without jointly considering flow routing can easily
aggregate large congestion on their connecting links with
limited bandwidth. Existing papers concerning network
congestion either focus on only one aspect [3], [8]–[10] or
treat VNF placement and flow routing as two separate
components [11], which may lead to sub-optimal solutions.
Recent work [12] considers a predefined set of routes, which
reduces the complexity at the cost of optimality.

With above-mentioned conclusions, the goal of our pa-
per is to jointly optimize the SFC placement and routing to
minimize the operating cost and congestion. The problem for-
mulated based on this goal is challenging first because the
indivisibility of VNFs leads to integer constraints. In addi-
tion, jointly placing VNFs and routing corresponding flows
incur multiple sets of variables and make the problem even
harder. Related work [8] proves the NP-hardness of jointly
placing and routing SFCs when balancing the load on links,
thus proposing heuristic algorithms to solve it. In this paper,
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we propose an approximation algorithm named candidate
path selection (CPS) to solve the formulated problem in
polynomial time with a theoretical performance guarantee
to the optimum.

CPS preserves good performance with constant or slow-
changing SFC demands. Whenever a significant demand
change happens, the algorithm is applied again to update
the placement and routing of SFCs. However, when SFC
demands fluctuate very fast, the costs of redeploying SFCs,
e.g., migrating VNFs, will become comparable to or even
higher than the operating costs. In these cases, it is in-
appropriate to redo CPS upon a demand change without
considering the migration cost. In preceding research fields
such as virtual network embedding (VNE), VM migration
is an exorbitant procedure with high cost and large latency.
Fortunately, some realized software-based VNF platforms
such as ClickOS make the cost of VNF migration more
affordable [4]. As a result, it is possible to pay moderate
migration costs to reduce the operating cost and conges-
tion when such migrations bring larger reductions. In this
way, the problem becomes an online optimization, and we
extend our algorithm into an online version called online
candidate path selection (OCPS) to handle the lack of future
information. OCPS is designed to perform comparably to
the offline optimal solution under different migration costs
and prediction errors.

Our main contributions in this paper are summarized as
follows.

• We formulate an optimization problem to minimize
the operating cost and congestion of SFCs by jointly
placing VNFs and routing flows on these SFCs. The
problem bridges the operating cost and the network
congestion which are separately considered in exist-
ing work.

• As the formulated problem is NP-hard, we propose
a CPS algorithm to both reduce the computational
complexity and achieve an approximation ratio of
O(log(|V |)) to the optimal solution, where |V | is the
number of N-PoPs in the network.

• When SFC demands change rapidly, we extend CPS
into an OCPS algorithm by optimizing over a time
horizon with VNF migrations allowed between con-
secutive time slots and migration costs added to the
objective function. OCPS is specifically designed to
handle different scales of VNF migration cost and
prediction errors while performing comparably to
the offline optimal solution.

• We perform extensive simulations to validate that the
CPS algorithm achieves comparable performance to
the optimal solution, which outperforms the base-
lines significantly. We also show that the improve-
ment of the OCPS algorithm is consistent under
different VNF migration costs and various prediction
errors. When the demands of SFCs follow real traces
with fast fluctuation, our OCPS algorithm is shown
to maintain comparable performance to the offline
optimum.

The remainder of this paper is organized as follows.
Section 2 proposes the SFC placement problem and the
CPS algorithm. Section 3 presents the online SFC placement

problem and the OCPS algorithm designed for fast demand
fluctuation. Section 4 shows the performance evaluation of
our algorithms. Section 5 briefly reviews the related work
and Section 6 concludes this paper.

2 SFC PLACEMENT WITH SLOW DEMAND FLUC-
TUATION

One important advantage of SFCs is that their VNFs and
corresponding flows can be flexibly placed on different
N-PoPs and connecting links in the network to maximize
various benefits. Therefore, SFC deployment involves both
the placement of VNFs and the routing of flows. In Fig. 1, we
present a simplified example of SFC placement. The detailed
placement is driven by different factors, e.g., operating cost,
network congestion, demand fluctuation, security.

Fig. 1. An example of SFC placement. The red and blue SFCs are de-
ployed onto five N-PoPs. The sizes of VNFs represent different operating
costs of VNFs. The colored arrows denote directions of routing between
different N-PoPs. Routing paths between two VNFs may consist of
multiple N-PoPs and physical links.

In this section, we focus on two major and correlated
objectives of the SFC placement problem, i.e., the operating
cost and the network congestion. As mentioned in Section 1,
pursuing low operating costs may lead to aggregation of
load on some N-PoPs and links and thus cause congestion.
On the contrary, eliminating congestion requires distribut-
ing workload into the network evenly which moves some
VNFs away from N-PoPs with the lowest operating cost.
This natural tradeoff makes it important to consider the
operating cost and the congestion jointly. By doing so, we
can save operating costs when computing resources and link
bandwidth are sufficient. On the other hand, we can reduce
latency and packet loss by avoiding severe congestion when
resources or bandwidth are highly limited.

The optimization model in this paper is designed to
minimize the combination of operating cost and congestion
cost. It deals with VNF placement and flow routing jointly.
All notations used in this model are listed in Table 1.

2.1 Optimization Model
Denote the set of SFCs in the network as set R. SFC r is
an SFC in set R with demand lr , the amount of traffic
load on r. Xr is the set of VNFs on SFC r. We define
two types of decision variables, Avr,x and fer,x, for the joint
VNF placement and routing. Avr,x is a binary variable which
indicates whether VNF x on SFC r is placed at N-PoP v ∈ V ,
where V is the set of all N-PoPs in the network. fer,x ∈ [0, 1]
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TABLE 1
Notations

Notation Definition
V set of all N-PoPs in the network
E set of all connecting links between N-PoPs
R set of all SFCs to be deployed into the network
Xr set of VNFs demanded by SFC r

x xth type of VNF in set Xr

Av
r,x ∈ {0, 1}, indicating whether VNF x of SFC r is placed on N-PoP v

fe
r,x ∈ [0, 1], indicating the fraction of flow using link e

from VNF x to the next VNF on SFC r
lr service demand of SFC r
G(A,L) operating cost of VNFs, determined by A : {Av

r,x} and L : {lr}
αv
r,x the unit operating cost of VNF x from SFC r on N-PoP v
λv weight parameter of congestion on N-PoP v
µe weight parameter of congestion on link e
β cost parameter of the N-PoP congestion
γ cost parameter of the link congestion
Y maximal congestion on N-PoPs
Z maximal congestion on links
in(v) set of links going into N-PoP v
out(v) set of links going out of N-PoP v
Mv capacity of N-PoP v
Ne bandwidth of link e
vler,x virtual link: link e carrying flow from VNF x to x+ 1 on SFC r
vgr virtual graph consisting of virtual links for the same r
ηr,k the kth virtual path consisting of virtual links of r from source to sink
Pr(ηr,k) probability of virtual path ηr,k
cpr,g gth candidate path merged by all ηr,k with the same VNF placement
Pr(cpr,g) probability of picking candidate path cpr,g as placement of r

denotes the fraction of flow routing from VNF x to the next
VNF x + 1 of SFC r on link e ∈ E, where E is the set of all
links in the network.

