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Abstract
This paper puts forth a new indicator of emerging technological topics as a tool for addressing challenges
inherent in the evaluation of interdisciplinary research. We present this indicator and test its relationship
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1. Introduction

Improving information to evaluate and detect emerging technologies has been a significant interest
of public and private R&D managers (Cozzens et al., 2010; Porter et al., 2002; Van Raan and Van der Velde,
1991). This level of interest is due in part to the potential for emerging technologies to produce beneficial
socio-economic impacts (Martin, 1995).

The perceived importance of technological emergence has led to extensive debate about how to
define it. For instance, Rotolo et al. (2015) conceptualized emerging technology by extracting five
attributes from a comprehensive review of relevant literature. Other researchers contributed to defining
specific emerging technological areas to explore their developmental trajectories. Efforts toward
delineating nanotechnology (Arora et al., 2013; Mogoutov and Kahane, 2007; Porter, Youtie, et al., 2008)
and a recent study to explore its emerging subdomains (Wang et al., 2019) are examples.

Scholars have discussed what factors shape technological emergence. Among others, studies seem to
broadly agree with the idea that science is the key (Martin, 1995; Small et al., 2014). Scientific progress
becomes a driver of technological emergence, enabling exploration of solutions to emerging problems. At
the same time, technological emergence itself becomes a crucial input for further scientific progress
(Archibugi, 2017; Hung and Chu, 2006; Porter et al., 2002). In their study, Kwon et al. (2019) showed that
research addressing emerging technological topics within a science domain generates greater and broader
scientific impact, as measured by citations.

What scientific research contributes to addressing emerging technological problems? Literatures on
philosophy of science and research evaluation suggest that research integrating knowledge in diverse
fields in a creative way may particularly contribute to technological emergence. Combining (seemingly)
distant knowledge generates new knowledge and tools for further research (among others, Jacobs, 1970;
March, 1991; Schumpeter, 1961). Such knowledge may enable creative solutions to advance emerging
technological topics. This proposition helps to theoretically elaborate on how science and technological
emergence relate, and yet, empirical evidence concerning interdisciplinary combinations and the
emergence of technological topics has not been extensively explored. Such exploration is important to
research evaluation because interdisciplinary knowledge combinations can introduce uncertainties less
prevalent in traditional discipline-focused work that can make research evaluation more difficult.

The ability to reduce uncertainties in evaluating interdisciplinary research by measuring technological
emergence underscores our research proposition. As discussed above, examining what contributes to
technological emergence is a special interest of research evaluators and policymakers whose mission is

identifying promising research projects to support. In addition, the potential of knowledge combination



for solving new problems in science is related to the long-standing scholarly endeavor toward evaluating
the interdisciplinarity and novelty in research projects (e.g., Uzzi et al., 2013).

In this study, we contribute to narrowing the gap in the literatures on atypical research combinations
and interdisciplinarity and on technological emergence by employing a recently developed bibliometric
indicator of technological emergence (Porter et al., 2019) — the Tech Emergence Score. We operationalize
the theoretical proposition into the following two hypotheses:

1) research integrating interdisciplinary knowledge addresses emerging technological topics to
a greater extent than discipline-focused research.
2) research combining knowledge with greater atypicality addresses emerging technological

ideas more than research based on typical knowledge combinations.

We test these hypotheses by using publication metadata (obtained in Web of Science abstract record
sets). To identify emerging technological problems (i.e., topics), we use the tech emergence score (Porter
et al., 2019). This indicator enables identification of terms emerging across a corpus of research
publications in a given domain and evaluation of the extent to which each term is emergent in the domain.
After extracting terms with high emergence scores, we calculate a publication-level emergence score by
aggregating the scores of emerging terms appearing in the abstract and title of the publication. The
publication-level emergence score quantifies the extent to which the publication’s research outcomes
address emerging topics in the field.

By defining interdisciplinarity as the extent to which a body of research originates from the integration
of knowledge in diverse science disciplines (e.g., Porter et al., 2006; Wagner et al., 2011), we measured
the interdisciplinarity by using the integration score (Porter, Roessner, et al., 2008). To measure the
atypicality of knowledge combination, we employed the novelty measure used by Lee et al. (2015). Our
multivariable regression analysis using 2013—2015 research publications in three selected sub-domains:
Nano-Enabled Drug Delivery (NEDD), Synthetic Biology (Synbio), and Autonomous Vehicle (AutoV) found
evidence supporting both hypotheses. Our further investigation showed that in the three fields under
analysis, interdisciplinary and atypical knowledge combinations increasingly or continuously contribute to
address emerging technological topics in each field.

