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Abstract—The fast development of virtual network functions
(VNFs) brings new challenges to providing reliability. The widely
adopted approach of deploying backups incurs financial costs and
environmental impacts. On the other hand, the recent trend of
incorporating renewable energy into computing systems provides
great potentials, yet the volatility of renewable energy generation
presents significant operational challenges. In this paper, we
optimize availability of VNFs under a limited backup budget
and renewable energy using a dynamic strategy GVB. GVB
applies a novel online algorithm to solve the VNF reliability
optimization problem with non-stationary energy generation and
VNF failures. Both theoretical bound and extensive simulation
results highlight that GVB provides higher reliability compared
with existing baselines.

I. INTRODUCTION

The emerging of network function virtualization allows
software-based VNFs running on commodity servers to
achieve the same functionality to that of middleboxes built on
dedicated hardware. To realize the potential of VNFs in im-
proving elasticity, flexibility, and scalability, much research has
been conducted [1]-[6]. Despite potential benefits, software-
based VNFs are more vulnerable to failures compared with
traditional middleboxes. This is because that VNF platforms
often have additional virtual layers between VNFs and the
underlying hardware [7], [8]. Any misconfiguration of these
layers may fail VNFs running over them. In addition, the reli-
ability of commodity servers is inherently inferior to dedicated
hardware made for middleboxes [9]. Therefore, guaranteeing
availability of VNFs, which is essential to provide reliable
network services, brings new challenges.

Deploying backups is a generic and robust method to
improve availability of VNFs [9]-[13]. Yet, it improves avail-
ability at the expense of extra costs. Thus, service providers
often limit the budget for deploying backups for profit con-
sideration [14]. This is especially the case for systems with
limited resources or energy, e.g., edge servers with small-scale
CPU and memory [15], [16] or wireless devices with limited
power supply [17]-[19]. Therefore, the dilemma between high
availability of VNFs and the limited backup budget becomes
an urgent and challenging problem.

Existing methods proposed to improve availability in previ-
ous work are insufficient due to the following two reasons.
First, to our best knowledge, no previous work introduces
mechanisms to leverage volatile renewable energy generation
in real time to deploy VNF backups. Nowadays, both large
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data centers and edge servers start to take advantage of renew-
able energy for cost and greenhouse gas emission reduction
[20]-[24]. Due to the volatility of renewable energy [25], it
may not be reliable enough for applications that need stable
energy supply. However, renewable energy is suitable for VNF
backups which can scale up and down based on the sufficiency
of the budget and operate only when the original ones fail.
Thus, it is profitable for a VNF backup scheme to utilize
renewable energy effectively if present. Second, it is essential
for any backup strategy to consider the fact that failures are
time-varying and hard to predict [26]. On one hand, offline
VNF backup schemes giving a fixed number of backups may
not work well with varying failure rates at different time slots.
This is because, with a fixed budget, deploying more backups
at a time with higher failure rates may achieve higher overall
availability compared to distributing backups evenly over the
time span. On the other hand, the hardness of predicting VNF
failures becomes an obstacle for any online backup method
relying on the prediction accuracy.

Therefore, it is desirable for a scheme to deploy VNF back-
ups in an online manner with full consideration of renewable
energy and unpredictable VNF failures. Online mechanisms
have been explored in related work for efficient VNF place-
ment, e.g., [27], [28], or renewable energy utilization, e.g.,
[29]. As far as we are concerned, no online algorithm has been
proposed to improve availability of VNFs utilizing renewable
energy under non-stationary states.

In this paper, we propose a green energy aware VNF backup
scheme GVB to improve availability of VNFs with a limited
backup budget. GVB leverages renewable energy generated at
each time slot for higher availability. It maintains a theoretical
performance guarantee to the offline optimal solution with
the presence of arbitrary green energy generation patterns and
non-stationary VNF failure rates.

Our main contributions are summarized as follows.

e We design an efficient backup scheme GVB to improve
availability of VNF systems with renewable energy and
unpredictable VNF failures.

o We formulate the VNF backup deployment problem as
an online integer optimization problem which is both
computational complex and lacks future information. To
solve this problem, we propose an online algorithm and
prove its competitive ratio to the offline optimal solution.

e« For GVB in the long run, we propose a parameter
adjustment method to tune the online algorithm to achieve
better performance than the theoretical bound.



e We conduct real-world trace-driven numerical simula-
tions. The results highlight that our proposed scheme
achieves higher availability of VNFs with the same
backup budget compared to the baselines.

The remainder of this paper is organized as follows. Section
IT presents an overview of the related work and background.
Section III formulates the online model of the problem while
Section IV continues with the details of the online algorithm
and the parameter adjustment method. Numerical results are
presented and evaluated in Section V. Section VI concludes
this paper and briefly describes future work.

II. RELATED WORK AND BACKGROUND

Network function virtualization has the potential to reduce
opening and operating costs, improve service agility and
enhance utilization of existing network. It has drawn much
research attention and many promising schemes have been
proposed for various objectives. Recently, Zhang et al. propose
an adaptive interference-aware heuristic approach to place
VNFs in 5G service-customized network slices in [1]. Luo
et al. propose a deep learning-based framework for scaling
of the geo-distributed VNF chains in [2]. Kiji et al. construct
a virtual network function placement and routing model for
multicast service chaining based on merging multiple service
paths in [3]. Bao et al. [4] investigate parallelism of VNFs for
acceleration and propose a polynomial-time solution. Zheng
et al. [5] present a two-stage optimization framework to mini-
mize the cost while balancing the CPU processing capability.
Considering fluctuations of SFC traffics and VNF migration
costs, Shang et al. [6] propose an online joint SFC placement
and routing scheme to reduce cost and network congestion.

