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Abstract—The fast development of virtual network functions
(VNFs) brings new opportunities to network service deployment
on edge networks. For complicated services, VNFs can chain up
to form service function chains (SFCs). Despite the promises, it
is still not clear how to backup VNFs to minimize the cost while
meeting the SFC availability requirements in an online manner.
In this paper, we propose a novel self-adapting scheme named
SAB to efficiently backup VNFs over both the edge and the
cloud. Specifically, SAB uses both static backups and dynamic
ones created on the fly to accommodate the resource limitation of
edge networks. For each VNF backup, SAB determines whether
to place it on the edge or the cloud, and if on the edge, which edge
server to use for load balancing. SAB does not assume failure
rates of VNFs but instead strives to find the sweet point between
the desired availability of SFCs and the backup cost. Both
theoretical performance bounds and extensive simulation results
highlight that SAB provides significantly higher availability with
lower backup cost compared with existing baselines.

Index Terms—Virtual network functions, Edge computing,
Service function chain, Availability

I. INTRODUCTION

The emerging of virtual network functions (VNFs) decou-
ples network functions from dedicated hardware so commer-
cial servers can be used. In order to improve the elasticity,
flexibility and scalability of running VNFs over commercial
servers, much research has been conducted, e.g., [1]–[4]. With
the rapid development of edge computing and 5G networks,
it is promising to deploy VNFs over edge networks to further
realize the potentials of VNFs together with the upcoming 5G
technologies. See [5]–[9] as examples.

Despite such benefits mentioned above, detaching the net-
work function software from the underlying dedicated hard-
ware makes it challenging to guarantee high availability [10]–
[12]. Specifically, in most existing VNF systems, a VNF runs
as an instance on a virtual machine (VM) with resources
managed by an underlying hypervisor. Therefore, any failure
of the hypervisor renders the VNFs running over it unavailable
[10]. To make matters worse, when multiple VNFs chain up
to provide a network service as a whole, a failure of any VNF
on this service function chain (SFC) makes the entire service
unavailable. Therefore, the availability problem of an SFC is
more severe than that of a single VNF [11].

Adding VNF backups is an effective way to improve the
availability of SFCs and has been widely used for availability
in the cloud [11]–[15]. However, effective schemes for the
cloud face new challenges when SFCs are deployed on the
edge and therefore may not work well in edge environments.
In particular, while a VNF may need multiple backups to

guarantee its availability [14], resources on edge networks
are often limited compared to those in the cloud. Simply
duplicating each VNF by a prefixed number of copies may
exceed the edge resource capacity. In addition, different VNFs
may experience distinct failure rates which are dynamic over
time. A thoughtful SFC backup scheme for edge networks
need to consider all the trade-offs to decide when to backup
each VNF by how many copies and where to place the copies.

Clearly, cloud resources can be utilized when resources
on the edge are insufficient [16], [17]. However, with the
deployment of a larger number of (smaller) edge servers in 5G
networks, the propagation delay involving multiple hops from
the edge to the cloud is often much larger than that among
edge servers [16], [18]. In addition, forwarding service flows
from the edge to the cloud when failures happen introduces
extra traffic and may congest the network. Simply backing up
SFCs in the cloud incurs costs, e.g., extra delay, congestion,
cloud resource usage charge comparing to backing up over the
edge. Therefore, we need a scheme to minimize the backup
cost with limited edge resources while guaranteeing the SFC
availability. One key challenge is that VNF failures are hard
to predict due to various failure types and causes [10].

In this paper, we propose a novel self-adapting backup
scheme named SAB consisted of two steps to find the sweet
spot between backup cost and availability without assuming
the failure rate of each VNF. In the first step, SAB deploys
one static backup for each VNF and determine where to place
the backups to minimize the backup cost with edge resource
constraints. For those SFCs backed up on the cloud, their
availability is taken care of by cloud service providers through
Service Level Agreements [12]. For those SFCs backed up on
the edge, one static backup for each VNF may not be sufficient
to meet the availability requirements [19]. This problem is
solved in the next step.

In the second step of SAB, we deploy dynamic backups to
achieve the required availability of SFCs. A dynamic backup
is deployed as soon as an original VNF or its static backup
fails. It is released when the corresponding VNF recovers. The
fast creation of a dynamic backup has been verified by existing
VNF platforms, e.g., [20], and can be accelerated by methods
such as early VNF failure detection [10]. In addition, with the
existence of the static backup for each VNF in the first step,
a dynamic backup has enough time to set up unless both the
original VNF and the static backup fail successively within a
very short time. This makes the dynamic backup method more
effective than creating copies only when original VNFs fail.



As most VNFs recover after some short time [14], the lifespan
of the dynamic backups is short, making its resource footprint
relatively small. Therefore, these dynamic backups can often
be accommodated in the edge.

In the case of sudden failure rate spikes, SAB moves
backups of SFCs with lower backup cost from the edge to
the cloud, thus releasing more resources to accommodate
additional dynamic backups in the edge. On the contrary,
the scheme backs up more SFCs on the edge to reduce
cloud backup cost when failure rates decrease. The adjustment
thus optimizes backup placements adaptively to guarantee the
desired availability while minimizing the backup cost.

While some research considers the availability problem
of VNFs on edge networks [17], [21], [22], to the best of
our knowledge, no existing method optimizes both static and
dynamic backups over both the edge and the cloud without
assuming the failure rate of each VNF.

Our main contributions are summarized as follows.
• We design an efficient scheme SAB which reduces

backup costs and guarantees the availability of SFCs on
the edge without assuming future VNF failures. This
scheme contains both the static backup placement and
the dynamic backup deployment.

• For the static backup placement problem which is at least
as complex as an NP-complete problem, we propose an
algorithm with low computational complexity and prove
its approximation ratio.

• As dynamic backups need to be deployed in real time, we
propose an online algorithm and prove its competitive ra-
tio compared to the offline optimal solution. Our scheme
further adjusts VNF backups between the edge and the
cloud based on the feedback from the online algorithm.