Operating cost: Denote by G(A,L) as the operating cost
of VNFs, where A = {Avr,x} and L = {lr}. G is a linear
function determined by A and L which can be extended to
different forms based on actual conditions. In the following
sections of this paper, without loss of generality, we define
an αvr,x as the operating cost of deploying one unit of VNF x
from SFC r on N-PoP v ∈ V . Therefore, we restrict G(A,L)
as

∑
r∈R

∑
x∈Xr

∑
v∈V

αvr,xlrA
v
r,x.

N-PoP congestion: For each N-PoP v, denote by Mv the
capacity of N-PoP v. Then, the load on N-PoP v caused by
VNFs running on it is

∑
r∈R

∑
x∈Xr

lr
MvA

v
r,x. Since the diversity

of N-PoPs in computational capacity, I/O bandwidth and
location, different N-PoPs may cause different scales of
congestion even with the same load. For instance, N-PoPs
serving as hubs of the network or N-PoPs with slower CPUs
will have relatively larger congestion to the same amount
of load. Thus, We define a weight parameter λv which
represents the scale of congestion caused by adding one
unit of load onto N-PoP v. We then use yv to represent
the congestion on N-PoP v, which indicates how much
latency and packet loss it may introduce into the network.
It is clear that congestion of v is positively related to λv

and the load on the N-PoP. In this paper, we consider
yv = λv

∑
r∈R

∑
x∈Xr

lr
MvA

v
r,x. We further denote by Y , a non-

negative variable, the maximum congestion on all N-PoPs.
we have Y = max{yv|v ∈ V }. Since the total amount of

VNFs to be deployed into the network is fixed, larger Y
means that the network is more congested with unbalanced
load on N-PoPs. To compare N-PoP congestion with the
operating cost, we introduce β, the cost parameter of N-
PoP congestion, to measure the negative impact of N-PoP
congestion to the network. The cost of N-PoP congestion is
thus denoted as βY .

Link congestion: Similarly, Ne is the bandwidth of phys-
ical link e and µe is the weight parameter of link e in
causing congestion. We then have ze, the congestion on link
e, that ze = µe

∑
r∈R

∑
x∈Xr

lr
Ne f

e
r,x. Denote by Z the maximum

congestion on links and by γ as the cost parameter of link
congestion. We can measure the cost of link congestion by
γZ.

The relative sizes of β and γ compared to G are de-
termined by the actual requirements and conditions. For
instance, β and γ should be relatively large if the net-
work services require low latency (e.g., online games, live
broadcast) or the N-PoPs have no waiting queues and drop
packets whenever congested. With such definitions, the SFC
placement model is formulated as follows.

min G(A,L) + βY + γZ

s.t. ∑
v∈V

Avr,x = 1 r ∈ R, x ∈ Xr (1)∑
e∈in(v)

fer,x −
∑

e∈out(v)

fer,x = Avr,x+1 −Avr,x

r ∈ R, x ∈ Xr, v ∈ V (2)

λv
∑
r∈R

∑
x∈Xr

lr
Mv

Avr,x ≤ Y v ∈ V (3)

µe
∑
r∈R

∑
x∈Xr

lr
Ne

fer,x ≤ Z e ∈ E (4)

Avr,x ∈ {0, 1}, fer,x ∈ [0, 1]

r ∈ R, x ∈ Xr, v ∈ V, e ∈ E (5)

The objective function minimizes the combination of
operating cost and network congestion cost. Constraint (1)
requires that each VNF should only be placed once on
one N-PoP. Constraint (2) makes sure that, after VNFs are
placed, all flows are routed accordingly. If both or neither
of VNF x and x + 1 is placed on the same N-PoP v, i.e.,
Avr,x+1 − Avr,x = 0, the in-flow and out-flow fer,x to node v
should be the same. Otherwise, if one of the two VNFs is
placed on node v, the difference between in-flow and out-
flow should be ±1. Constraint (3) and (4) mean that Y and
Z are the maximum congestion over N-PoPs and links.

According to [8], the problem of jointly placing VNFs
and routing flows to minimize link congestion is NP-hard.
We point out that such a problem is a special case of our
model when parameters α and β are zeros. Therefore, our
SFC placement model also leads to an NP-hard problem.
In the following section, we propose an approximation
algorithm to solve the problem in polynomial time with
both good performance and theoretical guarantee to the
optimal solution. All notations used in the algorithm can
be found in Table 1.
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2.2 Candidate Path Selection Algorithm
In this section, we raise an algorithm with polynomial time
complexity named Candidate Path Selection (CPS) to yield
SFC placement and routing with an approximation ratio of
O(log |V |) to the optimal solution, where |V | is the total
number of N-PoPs.

CPS first relaxes the original ILP problem into a linear
programming (LP) problem. This is done by relaxing integer
variables Avr,x ∈ {0, 1} to fractional ones Avr,x ∈ [0, 1]. It
then solves the relaxed LP and gets the (fractional) solution
{Avr,x} and {fer,x}. Define a virtual link vler,x which repre-
sents the physical link e carrying the flow from VNF x to
VNF x + 1 on SFC r. Each virtual link vler,x corresponds
to one fer,x. With the same r, all vler,x with positive fer,x
formulate a virtual graph vgr . The algorithm then does the
following process for each SFC r to place it into the network.

In the virtual graph vgr, CPS selects the virtual link vle
′

r,x′

with the smallest positive fer,x. Then, from the starting point
of the selected virtual link, CPS finds the adjacent former
virtual link pointing upward to the source of the SFC r. The
former virtual link satisfies the following conditions. First,
it belongs to the virtual graph vgr . Second, its ending point
is the start point of vle

′

r,x′ . Third, the former virtual link has
the largest x which is smaller or equal to x′. We call these
conditions virtual path conditions (VPC). If multiple links
satisfy VPC, CPS randomly picks one as the former virtual
link. CPS keeps finding former virtual links until reaching
the source of the SFC r. In a similar method, CPS finds latter
virtual links until the sink of r and a virtual path ηr,k is thus
created for the SFC from source to sink. All fer,x of the virtual
links along the selected virtual path are subtracted by fe

′

r,x′ .
In this way, the selected virtual link vle

′

r,x′ is removed from
the virtual graph. The value of fe

′

r,x′ equals to Pr(ηr,k).
Based on ηr,k, CPS further figures out the placement of

each VNF because virtual links contain information of both
VNF placement and flow routing. Repeat picking ηr,k until
no positive fer,x left for r. Since all virtual paths with the
same VNF placement can be seen as one SFC placement
with multi-path routing, the algorithm merges all virtual
paths ηr,k which place their VNFs at same N-PoPs but route
flows with different links as one candidate path cpr,g . The
probability Pr(cpr,g) is the summation of all Pr(ηr,k) from
the merged paths. The distributing of flow on each routing
path is weighted by Pr(ηr,k)

Pr(cpr,g) . In the way, CPS gets each
SFC r a candidate path set. Select cpr,g in the candidate
path set as the actual SFC placement scheme according to
the probability Pr(cpr,g). This specific value of Pr(cpr,g)
is an important prerequisite for the proof of our theoretical
performance guarantee which will be discussed in detail in
the following sections.