Despite such benefits, the relatively complex configuration
of a VNF platform may bring new challenges in guaranteeing
availability of VNFs running over it. Taleb et al. [14] point
out that VNFs are often more vulnerable to failures due to
hardware failures, software bugs, hypervisor misconfigura-
tions, and malicious attacks. Wang et al. [26] further illustrate
that failures are not uniformly random at different time scales,
and sometimes not even uniformly random at different spaces.
Many failures are highly correlated with one another and
failure spikes may happen at any time.

To protect VNFs from failures, Fan et al. [9] proposes
schemes to minimize the number of backups with fixed
availability requirements. Zhang et al. [13] further consider
various resource demands of VNFs in the same problem
and propose the corresponding solution. In scenarios where
the backup budget is constrained due to resource or energy
limitation, Kanizo et al. [11] use a backup-sharing method
to maximize availability of VNFs with a prefixed number
of backups. Dinh et al. [16] present a cost-efficient VNF
backup scheme for VNFs deployed on the edge, which makes
backup decisions based on evaluating availability improvement
potential of each VNF. Taleb et al. [14] apply an early failure
detection technology to place VNF backups in a reactive way.
To save unnecessary costs, a VNF in their scheme is only
backed up when its failure is detected in advance.

Instead of only saving backup resources for the most bene-
ficial VNFs, GVB proposed in this paper introduces renewable
energy generated over time to deploy more backups with
the same budget. In addition, GVB is designed not only to
handle the uncertainty of renewable energy but also to deal
with non-stationary distribution of VNF failures. Methods
in previous work either consider failure rates as stationary
states or achieve the upcoming VNF failures using prediction
mechanisms. However, as we mentioned in Section I, VNF
failure distributions are often non-stationary and hard to pre-
dict. Any deviation of failure rates may result in unsatisfactory
performance. Different from these methods, GVB formulates
and solves an online integer optimization problem under non-
stationary states, i.e., renewable energy generation and failure
rates.

Online algorithms, e.g., [30]-[33], have been widely applied
to solve problems in data centers. For online convex opti-
mization problems with the presence of non-stationarity, Yu et
al. [30] propose an algorithm with a theoretical performance
guarantee which incorporates the estimations of average future
states into the stochastic optimization framework for decision
making. Lin et al. [31] propose an algorithmic framework
called CR-Pursuit which preserves a competitive ratio of
B - (log(#) + 1), where 8 and @ are parameters depending
on properties of the objective function. Comden et al. [32]
studied how to jointly select prediction and control algorithms
for online resource provisioning. Nevertheless, the formulated
integer problem in this paper could not be solved directly using
the proposed convex optimization methods. Thus, we propose
a novel online algorithm solving the problem with a theoretical
competitive ratio to the offline optimal solution.

III. PROBLEM FORMULATION

In this section, we formulate and analyze the model of the
green VNF backup problem dealt by GVB. Important notations
used in this paper are summarized in Table L.

TABLE I

Notation Definition

T Time interval with a limited backup budget

[ Backup budget can be spent in time interval 7'

I Set of VNFs in the system, I = {1, ..., ¢, ..., [I[}

o; Cost of deploying one backup for VNF ¢

a(t) Maximal backup cost can be saved by renewable energy at
time ¢

fi(t) Failure rate of VNF ¢ at time ¢

z;(t) Number of backups of VNF 7 deployed at time ¢

z;(t) Relaxed solution of x;(t)

9i(t), Z;(t) | Determining variables for P2 and P3, the sub-problems of P1

G,g Maximal and minimal gradient of the objective function of P1
at the time slot ¢t = 0

0 Ratio between G and g

p Determining parameter of the online algorithm

L; Maximal number of backups of VNF 7 can be deployed at
time ¢

Ct Backup budget can be spent by the online algorithm at time ¢

By Rounding budget can be spent by the rounding method at time
t

Tt Budget can be spent at time ¢ inherited from the previous time
slot t — 1




Denote by C' the maximal backup budget affordable by
a VNF service provider during a time interval 7. Here, C'
is given ahead of time and 7' is divided into multiple time
slots, each of which is represented by ¢. Denote the set of
different types of VNFs provided by the service provider by
I ={1,...,i,...,|I|}. For each VNF 4, denote by «; the cost
of deploying one backup for it in each time slot. «; is the cost
of computational resources and operating energy needed by
the VNF backup within each time slot. To simplify our model
without losing generality, we omit the opening cost of a VNF
backup. We can do this because, with the rapid development
of software-based VNF platforms built on virtual machines
(VM) or containers, e.g., ClickOS, new VNF instances can be
booted within seconds. Moreover, since a VNF backup only
works when the original one is down, the overhead of data
transmission does not affect the performance of a backup in
most cases. In this way, the opening cost of a backup is much
smaller and negligible compared to its operating cost with long
enough time slot ¢.