• We conduct real-world trace-driven numerical simulations
and small-scale experiments. Results highlight that our
proposed scheme provides availability guarantee for SFCs
on the edge and reduces the backup cost at the same time,
even without assuming the VNF failure rates.

The remainder of this paper is organized as follows. Section
II presents an overview of the self-adapting backup scheme.
Section III proposes the model and algorithm for the static
backup deployment while Section IV continues with the dy-
namic backup deployment and the SFC backup adjustment.
Numerical results are presented in Section V. Section VI
briefly reviews the related work and Section VII concludes
this paper.

II. OVERVIEW OF THE SELF-ADAPTING BACKUP SCHEME

We use Fig. 1 as a brief demonstration of SAB. In the first
step, we propose a static backup deployment method to deploy
one static backup for each VNF. We do not consider cases
when some VNFs of an SFC are backed up on the edge and
others backed up in the cloud. The reason is, in our application
scenario, the delay between the edge and the cloud is larger
than that between edge servers, especially in the emerging
5G environment [16], [18]. Partially backing up an SFC in
the cloud may cause the service flow traveling up and down

between original VNFs on the edge and backups in the cloud
multiple times. This process will incur large delay and add
significant traffic to the network.

The static backup deployment determines the placement
of each static backup aiming to minimize the backup cost
without violating the resource limitation of any edge server.
The detailed deployment method is illustrated in Section III.
The first step with the static backup deployment serves as the
premise of the second step, i.e., dynamic backup deployment
and SFC backup adjustment. It provides one static backup to
each VNF on the edge, which allows the creation of dynamic
backups when original VNFs fail.
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Fig. 1. The demonstration of SAB. The black VNFs connecting one another
represent SFCs currently backed up on the edge. SFC I has 3 VNFs and SFC
II has 2 VNFs (shadowed). SAB deploys a static backup (blue) for each VNF.
Whenever an original VNF or static backup fails (red cross), SAB deploys a
dynamic backup (red) for that VNF. If more failures occur (VNF 1, 2, and
3 of SFC I), the remaining resources are not sufficient for more dynamic
backups in (a). SAB then backs up SFC II (shadowed) from the edge to the
cloud and free more resources for the dynamic backups of SFC I. The result
is shown in (b).

With the first step, some SFCs are backed up onto the
cloud. For these SFCs, their availability is guaranteed by well-
established reliability mechanisms in the cloud [12]. However,
for an SFC backed up on the edge, a single static backup for
each VNF may not meet its availability requirement. There
exist situations when neither the original VNF nor its static
backup is responding. To further guarantee the availability, we
need to deploy more backups for each VNF backed up on the
edge. As mentioned in Section I, it is difficult to decide how
many backups a particular VNF needs and where to place these
backups in advance, since failure rates of VNFs are hard to
predict and change over time. Thus, we prefer not to decide
which VNFs need more backups in advance and solve the
problem in an online manner.

In the second step, we use a dynamic backup deployment
method which creates a dynamic backup whenever a VNF or
its static backup just fails. Each dynamic backup is placed to
an edge server using an online algorithm. Online optimization
has been recently applied in edge computing [23], [24] and
cloud computing [25], [26]. The algorithm balances the load



among each edge server in the long term to mitigate resource
contention which is a main cause of VNF failures [27]. When
both the original VNF and the static backup resume, the dy-
namic backup is released. However, if the current availability
(previous working time/total running time) of an SFC is not
satisfied, dynamic backups of this SFC will not be released,
thus reinforcing the availability of this SFC. Since most
VNFs recover after some short time and release corresponding
dynamic backups, the resource usage of dynamic backups at
each moment is relatively small. Therefore, remaining edge
resources are often sufficient for dynamic backups, and thus
guaranteeing the required availability of SFCs.

When the current edge resources are not enough for up-
coming dynamic backups, the dynamic backup deployment is
terminated. We then apply an SFC backup adjustment method
to move the backups of the SFC with the lowest cost from the
edge to the cloud. The reliability of this SFC is then guaranteed
by the cloud and its static and dynamic backups on the edge
are released. The online algorithm then resumes. When failure
rates of VNFs increase, the scheme adaptively move more
SFCs to the cloud to further guarantee the availability. When
failure rates decrease, the scheme adaptively backs up more
SFCs on the edge to reduce the cloud backup cost. The detailed
dynamic backup deployment method and the SFC backup
adjustment method are elaborated in Section IV.

III. STATIC BACKUP DEPLOYMENT

In this section, we present the static backup deployment
which deploys each VNF a static backup while minimizing
the backup cost. Important notations used in this paper are
summarized in Table I.

TABLE I
Notation Definition
V Set of servers on the edge, V = {1, ..., v, ..., |V |}
F Set of SFCs on the edge, F = {1, ..., f, ..., |F |}
If Set of VNFs of SFC f , If = {1, ..., i, ..., |If |}
xf,i,v ∈ {0, 1} Decision variable whether static backup i of SFC f is

deployed on server v.
X Set of all xf,i,v , where f ∈ F, i ∈ If , v ∈ V
Rv Resources on edge server v for VNFs
U(X) Total cost of backing up SFCs
R(X) ≤ D Resource constraint of the edge network
wf Backup cost of SFC f
βf,i Resource demand of VNF i of SFC f
av Resource demand on v before deploying static backups
of,i Server holding the original VNF i of SFC f
yf ∈ {0, 1} Variable whether SFC f is backed up in the cloud.
x̃, ỹ ∈ [0, 1] Relaxed solution of xf,i,v and yf
K Set of dynamic backups K = {1, ..., k, ..., |K|}
xk,v ∈ {0, 1} Decision variable whether dynamic backup k is

deployed on server v.
γk Resource demand of the dynamic backup k
Wv Load on v after deploying |K| dynamic backups
bv Resource demand on v before dynamic backups
ok,1, ok,2 Servers holding original VNF and static backup of k