The detailed algorithm is shown in Algorithm 1. Line
3 to 12 present the process to get candidate paths. With
candidate paths found, Line 13 to 19 then show how to place
VNFs. Line 20 to 24 further merge all candidate paths with
the same VNF placement into one and select a candidate
path for each SFC r. When the candidate path of SFC r
is chosen, its VNF placement and flow routing are thus
determined.

We now analyze the complexity of Algorithm 1. For
each SFC, Algorithm 1 continuously seeks for the virtual

Algorithm 1 Candidate Path Selection Algorithm
Input: NFV network (V,E), SFC demands: {lr}
Output: set of routing paths selected for each SFC:
{Pathr}; N-PoPs selected for allocation of VNFs:
{ndr,x}

1: solve the relaxed LP problem and get {Avr,x}, {fer,x}
2: for each r ∈ R do
3: Define vgr as the virtual graph consisting of all vler,x

with positive fer,x
4: Define Ωr as the set of candidate paths for r at time t,

Ωr ← ∅
5: while ∃ vler,x with fer,x > 0 do
6: Select the virtual link vle

′

r,x′ from vgr with fe
′

r,x′ =
min{fer,x|fer,x > 0}

7: Find a virtual path ηr,k from vgr which contains the
selected vle

′

r,x′ according to VPC
8: Pr(ηr,k) is the probability of picking ηr,k,

Pr(ηr,k)← fe
′

r,x′

9: for each vler,x ∈ ηr,k do
10: fer,x ← fer,x − fe

′

r,x′

11: end for
12: end while
13: Define {vnr,x,k} as the locations of VNFs on ηr,k
14: for all N-PoP u on ηr,k do
15: Define vle1r,x1, vle2r,x2 as adjacent virtual links con-

necting to N-PoP u
16: for all x ∈ (x1, x2] do
17: vnr,x ← u
18: end for
19: end for
20: Due to multi-path routing, merge all ηr,k with the

same VNF placement {vnr,x,k} as the same candidate
path cpr,g with VNF placement {cnr,x,g}.

21: Pr(cpr,g)←
∑

k∈merge(g)
Pr(ηr,k).

22: Distribute Pr(ηr,k)
Pr(cpr,g) of flow to routing path k.

23: Ωr ← Ωr ∩ cpr,g
24: Randomly select a cpr,g with probability Pr(cpr,g),

Pathr ← cpr,g , {ndr,x} ← {cnr,x,g}
25: end for

link with the smallest positive fer,x and reduces it to zero.
Hence, there are at most |Xr||E| iterations before all fer,x are
reduced to zero. Meanwhile, in each iteration, Algorithm
1 finds a virtual path and subtracts the value of each link
on the candidate path by the smallest positive fer,x in at
most |Xr||E| iterations. According to the determined virtual
paths, Algorithm 1 also allocates VNFs on N-PoPs in |Xr||V |
iterations. Since in general, the number of VNF types in
the network is a small constant, |Xr| can be omitted in the
expression of complexity. There are a total of |R| SFCs, so the
computational complexity of Algorithm 1 besides solving an
LP problem is O(|R||E|2). In the following section, We will
prove the theoretical guarantee of Algorithm 1.

2.3 Proof of the Approximation Ratio
As shown in Theorem 1, the approximation ratio between
the CPS algorithm and the optimal solution is O(log(|V |)).
In this theorem, we denote lmax and lmin as the maximal
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and the minimal values of lr . Similarly,Mmax, Mmin, Nmax,
Nmin, αmax, αmin, λmax, λmin, µmax and µmin are corre-
sponding maximum and minimum of Mv , Ne, αvr,x, λv and
µe.

Theorem 1. The total cost solved by Algorithm 1 guarantees
with high probability an approximation ratio of 1 + d ln(|V |) to
the optimal solution of the ILP problem, where

d = max{ αmaxlmax

|R||X|αminlmin
,

2λmaxlmaxMmax

λminlminMmin
,

3µmaxlmaxNmax

µminlminNmin
, e2}.

In order to prove Theorem 1, we need Lemma 1 and
Lemma 2 shown below.

Lemma 1. SupposeX1,X2, . . . ,Xm are binary independent ran-
dom variables with Pr{Xi = 1} = pi and Pr{Xi = 0} = 1−pi
for each i ∈ {1, 2, . . . ,m}. Let Y =

∑
i aiXi with ai ≥ 0. h and

Z are positive real numbers with h ≥ max{ai|i ∈ [1,m]} and
Z ≥ E(Y). For any ∆ ≥ 0, we have Pr{Y ≥ (1 + ∆)Z} ≤
[e∆(1 + ∆)−∆−1]

Z
h .

The detailed proof of Lemma 1 can be found in [13].

Lemma 2. For each SFC r, Θv
r,x is the set of candidate paths

which allocate VNF x on node v. The sum of all probabilities of
the candidate paths in Θv

r,x equals to the probability that v is
chosen to deploy VNF x. Formally,∑

cpr,g∈Θvr,x

Pr(cpr,g) = Av
r,x.

We can easily prove Lemma 2 using the strong corre-
lation of the fractional solution Avr,x and fer,x. Though the
probabilities of virtual paths in Algorithm 1 are determined
by fer,x, they also agree with Avr,x, the solution of the VNF
placement. Therefore, when the deployment of virtual links
is fixed, the allocation of VNFs is also determined. The
detailed proof is omitted here due to page limitation.

Given Lemma 1 and 2, we now prove the distances
between CPS and the optimal solution by seperately con-
sidering the operating cost, the N-PoP congestion cost and
the link congestion cost. which leads to Lemma 3, 4 and 5.

Lemma 3. The operating cost solved by Algorithm 1 guarantees
with high probability an approximation ratio of 1 + a ln(|V |) to
H , the total operating cost from the LP solution, where

a = max{ αmaxlmax

|R||X|αminlmin
, e2}.

Proof. For each VNF placement, we define a random vari-
able X vr,x. If node v is selected to map VNF x of SFC r,
X vr,x = 1. Otherwise X vr,x = 0. According to Lemma 2,

E(X v
r,x) =

∑
cpr,g∈Θvr,x

Pr(cpr,g) = Av
r,x.

Next, consider random variable Y =∑
r∈R

∑
x∈Xr

∑
v∈V

αvxlrX vr,x which represents the VNF operating

cost under the approximation algorithm. Hence,

E(Y) =
∑
r∈R

∑
x∈Xr

∑
v∈V

αv
xlrA

v
r,x.

which is also the operating cost of the relaxed LP problem
denoted as H . Applying Lemma 1, we have

Pr(Y ≥ (1 + ∆)H) ≤ [e∆(1 + ∆)−∆−1]
H
h

≤ [(
∆

e
)−∆]

H
h .

Recalling that |V | is the number of nodes in the net-
work, let ∆ = a ln(|V |) and h = amaxlmax. Since a =
max{ αmaxlmax

|R||X|αminlmin , e
2}, we derive that

ln(
∆

e
)∆ = a ln(|V |)(ln(a) + ln ln(|V |)− 1) ≥ a ln(|V |)

≥ αmaxlmax

|R||X|αminlmin
ln(|V |).