The contribution of this study is threefold. Our finding suggests that public R&D managers may benefit
from investigating the “interdisciplinarity” of the research projects when trying to support research
projects for cultivating a certain emerging technological domain. Second, the present study contributes

to extending the strain of research evaluation studies on measuring and assessing interdisciplinary



research. Past research evaluation approaches have addressed the challenges of investigating
interdisciplinary domains by applying disciplinary methods to interdisciplinary research assessments
(Laudel and Origgi, 2006). Recent years have seen the rise of a new generation of methodologies for
addressing the uncertainties and distances inherent in interdisciplinary fields. Examples of these
methodologies and tools include new science mapping techniques (Degn et al., 2019), alternative
translational frameworks (Molas-Gallart et al., 2016), and narratives (Bone et al., 2020). Our study
contributes to these new methods and measures for conducting research evaluation in an interdisciplinary
context by showing usefulness of a new indicator of technological emergence and testing its connections
with interdisciplinarity. Third, in light of a long-standing discussion of the appearance of a systematic bias
in funding decisions against novel research projects that integrate knowledge of diverse fields (Boudreau
et al., 2016; Bromham et al., 2016; Langfeldt, 2006; Metzger and Zare, 1999; Porter and Rossini, 1985),
our findings further emphasize the importance of continuing institutional efforts toward supporting such
research projects.

The remainder of this paper is structured as follows. In section two, we review the literature on 1)
knowledge combination as a driver of exploring solutions to new technological and research problems,
and (2) the nature of technological emergence and its association with knowledge combinations. By
reconciling the two pillars of literature, we draw two hypotheses. Section 3 illustrates our empirical
research design, and section 4 presents the analysis and results. In sections 5 and 6, the implications of

the findings and conclusions are provided.

2. Literature Review and Hypotheses Development

2.1. Knowledge combination for science

Science is comprised of creative activities to solve problems (Klahr and Simon, 1999; Simon, 1977,
Simon et al., 1981). In the course of solving problems, research generates new knowledge that may detect
and accumulate anomalies of a dominant scientific theory, thereby advancing a possible scientific
paradigm shift (Kuhn, 1962).

From whence does scientific creativity originate? Researchers seem to broadly agree on the idea that
combination of existing knowledge is a source of creativity. In his book, Jacobs (1970) argued that “adding
new kinds of work to other kinds of older work” becomes the source of human creativity. March (1991)
also argued that combination of existing knowledge helps with exploration of untested new approaches

to addressing problems.



Knowledge combination is also discussed in innovation studies. Schumpeter (1961) explained that one
of the drivers of technological innovation is a combination of existing technology/knowledge to bring new
products into the market. From his comprehensive literature review, Desrochers (2001) concludes that
the combination of seemingly distant knowledge drives the diffusion of knowledge and, thus, contributes
to technological innovation.

Economists agree with this conclusion. Nelson and Winter (1982) and Romer (1994) argued that
scientific progress is an important driver of economic growth, and it originates from the combination of
existing knowledge, materials, and arts. By modeling the knowledge creation process as the cumulative
combination of existing knowledge (Azoulay et al., 2011), Weitzman (1998) explicitly showed that the
novel combinations of the old knowledge contribute to economic growth by becoming the crucial input
for knowledge production.

Some studies attempted to extend these theoretical concepts through empirical analyses. For
instance, by using patent data, Fleming (2001) quantified the extent to which an invention originated from
combination of preexisting inventions in diverse technology fields. Strumsky and Lobo (2015) used a
similar approach to explore which types of knowledge combinations are associated with technological
novelty. Uzzi et al. (2013) suggested a new way of quantifying the novelty in knowledge combination in
science. By using 17.9 million research articles indexed by Web of Science (WoS), the authors generated
all the pair-wise combinations of the cited journals in these research articles. Then, they calculated how
atypical the paired journals are based on joint citations. They used this metric as a measure of article-level
novelty in knowledge combination. By modifying this method, Lee et al. (2015) examined the relationship
between the characteristics of the research team and a resulting publication’s novelty. Wang et al. (2017)
subsequently showed that there is a great level of variability in the scientific impact of research that
combines existing knowledge in atypical ways, while scholarly recognition of the value of such research is
often delayed. More recently, Wagner et al. (2019) explored the relationship between international
research collaboration and the novelty of resulting research outcomes.

If, as reviewed above, the novel combination of knowledge is a source of scientific creativity for solving

new problems, how may it become relevant to addressing emerging technological issues?

2.2. Technological Emergence: Rising New Problems
Rotolo et al. (2015) characterized emerging technology as both radically novel (along with fast-
growing, having coherence, and prominent impact) and at the same time, marked by uncertainty and

ambiguity. According to this definition, it might not be too much of a stretch to interpret technological



emergence as a phenomenon originating from the rise of a set of relevant new technological problems
that increasingly draw the interest of a research community, but, as yet, lack a clear boundary or definition.
This interpretation implies that technological emergence concerns new problems that need solutions or
methods which have not been explored yet.

Given that emerging technological problems are new to the established research communities
(Pistorius and Utterback, 1997), and hence the solutions are not readily generated through conventional
ways, addressing them may benefit from new scientific approaches, creatively applied. As we have
reviewed previously, researchers repeatedly point to combining distant knowledge as a pathway toward
this end. By combining knowledge that is seemingly distant, scientists may benefit in exploring possible
solutions to real-world emerging technological issues (Belcher et al., 2016) that could not be addressed
by applying single-domain knowledge. The rationale derived from our literature review and consideration
of the nature of technological emergence allows us to draw the following proposition:

Proposition. Research that combines distant knowledge is more likely to contribute to addressing

emerging technological issues than research combining proximate knowledge.

