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Abstract

Spatial and temporal patterns of rainfall are governed by complex interactions between climate and landscape perturbations
including deforestation, fire, and drought. Previous research demonstrated that rainfall in portions of the Amazon Basin has
intensified, resulting in more extreme droughts and floods. The basin has global impacts on climate and hydrologic cycles; thus, it
is critical to understand how precipitation patterns and intensity are changing. Due to insufficient precipitation gauges, we
analyzed the variability and seasonality of rainfall over the Amazon Basin from 1982 to 2018 using high-resolution gridded
precipitation products. We developed several precipitation indices and analyzed their trends using the Mann—Kendall test (Mann
1945; Kendall, 1975) to identify significant changes in rainfall patterns over time and space. Our results show landscape scale
changes in the timing and intensity of rainfall events. Specifically, wet areas of the western Basin have become significantly
wetter since 1982, with an increase of 182 mm of rainfall per year. In the eastern and southern regions, where deforestation is
widespread, a significant drying trend is evident. Additionally, local alterations to precipitation patterns were also observed. For
example, the Tocantins region has had a significant increase in the number of dry days during both wet and dry seasons,
increasing by about 1 day per year. Surprisingly, changes in rainfall amount and number of dry days do not consistently align.
Broadly, over this 37-year period, wet areas are trending wetter and dry areas are trending drier, while spatial anomalies show
structure at the scale of hundreds of kilometers.

Keywords Rainfall seasonality - Amazon Basin - Precipitation variations - Extreme events - Precipitation indices - Climate
feedbacks

1 Introduction

The Amazon basin, which contains about 60% of tropical
rainforests in the world (Laurance et al. 2002; Arvor et al.
2017), plays vital roles in regulating climate patterns, sustain-
ing ecosystem services, contributing to global biodiversity
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and cycling nutrients. These services, however, have been
disrupted by human activities within the region due to infra-
structure development and resource extraction. Deforestation
is the dominant human disturbance in this region, replacing
forests with pasture and agriculture across the “Arc of
Deforestation” in the southern headwaters of the Amazon ba-
sin (Fearnside 2000; Costa and Pires 2010; Moore et al. 2007,
Davidson et al. 2012). These land use changes have impacts
across local to global scales, particularly on climate and hy-
drologic cycles (Longobardi et al. 2016). Land cover change
affects land surface characteristics including surface albedo,
roughness, and reflectance, which directly alter surface energy
and water fluxes. Partitioning of these fluxes are the most
important parameters in the spatial distribution and seasonal
variability of rainfall. In the Amazon basin, changes in the
magnitude and variability of precipitation have caused both
intensified drought recurrence and flood frequency (Silva
et al. 2018). Khanna et al. (2017) found that a reduction in
surface roughness due to deforestation plays an important role
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in the region’s dry season hydroclimate, and that deforestation
“is sufficiently advanced to have caused a shift from a ther-
mally to a dynamically-driven hydroclimate regime”. This
loss of forest is primarily driven by agricultural expansion
and infrastructure development. Walker et al. (2009) demon-
strated a positive correlation between road development con-
struction and subsequent deforestation. Simulations of the
Amazon basin’s hydroclimatology suggest that deforestation
induced declines in rainfall across the basin’s eastern and
southern ecotones could lead to permanently drier conditions
(Moore et al. 2007). Simulations also show that preserving
forest can help maintain precipitation amounts (Walker et al.
2009). Evapotranspiration (especially transpiration) increases
shallow convection, which destabilizes the atmosphere during
the transition from dry to wet season. Therefore, interactions
between land surface processes, atmospheric convection, and
biomass burning are related to the deforestation effects on the
dry season length and enhance regional vulnerability to
drought (Wright et al. 2017). Soil moisture and vegetation
cover type affect the net radiation through changes sensible
and latent heat fluxes over the basin (Li et al. 2006), which are
important factors for determining the wet season onset and the
dry season length (Li and Fu 2004). This possible anthropo-
genic shift towards permanent savannization is not a new con-
cept (Oyama and Nobre 2003), but evidence for the phenom-
enon has not been shown via broad analyses of Amazon pre-
cipitation data.

While the effects of deforestation on large scale climate
patterns have been extensively studied in the Amazon basin,
changes in climate extremes are also affected by synoptic-
scale processes and global circulations including the El
Nifio-Southern Oscillation (ENSO) and the Pacific Decadal
Oscillation (PDO) (J. A. Marengo and Espinoza 2016). The
observed intensification of rainfall at the basin scale is most
likely due to higher sea surface temperatures in the Atlantic
(Gloor et al. 2013). This is consistent with an intensification of
the global water cycle. Specifically, ENSO cycles that occur
every 3 to 7 years can exacerbate droughts during the dry
season (Laurance et al. 2002). Conversely, when equatorial
Pacific and Northern tropical Atlantic are anomalously cold,
a rainier wet season is commonly observed. In addition, when
some oceanic events are combined, such as cold SSTs and El
Nifio, the northern Amazon faces strong negative rainfall
anomalies (Ronchail et al. 2002). Therefore, changes in pre-
cipitation in the Amazon basin can be related to sea surface
temperature fluctuations, ENSO, the Pacific Decadal
Oscillation (Marengo and Espinoza 2016), and deforestation
(Khanna et al. 2017). However, changes in each factor may
manifest differently within the hydroclimatic cycle, and across
portions of the basin.