A. Model of the Static Backup Deployment

We suppose that the edge network consists of a set of
servers denoted by V = {1, ..., v, ..., |V |}. Denote by Rv the

resources available for VNFs on server v. We define the set of
SFCs already deployed on the edge as F = {1, ..., f, ..., |F |}.
All VNFs of SFC f form a set If with each VNF i ∈ If .
For the deployment of static backups, we need to determine
xf,i,v , a binary variable denoting whether the backup of VNF
i of SFC f is placed on server v. We use U(X) to denote
the total backup cost, where X is the set of all xf,i,v . We
minimize U(X) subject to constraints of resources, reliability,
and indivisibility of VNFs as follows.

min U(X)

s.t. R(X) ≤ D, (1)
xf,i,v = 0, ∀f ∈ F,∀i ∈ If , v = of,i, (2)
xf,i,v ∈ {0, 1}, ∀f ∈ F,∀i ∈ If , ∀v ∈ V. (3)

In this paper, we restrict our attention to a particular objective
function. The method can be applied to more general scenar-
ios. In our application scenario mentioned in Section I, the
backup cost of SFC f is the extra cost incurred by deploying
f in the cloud instead of on the edge. Denote the backup
cost of SFC f by wf , which depends on types and quantity
of VNFs, the resource demand and the delay requirement of
SFC f . We thus formulate

U(X) =
∑
f∈F

wf ·max
i∈If

(
1−

∑
v∈V

xf,i,v

)+

.

Here, if any VNF i of SFC f is not backed up on the edge,
i.e.,

∑
v∈V

xf,i,v = 0, the whole SFC f is backed up onto the

cloud, and the backup cost wf is thus counted.
For resource constraint (1), we denote βf,i as the resource

demand of VNF i of SFC f . The overall resource demand of
VNFs on v cannot exceed the total VNF resources, Rv . Since
original VNFs are running on edge servers, we denote av as
the resource demand on v before deploying static backups. In
this way, we formulate Constraint (1) as∑

f∈F

∑
i∈If

βf,i · xf,i,v ≤ Rv − av, ∀v ∈ V.

For Constraint (2), denote by of,i the node holding original
VNF i of SFC f . According to the reliability requirement, the
backup VNF cannot be deployed on the same server with the
original one in case of hardware failures. Therefore, for each
f and i, we have xf,i,v = 0 for v = of,i. Constraint (3) simply
means a VNF cannot be split.

The optimization problem can be transformed into an inte-
ger linear programming (ILP) problem as illustrated in Section
III-B). In particular, if we ignore the reliability constraint and
suppose each SFC only has one VNF, the problem becomes
a 0-1 multiple knapsack problem which is NP-complete [28].
Therefore, when the edge network consists of a large number
of servers and SFCs which is often the case, the computational
overhead of solving the problem directly may be unaffordable.
Motivated by this observation, we propose a static backup
deployment algorithm to solve the problem with much lower
complexity while guaranteeing a theoretical bound compared
to the optimal solution.



B. Static Backup Deployment Algorithm

The detailed static backup deployment algorithm is pre-
sented in Algorithm 1. In the algorithm, we define a binary
variable yf and let yf = max

i∈If
(1−

∑
v xf,i,v)

+. The variable

yf represents whether an SFC is backed up in the cloud, i.e.,
yf = 1 represents that SFC f is backed up in the cloud. We
substitute yf for max

i∈If
(1−

∑
v xf,i,v)

+ in the objective function

and formulate an equivalent ILP problem with both xf,i,v and
yf and an extra constraint

1−
∑
v∈V

xf,i,v ≤ yf ∀f ∈ F,∀i ∈ If (4)

By relaxing xf,i,v ∈ {0, 1} and yf ∈ {0, 1} to x̃f,i,v ∈ [0, 1]
and ỹf ∈ [0, 1], we then get a linear programming (LP)
problem. We solve the LP problem with an LP solver [29]
to obtain relaxed solutions {x̃f,i,v} and {ỹf}.

Next, we need to determine whether each xf,i,v and yf
should be 0 or 1 based on the relaxed solutions. In Algorithm
1, we first determine yf and let the value of yf determines
the corresponding set of xf,i,v for the same SFC. If yf ′ = 1
for a particular f ′, there must be at least one i ∈ If ′ with
(1−

∑
v xf ′,i,v)

+ = 1. Then we can make (1−
∑
v xf ′,i,v)

+ =
1 for all i ∈ If ′ . Since this will not change the objective
but reduce the left side of Constraint (1) as all xf ′,i,v = 0.
If yf ′ = 0, it is clear that (1 −

∑
v xf ′,i,v)

+ = 0 for all
i ∈ If ′ . For a particular i′ ∈ If ′ , since Constraint (1) is linear,
we only choose one v ∈ V and make xf ′,i′,v = 1 while
satisfying Constraint (2). This is because multiple xf ′,i′,v = 1
will not reduce the objective function but increase the left
side of Constraint (1). Based on the fractional result {x̃f,i,v},
when

∑
v xf ′,i′,v = 1, we look for the xf ′,i′,v with the largest

x̃f ′,i′,v among all v and make it 1. By following steps above,
whenever the rounding of yf is given, all corresponding xf,i,v
are determined.

To determine {yf}, we first sort all ỹf in a decreasing order.
Denote by θ the threshold for rounding which always equals
to the largest ỹf in each iteration. In the first iteration, all yf
are set to 0. For each f and i, xf,i,v with the largest x̃f,i,v
among all v are set to 1. In each iteration, any yf with ỹf = θ
is set to 1 and corresponding xf,i,v are set to 0. This means
that Algorithm 1 determines these SFCs to be backed up in
the cloud. Then, the value of ỹf is set to 0. After all yf with
ỹf = θ are determined and there still exist violated constraints,
a new iteration continues until all constraints are satisfied for
the first time. The total number of iterations is limited by |F |.
When this process finishes, all yf with ỹf ≥ θ are rounded to 1
and others rounded to 0. We further add a withdraw procedure
for better performance. For each f ∈ F and yf = 1, we set yf
back to 0 and corresponding xf,i,v back to 1, if no constraint
is violated by doing so.