As mentioned in Section I, GVB considers renewable energy
generated at each time slot ¢ that can be consumed to deploy
VNF backups. Denote by o(t) the maximal backup cost can
be saved by utilizing renewable energy at time ¢. The weight
of o(t) compared to the backup cost may vary in different
cases and will be discussed in detail in Section V. Due to the
uncertain generation pattern of renewable energy, any o(7)
with 7 > ¢ is unknown at time ¢. Since green energy is often
not stored for the next time slot, o(¢) can only be consumed
at t. Suppose the failure rate of each VNF is the same within
one time slot. We denote the failure rate of VNF ¢ at ¢ by
fi(t), which is non-stationary over time. Similar with o(¢),
all f;(7) are unknown with 7 > ¢. We then define an integer
decision variable x;(t) representing how many backup copies
are assigned to VNF ¢ at time slot {. We thus maximize
the total availability gained by VNFs backups within time
interval T'. The detailed problem denoted by P1 is formulated

as follows.
max >N fi(h)- (1 - fi(t)l'i(t))
i(t) teT icl
+
st 30 [Zaimi(t) —a(t)] <c 1)
teT Liel

x;(t) €{0,1,2,....,L;}, VteT,ieIl.

Auvailability of a VNF is the summation of its success rates
at each time slot over time interval 7. Thus, the objective
function of P1 sums up availability gained by deploying all
types of VNF backups at every time slot ¢. The first constraint
makes sure that the total backup cost spent in 7" is within the
prefixed budget C. Since the applied renewable energy can
offset at most o(¢) backup cost at time ¢, it is subtracted
from the left side of the constraint. Due to the volatility of
renewable energy, the constraint also makes sure that the
unused part of o(¢) is not inherited to future time slots.
The second constraint ensures that the variable x;(t) is a
non-negative integer constrained by L;, since the number of

backups deployed for VNF ¢ cannot be fractional or exceed
the maximal quantity affordable by the provider.

P1 is formulated as an online integer optimization problem
which is computational complex and lacks future information.
So it cannot be solved directly using offline algorithms. In
the following section, we solve this problem using an online
algorithm which reduces the computational complexity while
preserving a competitive ratio to the offline optimal solution.

IV. GREEN VNF BACKUP STRATEGY

In this section, we present details of the GVB scheme.
For time interval 7" with a fixed VNF backup budget C, we
propose an online algorithm shown in Algorithm 1 which
decides the number of backups for each VNF at every time slot
t. We prove the competitive ratio of Algorithm 1 to the offline
optimal solution which knows all information in advance, i.e.,
VNF failure rates and available renewable energy at every t.

When the total running time is longer than 7', it is common
that the available backup cost is replenished to C at the end of
each T'. For instance, the cost budget of a network service is
renewed at the start of a new payment cycle and the battery of
a wireless device is recharged when used up. In these cases,
we further propose a parameter adjustment method in GVB to
improve its performance in the long run.

A. Online Algorithm Design

The theoretical challenges of the problem formulated in
Section III mainly come from online optimization and integral
variables. In Algorithm 1, we first convert the problem P1 into
an online convex optimization problem P1 by relaxing the de-
cision variable from z;(t) € {0,1,2,..., L;} to 2;(t) € [0, L;].
We first solve P1 using a novel online convex optimization
algorithm with a smaller competitive ratio compared with
existing related work. Based on the solution of P1, we then
design a tailor-made rounding method to get integral solutions
for P1 which preserves a competitive ratio to the optimal
integral solution.

To solve P1, Algorithm 1 first divides the problem into
two sub-problems P2 and P3 with decision variables g;(t) €
[0, Li], z:(t) € [0, L; — 5;(t)] and Z;(t) = i (t) + z;(t). Since
P1, P2 and P3 are all concave and non-decreasing, it is clear
that the optimal solution of P1 is achieved when P2 and P3
reach their maximal objective values.

max fi)- (1= f0)7®
gi(t) ; ; ( )
s.t. D aiGilt) <olt), VtET, (P2)
i€l
y:(t) e [0,L;], vteT,i eI
max SN LOFTO (1= fi()70)
#(t) teT icl
s.t. Z Z o - Zi(t) < C, (P3)

teT el



Here, P2 is solved before P3. Since o(¢) is the backup cost
saved by utilizing renewable energy and is only consumable in
time ¢, the optimal solution of P2 can be achieved by solving
an offline convex optimization problem at each time slot ¢.
In this paper, we apply the convex problem solver CVXPY
in [34] to solve P2. With ¥i(t) achieved, solving the online
optimization problem P1 is thus converted to solving the online
problem P3. Algorithm 1 solves P3 by formulating and solving
the problem P4 at each ¢ as follows.

min a; - 7i(t)
a0 e
st YD AW (1 o
z'eZI ( ) (P4)
1
> 5 *(Mopt (t) = Nopt(t — 1)),

Z(t) € [0, Li — Gi(t)], Vi € .

Here, 1,,:(t) is the optimal objective value of the following
problem P5 and p is the key parameter affecting the perfor-
mance of our algorithm which will be discussed in detail in
the following sections.

max
Zi(T)

S5 AT (1- £

T=1 i€l

st Y Y aiz(r)<C

=1 i€l

zi(r) € [0, Li —

(P5)

gi(1)], Vie I, 7 €[0,t].

Algorithm 1 Online Green VNF Backup Algorithm

: Relax the problem P1 to the problem IST, ro = 0.
: for all t € T do
Solve the offline problem P2 at t to get y;(¢).
Solve PS5 to get nopt.
Solve P4 to get z;(t) and further get Z;(t) = ;(t) +
Zi(t).
6:  Calculate C; = 7 + Z a; - Ti(t).
Z o - [Z(1)].

el
Sort I in the decreasing order of a; to get I'.