And further, (γe )−∆ ≤ |V |−
αmaxlmax

|R||X|αminlmin . Clearly, H ≥
|R||X|αminlmin. Combining all the solutions above, we get

Pr{Y ≥ (1 + ∆)H} ≤ [|V |−
αmaxlmax

|T ||R||X|αminlmin ]
H
h

≤ [|V |−
αmaxlmax

|R||X|αminlmin ]
|R||X|αminlmin

αmaxlmax = |V |−1.

We now go on with Lemma 4. The proof is similar to that
of Lemma 3. We only emphasize the differences.

Lemma 4. The node congestion solved by Algorithm 1 guarantees
with high probability an approximation ratio of 1 + b ln(|V |) to
J , the node congestion cost from the LP solution, where

b = max{2λmaxlmaxMmax

λminlminMmin
, e2}.

Proof. With the same definition of Xv
r,x, we now consider

the random variable Yv = λv
∑
r∈R

∑
x∈Xr

lr
MvX vr,x, which rep-

resents the congestion on node v from Algorithm 1. Hence,

E(Yv) = λv
∑
r∈R

∑
x∈Xr

lr
Mv

Av
r,x.

According to constraint 3, we have E(Yv) ≤ J . Ap-
plying Lemma 1, we have Pr(Yv) ≥ (1 + ∆)J) ≤
[(∆

e )−∆]
J
h . Similarly, ∆ = b ln(|V |), h = λmaxlmax

Mmin

and b = max{ 2λmaxlmaxMmax

λminlminMmin
, e2}, we have (∆

e )−∆ ≤
|V |−

λmaxlmaxMmax
λminlminMmin .

Within our application scenarios, we always have
|R||X| ≥ |V |. In this way J ≥ |R||X|

|V |
λminlmin
Mmax

≥ λminlmin
Mmax

.
Combining all conclusions above, we have

Pr{Yv ≥ (1 + ∆)J} ≤ [|V |−
2λmaxlmaxMmax
λminlminMmin ]

J
h

≤ [|V |−
2λmaxlmaxMmax
|T |λminlminMmin ]

|T |λminlminMmin
λmaxlmaxMmax = |V |−2.

According to the Boole’s inequality,

Pr{∃ v ∈ V : Yv ≥ (1 + ∆)J}

≤ |V |Pr{Yv ≥ (1 + ∆)J} ≤ |V ||V |−2 = |V |−1.

We now show Lemma 5 and the corresponding proof.
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Lemma 5. The link congestion solved by Algorithm 1 guarantees
with high probability an approximation ratio of 1 + c ln(|V |) to
K , the link congestion cost from the LP solution, where

c = max{3µmaxlmaxNmax

µminlminNmin
, e2}.

Proof. We now consider Ye, the congestion on link e from
Algorithm 1. In this proof, X er,x = 1 represents that there is
a flow on link e from VNF i to the next VNF on SFC r. Due
to the multi-path routing, we have

Ye ≤ µe
∑
r∈R

∑
x∈Xr

lr
Ne
X e

r,x.

Then, we have

E(Ye) ≤ µe
∑
r∈R

∑
x∈Xr

lr
Ne

fe
r,x ≤ K.

In this way, Lemma 1 is still applicable. Following a similar
proof of Lemma 4, we can get

Pr{∃ e ∈ E : Ye ≤ |V |2Pr{Ye ≥ (1 + ∆)K}

≤ |V |2|V |−3 = |V |−1.

With Lemmas 3, 4 and 5, we can finally prove Theorem
1 as follows.

Proof. We define a positive number d, where d =
max{a, b, c, e2}. We also represent the overall cost solved
by Algorithm 1 as Cost(ALG1) and the optimal cost of the
ILP problem as OPT . With Lemma 3, 4 and 5, we conclude
that

Cost(ALG1) ≤ (1 + d ln(|V |))(J +H +K)

with high probability. Meanwhile, J+H+K is the solution
of the LP and serves as the lower pound of the optimal
solution of the ILP that J +H +K ≤ OPT . In this way, we
have

Cost(ALG1) ≤ (1 + d ln(|V |))OPT.

With the proof, we conclude that the cost of Algorithm 1
possesses a bounded approximation ratio of O(log(|V |)) to
the optimal solution with high probability.

3 ONLINE SFC PLACEMENT WITH FAST DEMAND
FLUCTUATION

When SFC demands fluctuate very fast, the migration cost
of a VNF is comparable to its operating cost. This is because
that, when a VNF is migrated into another N-PoP within a
short time period, its operating cost is also cut into a smaller
scale. Thus, simply repeating CPS in Section 2 whenever a
demand changes may introduce large migration cost and
offset the benefit. According to practical VNF platforms [3]
[4], the cost of migrating a VNF can be much lower than
that of migration a VM. So, we can reduce the total cost by
selectively migrating some VNFs at each time slot.

Migrating VNFs according to the change of SFC de-
mands makes the problem in Section 2 an online SFC place-
ment and routing problem seeking for the minimized total
cost of VNF operating, congestion and VNF migration over
the entire time span T . In this section, we first formulate

a model leading to the online SFC placement problem. We
then design a promising online algorithm to solve the prob-
lem under different migration cost and various prediction
errors, which are major obstacles to good performance.

3.1 Online Optimization Model
To formulate the online model, we first introduce a dimen-
sion t and define the service demand of SFC r at time t as
lr(t). Therefore, the fluctuation of demands is represented
by different lr(t) at different time t. At any time slot t, future
information is absent, which means that lr(τ), the actual
demand of SFC r at future time τ > t, is unknown at time
t. Similar to the offline model, denote by Avr,x(t) and fer,x(t)
the online decision variables at time t for the VNF placement
and flow routing. Denote by G[A(t), L(t)] the operating cost
of VNFs, whereA(t) = {Avr,x(t)} and L(t) = {lr(t)}. Define
Y (t) and Z(t) as maximal congestion costs on N-PoPs and
links at time t, respectively.

Migration cost: The migration cost in the objective func-
tion is a major difference between the online and offline
models. Denote by δ||A(t) − A(t − 1)|| the cost of mi-
grating VNFs at time t, where δ ∈ R+ and || · || can be
any norm in Rn. In this paper, without loss of generality,
we define δr,x as the migration cost of VNF x on SFC
r and assume that migrating a VNF in and out costs
the same. In this way, the migration cost at time t is∑
r∈R

∑
x∈Xr

∑
v∈V

δr,x|Avr,x(t)−Avr,x(t− 1)|.

The relative values of G and δr,x are affected by the
length of a time slot and the type of a VNF. If VNF demands
change violently within short time periods, or a particular
type of VNFs has large migration overhead, δr,x should be
relatively large.

The online SFC placement model is thus formulated as
follows.

min
∑
t∈T
{G[A(t), L(t)] + βY (t) + γZ(t)

+δ||A(t)−A(t− 1)||}
s.t. ∑

v∈V
Avr,x(t) = 1

t ∈ T, r ∈ R, x ∈ Xr (6)∑
e1∈in(v)

fe1r,x(t)−
∑

e2∈out(v)

fe2r,x(t) =

Avr,x+1(t)−Avr,x(t)

t ∈ T, r ∈ R, x ∈ Xr, v ∈ V (7)

λv
∑
r∈R

∑
x∈Xr

lr(t)

Mv
Avr,x(t) ≤ Y (t)

t ∈ T, v ∈ V (8)

µe
∑
r∈R

∑
x∈Xr

lr(t)

Ne
fer,x(t) ≤ Z(t)

t ∈ T, e ∈ E (9)
Avr,x(t) ∈ {0, 1}, fer,x(t) ∈ [0, 1]

t ∈ T, r ∈ R, x ∈ Xr, v ∈ V, e ∈ E (10)

The formulated model leads to an online integer opti-
mization problem, which is a general case of the NP-hard
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problem we discussed in Section 2. Thus, the online problem
has both high complexity and unknown future information.
In this paper, we break through such difficulties using a
two-step online candidate path selection (OCPS) algorithm.

