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In 2017, the Muon Hunter project on the Zooniverse.org citizen science platform successfully
gathered more than two million classification labels for nearly 140,000 camera images from VER-
ITAS. The aim was to select and parameterize muon events for use in training convolutional neural
networks. The success of this project proved that crowdsourcing labels for IACT image analy-
sis is a viable avenue for further development of advanced machine-learning algorithms. These
algorithms could potentially lend themselves to improving class separation between gamma-ray
and hadronic event types. Nonetheless, it took two months to gather these labels from volun-
teers, which could be a bottleneck for future applications of this method. Here we present Muon
Hunters 2.0: the follow-on project that demonstrates the development of unsupervised clustering
techniques to gather muon labels more efficiently from volunteer classifiers.
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1. Introduction
The upcoming Cherenkov Telescope Array (CTA) will produce over 50 TB per night [1]. CTA and
other projects generating large amounts of data can benefit from the development of algorithms
to identify the phenomena under investigation in real time. Deep Neural Networks (DNN) can be
used to this end [2]. Once a deep learning model has been trained, the algorithm is capable of
processing large volumes of data in a short period of time and on relatively inexpensive hardware.
Developing such a model, however, requires large amounts of annotated data.

Citizen science is a method that can be used to generate the initial set of training data for the
deep learning model by distributing the task of annotating images to a large crowd of volunteers
(see e.g. [3,4]). Many projects use this method of label gathering through the Zooniverse platform,
the world’s largest platform for citizen science research [5]. Muon Hunters is one project hosted
on the Zooniverse where the images are derived from Imaging Atmospheric Cherenkov Telescope
(IACT) data provided by the VERITAS collaboration. While muons are typically considered back-
ground for IACTs, telescope images produced by muons exhibit a characteristic arc or ring, and
are therefore useful for calibrating the optical throughput of the telescopes [6, 7].

The first iteration of the Muon Hunter project followed a traditional model for Zooniverse
projects: a volunteer was shown one image at a time and asked whether it contains a muon [8,
9]. In the second iteration, Muon Hunters 2.0 (MH2), we explore a new method of collecting
classifications. The volunteer is shown a group of images simultaneously and asked whether most
of the images contain a muon. Once establishing the majority class, the volunteer is asked to
identify images that are not members of the majority class. Our hypothesis is that using this method
will increase the efficiency of gathering classifications. This should also be related to how well an
initial clustering algorithm separates into different clusters images with and without muons.

Xie et al. [10] developed a method for clustering data by using an unsupervised DNN to learn
a deep embedding of the input data, and clustering within that space. Wright et al. [11] developed
a method to further improve the purity of the clustering by using a set of labeled images to update
the embedded space. An iterative feedback loop can be established whereby querying volunteers
for image labels using the grid interface improves volunteer efficiency, and the labels provided by
volunteers improve the clustering purity. Since cluster purity implies the majority class is more
dominant this improves efficiency for volunteers in the future and the cycle continues.

Wright et al. in [11] used existing labels collected in the Supernova Hunters project to simu-
late how using the clustering method would affect the efficiency of gathering labels. In this current
paper we demonstrate that the method generalizes well to another dataset. An interface for collect-
ing volunteer classifications on a group of images was implemented using the clustering method.
This allows measuring the actual gained efficiency, as well as how the classification performance
of volunteers is affected by the new interface.

2. Methods

2.1 Clustering

Deep Embedded Clustering (DEC) [10] is an unsupervised DNN architecture that assigns input data
to clusters based on a learned feature representation [10]. It consists of three fully connected layers
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followed by a clustering layer. The fully connected layers are initialized using stacked denoising
autoencoders.The clustering layer is trained by minimizing the Kullback-Leibler (KL) divergence
to a target distribution. DEC was configured with layer dimensions 500, 500, 2,000 and 10. The
clustering layer was configured for either 10 or 50 clusters. Stochastic gradient descent was used
as the optimizer with a learning rate of 0.1 and momentum 0.9. DEC was trained for 80 epochs,
with batch size 256.

Figure 1: A screenshot of the MH2 interface.
Volunteers are asked if the image mostly con-
tains muons or not. Then they are asked to label
all images that belong to the minority class.