Quantifying changes in precipitation variability is essential
to analyze effects on ecosystems. To capture variability, high-
resolution analysis of rainfall over the entire Amazon basin is
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needed. Precipitation at the regional scale is far from uniform
(Laurance et al. 2002); at finer scales, it is influenced by con-
vection resulting in enhanced spatiotemporal variability
(Funatsu et al. 2012). Several trends in mean and variance
have been identified throughout the Brazilian Amazon using
weather stations. For example, Marengo (2004) found a neg-
ative trend in rainfall for the entire Amazon basin based on
gauge measurements from 1929 to 1998, while the Mann—
Kendall test used on multi-decadal station datasets found only
weak trends (Satyamurty et al. 2010). Trend analysis of daily
gauge precipitation data of 305 weather stations from 1983 to
2012 showed a significant positive trend in the number of days
with precipitation more than 50% and 95% quantiles in the
northeast region and a significant decreasing trend in the num-
ber of days with precipitation above 95% quantile in the south
of the basin (Santos et al. 2015). More negative than positive
precipitation trends were detected during the transition months
from wet to dry (and vice versa) over deforested areas using
rain gauges from 1971 to 2010; the rainy season length was
reduced at 88% of the rain gauges in 1971-2010 with a later
onset and earlier cessation, along with more drying conditions
in the rain gauges located in deforested areas than the ones on
forested locations (Debortoli et al. 2015). In contrast, Almeida
et al. (2016) found no trend at most of the 47 weather stations
in the Brazilian Legal Amazon from 1973 to 2013.
Remotely sensed data have been used to evaluate synoptic
changes in rainfall patterns due to insufficient spatial distribu-
tion of weather stations and inconsistent temporal measure-
ments of gauge data (Silva et al. 2018; Arvor et al. 2017).
Climate extreme indices have been developed for both precip-
itation and temperature but show a distinct spatial pattern in
significance (Da Silva et al. 2019). Salviano et al. (2016) used
the Climate Research Unit (CRU) monthly precipitation data
(1961-2011) and the Mann—Kendall test to estimate rainfall
trends across Brazil and found an insignificant positive trend
in the wet season (Jan-Apr) and an insignificant negative trend
in the dry season (Jun-Sep). Analysis of PERSIANN CDR
(Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks—Climate Data Record
(Ashouri et al. 2015) daily precipitation data detected signifi-
cant decreasing rainfall trends associated with contracting wet
season in the southern Amazon basin, which are possibly con-
nected to human drivers (Arvor et al. 2017). Some contrary
results have also been reported: Tropical Rainfall Measuring
Mission satellite (TRMM) data from 1998 to 2015 were ana-
lyzed using the Mann—Kendall test to quantify precipitation
trends over the Brazilian Legal Amazon at the 5% significance
level. An annual pixel-by-pixel analysis showed that 92.3% of
the Brazilian Amazon had no rainfall trend during the period
analyzed, while 4.2% had significant negative trends (p <
0.05) and 3.5% had significant positive trends (Silva et al.
2018). Arvor et al. (2017) analyzed changes in seasonality
of the Southern Amazon from 1983 to 2014 and found a
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contraction of the rainy season by several days. Also, the
frequency of dry days in the southern Amazon has increased
significantly, and total rainfall has decreased for the same re-
gion. While wet day frequency has increased across northern
Amazon along with an increase in total rainfall about 17%
(Espinoza et al. 2019).

Previous publications on precipitation change in the
Amazon basin provided contradictory results, perhaps
due to either insufficient spatial distribution of weather
stations, the low spatial resolution gridded datasets, or
analysis limited to subregions of the basin. This discrepan-
cy motivates our analysis of variability in higher spatial
resolution precipitation datasets at daily timescales. Here,
we analyze changes in precipitation over time and space
for the entire Amazon Basin. We examine the trends and
change points using CHIRPS data from 1982 to 2019 along
with possible drivers such as deforestation, ENSO, and/or
changes in the Southern American Convergence Zone
(SACZ). We define indices (Number of Dry Days (NDD)
and Number of eXtreme Events (NXE) for both wet and
dry season, and Mean Annual Precipitation (MAP) per
day) to analyze changes beyond wet days and dry days
since the combination of these changes can provide new
insights on how different processes are changing across
seasons. Ultimately, the aim is to correlate significant and
spatially cohesive precipitation variability to causal
factors.

2 Material and methods
2.1 Study area

The Amazon basin, which spans ~ 6 million kmz, is drained
by the Amazon River and its tributaries. It covers portions of
Brazil, Colombia, Peru, Bolivia, Ecuador, Guyana, Suriname,
and Venezuela and includes the Andes Cordillera where the
transition between lowland and mountains results in the rain-
iest areas of the basin (Espinoza et al. 2015; Paccini et al.
2018) (Fig. 1). The river system is a hotspot of ecological
diversity and ecosystem function; it provides more than 20%
of the world’s freshwater discharge, and its forest biomass
holds about 100 billion tons of carbon (Malhi et al. 2006;
Saatchi et al. 2007). Forest vegetation cover has decreased to
80% of its pre-1960s area (Instituto Nacional de Pesquisas
Espaciais and National Institute for Space Research Projeto
Prodes Monitoramento da Florsta Amazonica Brasileira por
Sate’lite Prodes 2011). The rate of deforestation decreased
from 28,000 km*/year in 2004 to less than 7000 km?/year in
2011 (Davidson et al. 2012); however, it is increasing again
(Fearnside 2015). In addition to landscape changes, the pop-
ulation of the Brazilian Amazon increased from ~ 6 million in
1960 to ~ 25 million in 2010 (Davidson et al. 2012).