In the first step of the OCPS algorithm, it relaxes the
online integer optimization problem into an online convex
optimization (OCO) problem (Avr,x(t) from {0, 1} to [0, 1]). It
then applies the committed horizon control (CHC) method
proposed in our previous work [14] to solve the relaxed
problem at each time slot. CHC adjusts the proportion of
preceding data and predictions utilized to achieve solutions
close to the offline optimal even with the presence of pre-
diction errors. In the second step, OCPS applies an online
candidate selection method which gets each SFC r a set of
candidate paths based on both the solution of CHC and the
placement of SFC r at time t−1. It then picks one candidate
path as the placement of r for time t according to a novel
criterion.

In the following sections, we first illustrate the CHC
method and then present the online candidate path selec-
tion method. In the end, we show how the entire OCPS
algorithm works combining both methods.

3.2 Committed Horizon Control
Solving OCO problems with switching costs has drawn
much research attention. Two widely accepted algorithms
are receding horizon control (RHC) [15] and averaging fixed
horizon control [16]. RHC utilizes predictions of future
demands to solve the online problem while AFHC combines
both previous data and predictions. Both algorithms have
their own expertise. While AFHC has a smaller theoreti-
cal bound, RHC performs better in many practical cases.
However, when considering the problem to place SFCs with
fast demand fluctuation, neither of the two algorithms may
be efficient enough. First, as mentioned in the previous
section, the migration cost δ may vary drastically due to
different changing frequency of SFC demands. We will show
in Section 4 that RHC and AFHC surpass each other with
different δ. So, a more generalized algorithm is needed to
deal with different migration costs of VNFs. Second, it is
very hard to accurately predict the upcoming SFC demands.
The presence of prediction errors makes it necessary for an
algorithm that can preserve a theoretical guarantee coping
with various scales of prediction errors.

CHC proposed in our previous work [14] is a good
candidate in solving the particular OCO problem in this
paper with various δ and prediction errors. CHC utilizes
a novel mechanism called the commitment level to balance
the proportion of past data and predictions in solving an
OCO problem. This mechanism enables CHC to combine
the advantages of both RHC and AFHC. When the commit-
ment level is 1, CHC degenerates to RHC which only uses
prediction data. On the contrary, When the commitment
level equals the window size of prediction, CHC turns to
AFHC which heavily depends on preceding data. Thus, by
tuning the commitment level, CHC can adapt to different
migration costs and types of prediction errors to get better
performances compared with RHC and AFHC. Detailed
CHC applied in our algorithm is summarized as follows.

At each time slot t − 1, CHC predicts the future SFC
demands in a window of size w. The detailed prediction can

be done using methods such as machine learning, which
is beyond the concern of this paper. In Section 4, we will
discuss different types of prediction errors added to perfect
predictions to evaluate the performance of our scheme over
different prediction methods and scenes.

For a commitment level c, where 1 ≤ c ≤ w, CHC need
to decide A(t) and f(t) for the upcoming time slot t at time
t− 1. We denote the future SFC demands predicted at time
t − 1 in window [t, t + w − 1] by {l∗r(τ)|τ ∈ [t, t + w −
1]}. CHC then solves the OCO problem over the time span
[t, t + w − 1] using the predicted data. This is a small-scale
LP problem which can be solved in polynomial time. We
use {A∗vr,x(τ)|τ ∈ [t, t + w − 1]} and {f∗er,x(τ)|τ ∈ [t, t +
w − 1]} to represent the solutions. We denote the portion of
solutions for time t by sets {At−1,v

r,x |At−1,v
r,x = A∗vr,x(t)} and

{F t−1,e
r,x |F t−1,e

r,x = fer,x(t)}. The header t−1 onAt−1,v
r,x means

the variable is solved by the predictions made at time t− 1.
CHC then get At−2,v

r,x and F t−2,e
r,x with the same procedure

but the window of solving the convex problem becomes [t−
1, t+w−2]. This process is repeated using predictions made
at time τ until getting sets {Aτ,vr,x|τ ∈ [t − c, t − 1]} and
{Fτ,er,x |τ ∈ [t − c, t − 1]}. The only difference for each step
is that all {l∗r(τ)|τ ≤ t − 1} in the predictions are replaced
by real data lr(τ) since they are already known at time t −
1. According to CHC, the decision variables at time t are

thus determined as Avr,x(t) = 1
c

t−1∑
τ=t−c

Aτ,vr,x and fvr,x(t) =

1
c

t−1∑
τ=t−c

Fτ,er,x . The detailed choice of commitment level c is

determined by the scale of migration cost and the type of
prediction errors, which will be discussed in detail in Section
4.

3.3 Online Candidate Path Selection Method
With fractional results from CHC at each time slot, we need
to get integral solutions from them for directions of SFC
placement and routing. However, applying the randomized
rounding (RR) method in Algorithm 1 directly is no longer
appropriate when the migration cost of VNFs is taken into
consideration. Furthermore, the competitive ratio between
the output and the offline optimal solution is not bounded
with counterexamples. The reason is that the expected mi-
gration cost by applying randomized rounding can be larger
than that of the fractional result from the CHC algorithm. In
other words, there exist situations when

E[
∑
t∈T

∑
r∈R

∑
x∈Xr

δr,x|X v
r,x(t)−X v

r,x(t− 1)|]

>
∑
t∈T

∑
r∈R

∑
x∈Xr

δr,x|Av
r,x(t)−Av

r,x(t− 1)|.

In this inequality, we denote by X vr,x(t) the binary variable
determining VNF placement from the randomized rounding
method in Algorithm 1 and by Avr,x(t) the corresponding re-
laxed variable in CHC. As we can see, the kernel of the proof
of Theorem 1 does not stand anymore because the migration
cost can be arbitrarily larger than the CHC result. For a
clearer explanation, we propose the following counterex-
ample. Suppose we have Av1r,x(t) = Av1r,x(t − 1) = 0.5 and
Av2r,x(t) = Av2r,x(t−1) = 0.5. So the migration cost of placing
VNF x on SFC r within [t − 1, t] is 0 in CHC. However,
when applying the randomized rounding method, there is
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50% possibility that VNF x on SFC r is placed at different N-
PoPs in [t− 1, t] (once at v1 and the other time at v2). Then,
the migration cost is positive and the ratio between the cost
of randomized rounding and that of CHC is infinite.

To tackle such a drawback, we design the online can-
didate path selection method on the basis of Algorithm
1. The general idea of the online method is that, when it
is profitable for total cost reduction, it migrates SFCs at
time t by following Algorithm 1. When the migration of
an SFC is not profitable with large migration cost and little
reduction of operating cost and congestion, the method does
not migrate the SFC and keeps the same deployment as that
in time t− 1.