In Algorithm 1, the complexity of getting corresponding
xf,i,v = 1 for every yf is O(|F ||I||V |). The process of
determining yf with the withdraw procedure totally takes
O(|F ||I|). Thus, the computational complexity of Algorithm
1 except solving an LP is O(|F ||I||V |). We then prove that 1

θ

Algorithm 1 Static Backup Deployment Algorithm
Input: {x̃f,i,v} and {ỹf} from the LP solver.
Output: Binary output {xf,i,v}, {yf} and threshold θ
1: Initialize all xf,i,v = 0.
2: for all f ∈ F, i ∈ If do
3: for all v ∈ V \ of,i do
4: if x̃f,i,v = max

v∈V \of,i
{x̃f,i,v} then

5: xf,i,v ← 1, break.
6: end if
7: end for
8: end for
9: while Constraints are not satisfied do

10: θ ← max
f∈F
{ỹf}

11: for all ỹf = θ do
12: ỹf ← 0
13: yf ← 1 and corresponding xf,i,v ← 0
14: end for
15: end while
16: for all f ∈ F do
17: if yf = 1 and setting corresponding xf,i,v set to 0 in line 13

back to 1 does not violate any constraint then
18: yf ← 0 and corresponding xf,i,v ← 1.
19: end if
20: end for

is a bound between the result of Algorithm 1 and that of the
optimal solution.

Theorem 1. Suppose the result of Algorithm 1 is Z† and we
have Z∗ as the result of the optimal solution. Then, we have
Z† ≤ 1

θ · Z
∗.

Proof. Since yf = max
i∈If

(1 −
∑
v∈V

xf,i,v)
+, the goal is to

minimize
∑
f∈F

wf · yf . First, since the optimal solution of a

relaxed problem is at least as good as the original ILP problem,
we have

Z∗ ≥
∑
f

wf · ỹf .

From Algorithm 1, we get the threshold θ and set all yf with
ỹf above θ as 1 and those below θ as 0. It is clear that∑

f

wf · ỹf ≥
∑

{ỹf |ỹf≥θ}

wf · ỹf ≥ θ ·
∑

{yf |yf=1}

wf · yf .

Suppose the set of yf that are set back to 0 through the
withdraw process is Yf . It is clear that∑

{yf |yf=1}

wf · yf ≥
∑

{yf |yf=1}\Yf

wf · yf = Z†.

In this way, we have Z∗ ≥ θ · Z†.

IV. DYNAMIC BACKUP DEPLOYMENT

When the first step of SAB is finished, each VNF backed
up on the edge has one static backup. Since the availability of
SFCs may not be guaranteed yet and future failures of VNFs
are hard to predict, we decide which SFCs need more backups
in an online manner. SAB deploys dynamic backups for SFCs
with failed VNFs or static backups.

As mentioned in Section II, when deploying dynamic back-
ups, we need to balance the load of each server to mitigate



resource contention. In addition, since VNF failures may occur
successively over time, we need to deploy a dynamic backup as
soon as a failure happens to guarantee the availability. There-
fore, we need an algorithm to deploy dynamic backups in an
online manner while balancing load on servers. In this section,
we formulate the dynamic backup deployment problem and
design an online algorithm with proven competitive ratio to
the offline optimum. We also discuss conditions to release
dynamic backups and the SFC backup adjustment method
which deals with insufficient or excessive edge resources
during the dynamic backup deployment.

A. Model of Dynamic Backup Deployment
For the deployment of dynamic backups, denote by K

the set of dynamic backups arriving over time, where K =
{1, ..., k, ..., |K|}. For simplicity, we assume no VNF recovers
during this time which leads to the most resource contention.
Dynamic backup k has a resource demand γk. We define a
decision variable xk,v which denotes whether the dynamic
backup k is deployed on server v. We also define a variable
Wv representing the load (resource demand/resource capacity)
on server v after deploying |K| dynamic backups. We aim
to minimize the maximal Wv . This goal should be achieved
under constraints of resource and reliability. We formulate the
dynamic backup deployment problem as follows.

min max
v∈V

Wv

s.t.
bv +

∑
k∈K

γk · xk,v

Rv
=Wv, ∀v ∈ V, (5)

Wv ≤ 1, ∀v ∈ V, (6)∑
v∈V

xk,v = 1, ∀k ∈ K, (7)

xk,v = 0, ∀k ∈ K, v ∈ {ok,1, ok,2}, (8)
xk,v ∈ {0, 1}, ∀k ∈ K, ∀v ∈ V. (9)

With the deployment of static backups, we denote bv as the
current resource demand on v. Constraint (5) makes sure that
Wv is the final load on node v after deploying all dynamic
backups, which is the sum of original VNFs, static backups
and dynamic backups over resources. Constraint (6) serves as
the resource constraint and ensures that the load on any server
is restricted by 1. Constraint (7) restricts that there must be
one edge server holding each dynamic backup. Constraint (8)
is the reliability constraint that dynamic backup k cannot be
deployed on servers holding its original VNF or static backup
represented by ok,1 and ok,2.

The formulated problem is non-trivial, since failures of
VNFs happen in an online manner over time. Dynamic backup
k should be allocated to an edge server as soon as its VNF
or static backup fails without knowing any future information
such as γk′ , where k′ > k. The formulated problem is thus
an online integer linear programming problem. To solve this
problem, we propose an online algorithm as follows.