Climate varies over the region, from the continuously
rainy northwest to the wet/dry transitional climate and long
dry season in the south and east (Sombroek 2001;
Davidson et al. 2012). The climate gradient is consistent
with the land cover change gradient, with more conversion
to agriculture in the dry east and south of the region re-
ferred to as the “Arc of Deforestation.” The eastern basin is
strongly influenced by ENSO (Marengo 2004), in which
flow in the Amazon River decreases during El Nifio years;
correspondingly, flooding increases during La Nina years
(Coe et al. 2002). The Atlantic Multi-decadal Oscillation
also affects the region; for example, the severe drought of
2005 is linked to this oscillation (Marengo et al. 2008). In
the southern portion of the basin, maximum rainfall occurs
during DJF (the austral summer) related to the South
American Monsoon System (SAMS; Vera et al. 2006),
which brings moisture from the equatorial regions such
as tropical Atlantic Ocean. The SACZ contributes to rain-
fall variability across southern Amazonia during JJA (the
austral winter), which is an elongated northwest/southeast
band of convection (Carvalho et al. 2004). The ITCZ high-
ly influences MAM rainfall regime, but it is highly variable
(e.g., Fu et al. 2001).

2.2 Data
2.2.1 Rain gauge data

Daily rainfall datasets from 1982 to 2018 for the Brazilian
Amazon basin were acquired from a network of 424 rain
gauging stations operated by the Brazilian National Water
Agency (ANA). For this analysis, we excluded all stations
missing greater than 5% of data per year, then subsequently
excluded all stations with a record shorter than 10 years after
1982. This resulted in 198 stations over the study area, which
had at least 10 years of daily data with less than 5% of daily
values missing per year.

2.2.2 Remotely sensed precipitation data

We examined several gridded datasets available at different
spatial and temporal resolutions for the region. TRMM 3-
hourly data with 0.25° spatial resolution is available starting
in 1998 (Huffman et al. 2007), but it has a relatively coarse
spatial resolution and its temporal extent is insufficient for
climate analysis (20 years of data). PERSIANN-CDR data
contains daily precipitation estimates from 1983 to present,
with 0.25° spatial resolution (Ashouri et al. 2015). This data
also has coarse spatial resolution and some artifacts for several
dates for the western Amazon. The Climate Hazards Group
InfraRed Precipitation with Stations (CHIRPS) dataset has
0.05° spatial resolution that incorporates satellite imagery to
represent sparsely gauged locations. It used smart
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Fig. 1 Map of the Amazon basin shown with shaded topography, along with ANA gauge precipitation stations, major rivers, and cities

interpolation techniques to blend station data with remotely
sensed data to provide high resolution, long period of record
precipitation estimates based on infrared cold cloud duration
(CCD) observations (Funk et al. 2015). CHIRPS has been
checked for consistency with Global Precipitation
Climatology Center (GPCC) precipitation estimates and per-
forms better than other gridded datasets (Funk et al. 2015).
More information about CHIRPS is available at chg.geog.
ucsb.edu/data/chirps/. In this paper, we used CHIRPS data to
analyze the trends in precipitation, and the ANA gauge data
were used to verify the findings from the CHIRPS data.

2.3 Precipitation indices

We defined several indices to quantify precipitation vari-
ability including number of dry days (NDD), number of
extreme events (NXE) during the dry and wet season (cal-
culated separately), and mean annual precipitation per day
(MAP) for a water year (Table 1). More information regard-
ing the threshold for NXE and NDD are provided in sup-
plementary materials. In the next step, we ran a pixel-based
non-parametric Mann—Kendall test for each of these indi-
ces. We used both Kendall’s Tau coefficient and Sen’s
Slope estimator to detect significant time series trends from
1982 to 2018. Third, we ran a change point detection algo-
rithm to identify anomalies and abrupt changes in all
indices for regions that show statistically significant
changes. Based on the water year, we separately analyzed
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data for the dry and wet seasons. Here, we define the water
year as the time span starting December 1 of the previous
year and ending November 30 of the current year. The dry
season generally starts in early May and ends in late
November of the same year. Accordingly, the wet season
spans from early December through the end of April.
Although dry and wet seasons are not the same for all
locations in the basin, for the sake of consistency and
homogeneity in the analysis, we used the terms wet and
dry seasons for the mentioned time frames. Changes in
seasonality of the Southern Amazon by Arvor et al.
(2017) found a contraction of the rainy season by several
days. Similarly, Debortoli et al. (2015) found that rainy
season became shorter at 88% of rain gauges from 1971
to 2010. Also, Fu et al. (2013) projected an increase in
consecutive dry days and a decrease in the consecutive
wet days by the end of the twenty-first century. We thus
used three separate indices to examine trends in total rain-
fall and extremes in rainfall for the distinct seasons in the
Amazon. Table | summarizes these indices.

2.4 Methodology
2.4.1 Change point detection
To identify the most significant breakpoint in a large dataset,

we applied binary segmentation method (Fryzlewicz 2014).
Binary segmentation method is suitable for consistent
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Table 1 Summary of defined indices to quantify the precipitation
variability
Index Definition

Mean annual precipitation Mean Annual Daily Precipitation

(MAP) by day (mm)
Number of dry days (NDD) Days <2 mm total precipitation
Number of extreme events Days > than 20 mm total
(NXE) precipitation
Wet season Dec. 1 to Apr. 30
Dry season May 1 to Nov. 30
Water year Dec. 1 of previous year to Nov. 30

of current year

estimation of the number and location of multiple change
points in data. Cost functions are used in the binary segmen-
tation to panelize a high amount of change points in order to
avoid overfitting. In a given time series {y 1,. .., Yn}, if the
distribution of {yy,. .., y¢} and {y41,. .., yn} differ at time T
with respect to at least one parameter such as mean, variance,
or regression structure, then a change point will be detected
(Rohrbeck 2013). For our analysis, we used the model to
select the most significant breakpoint in each data series.