The extent to which research combines distant knowledge can be measured by quantifying the extent
of integration of knowledge in diverse disciplines (Klein, 2006; Masse et al., 2008; Mumford et al., 1991)
or how atypical the combinationisin general (Lee et al., 2015; Uzzi et al., 2013; Wang et al., 2017). Studies
conceptualized the former as interdisciplinarity or its variants (e.g., multi-disciplinarity) in research (Porter
et al., 2006; Wagner et al.,, 2011) while defining the later as Novelty in knowledge combination.
Accordingly, our proposition is distilled into the following two hypotheses:

Hypothesis 1 (Interdisciplinarity): Research integrating multidisciplinary knowledge is more likely to

address emerging technological topics than research involving disciplinary-focused knowledge.

Hypothesis 2 (Novelty): Research combining knowledge in novel ways is more likely to address
emerging technological topics than is research involving conventional knowledge combinations.

In the next section, we describe our research design to test the two hypotheses empirically.

3. Method
3.1. Overview of the Research Design
The empirical setting of this research is based on the study of Kwon et al. (2019). Because scientific

publications document the original contributions of underlying research (Merton, 1973; Price, 1963), we



consider an academic publication as a container of original research outcomes. We use the text
description of the research in the abstracts and titles of publications as the primary information source
that contains the essence of the research outcomes.

We propose a measure of the extent to which research outcomes address emerging topics in a field
that can contribute to a reduction of evaluation research uncertainties by quantifying the degree to which
an abstract or title in a scholarly publication mention emerging technological topics (terms) in the field.
To this end, we extract emerging terms and calculate emergence scores by using the tech emergence
score algorithm (Carley et al., 2018; Porter et al., 2019) from the corpus of publications published from
2003 to 2012 (10 years). The extracted terms represent the emerging topics in the field of interest over
ten time periods (years).

Next, we calculate the emergence score of each publication published in any of three consecutive
years (i.e., 2013, 2014, 2015) by aggregating each of the extracted terms’ emergence score appearing in
the publication’s abstract and title. In doing so, we quantify the degree to which the underlying research
outcome in each publication addresses technological issues that evidence aggressive recent growth, while
meeting emergence criteria concerning community, scope, novelty, and persistence.

We choose the three years considering the way publication-level emergence is calculated. The
emerging terms are extracted from abstracts or titles of publications in the field of interest for the last 10
years. If we take too long a period of publication years for the analysis (for example from 2013 to 2019,
rather than 2013 to 2015), the extracted emerging terms from 2003-2012 publications may less frequently
appear in the newer publications as the technological emergence recognized presently is unlikely to be so
after a few years. Taking too short a period (e.g., analysis of 2013 publications only) will be less useful
because findings from the analysis can be susceptible to temporal patterns. Our choice of the three years
is to accommodate these restrictions.

The unit of analysis is the individual publication. We provide further details on calculating the

emergence score in section 3.3.

3.2. Data

The ideal research design in bibliometric studies is often to use the metadata of the entire population
of scientific publications. However, doing so is not preferable for this study because emerging topics are
defined at the level of the technology domain. Instead, we start with several technology domains that are

well-defined and distinct from one another.



We choose to analyze the publications in three research-driven domains: NEDD, Synbio, and AutoV.
These three domains are selected because they represent potentially interdisciplinary fields with research
that is oriented in novel combination of knowledge in diverse ways. NEDD represents more of a
translational orientation to interdisciplinarity in the pharmaceutical research domain in the realm
depicted by Molas-Gallart et al. (2016). AutoV represents an applied research field bringing together
engineering and computer science fields for the automotive industry. Synbio bridges these two fields by
merging biomedical and engineering and computer science but with economic potential for myriad
industrial applications such as biofuels, medicine, and agricultural sectors among others. Testing our
hypotheses about the extent of connection between interdisciplinary integration/atypical combination of
knowledge and technological emergence across these domains (that represent diverse interdisciplinarity
patterns) can offer insights into what research has contributed to the growth of these fields. Moreover,
the dominant subdomains of relatively of these three fields encompass distinctive disciplines — Materials
Science for NEDD, Biology for Synbio, and Information and Computer Science for AutoV — the disciplinary
variation supports generalizability of findings.

Our data source is WoS, provided by Clarivate. We retrieved abstract records with metadata of NEDD
publications from WoS by using the bibliometric definition formulated by Zhou et al. (2014). This definition
yielded 92,514 publication records. Nearly 54,000 of these papers were published from 2003 to 2012, and
38,557 were 2013-2015 publications. For synthetic biology, we used the search strategy formulated by
Shapira et al. (2017) which yielded 7,377 publications. Of these, 4,041 were published in the 2003-2012
time period, and 3,336 were papers published from 2013 to 2015. We retrieved metadata from AutoV
publications by using the keyword-based operational definition developed by Youtie et al. (2017). The
search strategy resulting in 31,251 records of which 11,442 were published from 2013 to 2015.