. foralliel do
10 if B, — a; > 0 then

AN

7:  Calculate B; =

11: B; = By — ay, l‘z(t) = [fq(tﬂ
12: else

13: z;(t) = |Z:(t)]

14: end if

15:  end for
16: Tt+1 = Bt
17: end for

At each time slot ¢, with Z;(¢) from P4 and g;(t) from P2,
we can get Z;(t) = ¥;(t) + Z;(t) which is a feasible solution
of P1. Algorithm 1 further determines integer solution x;(t)
of P1 based on Z;(t) using a novel rounding method.

At each time slot ¢, we calculate the backup cost can be

spent by Algorithm 1 at this time slot, Cy = rs+ > «;-Z;(t). It
i€l

consists of > ;- Z;(t) (the backup cost spent by the solution

il
of ﬁ) and 7 (the unused rounding budget from the previous
time slot). We denote the smallest (largest) integer larger
(smaller) than {Z;(¢)} by [Z;(t)] (|Z:(t)], respectively). We
further denote by B; = Cy—) ;- Z;(t)] the rounding budget
at time ¢. The sum of all bacifulp cost caused by rounding Z;(t)
to [Z;(t)] should not exceed B;.

With B, we sort VNFs in [ in the decreasing order of a;.
Starting from the ¢ with the largest a;, if By — a; > 0, Z;(t)
is rounded up that z;(t) = [Z;(t)] and B, = B; — «;. If
Bi—a; <0, z;(t) = [Z;(t)]. The above step is repeated until
I is traversed. At this time, if B; > 0, there exists unused
rounding budget. To improve the performance, this remaining
budget is inherited to the following time slot that r,y; = B;.
At any time slot ¢, the number of backups to be deployed for
each VNF is thus determined after the rounding method. We
then prove the competitive ratio of Algorithm 1 in the next
section.

B. Theoretical Analysis of the Online Algorithm

We now explain the details of how we achieve the com-
petitive ratio of Algorithm 1 to the offline optimal solution.
Since the optimal solution of P2 can be achieved by solving
|T| offline optimization problems, the performance of Algo-
rithm 1 in solving the relaxed problem Pl is determined by
the performance of solving the online convex optimization
problem P3. We denote the part of Algorithm 1 solving P3 by
SV (p) which is determined by a parameter p. The solution

of SV(p) is feasible if > > «; - 2;(t) < C. Denote the
teT i€l
objective value of applying SV (p) (the optimal objective

value of P3) by V" (n©F7, respectively). According to the
first constraint of P4, if SV(p) gives a feasible solution,

V>3 % “(Nopt (t) = Nopt(t — 1)) = % -nOPT . Thus, % is
teT

the competitive ratio between SV (p) and the offline optimum
of P3. We then need to determine the range of p for SV (p)
to give feasible solutions.

At any time slot ¢, we first create a set of functions
{M(w)|w > 0}. M;(w) is the optimal objective value of
the following problem P6.

AL IOM ()2 (1)
pex ZGZI fi(t) ( — fi(t) )
s.t. Zaz zZi(t) < |- w (P6)
el
zi(t) € [0,L; —gi(t) Vie I

We first present some important properties of M;(w) in
Lemma 1.

Lemma 1. M;(w) for any t is a concave, continuous, in-
creasing, and piecewise differentiable function. In addition,
M;(0) = 0 and My £ lim,,_,q+ 22 € [¢, G,



The detailed proof of Lemma 1 is omitted here due to the
space limitation. With M;(w) formulated, we now construct
an entire new problem P7 similar to P3 as follows.

max P RIACTREAG)!

teT i€l

st Y Y iz <C

teT i€l
Zi(t) € [0,L; —

(P7)

9:(t)], Vie I, t eT.

For the formulated P7, we apply a new algorithm SV*(p)
to solve it. The first step is to solve an optimization problem
at each time slot ¢ as follows.

Iz?(ltn ;O‘z Zz
o~ 1 * *
Z Mt(O{i . Zl(t)) = (nopt(t) - nopt(t - 1)) )
i€l p

Z(t) € [0, L — Gi(t), Vie .
(P8)
Here, 7;,,(t) is the optimal objective value of the following

Problem P9.

PRDBIACIREAC)

max
SR — ey
¢ (P9)
st Y Y aiz(r)<C
T=11i€el
%\z(t) € [07L1 - 271(7—)]7 Vi e IaT € [Oat]
Denote the optimal solution of P8 at time slot ¢ by z7 (),

which is chosen as the output of SV*(p) for time ¢. It is

clear that if >~ > «a; - 27(¢t) < C, the solution of SV*(p) is
teT i€l
feasible for P7. We then introduce Lemma 2 which relates the

newly constructed problem P7 to P3 which we actually need
to solve.

Lemma 2. For a specific p, if the solution of SV*(p) is
feasible for P7, the solution of SV (p) is feasible for P3.