2.4.2 Statistical analysis of rainfall trends

MAP, NEX, and NDD of dry and wet seasons were calculated
and sorted using Python version 2.7.5. Statistical analyses
were done using R statistical software (version 3.3.4; R Core
Team 2018). Pixel by pixel analysis identified the spatial dis-
tributions of the trends. We used two non-parametric methods
to identify the strengths and magnitudes of the trends in both
gridded data and gauge measurements as these data are not
normally distributed, and non-parametric tests are less sensi-
tive to outliers. The widely adopted Mann—Kendall test was
used to analyze trends in climate data (e.g., Wilks 2011; Zilli
etal. 2017). The non-parametric Mann—Kendall test examines
the distribution of data to be independent and identical. Our
null hypothesis is that there is no trend, while our hypothesis
states that there is a monotonic trend in time (Mann 1945;
Kendall 1995).

We calculated the test statistic Tau using the “Kendall”
package in R. The range of Tau is between — 1 to + 1, with
negative values showing a decreasing trend (more negative
“steps”) and positive values showing an increasing trend
(more upward “steps”). We used a significance level of o=
0.05 in this study to identify significant trends.

To quantify the trend magnitude for the three indices, the
Mann—Kendall test has been widely used with the non-
parametric and robust Sen’s slope estimator (e.g., Gocic and
Trajkovic 2013; Partal and Kahya 2006; Sharma and Babel
2014; Xu et al. 2003). Again, the distribution may deviate

significantly from a normal/Gaussian distribution for this meth-
od. This test is not sensitive to skewness or large outliers (Kumar
Sen 1968). Helpful details on equations and the procedures of
Sen’s slope estimator and the Mann—Kendall test are described in
ElNesr et al. (2010)). Among all the remotely sensed datasets,
we explored CHIRPS as it had the highest spatial and temporal
resolution and showed the lowest bias and the highest agreement
with the gauge data (Funk et al. 2015).

3 Results
3.1 Gridded data validation

To validate the gridded data, we compared ANA rain gauge
measurements to CHIRPS data. We compared all 198 ANA
gauges that have more than 10 years of data after 1982 with
the corresponded CHIRPS pixel values at the same location.
For this analysis, the spatial average of 9 neighbors around
each point was calculated to reduce bias and errors in the
comparison. Figure 2 shows the spatial distribution of mean
daily annual precipitation out of CHIRPS (1982-2018) and
ANA stations for comparison. The significant correlations at
5% are marked by stars and at 10% are marked with double
circles on Fig. 2. The results demonstrate that the northwestern
portion of the Amazon basin is the wettest, and the south and
southeast portions are the driest. Most of the basin receives 3
to 9 mm/day with a maximum of ~12 mm/d.

We evaluated correlations between both PERSIANN CDR
and CHIRPS against ANA gauge data.

Correlation between ANA and CHIRPS was more than
0.6 at 12% of the sites, but correlation between PERSIAN
and ANA are mostly around 0.2, and there are no correlations
above 0.6 (Fig. 2, bottom inset). This is not surprising as some
gauge stations are used in the development of the CHIRPS
product. We also encountered numerous artifacts, non-
physical patterns, and missing values in the PERSIANN-
CDR data. Due to this and bias corrections based on gauge
data, we opted to conduct our full analysis with CHIRPS data.

3.2 Interannual precipitation trend analysis

The Tau statistic of the Mann—Kendall test is used to assess
significant non-parametric trends in time series. Section 3.2
reports the Tau statistic results and Sect. 3.3 reports the Sen’s
slope results for the CHIRPS precipitation data.

3.2.1 MAP trend analysis
Figure 3 shows the Tau values for gridded data and gauge
measurements. Only gauges with statistically significant

trends are shown on the map. Forty one of the 54 gauges with
trends (circles) are spatially consistent with CHIRPS
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(background colors); hatched areas indicate significance at the
0.05 level. The western and northern parts of the domain show
significant increasing trends with Tau > 0.3 while “hot spots”
around Porto Velho and Santa Cruz de la Sierra show signif-
icant decreasing trends with Tau < 0.3.

To capture abrupt changes in time series, we chose areas
with significant change to look at local precipitation variability.
All significant CHIRPS pixels in each lettered sub-region on
the following figures were spatially averaged for this test. The
lettered regions were selected based on the outlined significance
levels. Regions A (north central basin), B (central basin), and C
(south central basin) of Fig. 3 show Tau values < — 0.3, indicat-
ing that there are year-to-year decreases 30% more often than
the rest of the time series. Regions A, B, and C show a decreas-
ing trends with significant variability. Also, the extreme differ-
ence between the amount of rainfall in 2013 and 2015 is con-
siderable. Change point detection shows abrupt decreases in
daily precipitation across regions A, B, and C after 1998,
1995, and 1992, respectively, which all are severe drought years
across the basin, especially in the northeast. These are all ENSO
years, which combined with anomalous heating in the Atlantic
Ocean can cause less rainfall across the basin. Region D shows
a positive Tau value of > 0.3 indicating increasing trend in
MAP, with an abrupt increase after 1999; several other regions

@ Springer

50 100 150 200 250

Station Number

have similar positive trends across the basin. Together, these
results suggest a significant shift in mean annual precipitation
across all four regions during the 1990’s.

