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Abstract— Lyapunov-based economic model predictive con-
trol (LEMPC) is an optimization-based control design that
computes economically-optimal control actions for a process
while maintaining the closed-loop state within a bounded region
of state-space; however, it may be difficult to design in practice
without closed-loop simulations, as it requires an auxiliary
stabilizing controller, Lyapunov function, and a number of
sets to be developed to ensure closed-loop stability. Practical
application of this method could benefit from methods which
make it more likely that, without simulations to identify aspects
of the control design that would provide stability, controller
parameters can be selected that would maintain stability. In
this work, we propose a method to seek to enhance tractability
of LEMPC by providing initial suggestions for reducing the
likelihood that ad hoc selection of a value for one of its
parameters would be problematic for closed-loop stability.

I. INTRODUCTION

Economic model predictive control (EMPC) [1] is a
model-based control design that has attracted research at-
tention due to its ability to optimize process economic
performance on-line via the control actions while respecting
process constraints. EMPC seeks to optimize a cost function
based on the process economics subject to the process
dynamic model. Various versions of this controller (e.g.,
with terminal constraints [2] or Lyapunov-based stability
constraints [3]) have been developed and characterized in
terms of closed-loop stability. EMPC has also been exten-
sively examined for practical considerations such as usage in
various applications (e.g., wastewater treatment [4] or fault
accommodation for batch processing [5]).

The EMPC formulation known as LEMPC [3] has closed-
loop stability properties even in the presence of disturbances,
without the need to utilize a model that accounts for dis-
turbances in the controller itself. However, designing this
controller requires two level sets of a Lyapunov function (one
a superset of the other) to be selected in which a stabilizing
control law can asymptotically stabilize the origin of the
system under consideration. The proper selection of the level
sets is part of guaranteeing closed-loop stability; however, the
most likely way that the smaller level set would be chosen in
practice would be via closed-loop simulations which check
whether, from many different initial conditions in the larger
level set, the LEMPC designed with this smaller level set
always maintains the closed-loop state in the larger level
set. This guess-and-check method of selecting the smaller
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level set size is neither rigorous nor industrially practical.
However, the ability to guarantee that the closed-loop state
for this controller remains within the larger level set for
all times has been demonstrated to be a useful property
for considerations such as cyberattack-resilience [6] and
safety [7]. Motivated by these considerations, we develop an
implementation strategy that takes advantage of the explicit
stabilizing controller and frequent measurement sampling to
potentially make an ad hoc selection of the smaller level set
more likely to not cause closed-loop stability issues.

II. PRELIMINARIES
A. Notation

The vector Euclidean norm is represented by | - |. A
function is of class K if it is a strictly increasing function
a : [0,a) — [0,00) with «(0) = 0. The transpose of a
vector z is denoted by x”. The notation “ / ” signifies set
subtraction € A/B := {x € R" : v € A,x ¢ B}). A
level set of a positive definite function V' is represented by
by Q,:={zr e R":V(z) < p}.

B. Class of Systems

We consider the following class of systems:

#(t) = f(2(t), u(t), w(t)) (1)

where f is a nonlinear locally Lipschitz vector function
(f(0,0,0) = 0), z(t) € R™ is the process state vector,
u(t) € U C R™ is the manipulated input vector, and w(t) €
W C R', where W := {w € R' : |w| < 6}, is the bounded
disturbance vector. We assume there exists a sufficiently
smooth Lyapunov function V' (z), class K functions «;(-),
j=1,...,4, and a Lyapunov-based controller h;(x) which
renders the origin of the nominal system of Eq. 1 (ie.,
w(t) = 0) asymptotically stable such that:

o (o) < V(@) < on(le) @
D) Jahi@),0 < —asle) @)
252 < el @
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Vo € D C R"™ where D is an open neighborhood of the
origin and €, C D is defined as the stability region. Also:

[f (@, u,w)] < M (6)
|f(z1, w1, w) — fz2,u1,0)] < Lelzy — @2 + Lu|w| (7)
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for all x,z1,22 € Q,, us €U, and w € W.
C. Lyapunov-Based Economic Model Predictive Control
LEMPC [3] is the following control law:
tk+ N
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where u(t) € S(A) signifies that the input vector is piece-
wise constant over the prediction horizon comprised of N
sampling periods of length A. The stage cost function L.
(Eq. 9a) is minimized for the prediction horizon using state
predictions from the nominal system of Eq. 1 (Eq. 9b). Eq. 9d
is an initial condition which sets the predicted state Z(¢)
equal to the state measurement at ¢;. States and inputs are
constrained by Eqs. 9d and 9e, respectively. The part of the
optimal solution vector of Eq. 9 that holds for ¢ € [¢;,¢;+1)
at t, is denoted by u* (¢;|ty), where i = k, ..., k+N—1. Egs.
9f and 9g ensure closed-loop stability. 5, C €, is a subset
of the stability region in which the state is allowed to evolve
under the first mode of operation (i.e., when z(t;) € Qp,
and t;, < t/, where t’ is a time after which the constraint of
Eq. 9g is always enforced).

To support the following discussion, we here present
several propositions and a theorem from [3] that describe
the theoretical properties of LEMPC.

Proposition 1: [8], [3] Consider the systems

ay () = [y (1), u(t), w(t)) (10)
o (t) = f(z(t),u(t),0) (11)

with initial states x, (to) = x.(to) € §2,. There exists a class
KC function fy(-) such that

|2y (t) — 2=(0)] < fw (£ —to) (12)
for all ,(t),z.(t) € Q, and all w(t) € W with:
L,
fw(r) = 7 =(e"7 = 1) (13)

Proposition 2: [8], [3] Consider the Lyapunov function
V(-) of the system of Eq. 1. There exists a quadratic function
fv(+) such that:

V(z) < V(&) + fv(lz — &) (14)

for all z,% € €, with

fv(s) = au(ay(p))s + Mys®

where M, is a positive constant.

Theorem 1: [3] Consider the system of Eq. 1 in closed-
loop under the LEMPC design of Eq. 9 based on a controller
h(z) that satisfies the assumptions of Egs. 2-5. Let g, = pe,
where €, > 0, A >0, p > pe > pmin > ps > 0 satisfy:

15)

pe < p— fv(fw(A)) (16)
—az(ay(ps)) + LLMA+ L0 < —e, /A (17)

If z(tg) € Q, and N > 1, where:
Pmin = max{V(z(t+ A)) : V(z(t)) < ps}  (18)

then the state z(t) € Q, V ¢t > ¢, and is ultimately bounded
in Q for ¢ > t.

Pmin
III. REMOVING BARRIERS TO THE USE OF LEMPC
A. Less Stringent Requirements on §5,

The most significant challenge for LEMPC is the practical
difficulty of determining the various components of this
controller in Eq. 9 (e.g., pe, p, h(z), and V(x)). This
work focuses on the difficulty of selecting p.; a rigorous
determination of this parameter to obtain the closed-loop
stability properties which LEMPC can have would require
that a value for p. = p. that satisfies Eq. 16 be found.
Given the difficulty of locating the constants such as M,
L, L., and 6, and functions such as a4 and «, that appear
in fyy and fy in Propositions 1-2, it is likely that closed-
loop simulations would be used in selecting p., rather than
the theoretical requirements of Eq. 16, or that an overly
conservative value of the parameter would be selected.

Part of the challenge for the selection of p. is that, as
shown in Eq. 16, its size depends on the magnitude of
the sampling period, upper bound on the disturbances, and
process dynamics. In a practical situation, it can be expected
that the upper bound on the disturbances would be reduced
as much as possible by the team that derives the process
model, and the process dynamics characteristics would not
be able to be altered. This suggests that the sampling period
is the only remaining parameter which can be tuned when
selecting p.; specifically, the value of p. must be sufficiently
less than the value of p in a manner that depends on A, where
it does not need to be as much less than p if A is very small
compared to if it is larger (Eqs. 16 and 13). In fact, these
equations indicate that p. can approach p in Eq. 19, and
closed-loop stability under the resulting LEMPC would still
be maintained, if A approaches 0.