B. Online Algorithm for Dynamic Backup Deployment
With the sequence of total K dynamic backups, the online

algorithm operates in total N iterations (N is bounded). In

iteration n, the algorithm maintains a load parameter Mn. For
each server v, it also maintains an iteration parameter ηn,v .
Before deploying the first dynamic backup, we set η1,v = 0
for all v. M1 is the largest load on any v with the current
deployment of VNFs and backups, i.e., M1 = max

v∈V
{ bvRv }. At

the beginning of placing each dynamic backup k, we exclude
servers that cannot hold k from the set V . If V becomes
empty, the algorithm is terminated and the backup adjustment
mechanism introduced in Section IV-D is triggered. However,
this termination is very rare unless failure spikes happen
as shown in Section V. We define an increment parameter
δkn,v = γk

Rv·Mn
for each remaining server v. We sort remaining

servers in the increasing order of εηn,v+δ
k
n,v − εηn,v to get V ′,

where ε ∈ (1, ρ+1
ρ ], ρ > 1. We pick the first server v′ in V ′ that

v′ /∈ {ok,1, ok,2}. If ηn,v′+δkn,v′ ≤ logε(
ρ
ρ−1 |V |), the dynamic

backup k is deployed on this server and ηn,v′ = ηn,v′ + δkn,v′ .
If not, a new iteration starts with all ηn+1,v = 0 and
Mn+1 = 2Mn. The detailed process is presented in Algorithm
2.

Algorithm 2 Dynamic Backup Deployment Algorithm
Input: Set of edge servers V , current deployment of VNFs and

backups, dynamic backup set K, ε and ρ.
Output: Placement of each dynamic backup {xk,v; ∀k ∈ K,∀v ∈

V }.
1: n← 1; η1,v ← 0,∀v ∈ V ;M1 ← max

v∈V
{ bv
Rv
}

2: Whenever a dynamic backup request arrives, overflow ← True
and do lines 3-23.

3: for all v ∈ V do
4: if bv

Rv
+
k−1∑
j=1

γj
Rv
· xj,v + γk

Rv
> 1 then

5: V ← V \ v
6: end if
7: end for
8: if V = ∅ then
9: Terminate the algorithm and execute backup adjustment.

10: end if
11: while overflow = True do
12: overflow = False
13: for all v ∈ V do
14: δkn,v ← γk

Rv·Mn
15: end for
16: Sort servers in V in the increasing order of εηn,v+δ

k
n,v−εηn,v

to get V ′, where ε ∈ (1, ρ+1
ρ

], ρ > 1.
17: Find the first v′ in V ′ satisfying v /∈ {ok,1, ok,2}.
18: if ηn,v′ + δkn,v′ > logε(

ρ
ρ−1
|V |) then

19: n ← n + 1;Mn ← 2 · Mn−1; ηn,v ← 0, ∀v ∈
V ; overflow ← True

20: else
21: xk,v′ = 1; ηn,v′ ← ηn,v′ + δkn,v′
22: end if
23: end while

Denote the result of Algorithm 2 (the offline optimal solu-
tion) by M† (M∗, respectively). We now prove that the result
of Algorithm 2 is bounded by a competitive ratio to the offline
optimum in Theorem 2.

Theorem 2. Assume that Algorithm 2 has not excluded the
optimal server for dynamic backup k when deploying it. We



have M† ≤ (1+4logε(
ρ
ρ−1 |V |)) ·M

∗, where ε ∈ (1, ρ+1
ρ ] and

ρ > 1.

When |V | > 1, the bound in Theorem 2 is minimized if
ε = ρ+1

ρ and ρ satisfies ρ−1
ρ ·e

ρ+1
ρ−1 logε(

ρ+1
ρ ) = |V |. The detailed

value of ε and ρ can be obtained by well-established numerical
methods. To prove Theorem 2, we first prove the following
lemma.

Lemma 1. If M∗ ≤ Mn, Algorithm 2 can finish the deploy-
ment of |K| dynamic backups within the nth iteration.

Proof. We assume ηn,v(k) as the parameter ηn,v of server
v in iteration n after deploying dynamic backup k. We also
represent δkn,v by δn,v(k). Suppose Φn(k) is the set of backups
deployed by Algorithm 2 in iteration n til deploying backup k,
Φ∗v(k) is the set of backups deployed by the offline optimum

on v til deploying backup k. Define η∗n,v(k) =

∑
j∈Φn(k)∩Φ∗v(k)

γj

Rv·Mn
.

Define a function Fn(k) =
∑
v∈V ε

ηn,v(k) · (ρ − η∗n,v(k)),
where ρ > 1. Here, we first prove that Fn(k) is a non-
increasing function. Knowing V may be shrinking due to
lines 3-7 in Algorithm 2, we denote by V (k) the set V when
deploying dynamic backup k and have V (k+ 1) ⊆ V (k). We
first have

Fn(k + 1)− Fn(k) =
∑

v∈V (k+1)

εηn,v(k+1) · (ρ− η∗n,v(k + 1))

−
∑

v∈V (k+1)

εηn,v(k) · (ρ− η∗n,v(k))

−
∑

v∈V (k)\V (k+1)

εηn,v(k) · (ρ− η∗n,v(k))

Since η∗n,v(k) ≤ M∗

Mn
≤ 1 < ρ, we further have

Fn(k + 1)− Fn(k) ≤
∑

v∈V (k+1)

εηn,v(k+1) · (ρ− η∗n,v(k + 1))

−
∑

v∈V (k+1)

εηn,v(k) · (ρ− η∗n,v(k)) (10)

We define v† and v∗ as corresponding servers chosen by
Algorithm 2 and offline algorithm to place dynamic backup
k + 1. According to the assumption in Theorem 2, we have
v∗ ∈ V (k + 1). When v† and v∗ are different, we simplify
(10) and get

(10) = (ε
η
n,v† (k+1) − εηn,v† (k)) · (ρ− η∗n,v†(k))

−εηn,v∗ (k) · δn,v∗(k + 1)

When v† and v∗ are the same, we have
(10) = (εηn,v(k+1) − εηn,v(k)) · (ρ− η∗n,v(k))

−εηn,v(k+1) · δn,v(k + 1)

Here, v can be either v† or v∗. Since −εηn,v∗ (k+1) ≤
−εηn,v∗ (k), considering both cases, we have

(10) ≤ (ε
η
n,v† (k+1) − εηn,v† (k)) · (ρ− η∗n,v†(k))

