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Abstract— Lyapunov-based economic model predictive con-
trol (LEMPC) is an optimization-based control design that
computes economically-optimal control actions for a process
while maintaining the closed-loop state within a bounded region
of state-space; however, it may be difficult to design in practice
without closed-loop simulations, as it requires an auxiliary
stabilizing controller, Lyapunov function, and a number of
sets to be developed to ensure closed-loop stability. Practical
application of this method could benefit from methods which
make it more likely that, without simulations to identify aspects
of the control design that would provide stability, controller
parameters can be selected that would maintain stability. In
this work, we propose a method to seek to enhance tractability
of LEMPC by providing initial suggestions for reducing the
likelihood that ad hoc selection of a value for one of its
parameters would be problematic for closed-loop stability.

I. INTRODUCTION

Economic model predictive control (EMPC) [1] is a

model-based control design that has attracted research at-

tention due to its ability to optimize process economic

performance on-line via the control actions while respecting

process constraints. EMPC seeks to optimize a cost function

based on the process economics subject to the process

dynamic model. Various versions of this controller (e.g.,

with terminal constraints [2] or Lyapunov-based stability

constraints [3]) have been developed and characterized in

terms of closed-loop stability. EMPC has also been exten-

sively examined for practical considerations such as usage in

various applications (e.g., wastewater treatment [4] or fault

accommodation for batch processing [5]).

The EMPC formulation known as LEMPC [3] has closed-

loop stability properties even in the presence of disturbances,

without the need to utilize a model that accounts for dis-

turbances in the controller itself. However, designing this

controller requires two level sets of a Lyapunov function (one

a superset of the other) to be selected in which a stabilizing

control law can asymptotically stabilize the origin of the

system under consideration. The proper selection of the level

sets is part of guaranteeing closed-loop stability; however, the

most likely way that the smaller level set would be chosen in

practice would be via closed-loop simulations which check

whether, from many different initial conditions in the larger

level set, the LEMPC designed with this smaller level set

always maintains the closed-loop state in the larger level

set. This guess-and-check method of selecting the smaller
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level set size is neither rigorous nor industrially practical.

However, the ability to guarantee that the closed-loop state

for this controller remains within the larger level set for

all times has been demonstrated to be a useful property

for considerations such as cyberattack-resilience [6] and

safety [7]. Motivated by these considerations, we develop an

implementation strategy that takes advantage of the explicit

stabilizing controller and frequent measurement sampling to

potentially make an ad hoc selection of the smaller level set

more likely to not cause closed-loop stability issues.

II. PRELIMINARIES

A. Notation

The vector Euclidean norm is represented by | · |. A

function is of class K if it is a strictly increasing function

α : [0, a) → [0,∞) with α(0) = 0. The transpose of a

vector x is denoted by xT . The notation “ / ” signifies set

subtraction x ∈ A/B := {x ∈ Rn : x ∈ A, x /∈ B}). A

level set of a positive definite function V is represented by

by Ωρ := {x ∈ Rn : V (x) ≤ ρ}.

B. Class of Systems

We consider the following class of systems:

ẋ(t) = f(x(t), u(t), w(t)) (1)

where f is a nonlinear locally Lipschitz vector function

(f(0, 0, 0) = 0), x(t) ∈ Rn is the process state vector,

u(t) ∈ U ⊂ Rm is the manipulated input vector, and w(t) ∈
W ⊂ Rl, where W := {w ∈ Rl : |w| ≤ θ}, is the bounded

disturbance vector. We assume there exists a sufficiently

smooth Lyapunov function V (x), class K functions αj(·),
j = 1, . . . , 4, and a Lyapunov-based controller h1(x) which

renders the origin of the nominal system of Eq. 1 (i.e.,

w(t) ≡ 0) asymptotically stable such that:

α1(|x|) ≤ V (x) ≤ α2(|x|) (2)

∂V (x)

∂x
f(x, h1(x), 0) ≤ −α3(|x|) (3)

∣

∣

∣
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∣

∣

∣
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≤ α4(|x|) (4)

h1(x) ∈ U (5)

∀ x ∈ D ⊂ Rn where D is an open neighborhood of the

origin and Ωρ ⊂ D is defined as the stability region. Also:

|f(x, u, w)| ≤M (6)

|f(x1, u1, w)− f(x2, u1, 0)| ≤ Lx|x1 − x2|+ Lw|w| (7)



|
∂V (x1)

∂x
f(x1, u1, w)−

∂V (x2)

∂x
f(x2, u1, 0)|

≤ L′

x|x1 − x2|+ L′

w|w|
(8)

for all x, x1, x2 ∈ Ωρ, u1 ∈ U , and w ∈W .