After the clustering step, each cluster was
sampled and the ensuing subset of data uploaded
to the Zooniverse as the first batch for volunteer
labeling. Specifically, the trained DEC network
was used to assign each image to one of M clus-
ters; each cluster was then randomly split into N-
image sets. Duplicate images were sampled from
the cluster to fill the last set to the same size. Each
image set was used to create a n× n grid image.
Each grid image was then uploaded to the MH2
project as a subject. Figure 1 shows the new MH2
interface which was developed using the Zooni-
verse Project Builder [12].

The volunteers are then asked to classify each
grid image in two steps. The first step asks them to characterize the makeup of the grid image as
mostly muon, mostly non-muon, all muons, all non-muons, or no clear majority class. In the second
task the volunteer is asked to highlight those images in the grid that do not belong to the majority
class. For example, if the volunteer answers the first task that the grid image is dominated by
non-muons, then they will be asked in the second task to highlight all the muons. If the volunteer
answers the first task that the grid is entirely dominated by a single class, then the second task
is skipped. For the case where there is no clear majority in the grid, the volunteer is asked in
the second task to highlight muons in the image. By adding this question the volunteer is never
asked to highlight more than half the images in a grid. This guarantees that even in the worst case
of clustering performance, where every cluster contains exactly equal proportions of muons and
non-muons, we can expect volunteers to be twice as efficient.

The MH2 Zooniverse project is set to retire a grid-image after it has been classified by 10
independent volunteers. After the first batch of grid-images has been retired the process moves to
the multitask and reclustering steps described in [11]. The grid-image classifications are aggregated
to produce a single label per telescope image in each grid-image. These labels are then used to
retrain the clustering model to improve the clustering performance of the model. The next batch
of data is then clustered and chunked into grid-images using the new clustering model. These
grid-images are then uploaded to the Zooniverse for classification.

2.2 Aggregation

Grid-image classifications need to be aggregated to a single label per image. Each grid classifi-
cation can be decomposed into N image classifications, where N is the number of images in the
grid. We explored two methods of aggregating the decomposed classifications. The first is majority
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vote, where a label is assigned to whatever class most volunteers assigned to the image. The second
uses the Space Warps Analysis Pipeline (SWAP) [13], a Bayesian algorithm that considers both the
prior probability of an image as well as the volunteer’s performance. The volunteer performance
is determined by maintaining a confusion matrix for a volunteer using a small set of images where
the true label is known. SWAP increases the weight of classifications from high-performing volun-
teers while limiting the weight from low-performing volunteers. Labels aggregated using SWAP
are typically more accurate than labels aggregated using majority vote, especially when volunteers
are inconsistent or noisy (see e.g. [14, 15]).

3. Data

MH2 was implemented in two stages the first of which was a beta test of the new classification
interface. The second stage involved procuring a new dataset entirely independent from the first
iteration of the Muon Hunters project. 2.9M of these images were sourced from real VERITAS
data, derived from data runs between January 2017 and January 2018. The VERITAS Gamma-ray
Analysis Suite (VEGAS) can be configured to identify images containing muons where a radius cut
must be tuned in order to produce a reliable sample of muon detections [16]. Clean high confidence
true labels were generated from the set of images that VEGAS identified as muons with radius cuts
where r < 0.4 were labeled as non-muons, and images where r > 0.6 were labeled as muons. This
created 20,281 labeled non-muons, and 3,987 labeled muons. We should note that these images are
not a representative sample of the data, as we are restricting only to images initially identified as
muons by VEGAS. Nonetheless, we use these labels to gauge volunteer performance.

An additional 95,000 images were sourced from Corsika simulations [17]. We estimate that
the real data contains approximately 10,000-20,000 muons, and the simulated data contains ap-
proximately 1,000-2,000 muons. The clustered real events were used to create 79,266 grid-images,
and the clustered simulated events were used to create 2,640 grid-images. Of these images, 25%
were reserved as the test set, and 75% were used to train the DEC clustering model.

4. Results

The F1 score is used to measure classification performance and is the geometric mean of the purity
and completeness of the predicted labels. It is preferred over accuracy when there is a class imbal-
ance such as in both datasets for this experiment. To measure the clustering F1 score, each cluster
member inherits the class label of the majority of images in that cluster.