The key part of our online candidate path selection is
to find a criterion determining whether an SFC should be
migrated or not. Standing at time t − 1, we define a pa-
rameter Πr(t) guiding whether we migrate SFC r between
t − 1 and t. The smaller Πr(t) is, we are more likely to
migrate r for total cost reduction. Otherwise, we tend to
leave r at the same place as that in t − 1. Denote the
total expected migration cost at t is Et when Algorithm
1 is applied based on the result of CHC. We then have
Et = E[

∑
r∈R

∑
x∈Xr

δr,x|X vr,x(t) − X vr,x(t − 1)|]. Denote the

expected migration cost of SFC r at time t is Et,r . We have
Et,r = E[

∑
x∈Xr

δr,x|X vr,x(t) − X vr,x(t − 1)|]. For the fractional

result of CHC, we define the total cost at t as Ct and
the migration cost for SFC r at t as Ct,r. We then define
Πr(t) = Et

Ct+σ
|Et,r−Ct,r|
Et,r+σ , where σ is a small positive number.

Here, Et
Ct+σ

is the ratio between the expected migration
cost of Algorithm 1 and the total cost in the fractional
solution of CHC at time t. If Et

Ct+σ
is large, the expected

migration cost at t is comparable to the total cost in CHC.
In this condition, SFC migration should be done carefully to
avoid unnecessary migration cost. |Et,r−Ct,r|Et,r+σ indicates the
gap between the expected migration cost for placing SFC r
in Algorithm 1 and the migration cost of r in CHC at time t.
Large |Et,r−Ct,r|Et,r+σ means that there is a big difference between
these two cost (often caused by the rounding manner of
Algorithm 1). In this case, the migration of SFC r at time t
in Algorithm 1 cannot decrease the overall cost efficiently. It
is clear that Πr(t) is large only when both conditions hold.
In this way, SFCs with big Πr(t) should not be migrated
between t− 1 and t.

In the online method, We use Pathr(t − 1) to denote
the deployment of SFC r at t − 1. We then create a new set
of candidate paths Ω′r(t) which contains both Pathr(t − 1)
and candidate paths for SFC r at t solved by Algorithm
1. This means Ω′r(t) = Ωr(t) ∪ Pathr(t − 1), where Ωr(t)
contains candidate paths cpr,g(t) from Algorithm 1. We
define Πr(t)

Πr(t)+1 as the probability of choosing Pathr(t − 1)
as deployment of SFC r at time t. Therefore, the probability
of choosing one candidate path from the rest of set Ω′r(t) is
Pr(cp′r,g(t)) and

Pr(cp′r,g(t)) =
1

Πr(t) + 1
Pr(cpr,g(t)).

With the candidate path sets and probabilities, the online
candidate path selection method then selects one candidate
path for each SFC r based on its probability as the placement
of r at time t.

With CHC and the online candidate path selection
method presented, we now illustrate the OCPS algorithm
containing both of them in the following section.

3.4 Online Candidate Path Selection Algorithm
OCPS shown in Algorithm 2 is the improved version of
Algorithm 1 to deal with fast SFC demand changes under
various VNF migration cost and prediction errors. At any
time slot t, Algorithm 2 first applies CHC to get fractional
solution {Avr,x(t)} and {fer,x(t)} for each SFC r. Based on
the fractional solution, the algorithm then achieves a set of
candidate paths for SFC r and the probabilities to pick them
using the same method proposed in Algorithm 1. Algorithm
2 further adds the deployment of SFC r in time slot t−1 into
the candidate path set to denote the possibility that the SFC
may not be migrated during [t − 1, t]. The algorithm then
calculates a criterion Πr(t) representing whether an SFC
should be migrated or not. With Πr(t), the probability of
picking each candidate path is adjusted accordingly. Finally,
Algorithm 2 randomly selects a candidate path as the map-
ping of SFC r at time t based on the new probabilities. The
computational complexity of Algorithm 2 besides solving
a convex problem is the same as that of Algorithm 1 as
O(|R||E|2) for each time slot.

Algorithm 2 Online Candidate Path Selection Algorithm
Input: NFV network (V,E); SFC demands: {lr(τ)|τ ∈ [t−

w + 1, t − 1]}; predictions: {l∗r(τ)|τ ∈ [t, t + w − 1]};
Placement of SFCs at t− 1: {Pathr(t− 1)}

Output: set of routing paths selected for each SFC at t:
{Pathr(t)}; N-PoPs selected for placement of VNFs:
{ndvr,x(t)}

1: Apply CHC with a proper commitment level and get
fractional solution: {Avr,x(t)}, {fer,x(t)}

2: if t = 0 then
3: Apply Algorithm 1 to get {Pathr(0)} and {ndvr,x(0)}.
4: else
5: Apply Algorithm 1 to get Ωr(t).
6: for each r ∈ R do
7: Πr(t) = Et

Ct+σ
|Et,r−Ct,r|
Et,r+σ

8: Ω′r(t) is the set of candidate paths for SFC r at time
t, Ω′r(t)← Ωr(t) ∪ Pathr(t− 1).

9: Pr(Pathr(t− 1)) = Πr(t)
Πr(t)+1

10: for all cp′r,g(t) ∈ Ω′r(t)/Path(t− 1) do
11: Pr(cp′r,g(t)) = 1

Πr(t)+1Pr(cpr,g(t))
12: end for
13: Randomly select a cp′r,g(t) with probability

Pr(cp′r,g(t)), Pathr(t)← cp′r,g(t).
14: Get the placement of VNFs {ndvr,x(t)} using the

same method as Algorithm 1.
15: end for
16: end if

It is worth noting that, when the expected migration cost
at t is small compared with the total cost in CHC, Πr(t)
is much smaller than 1. Thus, the probability of choosing
Pathr(t − 1) is negligible and Pr(cp′r,g(t)) converges to
Pr(cpr,g(t)). Under such conditions, we can prove that
the sum of operating and congestion cost is bounded by
log(|V |) times of that in the CHC solution using a proof
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similar to Lemma 3. With the proven competitive ratio of
CHC to the offline optimum in [14], we can derive that the
sum of the operating and congestion cost from Algorithm
2 is also bounded to the offline optimal operating and
congestion cost. Since the operating cost and the congestion
cost take the majority of the total cost and both are proved
bounded, we can conclude that the overall cost is also
bounded to the offline optimum.

4 EVALUATION

In this section, we first present the setup of simulations
and then evaluate the performance of our SFC placement
algorithms.

4.1 Simulation Setup
In this paper, we implement our simulations using Python
and solve the linear programming problem with PuLP [17].
For the simulation setup, we refer to basic settings of the
VNF platform on commercial servers in [4]. We consider
each N-PoP as one server with available CPUs for VNFs
from 0.06 to 6 cores. we also assign a random number uni-
formly distributed in [1, 10] as λ to represent the diversity of
N-PoPs in causing congestion. We use the utilization of CPU
resources to represent the demand of an SFC (e.g., a VNF
takes up 0.6 core of a CPU). All detailed CPU utilization of
SFCs comes from the CPU utilization of VMs in real traces
from the Azure data.