3.2.2 NDD trend analysis

Figure 4 shows the trends in NDD for the wet and dry seasons.
All selected regions show an increasing trend of NDD. During
the dry season, NDD increased significantly over the “arc of
deforestation” in the southern and eastern portions of the ba-
sin. Increasing NDD during dry season around Santa Cruz
(region E on Fig. 4) shows a graduate rise across the study
period, with a sharp rise in 2010, which was an extreme El
Niilo year and extreme drought across the basin. 2010 was
characterized by a weak SACZ, positive anomalies in the
SST in central Pacific Ocean, and negative anomalies in SST
in Southern Tropical Atlantic Ocean, and a displacement of
the ITCZ to the north (Coelho et al. 2013). In region F, which
covers a large area east of Palmas, the abrupt change point in
NDD occurred in 2004 proceeding an increasing trend in
number of dry days. There are two extreme decreases in
NDD in 1989 and 2008, both reaching a historic low 157
dry days, while the average number of dry days during the
dry season is approximately 170 days for region F.
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Fig. 3 Trend of mean annual precipitation (MAP) by day is shown on the
map. Hatches show significant trends at 5% confidence level. Graphs
show the abrupt changes in the amount of mean annual daily precipitation

In the wet season, changes in NDD are spatially heteroge-
neous based on our analysis of station data and prior research
(c.f., Fig. 4 in Silva et al. 2018). While there are few signifi-
cant changes at & = 0.05 level, some changes are significant at
a=0.1 across broad areas (not shown). Only one location
shows a significant increasing/drying trend (region G). The
time series for G shows high variability for this very rainy
region, but the overall increasing trend is clearly recognizable.
For example, NDD in 1982 was 65 days, while by 2017, it had
shifted to 84 days—an increase of 20 days around Pucallpa,
Peru. There was also a steep decline in NDD in 1988, to only
54 dry days within the wet season. Change point analysis
identified 2001 as a significant break after which the average
NDD remains consistently higher than before 2001. There is a
notable inconsistency between gauge and gridded statistics for
number of dry days during the wet season in the Northern
Basin.

3.2.3 NXE trend analysis
Changes in NXE during the dry and wet seasons are shown in

Fig. 5. Regions H, which is located on the western part of the
basin, shows an increasing trend of NXE during both dry and

1985 1990 1995 2000 2005 2010 2015

1985 1990 1995 2000 2005 2010 2015

for the outlined significance levels. Red lines indicate significant change
points. Note that vertical axis scales are different

wet season. But all other regions show a decreasing trend in
NXE in both dry and wet season. In the next section, magni-
tude of the trends is explained comprehensively. The warmer
(red) colors indicate a decrease in NXE, while cooler (blue)
colors show an increase in NXE. Similar to MAP trends, NXE
for the dry season shows a significant increasing trend in the
west, especially around Iquitos. There is a strip in the center of
the basin from north to south that shows a decreasing trend in
extreme events. Gridded and station data show high consis-
tency for the NEX metric across the domain.

Region H shows that the NXE during the dry season dou-
bled after 2012 relative to earlier average of 11 extreme
events. Based on change point detection, the abrupt increasing
trend in NXE happened after 2011. Region J (around Porto
Velho extending in a northwest strip) shows a large decreasing
trend in NXE, with one dramatic rise in extreme events in
1989. Change point detection identifies a significant shift in
NXE in 1997, which was an extreme drought year. Before this
point, NEX generally remained above 8 days per year, and
afterward falls and has a maximum of 7 days per year.
Conversely, in the Santa Cruz de la Sierra (Region K), a no-
ticeable and consistent drop in NXE variability occurs after
1988 (also, a severe drought year). Significant breakpoints in
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Fig. 4 Trend of number of dry days (NDD) during the wet and dry season using CHIRPS as a gridded data and ANA rain gauge measurements to
validate the results. Graphs on the bottom show the NDD anomalies for each season. Note that vertical axis scales are different

the patterns of dry season NXE vary temporally across these
three regions.

The wet season shows more complex patterns of change
and different regions of statistical significance. Similar to
NDD, there is a slight inconsistency between gauges and
gridded data in the north of the region, where fewer gauges
are available and reporting is less consistent. Changes in NXE
during the wet season are not as strongly clustered or as in-
tense as for the dry season.

Region L in the western basin shows a slightly increasing
trend with an average of 13 extreme days per year until the
change point in 2012, after which NXE rises to a maximum of
23 events per year. Regions M and N, around Porto Velho and
Santa Cruz, show a decreasing trend in NXE. In Porto Velho
area (M), NXE changed from 26 days in 1982 to 22 days in
2017 with change point analysis showing a significant shift
trend in 1995. Region N exhibits a complex but decreasing
trend that is significant but not very abrupt. There is a peak in
1988 where NXE is equal to 21 days, with a clear decline after
1992 when a severe basin-wide drought occurred.

It is worth mentioning that the breakpoints for NXE in both
seasons occur at nearly the same time for region H/L and J/M.

3.3 Quantifying the trend magnitude

Sen’s slope is a common non-parametric method that has been
used to quantify the magnitude of slope (changes per unit of
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time) as opposed to the “step”-counting of the Tau statistic. In
this section, we discuss the magnitude of trends for each var-
iable. Figures 6, 7, and 8 show both a standard regression line
and Sen’s non-parametric slope, as well as outliers and inter-
vals. Categories and color schemes are consistent on Figs. 6,
7, and 8 to facilitate comparison between the three indices. For
changes of magnitude in individual years, please see Figs. 3,
4, and 5.