We extracted emerging terms and calculated emergence scores from the 2003-2012 corpus by using
VantagePoint (a text mining software — www.theVantagePoint.com) and relevant scripts provided by the
Science, Technology, and Innovation Policy (STIP) program group at Georgia Tech. Then, we calculated a
publication-level emergence score for each publication in the 2013-2015 corpus by aggregating the

emergence scores of the emerging terms in its abstract and title.

3.3. Variables
Dependent variable. The dependent variable is the publication level emergence score (ES). We take a

natural log transformation of ES, adding a value of 1 (In(ES+1)) to take into account the right-skewed



distribution of the ES. To calculate the publication emergence score, we take the following steps as

described in two prior studies (Carley et al., 2018; Porter et al., 2019).

Extract all terms from the abstract and title of a corpus of publications published from 2003 to
2012 (a 10-year period) via VantagePoint’s NLP (Natural Language Processing) to extract phrases,
then consolidated using its “RefineNLP” routine (entailing fuzzy matching of term variants and
application of thesauri to remove noisy terms).
Select the terms that pass the following thresholds:
- Growth: The growth rates in frequency of the terms are at least 1.5 times greater than
the growth rate of the overall publication records in the corpus.
- Community: There are at least two organizations that have publications containing the
term in question in the 10-year corpus.
- Scope: Calculate the inverse document frequency (IDF)-value of each term based on a
corpus of randomly retrieved publication records from WoS. If the calculated IDF-value of
a term within the corpus of the technology domain of interest is greater than the IDF-
value of the random publications, screen out this term.
- Novelty: The term appeared more than x% (benchmark = 15%) of the publications from
2003 to 2005.
- Persistence: The term appeared in at least 7 records, in at least 3 years (to avoid “one-hit
wonders”).
Calculate an emergence score for each term: Calculate the following three metrics first— active
trend, recent trend, and slope. The active trend measures the change in the extent of publications
containing the term of interest between the period of the 4th-6th years and the 8th-10th
publication years. The recent trend quantifies the change in a more recent period (9th-10th years
versus 7"-8th years), and the slope takes the average year-growth rate of the share of publications
containing the term by calculating the difference in the extent of publications containing the
terms at the 7th and 10th publication years. The emergence score is calculated by aggregating the
three variables. All terms that have lower emergence scores than a certain threshold value (set,
based on empirical testing, at the square root of i, 1.77) are removed to clear out the terms that

may be too weak to consider as a term representing an emerging technological idea.

Finally, the publication-level emergence score is calculated by summing up the emergence score of

the terms that appeared in the abstract and title of the publication in question. This variable quantifies



the extent to which the research outcome in the focal publication contains the terms related to technical
emergence in the target domain. The higher the emergence score, the greater the extent to which the
publication contains emerging technological terms and addresses cutting edge technological problems in
the domain. When the publication does not contain the emerging technical terms in the domain in
abstract or title, the emergence score for the publication is calculated as 0. If a publication has a positive
emergence score, this positive score indicates that the publication has at least one emerging technical
term.

Note that there are several pre-determined parameters employed in calculating the emergence score.
The recent study by Liu and Porter (2020) tested the sensitivity of the emergence scoring algorithm to
those parameters. According to their study, the selected parameters in the present study are in a relatively
stable range in terms of sensitivity.
Independent Variables. Following a definition of interdisciplinary research (i.e., research that integrates
knowledge arising in diverse science disciplines) (e.g., Porter et al., 2006; Wagner et al., 2011), we
operationalize interdisciplinarity as an integration score (iScore) that essentially measures the disciplinary
diversity of the knowledge base (Stirling, 2007) in the cited reference list, as the independent variable for
testing hypothesis 1. We calculate iScore by using the following formula.
i 2 fifiCoS (i, j)

2i2jfifi
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where f; is the share of a subject category i in the cited reference of publication p, cos(i,j) is the cosine
similarity between subject categories i and j calculated based on the co-citation pattern by papers in

categoryiandj.

The scientific discipline is proxied by WoS subject categories (WoS SCs) (Porter, Roessner, et al., 2008).
The greater the value of the iScore, the more diverse the disciplines of cited papers, and, thus, the higher
the interdisciplinary knowledge integration. When iScore takes a value of 0, this means that all the cited
papers in the focal publication belong to a single sub-discipline. When iScore equals 1, it indicates that the
disciplines of the cited references are fully distributed. To transform the iScore so that it approximates a
normal distribution, we take the natural log transformation of iScore+1 (In(iScore+1)). Note that the iScore
is defined only if there is at least one cited WoS SC in the references. Hence, publications that have no

valid cited WoS SCs information take a missing value.
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To test hypothesis 2, we use the Novelty measure as the independent variable. Uzzi et al. (2013)
suggested a way of measuring the extent to which a body of research originated from atypical
combinations of existing knowledge by quantifying how rare the cited sources (i.e., journals) by a
publication jointly appear. This method creates an imaginary counterpart publication by assigning the
same number of randomly selected cited papers as the focal publication’s cited reference list has. Then,
the relative rarity of the combination of the cited sources in the focal paper compared to the counterpart
is calculated. Uzzi’'s method was later modified by Lee et al. (2015) to make it computationally less
intensive. In our study, we choose to use the method proposed by Lee et al for its computational benefit.
Here we illustrate the details for calculating Novelty.

e Retrieve a corpus of publications published in time t, in the technology domain of interest.

e For each publication in the corpus, generate pairs of all the cited sources.

e Pool the generated pairs together. The resulting list of the source pairs is Ut. The size of the Ut

set is Nt.