The paper [4] does not involve information about links
or networks connecting these servers and there exists a
variety of possible network conditions in actual cases. In
this way, we connect these servers with links of bandwidth
uniformly distributed between 2% of the bandwidth to the
maximum bandwidth of the server’s NIC port. The con-
nection rate of each network is randomly picked between
0.3 to 0.8. we then assign each link a weight parameter
uniformly distributed in [1, 10] to represent the diversity
of links in causing congestion. In this way, we can simulate
the uncertainty of networks. We run our algorithms on a
large number of these randomly generated networks for the
generalized conclusion. In each network, there exist 20 to
30 servers with 40 to 80 SFCs. Values of parameters β, γ
and δ used in the following simulations are all normalized
by the average value of α. Therefore, we can analyze the
relations among the operating cost, the congestion cost and
the migration cost when applying our algorithms without
knowing their absolute values.

4.2 Evaluation of the CPS Algorithm
In this section, we present simulation results of the CPS al-
gorithm (Algorithm 1). For demands of SFCs, we randomly
pick one time slot of CPU utilization of VMs from the real
trace and assign them to the SFCs.

The first advantage of our algorithm is that it considers
the operating cost and the network congestion simultane-
ously for overall cost reduction. In this way, Algorithm
1 prevents heavy network congestion when pursuing low
operating cost. We verify this advantage in Fig. 2. The
effect of reducing congestion is affected by relative values
of congestion parameters β and γ which reflect service

requirements and network conditions. We get the maximum
congestion on N-PoPs and links in multiple simulations
while increasing β and γ and present results in Fig. 2 (a). We
observe that congestion on N-PoPs decreases significantly
when β and γ increase. This indicates that when congestion
on N-PoPs weighs more, our strategy further reduces the
congestion for cost reduction. Moreover, we find that γ, the
congestion parameter of links, also affects the congestion on
N-PoPs. If γ increases together with β, congestion on N-
PoPs is further reduced. We can draw similar conclusions
from results of congestion on links. Moreover, since load on
links have no integral constraint with multi-path routing,
the link congestion is sharply reduced as long as γ > 0.

Fig. 2 (b) shows the effect of total cost reduction of our
algorithm while considering different types of congestion.
All costs in the figure are normalized by costs of placing
SFCs ignoring congestion. According to the figure, it is
obvious that Algorithm 1 can reduce the total cost as long
as congestion matters with positive β and γ. In addition,
the larger damage caused by congestion to the total profit,
the better performance Algorithm 1 will have. Moreover,
considering congestion on Both N-PoPs and links leads to
the largest cost reduction.

(a) (b)

Fig. 2. (a) presents average maximum congestion on N-PoPs and links
when β and γ increase. The line marked N-PoP Cog (β) denotes the
congestion on N-PoPs when β changes with γ = 0. The line marked
N-PoP Cog (β, γ) denotes the congestion on N-PoPs when both β
and γ increase. Other lines have similar definitions. (b) shows the total
cost with increasing β and γ when different types of congestion are
considered. All costs are normalized by costs of placing SFCs without
considering the congestion. The line marked Both Cog means the total
cost of SFC placement when congestion on both N-PoPs and links is
considered.

The second advantage of our algorithm is that it jointly
considers the VNF placement and flow routing for global
optimization. In Fig. 3, we compare our algorithm with
an SFC placement algorithm named k-shortest paths. This
algorithm first considers VNF placement to reduce the cost
of VNF operating and congestion on N-PoP. It then manages
the routing between adjacent VNFs by finding the first k
shortest paths and distributing flows evenly on these paths.
Fig. 3 (a) shows the congestion cost of Algorithm 1 and
the k-shortest paths algorithm with different k. We only
consider k no larger than 5, because there are often less
than 5 routing paths between N-PoPs in the majority of net-
works and it is inefficient to manage multiple routing paths
with little amount of flow. The results of algorithms are
normalized by results of the LP. Fig. 3 (b) shows the corre-
sponding total cost of two algorithms. From both figures, we



10

observe that the performance of k-shortest paths improves
with larger k but the improvement decreases as k grows.
Furthermore, our algorithm always has lower congestion
cost and total cost than the k-shortest paths algorithm even
when k is large. This indicates the advantage of considering
placement and routing jointly in our algorithm.

(a) (b)

Fig. 3. (a) shows the congestion costs on links normalized by results
from the LP when γ increases with different SFC placement strategies.
(b) shows the corresponding result when counting the total cost. For all
the simulations, β = 10. Lines marked with k SP represent results of the
k-shortest paths algorithm with different k.

With results above, the CPS algorithm is verified to be
effective in reducing the operating cost and the congestion
cost while jointly placing VNFs and routing flows. We then
present simulation results of the OCPS algorithm dealing
with fast scaling demands.

4.3 Evaluation of the OCPS Algorithm
In this section, we evaluate the performance of the OCPS
algorithm (Algorithm 2) using SFC demands from the real
trace. Each time slot in the real trace represents 5 minutes
and the total time span T contains 60 time slots. Each result
in figures below is the average value of 20 independent
simulations.

0.25 0.5 0.75 1
Commitment level / Window size

2

3

4

5

6

7

8

Di
st
an

ce
 to

 th
e 
op

tim
al
 (%

) δ=0.5
δ=1
δ=2
δ=4

(a)

0.25 0.5 0.75 1
Commitment level / Window size

2

3

4

5

6

7

8

9

Di
st

an
ce

 to
 th

e 
op

tim
al

 (%
) δ=0.5

δ=1
δ=2
δ=4

(b)

Fig. 4. The performance of CHC with different migration costs and
prediction errors. (a) shows the distance between CHC and the of-
fline optimal solution with different commitment levels when there exist
uniformly distributed errors in predictions. Each line represents a CHC
algorithm with a particular migration cost δ. The results are normalized
by the value of optimal offline solutions. (b) shows the corresponding
results when predictions are affected by heavy-tailed prediction errors.

In Fig. 4, we first present the performance of the CHC
algorithms with different average migration costs δ when
the commitment level increases to the window size. It is
worth noting that when the ratio between the commitment

level and the window size is small, CHC converges to
RHC. When the ratio increases to 1, CHC will, on the
contrary, become AFHC. So, Fig. 4 is actually comparing
CHC with RHC and AFHC. Fig. 4 (a) shows the comparison
with uniformly distributed prediction errors. The mean of
errors is 5% of the SFC demand. It is clear that when the
average migration cost is rather small, CHC with a lower
commitment level will have lower overall cost and closer
to the offline optimal solution. On the contrary, when the
average migration cost is large, CHC algorithms with higher
commitment levels will have better performances. Fig. 4 (b)
shows similar simulations to (a). The only difference is that
errors added to the perfect prediction follows a heavy-tailed
distribution. That is, 5% of the errors are on average 10 times
larger than the rest. The mean of the errors is still 5% of the
SFC demand. We get a similar conclusion from Fig. 4 (b).
Thus, we can conclude that CHC is more suitable for the
specific OCO problem in this paper, since we can adjust
the commitment level of CHC based on different migration
costs and types of prediction errors for the best performance.
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Fig. 5. The performance of OCPS with increasing migration cost and
different prediction noises. (a) shows the distance between OCPS and
the optimal solution when there exist uniformly distributed prediction
errors. Each line corresponds to an OCPS algorithm with a different
commitment level. The results are normalized by the value of optimal
solutions. (b) shows corresponding results when predictions are affected
by heavy-tailed prediction errors.