C. Lyapunov-Based Economic Model Predictive Control

LEMPC [3] is the following control law:

min
u(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ), u(τ)) dτ (9a)

s.t. ˙̃x(t) = f(x̃(t), u(t), 0) (9b)

x̃(tk) = x(tk) (9c)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N ) (9d)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (9e)

V (x̃(t)) ≤ ρ̄e, ∀ t ∈ [tk, tk+N ),

if x(tk) ∈ Ωρ̄e
or tk ≤ t′ (9f)

∂V (x(tk))

∂x
f(x(tk), u(tk), 0)

≤
∂V (x(tk))

∂x
f(x(tk), h1(x(tk)), 0)

if x(tk) /∈ Ωρ̄e
or tk > t′ (9g)

where u(t) ∈ S(∆) signifies that the input vector is piece-

wise constant over the prediction horizon comprised of N
sampling periods of length ∆. The stage cost function Le

(Eq. 9a) is minimized for the prediction horizon using state

predictions from the nominal system of Eq. 1 (Eq. 9b). Eq. 9d

is an initial condition which sets the predicted state x̃(tk)
equal to the state measurement at tk. States and inputs are

constrained by Eqs. 9d and 9e, respectively. The part of the

optimal solution vector of Eq. 9 that holds for t ∈ [ti, ti+1)
at tk is denoted by u∗(ti|tk), where i = k, . . . , k+N−1. Eqs.

9f and 9g ensure closed-loop stability. Ωρ̄e
⊂ Ωρ is a subset

of the stability region in which the state is allowed to evolve

under the first mode of operation (i.e., when x(tk) ∈ Ωρ̄e

and tk ≤ t′, where t′ is a time after which the constraint of

Eq. 9g is always enforced).

To support the following discussion, we here present

several propositions and a theorem from [3] that describe

the theoretical properties of LEMPC.

Proposition 1: [8], [3] Consider the systems

ẋy(t) = f(xy(t), u(t), w(t)) (10)

ẋz(t) = f(xz(t), u(t), 0) (11)

with initial states xy(t0) = xz(t0) ∈ Ωρ. There exists a class

K function fW (·) such that

|xy(t)− xz(t)| ≤ fW (t− t0) (12)

for all xy(t), xz(t) ∈ Ωρ and all w(t) ∈W with:

fW (τ) =
Lwθ

Lx

(eLxτ − 1) (13)

Proposition 2: [8], [3] Consider the Lyapunov function

V (·) of the system of Eq. 1. There exists a quadratic function

fV (·) such that:

V (x) ≤ V (x̂) + fV (|x− x̂|) (14)

for all x, x̂ ∈ Ωρ with

fV (s) = α4(α
−1
1 (ρ))s+Mvs

2 (15)

where Mv is a positive constant.

Theorem 1: [3] Consider the system of Eq. 1 in closed-

loop under the LEMPC design of Eq. 9 based on a controller

h(x) that satisfies the assumptions of Eqs. 2-5. Let ρ̄e = ρe,

where ϵw > 0, ∆ > 0, ρ > ρe > ρmin > ρs > 0 satisfy:

ρe ≤ ρ− fV (fW (∆)) (16)

−α3(α
−1
2 (ρs)) + L′

xM∆+ L′

wθ ≤ −ϵw/∆ (17)

If x(t0) ∈ Ωρ and N ≥ 1, where:

ρmin = max{V (x(t+∆)) : V (x(t)) ≤ ρs} (18)

then the state x(t) ∈ Ωρ ∀ t ≥ t0 and is ultimately bounded

in Ωρmin
for t > t′.