Proof. We first prove that 1,,.(t) Napt(t),Vt € T.
Suppose Zz;(7)L% is the optimal solution of P5. We define
Zi(m)" = 171 - Xier 2i(T) g Which is a feasible solution of
P9. Based on Lemma 1, we have Y., ; My(a; - Z;(7)"9) >

> Hi(n)EO (1= fi(r )21(7)"”') V7 € [0,t]. Summing up
i€l
all 7 in [0,7], we further have 7;,,(t) > 7oy (t). We then

suppose Z;(7)2% is the optimal solution of P9. According to
the definition of M;, these exist z;(7)7°,i € I,t € [0,¢].

which makes Y, My(; - Zi(7)05) = Ef( YL+i(7)

(1 — fi(n)E@™) vr € [0,t], under the condltlon that
Sier i Z(m) < Y Zz( 7)opt- Sum the equality

up in [0.4] and we get 13,(t) = zmkﬂw“>m

T=14i€l

this way, based on this equation and previous results, we can
conclude that 1o (t) > 07, (t). Since 1op¢(t) > 15, (t) and
Nopt (t) = nopt(t + 1), we have nop(t) = Nopt (t).

Denote the backup cost SV (p) (SV*(p)) spends at time ¢
by K; = >, cpaizi(t) (Kf = > ,c; iz (t), respectively).
Based on the formulation of M,, availability gained at time ¢
of P7 is the objective value of the problem P10 formulated as
follows.

()T L (= Zi(t)
max L AOWO- (1= 4070)
st o E(t) < K, (P10)
i€l
Zi(t) € [0, L; — gi(t)] Vi € 1.

We then prove that K; = K. On one hand, if K; <
K, there exist z;(t) that Zaz - Zi(t) = Kf < Ky =

Zar%(ande(Vm“-O—ﬁ@zw)Z%-

i€l
(M5t (8) — Mpe (t — 1)) = &+ (Mopt(t) — nope(t — 1)). This
conclusion is contradict to that Z;(¢),p: is the optimal so-

lution of P4. On the other hand, if K} > K;, we formu-

late «; - Z;(t) = Z a; - Zi(t)opt- It is obvious that
Sy - Z(t) = Kt < K Z a; - Tf(t)opt- Based on
ﬁelé formulation of M; and 7]01,,5( ) = 1ope(t), we further
have Z_GZIMt(% CZ() = 5 () = nop(t)) = 5 -
(Mot (1) — M (t)) = Z Mt( 27 (t)opt). This conclusion

is contradict with that (t) is the optimal solution of P8.
Therefore, K, = K and 1f SV*(p) is feasible for P7, SV (p)
is feasible for P3. O

With Lemma 2 proved, we now take advantage of P7,
SV*(p) and the CR-Pursuit(p) algorithm in [31] to find the
region of p. We suppose the solution of P7 using CR-Pursuit(p)
is z;(t)cr. We then have the following Lemma 3, 4 and 5.

Lemma 3. For a specific p, if the solution of CR-Pursuit(p)
is feasible for P7, the solution of SV*(p) is feasible for P7.

Lemma 4. When applying CR-Pursuit(p) to P7, we have

~ My(a; - Zi(t .
a;-Zi(t)cr < B+ M—ZM,Vt eT.Viel

u(t, )
In Lemma 4, S = max 5(t,2) , where

Ao FOFom (= (D F ) /L ()

) 3 ()T (1 £ (4)Z (D
s(ti) = limg e HO—TEE) e

u(t, i) = limz, )0+ M’(O‘iz(tgt” € [9.G].

Lemma 5. When applying CR-Pursuit(p) to P7, for any
threshold s € [g, G|, we have

S Myai-E(er) < - C

{t,i:u(t,i)<s} p

l9,G].



We can easily get that the budget spent by CR-Pursuit(p)
at any t is always larger than that of SV*(p). So Lemma
3 is easily proved. The proof of Lemma 4 and 5 is similar
to that of Lemma 9 and Lemma 10 in [31]. Due to space
limitations, we omit the detailed proof of these lemmas here.
Based on Lemma 4 and 5, we can conclude an upper bound
of the backup cost spent by CR-Pursuit(p) for P7, which is
shown in Lemma 6.

Lemma 6. When applying CR-Pursuit(p) to P7, we have

Mt 041 z
oy Mer Alben)

teT iel
% : (1+ (IT] - 1) (1 —e‘m%l)) :

Proof. Based on the formulation of M;, all w(¢,4) with the
same ¢ are equal for different ¢ € I. We assume they take H
different values, that are S1, ..., S, ..., Sy in an increasing or-

der. We further define v;, = > & Mi(a;-Zi(t)or)
{t,iu(t,i)=5n}
and have the equation as follows.

SOy e men)

teT iel

@\Q
ta‘t

H
Considering the following problem P11,
H o
max —_
Vh }; Sh
st Y v < Sy Vhe [, H,

JEL,R]
vy > 0,Vh € [1,H]

(P11)

According to Lemma 11 in [31], the objective value of P11

H su-s
is >  =*g*=*, Which means
h=1

According to the settings in Lemma 4, we have g < Sp <
G,Vh € [1, H]. We now consider P12 as follows.

H
Sh — Sh-1
max E _—
g<S81<...<Sp<...Sy<G Sh,

(P12)

This problem is the same as

max (P13)
g<S51<...<Sp<...Su<G

By applying the inequality of arithmetic and geometric means
to it, we have

S1 Se SH-1.1/m—
Value(P13) < H — (H — 1 22 ZH=1hi/(H-1)
aue( )_ ( ) (52 53 SH )
The equality stands only when ; =22 = = Sg L In

Ss
this way, we can get that the optimal objectlve value of P12 is
H—(H-1)-(LHYH-D =H—(H-1)-(1-0"/H-D 1t
is clear that H < |T'|, so we have > > M (i Zi(t)or) < C

fericr
(1 +(TI-1) (1 — g )) and Lemma 6 is thus proved.