When considering which commitment level to choose
for a particular scenario, we need to consider performances
of CHC and the online candidate path selection method
jointly. Fig. 5 presents the performance of the two-step OCPS
algorithm with different commitment levels and increasing
δ. Prediction errors added are the same as those in Fig. 4. Fig.
5 (a) shows that, under randomly distributed errors, OCPS
algorithms with lower commitment levels work better when
the average migration cost δ is small. OCPS algorithms with
higher commitment levels take the lead when δ is relatively
large. Fig. 5 (b) shows similar simulation results with heavy-
tailed prediction errors. However, the discipline of OCPS
under heavy-tailed prediction errors does not follow that
lower commitment level leads to better performance with
smaller migration costs. We propose that this is caused
by the interaction between the heavy-tailed errors and the
random rounding feature of the Online Candidate Path
Selection Method. However, even with these extreme cases
with heavy-tailed errors, we can still apply methods such
as machine learning or large-scale simulation to find out
which commitment level can achieve the best performance
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for a particular migration cost δ, which will be our direction
in the further work.
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Fig. 6. Performance of the online candidate path selection method. Lines
marked by CHC means the fractional solution is achieved by CHC with
unknown future information, while OPT means the solution comes from
offline optimal. Lines marked by OCPS means the integral solution is
achieved using the online candidate path selection method, while RR
means the solution comes from the randomized rounding method.

The online candidate path selection method in Section
3.3 is one of the main contributions in this paper to get
integral results from CHC solutions, we use Fig. 6 to il-
lustrate its improvement compared to directly applying the
randomized rounding method. The results are normalized
by the offline optimal solution. It is clear that applying the
online candidate path selection method to the fractional out-
put can significantly reduce the overall cost with or without
knowing the upcoming SFC demands. Thus, it outperforms
the traditional randomized rounding method for the online
SFC placement problem in this paper.
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Fig. 7. The performance of the OCPS algorithm under different predic-
tion errors. (a) shows the performance of OCPS under an increasing
amount of uniformly distributed prediction errors (denoted by OCPS).
It is compared with the algorithm with CHC and traditional randomized
rounding method (denoted by RR). (b) shows similar simulations under
an increasing amount of heavy-tailed prediction errors.

In the end, we show the ability of the OCPS algorithm in
coping with different scale of prediction errors using Fig. 7.
Here, we chose δ = 1 and the commitment level is half of the
window size. Boxes in Fig. 7 (a) conclude competitive ratios
of the OCPS algorithm in 20 independent simulations with
different scales of uniformly distributed prediction errors
from 1% to 10% of the SFC demand. The baseline is the
combination of the CHC algorithm and the randomized
rounding method. We observe that, when prediction errors
scale up, the performance of OCPS is rather stable with a
slight deterioration. In addition, it is always superior to the
baseline with the randomized rounding method. A similar
conclusion can be drawn from Fig. 7 (b) with heavy-tailed

errors. Thus, we can claim that the OCPS algorithm can
tolerate different types and scales of prediction errors and
preserves performance close to the optimal solution.

With evaluations above, we conclude that the OCPS
algorithm works better than baselines and comparably to
the offline optimal under a variety of migration costs and
prediction errors. Thus, it is a good candidate in solving the
online SFC placement problem in this paper.

5 RELATED WORK

In recent years, methods have been proposed for deploying
SFCs with different optimization objectives, e.g., [18]–[21].
For the purpose of reducing VNF costs, Moens et al. [5]
propose a model called VNF-P for VNF resource allocation
which focuses on a hybrid scenario where VNFs are pro-
vided by both dedicated physical hardware and virtualized
service instances. Luo et al. [22] design an online scaling
algorithm which balances the opening and operating costs
of VNFs according to time-varying traffic demand. Shang et
al. propose a self-adapting scheme to reduce the SFC backup
cost over both the edge and the cloud in [23]. However,
the above papers have not included server or network
congestion into consideration.

To deal with congestion and latency problems, Sekar et
al. propose a model exploring consolidation opportunities
to reduce network provisioning cost and load skew in [3].
Ma et al. [8] design a novel scheme to place interdependent
middleboxes considering their traffic changing effects. Car-
pio et al. propose heuristic algorithms to balance the load on
links using replication in [9]. Ye et al. [24] establish an end-
to-end packet delay modeling for embedded VNF chains
in 5G networks. Zheng et al. [25] raise a 2-approximation
algorithm for the latency optimization problem in Hybrid
SFC composition and Embedding. Jin et al. [26] propose a
two-stage VNF deployment scheme to optimize the resource
utilization of both edge servers and physical links under the
latency limitations. Nevertheless, the above work does not
consider an online scheme that reduces the operating cost
and controls network congestion at the same time when
placing SFCs.

There have been several quality schemes dealing with
the online pattern of VNF demands. Zhang et al. fuse online
learning and online optimization to provide a proactive
VNF provision with Multi-timescale cloud resources in [27].
The paper mainly focuses on online scaling and distribution
of VNFs without detailed placement and routing. Fei et al.
[11] also utilize the prediction from online learning to place
and route SFCs. Yet, this paper process VNF placement
and flow routing separately and leave space for further
improvement with joint placement and routing. Guo et al.
[12] propose an adaptive online algorithm to place and route
VNFs whenever a new request comes. However, they reduce
the complexity by predefining sets of routing paths at the
cost of optimality. The network congestion can be further
reduced with more choices of VNF placement and flow
routing. Valls et al. [28] raise an online scheme that max-
imizes the analytics performance of data analytic services
using multi-grade VNF chains while minimizing the data
transfer and processing costs. Like other schemes mentioned
above, VNF migration costs and prediction errors during the
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online process are not taken into consideration in their work.
Therefore, the online SFC placement and routing scheme in
our paper is novel which considers the cost of migrating
VNFs between different time slots and remains robust with
diverse prediction errors.

6 CONCLUSION AND FUTURE WORK

In this paper, we study the problem of jointly optimizing
the SFC placement and flow routing for cost-effectiveness
and congestion control in VNF networks. We first propose
an approximation algorithm to solve the offline problem
with slow demand fluctuation. For the online version of the
problem with fast demand fluctuation, we further propose
an online algorithm that can handle diverse VNF migration
costs and prediction errors while achieving comparable
performances to the offline optimal solution. Extensive sim-
ulations validate the effectiveness of both algorithms.

When it comes to migrating VNFs among N-PoPs, tra-
ditional backup mechanisms with fixed numbers and loca-
tions of backups may fail to provide a sufficient and cost-
effective reliability guarantee. This problem is faced by most
online SFC deployment schemes. Therefore, one future di-
rection is to develop online backup algorithms for both static
and dynamic backups to ensure the availability of SFCs
with minimal cost and environmental impacts. Meanwhile,
with the rapid development of 5G and edge computing, an
increasing number of SFCs are being deployed on the edge
or a hybrid cloud-edge system. Optimizing the placement
of SFCs in such environments is also an exciting future
direction.
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