III. REMOVING BARRIERS TO THE USE OF LEMPC

A. Less Stringent Requirements on Ωρ̄e

The most significant challenge for LEMPC is the practical

difficulty of determining the various components of this

controller in Eq. 9 (e.g., ρ̄e, ρ, h(x), and V (x)). This

work focuses on the difficulty of selecting ρ̄e; a rigorous

determination of this parameter to obtain the closed-loop

stability properties which LEMPC can have would require

that a value for ρ̄e = ρe that satisfies Eq. 16 be found.

Given the difficulty of locating the constants such as Mv ,

Lw, Lx, and θ, and functions such as α4 and α1, that appear

in fV and fW in Propositions 1-2, it is likely that closed-

loop simulations would be used in selecting ρ̄e, rather than

the theoretical requirements of Eq. 16, or that an overly

conservative value of the parameter would be selected.

Part of the challenge for the selection of ρ̄e is that, as

shown in Eq. 16, its size depends on the magnitude of

the sampling period, upper bound on the disturbances, and

process dynamics. In a practical situation, it can be expected

that the upper bound on the disturbances would be reduced

as much as possible by the team that derives the process

model, and the process dynamics characteristics would not

be able to be altered. This suggests that the sampling period

is the only remaining parameter which can be tuned when

selecting ρ̄e; specifically, the value of ρ̄e must be sufficiently

less than the value of ρ in a manner that depends on ∆, where

it does not need to be as much less than ρ if ∆ is very small

compared to if it is larger (Eqs. 16 and 13). In fact, these

equations indicate that ρ̄e can approach ρ in Eq. 19, and

closed-loop stability under the resulting LEMPC would still

be maintained, if ∆ approaches 0.

In practice, however, it may be necessary to use a larger

value of ∆, partially due to the potential computational bur-

den of solving the resulting LEMPC of Eq. 9; in such a case,

Eq. 16 is not constructive in allowing the size of ρ̄e to be

readily determined for a given ρ and ∆. One way to attempt

to deal with this in a manner that may provide an industrially-

relevant solution would be to develop an implementation

strategy for LEMPC that allows measurements to be obtained



frequently (i.e., many times within a given ∆) and then to

select ρ̄e in an ad hoc manner but have a back-up explicit

stabilizing controller available to drive the closed-loop state

to lower level sets of V during a sampling period if the

closed-loop state leaves Ωρ̄e
in that timeframe. Though the

ad hoc selection of ρ̄e does not guarantee that stability will be

maintained under the resulting LEMPC of Eq. 9, if the time

between measurements becomes very small, it will have an

effect similar to that described with respect to Eq. 16 (i.e.,

ρ̄e could almost be the same as ρ before any closed-loop

stability issues would arise that are associated with ρ̄e). This

manner for selecting ρ̄e may provide sufficient flexibility in

the selection of ρ̄e so that its ad hoc selection may be less

likely to cause closed-loop stability issues.

Specifically, we consider measuring x at time periods

∆meas < ∆, where ∆meas corresponds to the time that it

takes to obtain a new measurement from the sensor, to mon-

itor the state throughout the sampling period under a control

input computed with a ρ̄e < ρ that has been arbitrarily

selected (this ρ̄e will be henceforth referred to as ρ̄′e). Then,

if at any point in a sampling period, V (x(i∆meas)) > ρ̄′e,

the control action in use at the time is no longer used

for the remainder of the sampling period, and instead the

control actions become calculated by h1(x) (implemented in

a sample-and-hold fashion with a hold time of ∆meas). It

is assumed that ∆ = M ′∆meas, for M ′ a positive integer

(i.e., that ∆ is an integer multiple of ∆meas) for consistency

with the assumption that measurements are also available

at every ∆. This strategy may help to reduce the need for

significant conservatism in the selection of ρ̄′e or reduce

the likelihood that the closed-loop state will leave Ωρ if

ρ̄′e is not rigorously selected according to Eq. 16, though

it does assume that measurements of the process states can

be obtained much more frequently than ∆ (i.e., M ′ is large).