The extent to which the sources in each pair (source i and j) are jointly cited in year t (Commoness; ;)

is calculated by the following formula.

Nije

Commoness;j; = NN
it Iy N,

Ne ™ Ng

Where Nj; is the number of instances of source i in U;. N;j; is the number of instances of the pair of

sourcesiandjin U;. N—” is the empirical probability that source i appears in U;.
t

As a result, each publication comes to have a list of “commonness” values for each pair of cited
sources. The top 10th-percentile of commonness values is designated as the threshold for the
commonness measure at the publication-level. Publication level novelty is calculated by taking on the
inverse of the natural log of publication-level commonness. The novelty measure takes a continuous value
without lower and upper limits. The greater the value of the Novelty, the greater the “unconventionality”
or “atypicality” in the combinations of the cited sources among the publications in the same field as the

focal publication.

Control Variables. To estimate the direct correlation between the independent and dependent variables,

we introduce several control variables into the regression analysis.

11



First, we control for source-level fixed effects (Source FE) to take into account the probable
heterogeneity in the correlation based on the venue where papers are published. For example, some
journals explicitly target interdisciplinary research, while others are more in favor of discipline-oriented
research. It is also plausible that some journals can be more active in publishing research on emerging
technological topics, while others are not.

Second, we introduce a set of dummy variables for each of the publication years (i.e., 2013, 2014, and
2015) to take into account the probable time trend (Pub Year FE).

The third and fourth control variables are associated with research team characteristics. Wagner et
al. (2019) showed that international collaborations for research tend to have lower novelty in terms of
knowledge combinations because of the substantial transaction costs involved in coordinating
interactions between researchers in different countries. According to their study, the transaction cost may
suppress the research team’s activity in exploring new combinations of knowledge. To consider this aspect,
we introduce Int Collabo as a control variable. This variable takes the value of 1 if there are two or more
countries listed in the authors’ country information.

Besides, studies have shown that research team size is associated with research performance, while
research collaboration is associated with scientific creativity (Cohen and Bailey, 1997; Lee et al., 2015;
Vogel et al., 2013; Wuchty et al., 2007). To control for team size effects, we take into account the research
team size as the fourth control variable by using the number of authors of the publication (Team Size).

It is plausible that the members of the interdisciplinary research team (or center) are more active in
the integration of knowledge in diverse fields. Such interdisciplinary nature in the human capital of the
research team may make the team more active in finding better solutions to emerging technological
domain issues (Bishop et al., 2014). Yet, we argue that team-level interdisciplinarity is an alternative
measure of the iScore, rather than a compounding factor that needs to be controlled (Aydinoglu et al.,
2016) because the research team members’ idea/information exchange and their knowledge integration
are reflected in the disciplinary diversity of the cited references in the resulting research publication.

Fifth, a binary variable indicating whether the publication has a funding acknowledgment (Funding) is
controlled. This variable is included to capture the fact that some grants are designed to support research
on specific emerging technological areas while it has been argued that research funding allocation has
been systematically biased against interdisciplinarity (Bromham et al., 2016; Metzger and Zare, 1999;
Porter and Rossini, 1985) or novel research (Boudreau et al., 2016).

Finally, we control for the first authors’ country fixed effects (Country FE). This is to consider the

difference in the research practice or resources by the country where the leading author is located.
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For the regression analysis, we fit our data to an OLS regression model using robust standard errors
to take into account probable violation of the homoskedasticity assumption in estimation.

If integration of interdisciplinary knowledge and combination of prior knowledge in atypical ways
positively affect the extent to which research addresses emerging technological topics, the coefficients of

In(iScore+1) and Novelty both are anticipated to take positive values.

4. Results

4.1. Descriptive Analysis

Table 1 presents correlations between the key variables. All the correlation values are below 0.4,
suggesting no critical issue in multicollinearity in the regression analysis. Note that some of the datapoints
drop for the In(iScore+1). This is because the iScore for the publications that have no valid information
about the cited WoS SCs cannot be calculated.

[Insert Table 1 about here]

Figures 1 and 2 present simple correlations between the independent and dependent variables.
Although there is a difference in the size of the slope, the In(iScore+1) is positively associated with the
In(ES+1) across all three domains. Similarly, Novelty is positively associated with In(ES+1) in all three fields.
These observations indicate that the greater the research interdisciplinarity, the more the extent to which
the research addresses emerging technological topics within the field. The same pattern holds when it
comes to the relations between Novelty and In(ES+1), implying that the greater the atypicality in
knowledge combination, the more the research addresses emerging technological topics in the field.