The relative efficiencies of the classification interfaces can be inferred from the number of
clicks a volunteer must make to classify an image. In the standard single-image interface the
number of clicks is twice the number of subjects being classified: one click to assign a label and
one click to submit the classification. In the grid interface a volunteer makes one click to select
which class dominates the grid-image, one click per image in the grid that does not belong to the
majority class, and one click to submit. The efficiency is calculated from the effort expended by
volunteers, measured in terms of the number of clicks, and is defined as: ε = nsingle/ngrid.

The full DEC-Multitask-Reclustering pipeline was run for the first stage of the MH2 project.
The entire pipeline was trained five times on the data, and the results of each step were averaged.
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Figure 2: The PCA projections of the various clustering model steps described in the text. The blue dots
represent non-muon images, and the red dots represent muon images.

Figure 3: Multitask and Reclustering training performance.

First the DEC model is trained on
all the data not in the test set. In the
Multitask step the model is trained
until the performance measured on
the training development set stops
decreasing. In the Reclustering
step the model is trained until the
model converges, which is defined
as when less than 0.1% of images in the training and training-development sets are assigned a
new cluster between training iterations. These models were trained with M = 10 clusters. Grid-
images were generated from the DEC clustering with size N = 100. The F1 score of volun-
teers measured on the test set is F1 = 0.22 when the labels are aggregated by majority vote, and
F1 = 0.83 when their labels are aggregated with SWAP. Because of the large difference in perfor-
mance the labels aggregated with SWAP were used to train the multitask and reclustering models.

Figure 4: Performance of the volunteer classi-
fiers for the second stage of the project, bench-
marked by First Vote (label assigned by the first
volunteer that sees the image), All Ones (muon
label assigned to every image), and Flipped La-
bel (flip every volunteer majority label).

The clustered space can be projected into two
dimensions using Principal Component Analysis
(PCA). The PCA projections for the DEC, Multi-
task, and Reclustering models are shown in Fig-
ure 2. The learning curves for the Multitask and
Reclustering models are shown in Figure 3. The
clustering F1 score for the training and validation
sets are shown in blue and yellow respectively.
Benchmark scores are shown as the F1 score mea-
sured on various sets of labels. The SWAP bench-
mark is the set of labels aggregated from vol-
unteer classifications using SWAP. The all-ones
benchmark is labeling all images as muons. The
vote fractions are labels aggregated from volunteer classifications using majority vote, and the first
volunteer benchmark is the set of labels from the first volunteer that labeled each image. Figure 3
shows that the performance of the Multitask model approaches the SWAP benchmark performance.
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F1 Clicks Efficiency
Stage 1 Random Assignment 0.053 1,861 5.32

Supervised 0.771 717 12.05
DEC 0.407 1,127 8.00
Multitask 0.803 634 13.33
Reclustering 0.633 723 11.90

Stage 2 Random Assignment 0.035 3,990 21.74
DEC 0.010 3,990 21.74

Table 1: F1 performance and gained efficiency of the
clustering methods. Stage 1 and Stage 2 refer to the
first and second stages of the MH2 project. DEC,
Multitask, and Reclustering steps were all trained for
stage 1, but only DEC was trained for stage 2. Ran-
dom assignment clustering was used to benchmark
the results of the models. An additional supervised
model was trained to benchmark the stage 1 results.

The test set for these data contains 4,948
images; the traditional interface would re-
quire 9,896 clicks to classify all images. Ran-
dom assignment and a supervised model are
used as benchmarks for the clustering models
in this stage of the project. For random as-
signment, each image is assigned at random
to one of M clusters, and the metrics are cal-
culated for this clustering in the same way.
For the supervised model benchmark, a su-
pervised model is trained to classify the im-
ages as containing a muon using the same ar-
chitecture as the DEC model. This model is
trained on all images in the training set using
the aggregated SWAP label from the collected volunteer labels. The F1 score can be calculated
directly from this model’s output, and the number of clicks can be determined in the same way as
described above by using the model’s two output classes as clusters.