The use of a backup controller for maintaining closed-loop

stability is consistent with other works in LEMPC where

backup controllers have been critical to maintaining closed-

loop stability of a process under LEMPC when it could not

otherwise have been guaranteed; for example, in [9], h1(x) is

used in sample-and-hold throughout a sampling period when

an LEMPC formulation with additional constraints beyond

those in Eq. 9 is not feasible at tk. In the concept proposed

in the present manuscript, we consider that h1(x) can be

activated during a sampling period.

Remark 1: Though a potential reduction in the conser-

vatism of Ωρ̄e
for the potential to increase profits is one

of the motivations for the proposed methodology, it is not

guaranteed that the proposed method will enhance profits.

Specifically, if ρ̄′e is selected to be too large, given the

process disturbances, such that the closed-loop state regularly

exits Ωρ̄′

e
throughout a sampling period even when the state

predictions from Eq. 9b indicate that it will not (Eq. 9f),

the Lyapunov-based controller, which drives the closed-loop

state to level sets of V with smaller upper bounds throughout

a sampling period, will be activated more often. This may

have the effect of causing the closed-loop state to be operated

under h1(x) in sample-and-hold with a period of ∆meas

frequently, which could have the effect of decreasing profits

by not allowing an economically-optimal control action

coming from the LEMPC to be utilized.

1) Less Stringent Requirements on Ωρ̄e
: Implementation

Strategy: The proposed strategy trades off the use of LEMPC

with the use of h1(x) in sample-and-hold with period ∆meas

for h1(x) and of ∆ for the LEMPC, assuming that ρ̄′e has

been selected in a less conservative manner than implied by

Eq. 16. Specifically, if at a time ts ∈ (tk+p∆meas, tk+(p+
1)∆meas], the closed-loop state exits Ωρ̄′

e
, then for t ∈ [tk+

(p+1)∆meas, tk+M ′∆meas), the backup controller h1(x) is

applied with period ∆meas. The use of h1(x) guarantees that

the closed-loop state remains in the stability region and will

eventually drive the state into Ωρ̄′

e
, where Eq. 9 can again

be used to compute an optimal input policy for tk ≤ t′.
The implementation strategy is as follows:

1) At tk, the controller receives the state measurement

x(tk).
2) If tk < t′, go to Step 3. Else, go to Step 3b.

3) If x(tk) ∈ Ωρ̄′

e
, go to Step 3a. Else, go to Step 3b.

a) The LEMPC of Eq. 9 computes inputs for every

sampling period from tk to tk+N to maximize

the economic cost function such that V (x) ≤ ρ̄′e.

b) The LEMPC computes inputs that decrease the

value of the Lyapunov function at tk.

4) The controller implements the optimal input computed

for tk. Measurements of x are obtained at every tk +
i∆meas, i = 0, . . . ,M ′ − 1, throughout the sampling

period. If V (x(tk+i∆meas)) > ρ̄′e, i = 1, . . . ,M ′−1,

go to Step 4a. Else, go to Step 5.

a) h1(x) is implemented in sample-and-hold with

period ∆meas for the remainder of the sampling

period. Go to Step 5.

5) tk+1 ← tk. Go to Step 1.

2) Less Stringent Requirements on Ωρ̄e
: Stability Anal-

ysis: Theorem 1 below provides sufficient conditions for

which the implementation strategy in the above section

guarantees the process state is always bounded within Ωρ

and ultimately bounded in Ωρmin
when tk > t′.

Theorem 2: Consider the system of Eq. 1 in closed loop

under the LEMPC design of Eq. 9 based on a controller

h1(x) that satisfies Eqs. 2-5, applied according to the imple-

mentation strategy in Section III-A.1. Let ϵw > 0, ϵ̄′w > 0,

∆meas > 0, ρ > ρ̄′e > ρmin > ρs > 0 satisfy Eq. 17 and

Eq. 18, and

ρ̄′e ≤ ρ− fV (fW (∆meas)) (19)

−α3(α
−1
2 (ρs)) + L′

xM∆meas + L′

wθ ≤ −ϵ̄
′

w/∆meas (20)

If x(t0) ∈ Ωρ, then x(t) is always bounded in Ωρ for N ≥ 1,

and the state x(t) is ultimately bounded in Ωρmin
for t > t′.