In practice, however, it may be necessary to use a larger
value of A, partially due to the potential computational bur-
den of solving the resulting LEMPC of Eq. 9; in such a case,
Eq. 16 is not constructive in allowing the size of p. to be
readily determined for a given p and A. One way to attempt
to deal with this in a manner that may provide an industrially-
relevant solution would be to develop an implementation
strategy for LEMPC that allows measurements to be obtained



frequently (i.e., many times within a given A) and then to
select p. in an ad hoc manner but have a back-up explicit
stabilizing controller available to drive the closed-loop state
to lower level sets of V during a sampling period if the
closed-loop state leaves €2, in that timeframe. Though the
ad hoc selection of p. does not guarantee that stability will be
maintained under the resulting LEMPC of Eq. 9, if the time
between measurements becomes very small, it will have an
effect similar to that described with respect to Eq. 16 (i.e.,
pe could almost be the same as p before any closed-loop
stability issues would arise that are associated with p.). This
manner for selecting p. may provide sufficient flexibility in
the selection of p. so that its ad hoc selection may be less
likely to cause closed-loop stability issues.

Specifically, we consider measuring x at time periods
Ameas < A, where A,,¢qs corresponds to the time that it
takes to obtain a new measurement from the sensor, to mon-
itor the state throughout the sampling period under a control
input computed with a p. < p that has been arbitrarily
selected (this g, will be henceforth referred to as 5.,). Then,
if at any point in a sampling period, V(z(iApeas)) > Pos
the control action in use at the time is no longer used
for the remainder of the sampling period, and instead the
control actions become calculated by k1 (x) (implemented in
a sample-and-hold fashion with a hold time of A,,¢qs). It
is assumed that A = M’'A,cqs, for M’ a positive integer
(i.e., that A is an integer multiple of A,,.4s) for consistency
with the assumption that measurements are also available
at every A. This strategy may help to reduce the need for
significant conservatism in the selection of p, or reduce
the likelihood that the closed-loop state will leave €, if
p. is not rigorously selected according to Eq. 16, though
it does assume that measurements of the process states can
be obtained much more frequently than A (i.e., M’ is large).
The use of a backup controller for maintaining closed-loop
stability is consistent with other works in LEMPC where
backup controllers have been critical to maintaining closed-
loop stability of a process under LEMPC when it could not
otherwise have been guaranteed; for example, in [9], hq () is
used in sample-and-hold throughout a sampling period when
an LEMPC formulation with additional constraints beyond
those in Eq. 9 is not feasible at ¢. In the concept proposed
in the present manuscript, we consider that hq(x) can be
activated during a sampling period.

Remark 1: Though a potential reduction in the conser-
vatism of ()5 for the potential to increase profits is one
of the motivations for the proposed methodology, it is not
guaranteed that the proposed method will enhance profits.
Specifically, if p, is selected to be too large, given the
process disturbances, such that the closed-loop state regularly
exits (2 throughout a sampling period even when the state
predictions from Eq. 9b indicate that it will not (Eq. 9f),
the Lyapunov-based controller, which drives the closed-loop
state to level sets of V' with smaller upper bounds throughout
a sampling period, will be activated more often. This may
have the effect of causing the closed-loop state to be operated
under hq(z) in sample-and-hold with a period of A,,eqs

frequently, which could have the effect of decreasing profits
by not allowing an economically-optimal control action
coming from the LEMPC to be utilized.

1) Less Stringent Requirements on )5, : Implementation
Strategy: The proposed strategy trades off the use of LEMPC
with the use of hq(x) in sample-and-hold with period A, eqs
for hy(z) and of A for the LEMPC, assuming that 5, has
been selected in a less conservative manner than implied by
Eq. 16. Specifically, if at a time t5 € (tx +pAmeas, te +(P+
1)Apneas), the closed-loop state exits 2, then for ¢ € [ty +
(p+1)Aneas, te+ M’ Apyeqs), the backup controller by () is
applied with period A, cqs. The use of hq(x) guarantees that
the closed-loop state remains in the stability region and will
eventually drive the state into {25, where Eq. 9 can again
be used to compute an optimal input policy for ¢; < t'.