−εηn,v∗ (k) · δn,v∗(k + 1) (11)

We further have
(11) ≤ ρ · (εηn,v† (k+1) − εηn,v† (k))− εηn,v∗ (k) · δn,v∗(k + 1)

Due to lines 16 and 17, we have v‡, v∗ /∈ {ok,1, ok,2} and
εηn,v† (k+1)−εηn,v† (k) ≤ εηn,v∗ (k+1)−εηn,v∗ (k). Therefore, the
inequality goes

≤ ρ · (εηn,v∗ (k+1) − εηn,v∗ (k))− εηn,v∗ (k) · δn,v∗(k + 1)

= εηn,v∗ (k) · [ρ · (εδn,v∗ (k+1) − 1)− δn,v∗(k + 1)]

Since v∗ is the choice of the offline optimum, we have
γk+1

Rv∗
≤M∗. Then we have δn,v∗(k+1) = γk+1

Rv∗ ·Mn
≤ M∗

Mn
≤ 1.

Then ρ · (εδn,v∗ (k+1)−1)− δn,v∗(k+ 1) ≤ 0, for ε ∈ [1, ρ+1
ρ ].

In this way, Fn(k) is a non-increasing function. With this
conclusion, we further prove Lemma 1. We know η∗n,v(k) ≤ 1

and thus Fn(k) ≥ (ρ − 1) ·
∑
v∈V ε

ηn,v(k). Combining the
non-increasing of Fn(k), we have ηn,v(k) = logε(ε

ηn,v(k)) ≤
logε(

1
ρ−1Fn(k)) ≤ logε(

1
ρ−1

∑
v∈V ε

0 · (ρ− 0)) ≤ logε(
ρ
ρ−1 ·

|V |). In this way, line 18 of Algorithm 2 will not be violated
and thus Lemma 1 is proved.

With Lemma 1, we now prove Theorem 2.

Proof. Suppose the maximal load increment in iteration n is
∆n. When N = 1, since ∆1 ≤ logε(

ρ
ρ−1 · |V |) · M1 and

M∗ ≥M1, we have M†

M∗ ≤ 1 + logε(
ρ
ρ−1 · |V |). When N > 1,

we have ∆n ≤ logε(
ρ
ρ−1 · |V |) · 2n−1 · M1. According to

lines 3-7, excluded servers have less load increment. Then,
M† ≤ M1 +

∑N
n=1 ∆n ≤ M1 +

∑N
n=1 logε(

ρ
ρ−1 · |V |) ·

2n−1 · M1. We know M∗ > 2N−2 · M1, since Algorithm
2 will stop at N − 1 otherwise. We then have M†

M∗ ≤
M1+

∑N
n=1 logε(

ρ
ρ−1 ·|V |))·2

n−1·M1

2N−2·M1
≤ 1 + 4 logε(

ρ
ρ−1 · |V |)).

The proof of Theorem 2 indicates that the number
of iterations N is bounded by O(log(M∗)). Suppose
γmax is the largest resource demand of dynamic backups
and rmin is the the minimal server resources, we have
M∗ ≤ M1 + |K|·γmax

rmin
. So N is bounded by O(log(M1 +

|K|·γmax
rmin

)). In addition, the complexity of each iteration is
O(|K||V | log(|V |)), so the computational complexity of Al-
gorithm 2 is O(|K||V | log(|V |) · log(M1 + |K|·γmax

rmin
)).

C. Availability Reinforcement and Dynamic Backup Release

If two of the three copies (i.e., the original VNF, the static
backup and the dynamic backup) fail, the dynamic backup
deployment method will deploy the second dynamic backup.
By doing so, the dynamic backup deployment always makes
sure there are at least two functioning instances at any time
for each VNF. If the availability of a particular SFC does
not reach its requirement, all dynamic backups of this SFC
will not be released at recovery and work like static backups
to reinforce the availability. These semi-static backups will
be released when the availability is satisfied. In this way, we
dynamically guarantee the availability of SFCs backed up on
the edge.



D. SFC Backup Adjustment

During the deployment of dynamic backups, there exist
situations that edge resources are not enough for the next
dynamic backup. In these cases, we terminate Algorithm 2
and start a SFC backup adjustment method. We sort SFCs
backed up on the edge and pick the SFC f with the smallest
wf . We then back up SFC f into the cloud instead. After
the backup of SFC f is established in the cloud, all static
and dynamic backups of f are released from the edge. Since
SFC f is now backed up in the cloud, its availability is taken
care of by the cloud. Meanwhile, more resources are available
to create dynamic backups for SFCs backed up on the edge.
Therefore, the availability of all SFCs is increased. Above
steps are repeated until that Algorithm 2 can start again.

The adjustment method also maintains t, the running time of
Algorithm 2 without termination. When t exceeds a predefined
threshold τ1, the method tries to resume static backups of SFC
f back to edge servers. f is the SFC adjusted into the cloud
previously with the largest wf . If there is no enough resource
for this resumption, t = 0. If t keeps increasing and exceeds
another threshold τ2, all copies of SFC f in the cloud are
released and f is backed up on the edge again. In this way,
unnecessary backup cost is saved. The detailed choices of τ1
and τ2 are discussed in Section V.

V. PERFORMANCE EVALUATION

A. Simulation Setup

For the simulation setup, we refer to basic settings of the
VNF platform on commercial servers in [20]. We consider
each edge server as a commercial server with a single CPU
of 6 cores. As edge servers may have tasks other than VNFs,
we assume each server randomly has 1 to 6 cores available
(uniformly distributed). We suppose that there are totally 20
servers in the edge network connecting to one another and
all servers connected to the cloud. In the edge network, each
SFC is randomly chained up by one to five VNFs. We focus
on CPU utilization to represent the VNF resource demand
(e.g., a VM uses 0.6 CPU core). In our simulation, we use the
real-world trace of VM CPU utilization in MS Azure [30].
The backup cost of an SFC depends on its delay requirement
and resource demand. We assign each SFC a random number
uniformly distributed in [1, 5] to represent the relative tightness
in delay requirements. We then multiply this number with
the total resource demand of all VNFs in this SFC to obtain
its backup cost. To mitigate the influence of VNF migration
between the edge and the cloud, we choose large thresholds
in backup adjustment with τ1 = 100 and τ2 = 150.