Proof 1: This proof follows the proof for the LEMPC

of Eq. 9 in [3] and consists of several parts, proving: 1)

feasibility of Eq. 9 for all x(t) ∈ Ωρ; 2) when x(tk) ∈ Ωρ̄′

e

and tk ≤ t′, then x(t) ∈ Ωρ, ∀ t ∈ [tk, tk+1), under the

proposed implementation strategy; 3) when x(tk) ∈ Ωρ/Ωρ̄′

e
,

the LEMPC of Eq. 9 drives the closed-loop state toward or



into Ωρ̄′

e
throughout the subsequent sampling period; 4) if

tk > t′, the closed-loop state is ultimately bounded in Ωρmin .

Part 1. When x(t) is maintained in Ωρ, there exists a feasible

solution u(t) = h1(x̃(tj)), ∀ t ∈ [tj , tj+1), j = k, . . . , k +
N − 1, to the optimization problem of the LEMPC of Eq. 9

at every tk due to the closed-loop stability property of the

Lyapunov-based controller h1(x) [3], [10], as proven in [3].

Part 2. We first analyze the case that x(tk) ∈ Ωρ̄′

e
and tk ≤ t′

such that the constraint of Eq. 9f is applied. If x(tk) ∈ Ωρ̄′

e
,

then from the constraint in Eq. 9f, x̃(t) ∈ Ωρ̄′

e
, ∀ t ∈

[tk, tk+1). When the optimal solution of Eq. 9 meeting this

constraint is applied to the process for t ∈ [tk, tk+1), either

1) x(t) ∈ Ωρ̄′

e
, ∀ t ∈ [tk, tk+1), in which case x(t) ∈ Ωρ,

∀ t ∈ [tk, tk+1) since Ωρ̄′

e
⊂ Ωρ, or 2) x(t) /∈ Ωρ̄′

e

starting at some ts ∈ [tk, tk+1). If this second case occurs,

the implementation strategy of Section III-A.1 indicates that

the control action will be changed to h1(x(tk + i∆meas)),
starting at tk + (p+ 1)∆meas. In this case, we demonstrate

first that if Eq. 19 holds, then if x(tk + p∆meas) ∈ Ωρ̄′

e
,

x(tk + (p+ 1)∆meas) ∈ Ωρ. Subsequently, we demonstrate

that after tk + (p + 1)∆meas, the closed-loop state remains

bounded in Ωρ under the proposed implementation strategy.

If x(tk + p∆meas) ∈ Ωρ̄′

e
, then from [3], x(tk + (p +

1)∆meas) ∈ Ωρ. Specifically, as in [3], Proposition 2 gives:

V (x(tk + (p+ 1)∆meas)) ≤ V (x̃(tk + (p+ 1)∆meas))

+ fV (|x(tk + (p+ 1)∆meas)− x̃(tk + (p+ 1)∆meas)|)

≤ V (x̃(tk + (p+ 1)∆meas)) + fV (fW (∆meas))

≤ ρ̄′e + fV (fW (∆meas)) ≤ ρ
(21)

which follows from Proposition 1, Eq. 9f, and Eq. 19.

If x(tk + (p + 1)∆meas) ∈ Ωρ/Ωρ̄′

e
, the implementation

strategy of Section III-A.1 indicates that h1(x(tk+i∆meas)),
i ∈ {p + 1, . . . ,M ′ − 2}, is subsequently applied for all

remaining i before tk+1. When h1(x) is applied in this

manner, the time-derivative of the Lyapunov function along

the closed-loop state trajectories under h1(x) is determined

following [3]. Specifically, denoting tk+(i+1)∆meas as t̃i,
Eq. 3 gives:

∂V (x(t̃i))