The implementation strategy is as follows:

1) At t;, the controller receives the state measurement
x(tg).

2) If t, < t/, go to Step 3. Else, go to Step 3b.

3) If z(tx) € Qp, go to Step 3a. Else, go to Step 3b.

a) The LEMPC of Eq. 9 computes inputs for every
sampling period from ¢ to tx4+n to maximize
the economic cost function such that V' (z) < pl.

b) The LEMPC computes inputs that decrease the
value of the Lyapunov function at tj.

4) The controller implements the optimal input computed
for t;,. Measurements of x are obtained at every tj +
1Apeass © = 0,..., M’ — 1, throughout the sampling
period. If V (z(tx +ilmeas)) > poi=1,..., M’ —1,
go to Step 4a. Else, go to Step 5.

a) hi(z) is implemented in sample-and-hold with
period A, cqs for the remainder of the sampling
period. Go to Step 5.

5) tk+1 + tx. Go to Step 1.

2) Less Stringent Requirements on Qp_: Stability Anal-
ysis: Theorem 1 below provides sufficient conditions for
which the implementation strategy in the above section
guarantees the process state is always bounded within 2,
and ultimately bounded in Q, . when t; > t'.

Theorem 2: Consider the system of Eq. 1 in closed loop
under the LEMPC design of Eq. 9 based on a controller
hi(x) that satisfies Egs. 2-5, applied according to the imple-
mentation strategy in Section III-A.1. Let €, > 0, €, > 0,
Apeas > 0, p > pl > pmin > ps > 0 satisfy Eq. 17 and
Eq. 18, and

/_)/e < p— fV(fW(Ameas)) (19)

—az(agt(ps)) + LM A peas + L0 < —€, /Apmeas (20)

If 2(to) € Q,, then 2(¢) is always bounded in €2, for N > 1,
and the state z(t) is ultimately bounded in Q,,_, for ¢t > t'.

Proof 1: This proof follows the proof for the LEMPC
of Eq. 9 in [3] and consists of several parts, proving: 1)
feasibility of Eq. 9 for all z(t) € Q,; 2) when z(tx) € Q5
and t, < t/, then x(t) € Q,, V t € [ti,tr11), under the
proposed implementation strategy; 3) when z(tx) € Q,/Qp,
the LEMPC of Eq. 9 drives the closed-loop state toward or



into €25 throughout the subsequent sampling period; 4) if
ty > t', the closed-loop state is ultimately bounded in 2, . .
Part 1. When x(t) is maintained in €2, there exists a feasible
solution u(t) = hi(&(¢;)), V¢t € [tj,tj41). j=Fk,....k+
N —1, to the optimization problem of the LEMPC of Eq. 9
at every t; due to the closed-loop stability property of the
Lyapunov-based controller h; () [3], [10], as proven in [3].
Part 2. We first analyze the case that z(ty) € Q5 and t; <t/
such that the constraint of Eq. 9f is applied. If x(tx) € Qp,
then from the constraint in Eq. 9f, () € Qp, V t €
[tk,tr+1). When the optimal solution of Eq. 9 meeting this
constraint is applied to the process for ¢t € [tx,tr+1), either
1) x(t) € Qp, YVt € [tr,try1), in which case z(t) € €,
V t € [tg,tpr1) since Qp C Qp, or 2) z(t) ¢ Qp
starting at some t, € [tg,tr+1). If this second case occurs,
the implementation strategy of Section III-A.1 indicates that
the control action will be changed to hy(x(tr + iAneas))s
starting at ¢ + (p + 1)Ayueas. In this case, we demonstrate
first that if Eq. 19 holds, then if x(ty 4+ pAseas) € Qpr,
z(ty + (P + 1)Asieas) € Q,. Subsequently, we demonstrate
that after tx + (p + 1)Aneas, the closed-loop state remains
bounded in €2, under the proposed implementation strategy.