[Insert and 2 about here]

4.2. Regression Analysis
In this section, we report and interpret the regression results. Table 2 presents the main regression
table.

[Insert Table 2 about here]

The first four columns contain regression results using the In(iScore+1) as the independent variable.
In the first column, we report the regression results using the entire dataset with the technology domain
dummy. The coefficient of In(iScore+1) is 0.75 and statistically significant at the 0.01 significance level.

When the integration score increases by 1%, the publication-level emergence score increases by 0.75%,
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on average, holding the other variables constant. The regression results for NEDD, Synbio, and AutoV
publications are reported from the second to fourth columns, respectively. According to the result, a 1%
increase in the integration score is associated with 1.43% and 0.63% increases in the publication-level
emergence score, respectively, in NEDD and Synbio. Although the coefficient of In(iScore+1) for AutoV
(see, the fourth column) is statistically insignificant at the 0.1 significance level, it remains positive (0.035,
0.035% change).

Overall, the regression results support Hypothesis 1. The greater the extent to which research
integrates interdisciplinary knowledge, the more the research addresses emerging technological topics in
the field. The exception to this finding is the AutoV regression. Although the association between iScore
and emergence in the AutoV regression was positive, we cannot reject the null hypothesis stating that the
two variables are not correlated. We argue that this is because of the low-coverage of WoS SCs in the
cited references in AutoV publications. We provide a more detailed discussion in section 4.3.

The fifth to the last column contains the regression results using Novelty as the independent variable.
The coefficients of Novelty are all positive and statistically significant at the 0.05 significance level.
According to the estimation result, a one-unit increase in Novelty is associated with a 10.2% increase in
the publication-level emergence score, on average. For NEDD, Synbio, and AutoV publications, one unit
increase in the Novelty variable results in 61.4%, 13%, and 1.4% increases in the publication-level
emergence score, respectively. The positive and statistically significant coefficients of Novelty indicate
that the higher the atypicality in research knowledge combination, the more the research addresses
emerging topics in the field, which support Hypothesis 2.

As an alternative model, we also run Tobit regression. Our Tobit regression results reported in
Appendix B-1 show consistent findings with the OLS regression analysis.! For further robustness checking,
we perform a regression analysis that controls for the number of cited references (nRef) while checking
the sensitivity of the findings against the parameter that was used in calculating Novelty. The findings are
consistent with those from the main regression. We report these robustness check results in Appendix B-

2 and B-3, respectively.

4.3. Inconsistent findings: The case of Autonomous Vehicles

1 Note that in the Tobit regression, the source FE is not controlled because the currently available statistical package
is not capable of handling a large number of dummy variables. In our data, over 12000 sources were appeared, which
implies that more than 12000 dummy variables should be introduced into the regression for Source FE. This could
be possible in OLS regression with the areg with absorb option in Stata. However, the similar function is currently
not available for the Tobit regression.
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Although the series of regression analyses found evidence supporting Hypothesis 1, by and large, the
correlation between In(iScore+1) and In(ES+1) was not statistically significant in the case of AutoV (see
the fourth column of Table 2). We argue that this result does not necessarily undermine the validity of
our findings. When it comes to publications on AutoV, many of their cited references were technical
reports, conference proceedings, or working papers that were not indexed in WoS. Hence, most of the
cited references by AutoV publications lack WoS SCs in the data, and this low number of WoS SCs might
not produce enough variations in estimating the association between two variables of interest. Indeed,
our data show that, on average, only 6.5% of the cited reference sources in an AutoV publication were
indexed by WoS.

Our argument is further supported by the finding that the association between Novelty and In(ES+1)
was positive and statistically significant for AutoV publications. In this analysis, the novelty measure was
calculated by using data from “sources of cited references” instead of the WoS SCs. This enables full
utilization of the information in the cited reference for estimating the association between the two
variables of interest. Accordingly, we argue that the statistically insignificant association between
In(iScore+1) and In(ES+1) for the AutoV publications was caused by the missing cited WoS SC information

in many of the AutoV publications.

5. Change of the Association Over Time

To what extent do interdisciplinarity and atypical knowledge combination offer utility in addressing
emerging problems in a science domain? In this section, we explore an empirical answer through an
additional analysis.

Toward this end, we examine the change in the marginal effect of the In(iScore+1) and Novelty on
In(ES+1) over time. For our empirical setting, we use all the publications in the data (i.e., from 2003 to
2015) and create dummy variables corresponding to each publication year. Then, we generate the
interaction terms between the publication year dummy variables and the two independent variables,
respectively.