∂x
f(x(t̃i), h1(x(t̃i)), 0) ≤ −α3(|(x(t̃i))|) (22)

for i ∈ {p, . . . ,M ′ − 2}. From Eq. 3, the time derivative

of the Lyapunov function using the backup controller h1 in

sample-and-hold ∀ τ ∈ [t̃i, t̃i+1) is as follows:

V̇ (x(τ)) =
∂V (x(τ))

∂x
f(x(τ), h1(x(t̃i)), w(t))

+
∂V (x(t̃i))

∂x
f(x(t̃i), h1(x(t̃i)), 0)

−
∂V (x(t̃i))

∂x
f(x(t̃i), h1(x(t̃i)), 0)

(23)

For all τ ∈ [t̃i, t̃i+1), Eq. 6 gives:

|x(τ)− x(t̃i)| < M∆meas (24)

From Eqs. 23, 24, 2, and 8, and considering |w| ≤ θ and

x(t̃i) ∈ Ωρ/Ωρ̄′

e
and Ωρs

⊂ Ωρ̄′

e
:

V̇ (x(τ)) ≤ −α3(α
−1
2 (ρs)) + L′

xM∆meas + L′

wθ (25)

If Eq. 20 holds, then

V̇ (x(t)) ≤ −ϵ̄′w/∆meas (26)

and

V (x(t)) ≤ V (x(t̃i)), ∀ t ∈ [t̃i, t̃i+1) (27)

Eq. 27 holds for all i after that in which the Lyapunov-

based controller first begins to be applied within a sampling

period at intervals ∆meas, as long as x(t̃i) ∈ Ωρ/Ωρs
. If

x(t̃i) ∈ Ωρs
, then from Eq. 18, it remains within Ωρmin

thereafter. By selecting ρ̄′e > ρmin, the closed-loop state

under the proposed implementation strategy is maintained

within Ωρ for t ∈ [tk, tk+1) if x(tk) ∈ Ωρ̄′

e
.

The fact that the closed-loop state is maintained within

Ωρ for t ∈ [tk, tk+1) when x(tk) ∈ Ωρ/Ωρ′

e
and ultimately

bounded in Ωρmin
if tk > t′ under the control actions

computed by the LEMPC of Eq. 9 follows from the fact

that Eqs. 17 and 18 guarantee this in [3]. Applying this

recursively ensures that x(t) ∈ Ωρ, ∀ t > 0, if x(t0) ∈ Ωρ

under the LEMPC of Eq. 9 with the implementation strategy

proposed in Section III-A.1.

Remark 2: As noted above, the use of the implementation

strategy in Section III-A.1 allows the requirements on ρ̄′e to

reduce to those in Eq. 19, where if ∆meas is quite small,

then in practice, the value of ρ̄′e might be arbitrarily selected

to be relatively close to ρ, and in many cases, such a ρ̄′e may

already meet the condition in Eq. 19. It is in this sense in

which the proposed implementation strategy may be a step

in moving LEMPC toward practical implementation.

3) Less Stringent Requirements on Ωρ̄e
: Application to

a Process Example: We consider an example in which a

continuous stirred tank reactor (CSTR) is used to facilitate a

second order exothermic reaction A→ B. The manipulated

inputs are CA0, the concentration of the reactant in the feed

stream, and Q, the rate at which heat may be added or

removed by a heating/cooling jacket. The dynamics of the

process are:

ĊA =
F

V
(CA0 − CA)− k0e

−
E

RgT C2
A (28)

Ṫ =
F

V
(T0 − T )−

∆Hk0
ρLCp

e
−

E
RgT C2

A +
Q

ρLCpV
(29)

where CA and T , representing concentration and temperature

inside the reactor respectively, are process state variables.

k0 is the pre-exponential constant, E and ∆H are the

activation energy and enthalpy of the reaction, respectively,

Rg represents the ideal gas constant, F is the inlet/outlet

volumetric flow rate F , and the liquid density ρL, heat

capacity Cp, and liquid volume inside the reactor V are fixed.