If 2(tx + pAmeas) € Qp, then from [3], z(tx + (p +
1)Anmeas) € Qp. Speciﬁcally; as in [3], Proposition 2 gives:

Viz(tey + (p+ 1)Aneas)) < V(Z(tp + (p+ 1)Aneas))

+ fV(‘x(tk + (p + 1)Ameas) - f(tk’ + (p + I)Amea,s)‘)

< V(j(tk + (p + 1)Amea5)) + fV(fW(Ameas))

S ﬁle + fV(fW(Ameas)) S P

2D
which follows from Proposition 1, Eq. 9f, and Eq. 19.

If z(ty + (p + 1)Ameas) € Q,/Qp ., the implementation
strategy of Section ITI-A.1 indicates that h; ((tr+iAmeas))s
i€ {p+1,....,.M' — 2}, is subsequently applied for all
remaining ¢ before ¢;.1. When hi(x) is applied in this
manner, the time-derivative of the Lyapunov function along
the closed-loop state trajectories under hi(x) is determined
following [3]. Specifically, denoting ti, + (i + 1) Asyeas as t;,
Eq. 3 gives:

oV (z(t; - ~ -
V) pa(i, (i), 0) < ~as((a(@)) @D
for ¢ € {p,...,M' — 2}. From Eq. 3, the time derivative

of the Lyapunov function using the backup controller h; in
sample-and-hold V 7 € [t;, t;41) is as follows:

V() = D par), i ai), wit)
+ PO (i), a0 23)
- VD) a7, s ). 0
For all 7 € [t;,%;41), Eq. 6 gives:
j2(7) = ()] < MAmcas (24)

From Egs. 23, 24, 2, and 8, and considering |w| < 6§ and
z(t;) € Q,/Qp, and Q,, C Q-

V(a(r)) < —as(az(ps)) + LLMApeas + L0 (25)
If Eq. 20 holds, then
V(x(t) < =€,/ Ameas (26)
and 3 o
V() < V(z(E), Yt e i) 27)

Eq. 27 holds for all ¢ after that in which the Lyapunov-
based controller first begins to be applied within a sampling
period at intervals A,,eqs, as long as x(#;) € Q,/Q,.. If
z(t;) € Q,., then from Eq. 18, it remains within Q,
thereafter. By selecting p. > pmin, the closed-loop state
under the proposed implementation strategy is maintained
within Q, for ¢ € [tg, tpy1) if 2(tr) € Qp .

The fact that the closed-loop state is maintained within
Q, for t € [tg,tp1) when x(ty) € Q,/€,, and ultimately
bounded in §, . if ¢, > ¢ under the “control actions
computed by the LEMPC of Eq. 9 follows from the fact
that Eqs. 17 and 18 guarantee this in [3]. Applying this
recursively ensures that z(t) € Q,, ¥V ¢t > 0, if z(t9) € Q,
under the LEMPC of Eq. 9 with the implementation strategy
proposed in Section III-A.1.

Remark 2: As noted above, the use of the implementation
strategy in Section III-A.1 allows the requirements on /., to
reduce to those in Eq. 19, where if A,,cqs is quite small,
then in practice, the value of p, might be arbitrarily selected
to be relatively close to p, and in many cases, such a p, may
already meet the condition in Eq. 19. It is in this sense in
which the proposed implementation strategy may be a step
in moving LEMPC toward practical implementation.

3) Less Stringent Requirements on ()5 : Application to
a Process Example: We consider an example in which a
continuous stirred tank reactor (CSTR) is used to facilitate a
second order exothermic reaction A — B. The manipulated
inputs are C 4, the concentration of the reactant in the feed
stream, and (), the rate at which heat may be added or
removed by a heating/cooling jacket. The dynamics of the
process are:

. F __E
CAZV(CAQ—CA)—]C()G RgTC’i (28)
. F AH}CO __E_ 2 Q
T=—(Ty—-T)— e BTCY + —— 29
V( 0o—T) oiC, At oV (29)

where C'4 and T, representing concentration and temperature
inside the reactor respectively, are process state variables.
ko is the pre-exponential constant, £ and AH are the
activation energy and enthalpy of the reaction, respectively,
R, represents the ideal gas constant, ' is the inlet/outlet
volumetric flow rate F', and the liquid density pr, heat
capacity C, and liquid volume inside the reactor V' are fixed.
Vectors of the deviation variables of the states C'4 and T" and
inputs Cap and Q are x = [z1 29]T = [Ca — Cas T —Ts]T
and u = [u; ug]T = [Cao — Caos Q — Qs]T. The steady-
state values are Cys = 1.22 kmol/m3, T, = 438.2 K,



Ca0s = 4 kmol/m3, and Q, = 0 kJ/h. Values of the process
parameters are found in [11]. The LEMPC maximizes the
production rate of B by manipulating inputs C4¢ and @
with the following stage cost:

Le = —koe Tt Cp(7)?2 (30)

Input constraints require that 0.5 < Cyg < 7.5 kmol/m3
and —5 x 10° < Q < 5 x 10° kJ/h. Lyapunov-based
stability constraints are developed using V = z? Pz, where
P =[1200 5; 5 0.1]. The Lyapunov-based controller hy(z) is
applied in a sample-and-hold fashion for a period of A, ,cqs
when the closed-loop state z(tx + pAmeas) € Q,/p, . For
simplicity, the first component h; 1 (2) = 0 kmol/m?, and the
second component hy o(z) is computed via Sontag’s control
law [12] but saturated at the input bounds if they are hit
(the form of the control law is given in [11]). The constraint
of Eq. 9f was enforced at the end of every sampling period
when the state measurement at ¢, was in Qﬁé , and was also
enforced at the end of every sampling period after the first
when the state measurement at ¢, was in €2,/€5 .

The simulations were performed using the Explicit Euler
numerical integration method with an integration step of
10~* h to simulate the process, and the optimization problem
was solved in MATLAB using fmincon. The process was
simulated with additive noise added to the right-hand side of
Eqgs. 28 and 29 with a normal distribution generated by the
MATLAB function randn with mean zero, where the standard
deviation for the noise added to Eq. 28 was 0.3, and that for
the noise added to Eq. 29 was 20. The lower and upper
bounds on the noise (below and above which the noise was
clipped to the bound) were set to -0.6 and 0.6 for Eq. 28 and
-40 to 40 for Eq. 29. p was set to 300, and A,,c.s Was set
to the integration step of 10~* h.

Initially, the process was simulated with p, = 0.98p under
LEMPC without a backup control law activated between
sampling periods. The negative of the time integral of Eq. 30
after an hour of operation (reflecting profit during that time)
was 33.05. When the size of p, is increased to 99% of p, the
closed-loop state exits the stability region after 11 sampling
periods when the random number generator rng in MATLAB,
used for seeding randn, is given an argument of 1. Several
other values of the argument to rng were attempted (e.g., 10,
20, 30, 50, and 100), but the closed-loop state also left the
stability region with these when p. = 0.99p.

We therefore explore whether 5, can be set to 0.99p and
whether the closed-loop state can be maintained within the
stability region with the proposed implementation strategy,
and what the impact of this on profit would be. When
this was done, the profit was again 33.05, and the state
trajectories in state-space are shown in Fig. 1. Again, other
arguments for rng besides 1 were tried (10, 20, 30, 50, and
100) and in each case, the closed-loop state did not exit
the stability region. This indicates that the proposed method
was able to, with approximately the same profit as the case
where p. was selected via closed-loop simulations in which
it did not result in the closed-loop state exiting the stability
region, keep the closed-loop state inside when selected to

60
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Fig. 1. Input trajectories with the modified value of pe as p, = 0.99p

and the proposed methodology.

be a value that would have caused the closed-loop state to
leave the stability region when the backup control law was
not implemented.