The coefficients of the interaction terms present the difference in the size of the marginal effect of
the independent variable on the dependent variables. The estimated correlation between the
independent and dependent variables using publications in 2003 becomes the reference. If the
coefficients of the interaction terms take positive values, this indicates an increasing contribution of

knowledge combination to addressing emerging technological topics from 2003. In contrast, if the
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coefficients are negative, it implies a diminishing contribution of the combination of distant knowledge to
addressing emerging topics.
[Insert Figure 3 about here]

Error! Reference source not found. visualizes the regression result (the Full regression table is
reported in Appendix C). Note that the upper bounds of all the 95% confidence intervals of the estimated
coefficients never go below zero. This implies that, although there are differences in the pattern by
domain, the marginal effect of atypical knowledge combination and integration of interdisciplinary
knowledge on the extent to which research outcomes address emerging topics in the three domains seem
to increase or stay constant over time. From this analysis, we find no evidence showing that the marginal
contribution of combining distant knowledge to addressing emerging topics decreases over time in the

three domains.

6. Discussion

In this study, we have examined whether research that combines distant knowledge contributes more
to addressing emerging technological issues. We derived two hypotheses: (1) research integrating
knowledge from diverse disciplines addressed more emerging technological topics, and (2) research
combining prior knowledge in atypical ways addresses emerging technological topics better in the field.

We tested the two hypotheses by analyzing the text in titles and abstracts of WoS-indexed
publications in NEDD, Synbio, and AutoV. We measured the extent to which a body of research addresses
emerging technological topics by using publication-level “emergence scores.”

Our analysis found consistent evidence supporting both hypotheses. The results indicated that the
higher the integration score and the novelty of publication, the greater the publication-level emergence
score. Our findings imply that research outcomes with greater interdisciplinarity and novelty in knowledge
combinations address more emerging technological topics within the three domains we analyzed.

Do our findings imply that combining knowledge from diverse fields in an atypical (i.e., novel) way will
necessarily make the research outcomes better in addressing emerging technological topics? Our research
does not provide a definitive answer. First, it would be reasonable to interpret the findings such that
researchers who try to address emerging topics, in the beginning, might tend to seek to combine
knowledge in different disciplines. In the course of the searching process, researchers may try to combine
knowledge in diverse disciplines in novel ways. This interpretation implies that encouraging researchers

to search for knowledge in various disciplines and incorporate the knowledge into their research in an
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atypical way may not necessarily guarantee the creation of research outcomes that actually address
emerging technological topics in the field.

Second, before reaching any conclusion, it is necessary to properly take into account the fact that
research teams are likely to face extensive transaction costs when they integrate knowledge from diverse
disciplines in a novel way (Wagner et al., 2019). Such integration entails the extra cost of searching for
knowledge outside one’s field and assimilating the information into the research. Furthermore, as many
prior studies have highlighted, research combining prior knowledge in atypical ways may run the risk of
delayed recognition of its scientific contributions (Garfield, 1980; Stephan et al., 2017; Van Raan, 2004;
Wang et al., 2017). These research team dynamics do not necessarily function negatively for the process
of interdisciplinary/atypical knowledge combination. Studies suggest that if a research team consists of
members with a diverse knowledge base, the transaction cost in interdisciplinary or novel knowledge
integration can be mitigated (Basner et al., 2013; Falk-Krzesinski et al., 2011). This suggests that the
desirability and feasibility for research teams to combine knowledge from diverse disciplines in novel ways
will partly depend on the research team’s collective capacity of orchestrating the interdisciplinary/atypical
knowledge integration process. We believe that empirically testing this proposition is an intriguing
research question for future studies.

One may question how possibly research combining knowledge in diverse fields in a novel way
contributes to scientific progress. Our findings in this study, in conjunction with the conclusions of the
study by Kwon et al. (2019), suggest an answer. They have shown that research addressing emerging
technological topics had greater and broader citation-based impacts on subsequent research.
Incorporating this conclusion into our findings leads us to make an argument that research with
interdisciplinary and novel combinations of knowledge contributes to addressing emerging technological
topics, and it will contribute to generating new knowledge that has a greater and broader scientificimpact.
That is, papers that cite more diverse research tend to be more apt to address cutting edge (emerging)
topics, and, eventually, to be more widely cited themselves. Whether the effect exists and how large the

effect is are intriguing questions for future research.

7. Conclusions

Our study provides broad implications for policymakers and the research evaluation community. First,
an indicator of technological emergence can reduce evaluation uncertainties by highlighting which
research topics are more likely to persist in the future and be novel, grow, and have a community around

them. In evaluation of emerging science and technology research, identifying and measuring the extent
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to which a research outcome addresses emerging technological ideas has been a substantial challenge
because technological emergence is accompanied by uncertainties as well as ambiguities in its definition
and operationalization. Our research contributes to addressing this difficulty by offering a method of
calculating a research outcome-level emergence score. This score identifies which pathways are more
likely to be taken up in an emerging science and technology domain in future years (Porter et al., 2019),
which can help in developing evaluation designs for these new research areas.

We show that research combining interdisciplinary knowledge is more likely than disciplinary-focused
research to address emerging technological ideas. Policymakers who seek to support research projects on
cutting edge topics may benefit from this finding. For example, when trying to support research projects
for cultivating a certain emerging technological domain, public R&D managers may need to evaluate not
only whether the research project explicitly targets emerging technological topics in the field, but also the
research team’s capability of combining knowledge from diverse disciplines.