Vectors of the deviation variables of the states CA and T and

inputs CA0 and Q are x = [x1 x2]
T = [CA−CAs T −Ts]

T

and u = [u1 u2]
T = [CA0 − CA0s Q − Qs]

T . The steady-

state values are CAs = 1.22 kmol/m3, Ts = 438.2 K,



CA0s = 4 kmol/m3, and Qs = 0 kJ/h. Values of the process

parameters are found in [11]. The LEMPC maximizes the

production rate of B by manipulating inputs CA0 and Q
with the following stage cost:

Le = −k0e
−

E
RgT (τ)CA(τ)

2 (30)

Input constraints require that 0.5 ≤ CA0 ≤ 7.5 kmol/m3

and −5 × 105 ≤ Q ≤ 5 × 105 kJ/h. Lyapunov-based

stability constraints are developed using V = xTPx, where

P = [1200 5; 5 0.1]. The Lyapunov-based controller h1(x) is

applied in a sample-and-hold fashion for a period of ∆meas

when the closed-loop state x(tk + p∆meas) ∈ Ωρ/Ωρ̄′

e
. For

simplicity, the first component h1,1(x) = 0 kmol/m3, and the

second component h1,2(x) is computed via Sontag’s control

law [12] but saturated at the input bounds if they are hit

(the form of the control law is given in [11]). The constraint

of Eq. 9f was enforced at the end of every sampling period

when the state measurement at tk was in Ωρ̄′

e
, and was also

enforced at the end of every sampling period after the first

when the state measurement at tk was in Ωρ/Ωρ̄′

e
.

The simulations were performed using the Explicit Euler

numerical integration method with an integration step of

10−4 h to simulate the process, and the optimization problem

was solved in MATLAB using fmincon. The process was

simulated with additive noise added to the right-hand side of

Eqs. 28 and 29 with a normal distribution generated by the

MATLAB function randn with mean zero, where the standard

deviation for the noise added to Eq. 28 was 0.3, and that for

the noise added to Eq. 29 was 20. The lower and upper

bounds on the noise (below and above which the noise was

clipped to the bound) were set to -0.6 and 0.6 for Eq. 28 and

-40 to 40 for Eq. 29. ρ was set to 300, and ∆meas was set

to the integration step of 10−4 h.

Initially, the process was simulated with ρ̄e = 0.98ρ under

LEMPC without a backup control law activated between

sampling periods. The negative of the time integral of Eq. 30

after an hour of operation (reflecting profit during that time)

was 33.05. When the size of ρ̄e is increased to 99% of ρ, the

closed-loop state exits the stability region after 11 sampling

periods when the random number generator rng in MATLAB,

used for seeding randn, is given an argument of 1. Several

other values of the argument to rng were attempted (e.g., 10,

20, 30, 50, and 100), but the closed-loop state also left the

stability region with these when ρ̄e = 0.99ρ.

We therefore explore whether ρ̄′e can be set to 0.99ρ and

whether the closed-loop state can be maintained within the

stability region with the proposed implementation strategy,

and what the impact of this on profit would be. When

this was done, the profit was again 33.05, and the state

trajectories in state-space are shown in Fig. 1. Again, other

arguments for rng besides 1 were tried (10, 20, 30, 50, and

100) and in each case, the closed-loop state did not exit

the stability region. This indicates that the proposed method

was able to, with approximately the same profit as the case

where ρ̄e was selected via closed-loop simulations in which

it did not result in the closed-loop state exiting the stability

region, keep the closed-loop state inside when selected to
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Fig. 1. Input trajectories with the modified value of ρ̄e as ρ̄′
e
= 0.99ρ

and the proposed methodology.

be a value that would have caused the closed-loop state to

leave the stability region when the backup control law was

not implemented.

B. Removing Barriers to LEMPC Use: Other Constraint

Tuning Concepts

Our work in [13] explored another concept for aiding in

the design of LEMPC’s. In [13], the constraints below, first

developed in [14], were added to the LEMPC of Eq. 9:

|ui(tk)− hi(x(tk))| ≤ ϵr, i = 1, . . . ,m (31)

|ui(tj)− hi(x̃(tj))| ≤ ϵr,

i = 1, . . . ,m, j = k + 1, . . . , k +N − 1
(32)

where ϵr ≥ 0. In [14], these constraints were added to the

LEMPC to prevent the difference in the inputs computed

between two sampling periods from becoming larger than a

desired threshold, with the goal of preventing actuator wear.