O

With the above lemmas and conclusions, we illustrate the

performance of SV (p) by the following lemma.
Lemma 7. The competitive ratio of SV (p) for P3 is p%) fo the
= B-(1+ (7| - (1 -~ 77)).

Proof. According to Lemma 4, we have Y > «;-Z;i(t)cr <

offline optimum, where pq

teT icl
Sy B M a;é’l))CR). According to Lemma 6, we have
teTiel
30> My ( ozléz(;)cn) < <. (1 + (T —1) ( gfm%))
terier " b
In this way, we have > Y o - Zi(t)ecr < B - € -
teTiel b

. Therefore, when p > S -

1+(T)-1) (1 -6
1+ (IT] - 1) (1 —g~m= L X TaiElor < C.
Tiel

Then CR-Pursuit(p) is feasible for P7 Then, based on Lemma
2 and 3, we finally have SV (p) is feasible for P3. O

With Lemma 7 proved, we can achieve the distance from the
online solution of PI to the offline optimal solution of P1. In
the following theorem, we denote the offline optimal solution
(the solution of Algorithm 1) of a problem P by OPT(P)
(ALG1(P), respectively).

Theorem 1. The competitive ratio between ALGl(]/D\l) and
1
OPT(P1) is p%’ where po = - (1+(|T|—1)(1 -0~ T71=1)).

Qoof. As mentioned in Section IV-A, the objective value of
P1 is the summation of objective values of P2 and P3. We
also know that OPT(P2) can be achieved by solving an

offline optimization _problem at each {. Therefore, we have
ALG1(P1) - ALG1(P1) 1+OPT(P2)/ALG1(P3) 1 O
OPT(P1) = OpT(Pl) = pot+tOPT(P2)/ALG1(P3) = po-

We claim that the competitive ratio achieved in Theorem 1
is strictly smaller than O(log(6)) in the CR-Pursuit algorithm.

Proof. We know that 0% > 1 +k - log(0) with |k| < 1. Since

IT| > 1, we have 1 — § 17T < 1 — 1+ ITI%I log(6).

Then, (|T| —1)- (1 — 9_\T|1*1) < log(f) and we thus have
1

B-(og(®) +1) > g+ (1+(7-1) (1-6"7=)). O

We then focus on the distance from the integer solution

of the rounding method to the online solution of P1, i.e.,

ALGUPY) Ty get this ratio, we need Lemma 8 first.
ALG1(P1)




Lemma 8. After applying the rounding method at each time

t, we have 3" o - xi(t) — 3 oy - |Z(t)] > B, as long as
iel i€l
B; > max{«;}.

Proof. Assume VNF j is a VNF which is rounded to [Z;(¢)]
and the cost of its following VNF j+ 1 exceeds the remaining
backup cost. j + 1 always exists, otherwise all Z;(t) can be
rounded up and B; = 0. It is clear that a; < By — Bj, where
Bj is the remaining backup cost after the rounding method. If
B’ , we can get that ;41 (¢) with aj41 < «; will have
Qg1 > g , since a ;1 exceeds the remaining budget larger or
equal to Bj. However, we then have Q1 > % > o, Which
is contradict with the assumption that ;11 < «;. Therefore,
we have B; < Bt and thus 3" ;- 7(t) — 3 o - |3(t)] >
iel i€l

By
s O

For simplicity of the proof, we suppose Z;(t) = x;(t) —
|Zi(t)] and Z;(t) = Z;(t) — [:(t)]. At each time slot ¢, we
also suppose the objective value of ALG1(P1) (ALGI(PI))
is ALG1(P1); (ALGl(Pl)t, respectively). With Lemma 8,
we then claim the following lemma which presents the bound
between ALG1(P1); and ALGl(Pl)

ALG1(P1) Q1(t) .
ALGl(P/'\l)t bl 2Q12(t)’ where Ql(t) =

min{ L@y - Qy(1) = max{ flv(t)—lii(.;);{ti)(t)“"'i“)} and
Bi(t) = fi(t) HE ),

Proof. Ttis clear that we have f;(t)—~;(t)- f;(£)%®) > Ql( )-

o+ Z;(t). In this way, we have 3 (f;(t) —vi(t) - f;(£)T ™) >
Q1(t) - Do ay - Zi(b). Accorcfing to Lemma 8, we have
Zai . i‘z(t) > %
S (filt) =w(t) - fi()T D) > @B e also have that
S = HOHFO) < Qat) - Yar - 4(t) < Qalt) - B

1
. ALG1(P1), Q1(t)
In this way, we can conclude that ALCL(PD), > 202(0)" ]

Lemma 9. We have

In this way, we further have

The assumption of Lemma 8 is often easily satisfied, since
there are multiple types of VNFs in the system and the round-
ing budget is often larger than the cost of one VNF backup.
When the assumption is not satisfied, we have B; < max{«;}.
Since the backup cost of different VNF is within the same
scale, By is rather small within the cost of one backup copy.
Then the ratio between ALG1(P1); and ALGl(Pl)t is very
close to 1. Therefore, the conclusion of Lemma 9 stands in
most cases. With the conclusion of Lemma 9 and Theorem 1,
we can finally prove the competitive ratio between ALG1(P1)
and OPT'(P1) in the following theorem.