3.3.1 MAP trend magnitude

Figure 6 shows Sen’s slopes of the trend line for MAP. Most of
the basin show statistically significant increasing trends (blue)
broken up by clusters of negative trends along the Porto
Velho-northwest strip. Region O (see inset graph in Fig. 6,
averaged over the significant area) shows an almost sinusoidal
changes with a gradual decline. This trend differs from region
P near Porto Velho, which suggests a different physical pro-
cess. For region O, MAP decreased by ~0.2 mm/year on
average over 37 years. The confidence intervals of the trend
line show several outliers in the dataset that each have a dif-
ferent influence on the trend magnitude. 1983 was an extreme
wet year for this area at a MAP rate of 9.1 mm/day. 2010 and
2011 were extreme dry years with 6 mm/day.

In region P around Porto Velho, MAP decreases annually at
arate of 0.3 mm/day. Sen’s slope is approximately the same as
at region O, and the overall change for 37 years is 10 mm/day
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less in this very wet region. In 1993, an extreme wet year,
region O had a MAP rate of 7.4 mm/day, and at the dry ex-
treme (2015), a rate of 4.6 mm/day. This region barely regis-
tered the drought of 2005. However, the effects of the drought
of 2015 are clear in regions O and P.

Region T, around Santa Cruz, saw a decrease of ~11 mm/
year in MAP over 37 years, equivalent to 407 mm since 1982.
This contiguous area of significant change spans ~
172,000 km?. There was a period of low variability prior to
2000, while in 2008 and 2009, and there was a sharp decline to
2.2 mm/day after 2016. Region R around and north of Cuzco
shows a significant increasing and spatially cohesive trend
with a magnitude of 10.1 mm/day over all the study period.
1982, 1992, and 1995 are identified as the driest years with
3.6, 3.5, and 3.7 mm/day of precipitation, whereas 2012 is the
wettest year with 5.6 mm/day of rain.

3.3.2 NDD trend magnitude
Sen’s slope analysis for NDD shows similar areas of sig-

nificant change as the Tau method; however, magnitudes
of change differ. Figure 7 shows changes of NDD across
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the basin assessed using Sen’s slope, which for region S
indicates that the NDD of dry days during the dry season
increased by about 0.3 days per year, or 11 days total over
the last 37 years. Extreme values in the dataset affect the
slope significantly for region S. The lowest NDD was
1984 with 176 dry days within the dry season, and 1988
and 2011 had the driest dry season with 193 and 197 dry
days per season accordingly.

Across region U, NDD increased by 0.5 days per dry sea-
son or 18 days over the entire period. 1989 and 2009 had the
wettest dry seasons with 156 dry days, and 2007 and 2017 had
the longest dry seasons with ~ 183 dry days. NDD fluctuations
in this region occur in 10-year cycles, indicating a strong
influence by the Pacific Decadal Oscillation.

Region V is the only statistically significant area that
showed a significant increasing trend in NDD for the wet
season at the 0.05 level. NDD increased by more than 18 days
over 37 years shifting from 54 days in 1989 to 89 days in
2016. This region is on the wet western edge of the basin,
but the drying trend is spatially consistent with extreme in-
creases in oil palm cultivation and fire expansion (Gutiérrez-
Vélez et al. 2011).
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3.3.3 NXE trend magnitude

The Sen’s slope estimators are shown spatially in Fig. 8, with
selected time series in the inset boxes. Changes in NXE during
the dry season shows a similar pattern with those of MAP,
which indicates the intensification of the hydrologic cycle.
NXE during dry season showed a large increase over most
of the western region. We will use the term “events” for days
that had an extreme event.

For region W during the dry season, magnitude of changes
for much of the area was + 0.5 events/year, which amounts to an
additional 18 extreme events on average over 37 years during the
dry season. These significant changes that are tightly clustered in
the last 7 years show a strong and significant increasing trend
with a maximum of 26 days during the dry season of 2013.

Regions X and Y show a significant decreasing trend with
10.8 days on average over the study period, but the distribu-
tion of extreme events over time is very different. For region
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X, range of NXE spans from 1989 with 13 extreme days to
2011 with 5 days—is the lowest over the 37 years. But, in
region Y, NXE shows a prominent decline after 1990. The
maximum NXE occurred in 1982 with 13 events, while after
2010, there were consistently less than four extreme days ex-
cept for a jump in 2012 to 8 days. The minimum NXE was in
2010 at 2 extreme events.

During the wet season, region Z (Fig. 8, inset) shows an
increasing trend, echoing the dry season in trend and location
near Iquitos. The largest number of extreme rainfall events
was in 2012, at 29 events; the following years were all well
above normal and influenced the entire time series, which
increased the slope of the trend line dramatically. The NXE
change amount added 18 event-days on average for the study
period. 1985 had the fewest NXE at about 7 days, while 2012
had 29 for the season. The data show a strong discontinuity
starting around 2012, before which no year had more than 20
events during the dry season.
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Zones AZ and BZ both have a nonlinear interannual pattern
with a local minimum in the late 1990s. NXE decreased by
more than 18 events in AZ and 11 events in BZ over all
37 years during the wet season. NXE across AZ changed from
a maximum of 30 events in 1983 and 1993 to a minimum of
11 events in 2015. While in BZ the maximum NXE was 20 in
1988, and the minimum NXE within the wet season was 5
events/year in 2015 (Fig. 8).

3.4 Aggregated change analysis

Figure 9 shows deforested areas in yellow from 1992 to 2015,
overlain with areas of significant change in all indices to iden-
tify the extent to which deforested regions are aligned with the
areas of significant precipitation changes. Areas around Porto
Velho and Santa Cruz show the highest amount of deforesta-
tion and the largest extent and greatest magnitude of dryness.
All indices show less precipitation for these regions. Loss of
tropical rain forests is expected to have the largest landscape
conversion related effect on precipitation. The yellow shaded
areas on the map represent the loss of forest land, but do not
capture the conversion of the native Cerrado in the far eastern
side of the basin. The most significant deforestation occurred
from 1994 to 2005. These heavily deforested areas (Fig. 9) are

spatially aligned with the regions with the highest precipita-
tion variability, according to Fig. 4.