However, actuator wear is not directly represented by the

value of ϵr; therefore, this is a constraint for LEMPC with a

parameter that may be somewhat difficult to tune. Unlike the

parameter ρ̄′e, which was also described as being difficult to

tune above, however, ϵr does not impact closed-loop stability

or recursive feasibility of the LEMPC of Eq. 9 augmented

with the constraints of Eqs. 31-32, which was proven in [14].

Therefore, [13] suggested that this difficult-to-tune parameter

could perhaps be tuned by performing on-line “experiments”

(in the sense that the process could be operated with different

values of the tuning parameter over time), and then operators

or engineers could provide feedback regarding how well they

liked the process response for different values of the tuning

parameter. This may lead to an optimal value of ϵr being able

to be chosen after the controller is set in place, rather than

through extensive closed-loop simulations or testing before

the controller is put on-line.

This has a flavor similar to that noted in the above section

in the sense of being a method for reducing the time required

to determine parameters in LEMPC before it can be put

on-line, potentially making the controller more tractable



for industrial use. It also gives another idea for aiding in

selecting ρ̄′e that may help to optimize the parameter more

than the ad hoc selection suggested previously. Specifically,

ρ̄′e from the prior section may also be able to be tuned on-

line using past data to aid in selecting better values of ρ̄′e
for seeking to find a value that most optimizes profits (i.e.,

trades off between a larger region in which profit is optimized

in Eq. 9 and the potential that larger regions may result in

more frequent activation of h1 between sampling periods).

The on-line tuning method might, for example, monitor a

profit metric over time with different values of ρ̄′e that would

meet the theoretical conditions which guarantee closed-loop

stability, and then select a value that seems to be most

economically attractive, based on the data. The on-line tuning

and the fact that the data may not be truly representative of

the future plant behavior does not pose closed-loop stability

issues in this case, as ρ̄′e can be varied within a range where

closed-loop stability is still guaranteed.

For example, we return again to the CSTR from Sec-

tion III-A.3 (using rng(100)), but this time we seek to use

the activation of h1(x) not as a long-term solution for

disturbance handling, but instead as a technique for allowing

on-line operating data to be gathered that allows ρ̄′e to be

adjusted over time. The goal of adjusting ρ̄′e is to attempt

to select a value that does not cause h1(x) to be activated

often, thus leaving it as a backup method for attempting to

handle irregular scenarios to design some conservatism into

the controller, but based on on-line operating data rather than

closed-loop simulations carried out a priori. Specifically, we

initialize ρ̄′e at 0.75ρ, but then increase it by 1 at the end of

each sampling period until the value of V (x) exceeds 0.99ρ
at some point in a sampling period. At that point, we again

activate h1(x), but then decrease ρ̄′e by 1 compared to the

value that was used for the sampling period when V (x) >
0.99ρ at some point in ∆. The goal of this is to utilize on-

line process operating data to serve as a warning that the

value of ρ̄′e may not be tight enough for typical disturbances

and the size of the sampling period to allow the closed-loop

state to remain within the majority of Ωρ, suggesting that

reducing ρ̄′e may promote closed-loop stability. Fig. 2 shows

the values of V (x) and ρ̄′e in comparison to ρ over time

when this strategy is used. The maximum value of V (x)
experienced during the hour of operation under this strategy

was 297.02, which is slightly above 0.99ρ = 297. The value

of ρ̄′e increased from 225 to 295 but then was subsequently

decreased to 294, and ended at 293. The figure shows that

this on-line tuning method for ρ̄′e, which takes advantage of

the implementation strategy developed in Section III-A.1 to

prevent the closed-loop state from moving too close to the

boundary of Ωρ, but then uses the on-line data regarding the

values of ρ′e for which the closed-loop state approaches the

boundary of Ωρ over time to decrease that parameter, was

successful in preventing the closed-loop state from leaving

Ωρ in this simulation.
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Fig. 2. V (x) and ρ′
e

compared with ρ over time.
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