Theorem 2. We have ALGTl((Ifll) >3 Q“’”” . Here, Qumin =

min{Q1(1}, Qamar = max{Qat ¥ and po = 8- (1+(|T] -
1)(1 -6~ =),

Proof. Based on Lemma 9, we can easily get the conlu-
> ALG1(P1),

. ALG1(P1) _ +{er > Qimin i

sion that ALCLPD = S ALGIED, 2 20sme Knowing
teT

AOLPGTil((Iil)) > 10 from Theorem 1, the conclusion is thus

obvious. O

With Theorem 2 proved, we know the theoretical com-
petitive ratio of our GVB scheme to the offline optimal
solution in any time interval 7' with a fixed backup budget
C. The parameter py can be calculated with detailed 5 and 6.
However, we can pick smaller p for Algorithm 1 to improve
the performance while still satisfying the budget constraint. In
the following section, we illustrate this in detail and propose
a novel p adjustment method for better performance of GVB
in the long run.

C. Parameter Adjustment for Better Performance

As discussed in Section I'V-A, the rounding method in Algo-
rithm 1 may not spend all of the budget, C; = r:+ > a;-T;(t),
at each time slot . So we can be more aggressiz\;eel and pick
p < po to further improve the performance of GVB without
violating the budget. When GVB is applied over a long time
span containing multiple budget period 7', we can decide p
for the current period based on performance and remaining
budgets of previous periods through methods such as online
learning. In this paper, we apply the most straightforward
strategy which starts from py and makes p = p — ¢ if
there is a remaining budget and p = p + J if there is a
deficit. The value of § is tuned based on the proportion of
the remaining budget after each budget period 7T'. Simulation
results in Section V shows that the adjustment method can
achieve higher availability compared to the baselines in long
time spans.

V. PERFORMANCE EVALUATION
A. Simulation Setup

For the simulation setup, we consider the VNF set I con-
tains 20 different types of VNFs and each VNF can maintain
at most four backups at one time. Since the backup cost of
different VNF may be different due to multiple factors, we
suppose the relative operating cost of a VNF varies in the
range [1,5]. We suppose the time interval T is evenly divided
into 40 time slots. For the distribution of renewable energy,
we apply the real-world trace of solar energy distribution in
[35]. The settings of other parameters, e.g., C' and f;(t), vary
in different simulations and will be illustrated in detail in the
following sections.

B. Baselines

Since GVB is an online scheme, we set an offline solution
of the online integer optimization problem as a baseline. In
the offline solution, we first solve the convex optimization
problem Pl directly with all failure rates and renewable energy
known in advance. We then apply the rounding method in
Algorithm 1 to get integral solutions. We are doing this



because it is computationally inefficient to solve the original
integer problem P1 directly.

To evaluate the advantages of GVB by considering renew-
able energy and non-stationary failure rates, we also compare
it with an ideal static VNF backup scheme (SVB) which knows
the accurate average failure rate of each VNF over T'. Since
SVB does not consider the online patterns of renewable energy
and failure rates, the number of backups for each VNF is the
same at difge\rent time slots. Similar to the offline solution, We
first solve P1 with accurately predicted average failure rates,
then apply the rounding method in Algorithm 1 to get integral
solutions.

C. Performance of GVB

In this section, we evaluate the performance of GVB under
the influences of different factors. All results presented are
the average value of 50 independent simulations. In Fig. 1,
we present average VNF availability achieved by GVB with
different p and compare it with the offline solution and SVB.
Here, the backup budget C is set to 1200, which is around half
of the total energy cost to provide every VNF one backup copy
at each time slot. The total backup cost saved by renewable
energy over 1" is 30% of the backup budget. The VNF failure
rates are uniformly distributed in [0, 5%)].
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Fig. 1. Performance of the offline solution, GVB with different p and SVB
when time increases from 0 to 7. (a) Average availability of VNFs achieved

by the offline solution, GVB1, GVB2, GVB3 with p = 1.04, 1.06, 1.08 and
SVB. (b) The average remaining budget of each algorithm at different time.

Fig. 1 (a) shows average availability of all VNFs from the
offline solution, SVB with different p, and the baseline GVB
at different time slots. We observe that the value of p affects
the performance of Algorithm 1 directly and smaller p leads
to higher availability. Combining Fig. 1 (b) which shows the
corresponding remaining budget, we learn that Algoirhtm 1
in GVB is feasible when p > 1.06. When Algorithm 1 is
feasible, average availability of it is much higher than that of
SVB over the entire time span. Furthermore, we also observe
that GVB outperforms the offline solution for more than 90%
of the time. Although inferior at time ¢ = T, final average
availability of GVB is still very close to the offline solution.
In this way, we can conclude that, in general cases, the VNF
availability provided by the GVB scheme is much higher than
that of the baseline scheme SVB and very close to the offline
solution.
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Fig. 2. Availability improvement by utilizing renewable energy. (a) Avail-
ability improvement of GVB compared to SVB with an increasing amount
of renewable energy. (b) Availability with and without the consideration of

renewable energy in GVB (shown by GVB and N-GVB) and SVB (shown
by G-SVB and SVB).

As mentioned in Section I, the reason why GVB can
further improve availability is that it utilizes renewable energy
generated at each time slot and handles arbitrary VNF failures
in an online manner. We use Fig. 2 (a) to illustrate detailed
availability improvement when the proportion of renewable
energy increases compared to the backup budget. The simu-
lation setting is the same as that of Fig. 1 except the weight
of renewable energy. It is obvious that the more renewable
energy available, the better GVB will perform compared to
schemes which do not consider renewable energy.