4 Discussion

The Amazon basin continues to have a rainy northwestern
region, a wet/dry cyclical climate in the center of the domain,
and a long dry season in the south and east (Davidson et al.
2012). Due to the Andes Mountains on the western edge of the
basin, moisture cannot easily escape; our analysis finds no
change in the precipitation behavior of this portion of the
domain. Moisture flux from the Atlantic continues to drive
the overall seasonality and transport of rainfall. However,
these results show that the spatiotemporal variability of rain-
fall from 1982 to 2018 across the Amazon basin is locally
more complex than the common refrain “wet gets wetter and
dry gets drier” (Donat et al. 2016). This is verified at the
extreme western and southeastern parts of the domain. We
find two broad patterns of change: a synoptic-scale shift of
more dry days to the south and east and spatially cohesive
regions with drying and wetting trends over hundreds of
km?. This study does not investigate causality; determining
drivers of rainfall change would require process-based
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Fig. 9 Deforested areas from
1992 to 2015 are shown in
yellow. Significant changes in all
indices are plotted on top to show
the spatial agreement between
deforestation and precipitation
changes. The warmer colors in the
legend indicate regions with
drying trends and cool (blue)
colors show regions with increas-
ing precipitation (NXE: number
of extreme events; NDD: number
of dry days; MAP: mean annual
precipitation by day)
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regional climate models. Instead, we refer to patterns found
from this work that have been causally linked by other litera-
ture. We then consider possible drivers of precipitation change
to motivate further investigation of causal mechanisms.

In our analysis, we found five important characteristics of
changing rainfall patterns. First, estimates of spatial changes
in MAP align with those in NXE based on both the Tau sta-
tistic and Sen’s slope. This indicates that increasing frequen-
cies of heavy rainfall days are strongly related to increases in
total annual rainfall, while decreasing heavy rainfall days de-
crease total annual rainfall. This change shows that the distri-
bution of rainfall has changed to more intense rainfall in some
areas and reduced intensity in others. Haylock et al. (2006)
reported similar results for extreme events across South
America, noting that “the pattern of extreme events was gen-
erally the same as that for total annual rainfall”. NDD is no-
tably different than NXE and MAP, indicating broadly a dif-
ferent set of climatic processes driving these changes. For
eastern Brazil, the “wet gets wetter, dry gets drier” mnemonic
holds for NDD. The change point analysis showed that mean
MAP changed abruptly in 1990s for all regions, NDD trend
changed in 2000s, and NXE of western wet of the basin
changed 2010s (regions H and L, Fig. 5). NXE of regions
around Porto Velho (regions J and M, Fig. 5) hanged abruptly
nearly at the same time in both dry and wet season in 1990s.
But it is very varied for Santa Cruz.

Second, changes in land use—particularly shifts in
deforested arcas—are spatially associated with regions of mod-
ified rainfall. Figure 9 illustrates this similarity, with deforested
areas near many of the regions of changed precipitation ana-
lyzed here. Higher precipitation events have been connected to
the “vegetation breeze” in the Amazon (Laurance et al. 2018;
Nobre et al. 2016; Sheil and Murdiyarso 2009). In such cases,
large convective circulations can develop from differential
heating, and be advected downwind such that the landscape
change generating the convection does not receive the rainfall.
This essentially rearranges rainfall into a wet/dry “dipole” as-
sociated with forest removal and road development (Moore
et al. 2007; Saad et al. 2010). Thus, the extreme events may
still be generated by landscape heterogeneities, but those ex-
treme events are often advected elsewhere; for example, ex-
treme events have declined in both the Porto Velho and Santa
Cruz regions in both wet and dry seasons with MAP increases
nearby. However, the main deforestation wave occurred primar-
ily from 1992 to 2015. Since our study looked at trends during
1982-2018, this indicates other factors are likely at play, includ-
ing effects associated with elevated greenhouse gases.

Third, these basin-wide results are consistent with previous
rainfall studies that identified similar spatial anomalies (e.g.,
Ronchail et al. 2002; Silva et al. 2018) and declines in the
number of extreme events in the south of the basin (e.g.,
Santos et al. 2015). General circulation model (GCM) outputs
show highly varied historical changes over the Amazon but

are not entirely consistent. [IPCC ARS results do not have
sufficient resolution to characterize such changes in precipita-
tion. Several regional climate projections at finer resolutions
match some of the features found here, such as Fig. 4.4 in
(Marengo and Espinoza 2016) for the 2011-2040 period.
However, five of the 11 models in Ronchail et al. (2002) and
Li et al. (2006) predicted an increase in annual rainfall, while
three others showed a decrease and the remainder produced no
significant changes in the rainfall amount for the entire basin.
Wet season NXE (Fig. 5) somewhat matches maps showing
fire risk by 2050 (Fig. 4 in Davidson et al. 2012), but projec-
tions are equivocal at best in matching overall historical pat-
terns. Attribution of these changes is often difficult and re-
quires finer-scale simulations forced with historical boundary
conditions to assess causality.