Our finding also emphasizes the necessity of continuing support for interdisciplinary research through
science policy measures. Researchers have found evidence that, although interdisciplinary research can
generate scientifically impactful knowledge (Kwon et al., 2017) and science has become increasingly
interdisciplinary (Porter and Rafols, 2009), studies have shown that research funding schemes have been
biased against interdisciplinary teams because reviewers of the research proposals often favor discipline-
oriented research (Bromham et al., 2016; Metzger and Zare, 1999; Porter and Rossini, 1985). Our paper
contributes to these studies by showing that interdisciplinary research can distinctively contribute to
addressing emerging topics. This suggests that research metrics gauging degree of interdisciplinarity or
novelty in knowledge combination warrant research evaluation attention.

As a related issue, research evaluators have repeatedly raised concerns that contemporary research
funding allocation practices favor less-risky research projects (Azoulay et al., 2011; Petsko, 2012) and are
somewhat biased against novel research (Boudreau et al.,, 2016). Novel research may have delayed
recognition of its contribution to science (Garfield, 1980; Van Raan, 2004; Wang et al., 2017) and the
optimal incentive for innovation is tolerating early failures while rewarding long-term successes (Manso,
2011). Thus, our findings highlight the importance of institutionalizing support for “novel research” that
may particularly contribute to emerging technological topics within a domain. That implies value in
evaluating proposal novelty based on measures of the reach of cited research across disciplines.

Aside from the issue of funding allocation for interdisciplinary research as discussed above, our
research contributes to the scholarly effort to address considerable challenge in evaluating

interdisciplinary research. Interdisciplinarity poses uncertainties because the research is not anchored in
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journals for conventional fields where knowledge is more well defined (Degn et al.,, 2019).
Interdisciplinarity also exacerbates distances between researchers in different disciplines, with Molas-
Gallart et al. (2016) and Bone et al. (2020) reflecting these distances in their versions of the proximity
framework of Boschma (2005) as geographic, cognitive, social, organizational, and institutional distances.
New methods and tools have appeared in recent years to address the interdisciplinarity research
evaluation challenges. Degn et al. (2019) have used co-nomination alongside traditional bibliometric
methods to develop maps of science for interdisciplinary social science and humanities fields. Molas-
Gallart and colleagues (2016) put forth an alternative research evaluation framework to the linear
research continuum in which translational gaps are placed at the end of the continuum with a socio-
economic orientation. The alternative framework proposes application of multiple methods—such as
geographic information systems, science maps, and social network analysis—to assess the types of gaps
between researchers in different medically-related disciplines. Bone and colleagues (2020) promote a
Diversity Approach to Research Evaluation (DARE) method which brings narratives of participants
together with science maps and indicators of diversity and cohesiveness. Our approach suggests the
addition of an indicator of technological emergence to these methods. The concept of technological
emergence has been developed in the literature to reflect the multiple dimensions underlying the
combination of different disciplines to create new knowledge. The ability to measure and incorporate
technological emergence into research evaluation is important to reducing interdisciplinarity-related
uncertainties and ambiguities.

Second, the present study contributes to advancing the broad literature on scientific creativity and
novelty. Ever since the seminal work by Uzzi et al. (2013), there has been a substantial amount of
subsequent work on elucidating various dynamics associated with creativity and novelty in science (e.g.
Lee et al., 2015; Wagner et al., 2019; Wang et al., 2017). These studies have contributed to improving the
understanding of novelty in research, the nature of novel research, the impacts of novelty on science, and
various associated dynamics such as the characteristics of research teams and research collaboration. In
addition to these contributions, we reveal another important pathway concerning how novelty in
knowledge combinations contributes to science by showing that atypicality in knowledge combinations
are positively associated with addressing emerging technological issues. These findings affirmatively
answer the question of whether the combination of distant knowledge is one of the drivers of scientific
progress.

The present study has several limitations, which we hope that future research can address. First, we

used the novelty measure that was developed by Lee et al. (2015). However, as Wang et al. (2017) and

19



Wagner et al. (2019) indicate, various ways of calculating novelty exist. Whether other ways of
operationalizing novel knowledge combinations produce different or consistent findings with the present
study is an empirical question. Second, for the purpose of the present study, we have measured
“interdisciplinarity” by using the cited reference information. However, as prior studies have shown, there
are various dimensions of interdisciplinarity, including how future research is affected by interdisciplinary
studies (Carley and Porter, 2012) or more subtle subdimensions of the notion of interdisciplinarity itself
(e.g., Stirling, 2007). Future studies can examine whether these other dimensions of, or ways of measuring,
interdisciplinarity play a similar role in technological emergence to the findings in this study. Third, our
analysis using the metadata of scientific publications leaves open the question as to whether our findings
would also hold when analyzing patents. Because patents contain detailed information about a
technological idea, we believe that replicating our analysis using patent information could extend the

conclusions of the present study.
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