B. Removing Barriers to LEMPC Use: Other Constraint
Tuning Concepts

Our work in [13] explored another concept for aiding in
the design of LEMPC’s. In [13], the constraints below, first
developed in [14], were added to the LEMPC of Eq. 9:

lui(tg) — hi(z(te))| < €, i=1,...,m

ui(t;) — hi(E(¢)))] < €,
i=1,....m j=k+1,....,k+N—1

€2y
(32)

where ¢, > 0. In [14], these constraints were added to the
LEMPC to prevent the difference in the inputs computed
between two sampling periods from becoming larger than a
desired threshold, with the goal of preventing actuator wear.
However, actuator wear is not directly represented by the
value of €,; therefore, this is a constraint for LEMPC with a
parameter that may be somewhat difficult to tune. Unlike the
parameter 7., which was also described as being difficult to
tune above, however, ¢, does not impact closed-loop stability
or recursive feasibility of the LEMPC of Eq. 9 augmented
with the constraints of Eqs. 31-32, which was proven in [14].
Therefore, [13] suggested that this difficult-to-tune parameter
could perhaps be tuned by performing on-line “experiments”
(in the sense that the process could be operated with different
values of the tuning parameter over time), and then operators
or engineers could provide feedback regarding how well they
liked the process response for different values of the tuning
parameter. This may lead to an optimal value of €, being able
to be chosen after the controller is set in place, rather than
through extensive closed-loop simulations or testing before
the controller is put on-line.

This has a flavor similar to that noted in the above section
in the sense of being a method for reducing the time required
to determine parameters in LEMPC before it can be put
on-line, potentially making the controller more tractable



for industrial use. It also gives another idea for aiding in
selecting p,, that may help to optimize the parameter more
than the ad hoc selection suggested previously. Specifically,
p., from the prior section may also be able to be tuned on-
line using past data to aid in selecting better values of pl,
for seeking to find a value that most optimizes profits (i.e.,
trades off between a larger region in which profit is optimized
in Eq. 9 and the potential that larger regions may result in
more frequent activation of h; between sampling periods).
The on-line tuning method might, for example, monitor a
profit metric over time with different values of g, that would
meet the theoretical conditions which guarantee closed-loop
stability, and then select a value that seems to be most
economically attractive, based on the data. The on-line tuning
and the fact that the data may not be truly representative of
the future plant behavior does not pose closed-loop stability
issues in this case, as p., can be varied within a range where
closed-loop stability is still guaranteed.

For example, we return again to the CSTR from Sec-
tion III-A.3 (using rng(100)), but this time we seek to use
the activation of hj(x) not as a long-term solution for
disturbance handling, but instead as a technique for allowing
on-line operating data to be gathered that allows p/, to be
adjusted over time. The goal of adjusting 7, is to attempt
to select a value that does not cause h(z) to be activated
often, thus leaving it as a backup method for attempting to
handle irregular scenarios to design some conservatism into
the controller, but based on on-line operating data rather than
closed-loop simulations carried out a priori. Specifically, we
initialize p,, at 0.75p, but then increase it by 1 at the end of
each sampling period until the value of V' (z) exceeds 0.99p
at some point in a sampling period. At that point, we again
activate hq(z), but then decrease p, by 1 compared to the
value that was used for the sampling period when V(z) >
0.99p at some point in A. The goal of this is to utilize on-
line process operating data to serve as a warning that the
value of p/, may not be tight enough for typical disturbances
and the size of the sampling period to allow the closed-loop
state to remain within the majority of €),, suggesting that
reducing p/, may promote closed-loop stability. Fig. 2 shows
the values of V(z) and p, in comparison to p over time
when this strategy is used. The maximum value of V(x)
experienced during the hour of operation under this strategy
was 297.02, which is slightly above 0.99p = 297. The value
of p!, increased from 225 to 295 but then was subsequently
decreased to 294, and ended at 293. The figure shows that
this on-line tuning method for p,, which takes advantage of
the implementation strategy developed in Section III-A.1 to
prevent the closed-loop state from moving too close to the
boundary of €2, but then uses the on-line data regarding the
values of p!, for which the closed-loop state approaches the
boundary of €, over time to decrease that parameter, was
successful in preventing the closed-loop state from leaving
Q, in this simulation.
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Fig. 2. V(z) and p., compared with p over time.
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