B. Baselines

We compare the performance of our algorithms with that
of a greedy baseline algorithm (Greedy) and the solution of
a relaxed LP problem (LP) [29]. The cost of LP serves as
a lower bound on the cost of the optimal integral solution.
We are doing this because it is computationally inefficient to
solve the original integer problem directly. This provides a
conservative comparison for our algorithms.

Regarding the greedy baseline, as existing algorithms for
SFC deployment vary in the objective functions optimized [1]–
[4], it is hard to compare our comprehensive scheme directly
to them. Instead, we use a greedy algorithm as the baseline.
In this greedy algorithm, whenever a SFC arrives, a server
with enough available resource is picked for the first VNF
and this procedure iterates until all VNFs of this SFC are
placed. If there are not enough resources in the edge networks,
the SFC will be placed on the cloud. With the original VNF
placed, the Greedy algorithm deploys static backups starting
from the SFC with the largest backup cost and follows a
decreasing order in the backup cost. For each VNF backup of
the SFC currently considered, the Greedy algorithm place it
on the server with the lowest load without violating resource
or reliability constraints. If any VNF of an SFC cannot be
backed up on the edge, the whole SFC is backed up in the
cloud.

C. How Much Can Static and Dynamic Backup Placement
Algorithms Help?

Fig. 2 (a) shows the average backup cost of different
algorithms when the number of SFCs in the network increases.
The cost is average over 100 simulations. It is evident that our
Algorithm 1 significantly reduces the backup cost compared
to the Greedy baseline, and its cost is not far from the relaxed
optimal cost. In particular, when there are abundant resources
for backups (with a smaller number of SFCs, e.g., 10-30) on
the edge, Algorithm 1 reduces cost by 61.1%-50.9%. Even
with limited edge resources for backups (e.g., with 50 SFCs
and an average of 88.1% load on the edge before deploying
backups), Algorithm 1 can still save 15.9%.
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Fig. 2. Effectiveness of the proposed algorithms. (a) illustrates the average
backup cost of LP, Algorithm 1 and Greedy with different numbers of SFCs
deployed on the edge. (b) shows the maximal load on edge servers from
Algorithm 2 normalized by the offline optimum when failure rates increase.

We continue to evaluate the performance of Algorithm
2 with 30-50 SFCs deployed in the network. Each box in
Fig. 2 (b) concludes the maximal load on edge servers from
Algorithm 2 in 100 simulations under a particular failure
rate of VNFs. The results are normalized by offline optimal
solutions solved by an ILP solver with all upcoming dynamic
backups known in advance. Fig. 2 (b) highlights that, in the
majority of simulations, Algorithm 2 achieves near optimal
performance. Even with a large failure rate (10%), about 75%
of simulations are below 1.4 times of the offline optimal
solution. This means Algorithm 2 is effective in balancing the



load on edge servers, and thus reducing resource contention
in an online manner.

D. Benefits of the SAB Scheme

Now we evaluate the performance of the entire SAB
scheme. Again, 30-50 SFCs are deployed in the network. In
each time slot, we assume each VNF instance has a failure
rate, and the VNF is randomly available or not according to
the rate [11]–[15]. By default, we assume a VNF recovers after
10 timeslots (the creation of a VNF takes 1 timeslot) and we
vary the recover and create time in Fig. 5 to evaluate their
impacts. Note the create time of a dynamic backup is the time
between its deployment and the moment it starts to work.

We compare our SAB scheme with an h-backup greedy
scheme which provides each VNF with h static backups. Its
deployment method is similar to that of the greedy algorithm
in Section V-B but deploys h static backups instead of one.
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Fig. 3. Self-adapting features of SAB. (a) The availability of SFCs with
different backup schemes when failure rate spikes occur. (b) The change of
backup cost with SAB when failure rate spikes happen.

We first demonstrate how our backup scheme adaptively
balances the trade-off between the backup cost and the avail-
ability without knowing failure rates. Fig. 3 (a) shows the
availability of SFCs (averaged from the beginning to the
current timeslot) with SAB and greedy baselines during 3,000
timeslots. There are two failure rate spikes shown by the black
line. Clearly, the availability curve of SAB outperforms the
baselines, meaning our scheme is more robust against bursts of
VNF failures comparing with baselines using a fixed number
of static backups.

Fig. 3 (b) illustrates how SAB reacts to sudden failure rate
spikes. In particular, when a spike happens, SAB creates more
backups to handle the failures. When the spike ends, SAB
waits until the time averaged availability meets requirements
before releasing the backups. Specifically, the backup cost
increases when the failure rates start to burst. This is because
SAB keeps deploying new dynamic backups to increase the
availability against the failure rate spikes. More SFCs are thus
backed up onto the cloud to release more edge resources for
dynamic backups. When failure rates fall back, the scheme
does the opposite which releases unnecessary dynamic back-
ups and reduces the backup cost.
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Fig. 4. Performance of different backup schemes in guaranteeing the
availability of SFCs and reducing the backup cost. (a) The average availability
of SFCs with SAB and the h-backup greedy when failure rates of VNFs
change. (b) The average backup cost applying different backup schemes with
different failure rates of VNFs. The backup cost is normalized by the static
backup cost from Algorithm 1.

We further evaluate the average performance of our scheme
with a large number of simulations. Fig. 4 (a) shows the av-
erage availability of SFCs applying different backup schemes
when the failure rates of VNFs decrease. We find that our
scheme always preserves higher SFC availability compared to
baseline schemes. We also observe that applying more fixed
backups for each VNF can increase the availability. However,
this increment is at the cost of higher backup cost.