We further use Fig. 2 (b) to show availability of GVB and
SVB with and without using renewable energy. availability of
GVB without utilizing renewable energy is denoted by N-GVB
in a dashed line. Similarly, the dashed line marked G-SVB
represents availability of SVB which can perfectly predict the
generation of renewable energy and use it for backups. It is
clear that both algorithms achieve higher availability over the
entire time span when utilizing renewable energy. In addition,
even utilizing renewable energy by predicting its generation
accurately, performance of SVB is inferior to that of GVB. The
reason is that GVB considers online patterns of both renewable
energy and failure rates and dynamically adjusts the number
of backups for better performance. Thus, the utilization of
renewable energy and the online manner of handling VNF
failures in GVB both help to improve availability of VNFs
when the backup budget is limited.
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Fig. 3. Availabilgt; improvement of GVB compared go)the baseline with
different backup budgets. (a) VNF availability of GVB with different backup
budgets when time increases from O to 7'. (b) The box plot of availability
difference between GVB and SVB with an increasing backup budget.



Since the amount of backup budget is the determining factor
of availability, We then analyze how GVB performs with
different adequacy of the backup budget. Fig. 3 (a) shows
the change of VNF availability when time increases to T’
with different backup budgets. As expected, GVB performs
better with a larger backup budget. Fig. 3 (b) further shows
availability difference between GVB and SVB with an increas-
ing budget. We observe that availability improvement does
not increase monotonically with the growth of C. This is
because availability of VNFs is relatively higher for all backup
schemes with a larger backup budget. Then, there is less room
for GVB to further optimize availability. According to Fig.
3, we can thus conclude that GVB always provides much
higher availability than the baseline with rather limited backup
budgets.
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distributions. (b) An example of performance of different algorithms when a
failure spike happens.

We further evaluates performance of GVB with different
failure distributions in Fig. 4. Since VNFs failures could
be arbitrary, we apply GVB and the baseline under failure
rate distributions of uniform, exponential, Gauss and non-
stationary with random spikes in Fig. 4 (a). The mean of failure
rates in all distributions is set to 2.5%. It is obvious that GVB
always maintains higher VNF availability with different failure
rate distributions. In addition, GVB performs much better than
the static baseline when failure spikes happen. A failure spike
is a period of time when the failure rates are much higher
than those under normal circumstances. In such cases, multiple
VNFs could failure at the same time and these failures may
be relevant [26]. GVB performs better under failure spikes
because it can flexibly deploy more backups during the failure
spikes while leaving fewer backups at the rest of the time with
lower failure rates. Fig. 4 (b) shows an example of different
algorithms operating under a severe failure spike. During the
time interval when failure rates of VNFs increase sharply,
availability of the static baseline SVB decreases obviously. On
the contrary, GVB reserves high availability comparable to the
offline solution. Based on such observations and analysis, we
conclude that GVB can achieve higher availability compared to
the static baseline when non-stationary VNF failures happen.

D. GVB in the Long Run

In this section, we evaluate the performance of the GVB
scheme when applied in longer time spans consisting of
multiple budget cycles. Fig. 5 illustrates how the parameter

adjustment method works for better performance with the
increase of time.
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Fig. 5. Performance of the GVB sél?g,me in the long run compared with
the offline solution and SVB. (a) Average availability of VNFs of different
schemes in a long time span of 320 time slots, i.e., 87". (b) The backup budget
expenditure of different schemes in the long time span.

Fig. 5 (a) shows the trend of average availability of all
VNFs in the process of time when applying GVB, the offline
solution, and the static baseline SVB. Fig. 5 (b) shows the cor-
responding backup budget expenditure over time. From figure
(a), we observe that average availability of GVB fluctuates
over time and departs from the offline solution at the end
of each backup budget cycle. However, as time goes by, the
amplitude of the fluctuation decreases and availability of GVB
converges to the offline solution. In this process, the parameter
adjustment method in GVB keeps finding better p for each
budget cycle which achieves high availability without violating
the budget limitation. The non-stationary states, i.e., failure
rates and renewable energy, in each 7" vary and make the best
value of p different for each cycle. Yet, with the adjustment
of p, GVB always trends to the best performance. See the
time interval [200,320] as an example. In this way, we can
conclude that, with efficient parameter adjustment methods to
find proper p for each budget cycle, GVB achieves high VNF
availability close to the offline solution and much better than
the static baseline in the long run.

VI. CONCLUSION AND FUTURE WORK

The virtualization of network functions brings more flexi-
bility and scalability at the expense of low reliability. In this
paper, we propose a novel dynamic backup strategy GVB
to improve availability of VNFs under a limited budget and
renewable energy. GVB leverages renewable energy for higher
availability while handling the non-stationary VNF failures. At
the core of GVB is an online algorithm designed to solve the
formulated VNF reliability optimization problem. The online
algorithm is proven to achieve a competitive ratio compared
to the offline optimum. Simulation results highlight that GVB
significantly improves availability of VNFs compared to the
baselines while respecting the budget.



As illustrated in Section IV, we can pick p smaller than the
theoretical value py for better performance in the long run.
Due to space limitation, we only provide the most straight
forward method to find proper p for each budget cycle. The
value of p could be adjusted dynamically for more tighten
theoretical bound and better performance based on various
online feedback, e.g., the remaining rounding budget r; at each
time slot £. We will address this issue in our future work.
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