Fourth, a “diagonal pattern” of decreased rainfall from the
Porto Velho region to the northwestern edge of the domain
appears in both NXE and MAP but is not associated with
deforested regions or other major surface cover changes. A
similar diagonal structure is evident in Silva et al. (2018) albeit
with lower statistical significance using TRMM through 2015.
The wet/dry “dipole” pattern noted above may amplify this
pattern. The reduction is stronger in the dry season when pre-
vailing winds are from the south. This bimodal pattern is not
produced in studies exploring land cover change alone
(Bagley et al. 2014; Wu et al. 2017). However, the drying
diagonal pattern shows spatial similarity with rainfall correla-
tions to South Atlantic SST (Yoon and Zeng 2010). The South
American low level jet and the South American Convergence
Zone that affects rainfall in the western part of the basin are
currently exhibiting higher variability (Liebmann et al. 2004).
Grimm and Zilli (2009) showed that changes in precipitation
variability are likely connected to ENSO and other global
phenomena such as SST anomalies in the southern tropical
Atlantic. Across the equatorial Amazon, Atlantic SST is
strongly correlated with the timing of rainy season onset and
end, especially during the transition between wet and dry re-
gimes (Liebmann and Marengo 2001).

Fifth, a pattern of less precipitation in the south, consistent
with reduced rainfall recycling (Eltahir and Bras 1994), makes
seasonal changes more broadly consistent with an intensifying
Hadley circulation. The weakening of poleward expansion of
Hadley cells over South America has significant effects on
precipitation anomalies (Freitas and Ambrizzi 2015) and has
thus increased the dryness over the region, especially in north-
eastern Brazil (Lau and Kim 2015). Stronger Hadley and
Walker circulations are associated with a lengthening dry sea-
son in South America (Agudelo et al. 2018). That moisture is
moved to the interior; wetting trends in much of the Amazon
basin are influenced by a strengthening Walker circulation
(Barichivich et al. 2018), which we identified in the northern
and western parts of the basin (Fig. 3). Yin et al. (2014) re-
ported competing causes of variability in wet season onset that
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include SSTs and more local factors. The patterns we find for
both NDD and NXE affirm this picture of multiple competing
drivers.

Some significant changes in specific locations are worth
noting. In the western basin, around Iquitos, MAP has increased
by 10.8 mm/day over the 37 years with a clear trend, with
erratic behavior in dry season extreme events. Most of the in-
crease occurred due to wet season extreme events (18 additional
events over 37 years). There is significant deforestation in this
region due to increased economic activity, including for palm
oil cultivation. The region around Porto Velho has declined in
both MAP and NXE, and a smaller decline in NDD is evident.
This is similar to the pattern identified in Silva et al. (2018)
using TRMM data, and the wet/dry pattern matches significant
agricultural expansion in Rondonia along highway BR-364.
The region around Santa Cruz has seen both significant defor-
estation similar to Porto Velho, but also experiences the broader
southern drying trend connected to global circulations. The
Eastern Basin has witnessed the most dramatic shrinking of
rainy days, with NDD during the dry season increasing by more
than 18 days over the study period. This drying pattern in the
east, spanning the cerrado-moist forest ecotone, is likely related
to agricultural expansion. Spera et al. (2016)) showed that when
cerrado vegetation is replaced by agriculture, rainfall declines
of up to 3% are possible.

The wet get wetter, dry gets drier perspective is only true
for some regions. The dry season has lengthened in most of
the eastern and northern regions of the basin to 9 months (Li
et al. 2006). And, in the Iquitos region, topographic moisture
convergence forced against the eastern slope of the Andes by
easterly trade winds from the Atlantic causes a shorter dry
season and wetter wet season (Kleeman 1989). However, cor-
relations to other drivers make the results more complex. For
example, the Eastern region is highly influenced by ENSO
(Coe et al. 2009; Marengo 2004). The long dry season here
is also driven by subsidence connected to both ITCZ (Fu et al.
2001) and SSTs (Yoon and Zeng 2010). Looking broadly at
specific variables, dry season length is highly influenced by
both the SST of tropical oceans (Liebmann and Marengo
2001) and local soil moisture and vegetation cover (Nepstad
et al. 2008; Li and Fu 2004). Ronchail et al. (2002) found that
the colder northern tropical Atlantic and equatorial Pacific
makes the northern part of the basin wetter, as Tropical SST
significantly influences this region. The shorter and drier wet
season is associated with El Nifio events.

5 Conclusion

Precipitation is changing in multiple ways across the Amazon
basin. Here, we show that most of the Amazon basin has
experienced climatic changes, many of which are significant.
Generally, while the western regions have trended wetter, the
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eastern and southern regions trended dryer. Wetting trends
occur following the spatial pattern of extreme rainfall events,
with very little similarity to changes in the number of dry days.
We found statistically significant changes of precipitation
from 1982 to 2018 at the 0.05 level for MAP across much
of the domain. Our results broadly echo those of Silva et al.
(2018) but over a longer time period and with additional var-
iables. Their constraint of a 0.05 significance level was more
rigorous but may have excluded noisier but important trends.

To the best of our knowledge, this is the first study to
consider the analysis of dry day occurrence and extreme rain-
fall event frequency during dry and wet seasons for entire
Amazon basin using high temporal and spatial resolution data.
The spatial pattern drivers of climate and its variability are
complicated over the basin. The patterns we identified are
likely a combination of factors including ENSO, SSTs, the
ITCZ/SACZ transition, strengthening Hadley and Walker cir-
culations, and deforestation. Future research should be direct-
ed towards identifying causality for these processes using
high-resolution regional models. Our next steps are to simu-
late the effects of deforestation with and without elevated
greenhouse gases to map where each process dominates and
to quantify the magnitude of each perturbation. Ultimately,
these simulations along with the analysis presented above will
be crucial to understand changes in stream flow and hydrolo-
gy, including those in flood and drought frequency across the
basin.
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