Fig. 4 (b) shows the average backup cost using different
schemes with different failure rates. All results are normalized
by the cost of deploying one static backup from Algorithm
1. We observe that the backup cost of the greedy h-backup
scheme is fixed with decreasing failure rates and larger h
incurs higher backup cost. The backup cost of SAB reduces
significantly when failure rates of VNFs decrease. Moreover,
the backup cost of our scheme is always lower than the greedy
scheme with h larger than 2. Compared with the 2-backup
greedy scheme, our scheme has lower cost when failure rates
are below 0.1 and preserves much higher SFC availability.

Then, we evaluate how the recover time and the creation
time affect the self-adapting backup scheme. Fig. 5 (a) shows
the performance of SAB and the greedy baseline when the
recover time increases. Failure rates of VNFs are 0.1 in this
simulation. Although the availability of SFCs decreases when
the recover time increases with both schemes, SAB decreases
relatively slower. This indicates that SAB can better tolerant
slow recovery of VNFs, thus providing higher availability.
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Fig. 5. Impacts of the recover time and the creation time. (a) The average
availability of SFCs with SAB and the h-backup greedy scheme when the
recover time grows. (b) The average availability of SFCs applying SAB with
different creation time.

Since the creation time of an VNF is influenced by multiple



factors (e.g., VNF type, resource demand and load of the
edge server), we define a C-time representing the range within
which the creation time is uniformly distributed. For instance,
C-time = 4 means the creation time of each dynamic backup
is uniformly distributed between 1 and 4 slots. Fig. 5 (b)
shows the performance of SAB with different creation time.
With longer creation time, the average availability of SFCs
decreases with SAB. However, compared with Fig. 4 (a), the
average availability of our scheme is still better than that of
the greedy scheme even with larger creation time. In summary,
SAB is applicable and performs much better than the baselines
with relatively larger recover and creation time.

E. Experiment

We conduct a small-scale experiment to further evaluate our
proposed scheme. We deploy echo servers as VNFs on both
the edge and the cloud. For the edge scenario, we deploys the
original image, static backup and dynamic backup on three
personal PC equipped with Intel i5-4590 within an intranet,
respectively. We use a well-known cloud service provider to
deploy a static backup in the cloud. At each round, the user
sends a packet to the service and we conduct 500 rounds. In the
edge scenario, the original VNF fails at round 47 and recovers
at 438, while the static backup fails at 182 and recovers at
379. In the cloud scenario, the original VNF fails at round
30 and recovers at round 429. Fig. 6 shows the latency of
each packet. It is evident that the edge scenario with SAB
provides much lower latency and latency variation compared
to the cloud backup scheme.
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Fig. 6. A small-scale experiment of VNFs backed up on the edge and the
cloud.

VI. RELATED WORK

Despite the popularity of VNF and SFC, how to guarantee
the availability is considered as a key issue and has drawn
much research attention [10]–[15], [19], [20], [31]. Much re-
lated work is committed to improving the availability of VNFs
in the cloud using redundancy. Fan. et al. [11], [12] propose
a scheme to minimize the total number of backups while
meeting availability requirements. Zhang et al. [19] propose
a novel method pursuing a similar goal while considering the
heterogeneous resource demands of VNFs. Kanizo et al. [14],
instead, maximize the availability with a given number of
backups taking advantage of the resource-sharing ability of
VNFs. All the work assumes the knowledge of failure rates is
known, while our SAB scheme does not assume it.

When considering the availability of SFCs chained up by
multiple VNFs, Beck et al. [31] propose algorithms to provide
backup VNFs and links parallel to the original VNF. Shang et

al [13], [15] propose rerouting strategies to guarantee the avail-
ability of SFCs in case of node and link failures. Instead of
introducing redundancy, Taleb [10] propose a novel alternative
framework which ensures the resilience of SFCs using efficient
and proactive restoration mechanisms. These schemes create
replacing VNFs at the early detection of failures. Martins et
al. [20] realize a virtual VNF platform called ClickOS which
enables fast creation of VNFs. In this paper, we combine the
ideas of backups and fast creation of dynamic backups and
propose the self-adapting backup scheme.

When it comes to deploying VNF on the edge, work in
[5]–[9] has proposed algorithms and systems to explore its
potential in multiple aspects. To guarantee the availability
of VNFs on the edge, Zhu et al. [21] propose methods to
track the availability and cost impact and place VNFs on
edge networks considering both resource cost and application
availability. Yala et al. [22] propose a VNF placement scheme
between the edge and the cloud to optimize the trade-off be-
tween availability and latency. The work above only considers
placing original VNFs without deploying backups, thus may
leading to infeasible solutions with longer service chains and
lower availability. Dinh et al. [17] propose a cost-efficient
redundancy allocation scheme for VNFs based on measuring
the availability improvement potential of each VNF. However,
as far as we are concerned, none of them consider the trade-
off between the availability of SFCs and the backup cost when
failure rates of VNFs are unknown and vary over time.

Online load balancing problems have been widely studied in
the literature and the most related work is probably [32], [33].
Compared to the existing work, our algorithm balances the
load with additional reliability constraints of dynamic backups
and a shrinking server set with generalized parameters. In this
way, our algorithm generalizes existing ones to a wider range
of applications including the one studied in this paper, while
preserving the theoretical performance guarantee.

VII. CONCLUSION

In this paper, we propose a self-adapting backup scheme to
optimize the trade-off between the SFC availability and backup
costs without assuming VNF failure rates. Our scheme first
uses a low complexity algorithm with a provable theoretical
bound to deploy one static backup for each VNF while
minimizing the backup cost. It then adds dynamic backups
using an online algorithm with a provable competitive ratio to
guarantee the desired availability of SFCs backed up on the
edge. Our backup scheme further adjusts backups between
the edge and the cloud dynamically to accommodate the
fluctuations in VNF failure rates and edge resource availability.
Simulation results highlight that the proposed scheme can
significantly reduce the backup cost while guaranteeing the
availability without knowing VNF failure rates.
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