For the second stage of MH2, which included a public launch of the project on March 14,
2019, the DEC model was trained with M = 50, and the grid-images were generated from this
model with size N = 36. At the time of writing, 174,134 of the 2.9M images were classified by at
least 5 volunteers. A majority of volunteers labeled 168,283 of these as non-muons, and 5,851 as
muons. Of the labeled images in the test set, 1,756 are muons and 49,304 are non-muons.

The F1 score of the volunteer labels measured against the cleaned VEGAS labels is F1= 0.978
when aggregated by majority vote. There is no significant gain in performance when the labels are
instead aggregated with SWAP. These results are summarized in Figure 4 where we also show
benchmark F1 scores of (1) the label assigned by the first volunteer that viewed each image, (2)
labeling all images as muons, and (3) flipping the labels aggregated by majority vote. We note that
the volunteers disagreed with the cleaned labels for only 7 images where ring-structure is present
but were mislabeled by VEGAS. The volunteer labels aggregated by majority vote are thus used as
the true labels for measuring the clustering performance for the second stage of MH2. The metrics
for the various clustering algorithms for both stages of the project are summarized in Table 1.

5. Discussion and Conclusions

The results described above offer a number of conclusions for the first stage of the project. The
most obvious of which is that the volunteers did a very poor job classifying the grid-images. Be-
cause that stage of MH2 was released as a Beta test on Zooniverse, there are a number of possible
explanations for this. Often when a project is in Beta volunteers focus more on providing feedback
on auxiliary items of the project, like the tutorial, field guide, and ease of using the interface, rather
than on providing quality classifications. For example, the feedback from the Beta prompted im-
plementing the custom interface shown in Figure 1 rather than using more generic drawing tools
already available on the platform. Additionally, Beta feedback led to a reduction in the grid size
from 10×10 to 6×6. Though there were enough volunteers who provided quality classifications,
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even these were much improved by aggregating the classifications with SWAP. In the second stage
of MH2, implementing SWAP made little difference as the labels were already of high quality.

In Table 1, the DEC, Multitask, and Reclustering models all show better performance than the
random assignment benchmark. The Multitask model improved on the performance of the DEC
model, while the Reclustering model lost much of the gained performance. It is evident that the
Reclustering model can be improved. One idea currently being explored is to add dropout [18] to
the model so the model does not overfit to the training data.

The Multitask model does very well compared to the benchmarks. The clustering F1 score
of the Multitask model approaches the F1 score of the volunteer labels aggregated with SWAP
suggesting that this model can identify muons almost as well as the volunteers. Furthermore,
the Multitask model outperforms the Supervised model by a significant margin. This shows that
first training the unsupervised model followed by retraining with a batch of imperfect labels from
volunteers, offers better performance than training the same architecture directly on the cleaner
aggregated labels produced by SWAP. Additional efficiency gains could be realized by clustering a
new batch of images with the Multitask model for classification on the Zooniverse.

Finally, Table 1 shows that all forms of clustering showed significant gains in efficiency. Even
the case of random assignment is 5.32 times more efficient compared to the traditional method of
gathering classifications. The results offer slightly different conclusions for the second iteration
of the project. The DEC clustering performance was actually worse than the random assignment
clustering, due likely to the extreme skew of the dataset. Only 3 in 100 images contained a muon
making it difficult for the unsupervised algorithm to learn anything significant related to the pres-
ence of a muon. A possible solution would be to artificially skew the data using the cleaned VEGAS
labels to remove some of the images that are definitely not muons. Nevertheless, the extreme skew
of the data means that the clustering interface offers 21.74 times the efficiency of the traditional
classification interface with volunteers making only 3,990 clicks to classify 174,134 images.

In summary, a method was developed to gather classifications of images from a citizen science
platform using a grid-based interface, allowing volunteers to classify many images simultaneously.
This method was found to require 81% fewer clicks from volunteers in the worst case of cluster-
ing by random assignment. The DEC-Multitask pipeline was shown to significantly improve the
performance of clustering compared to the benchmarks, rivaling the performance of volunteers in
classifying images. The addition of the reclustering step requires additional work to realize gains
in performance. This method can realize significant gains in efficiency for classifying images, even
when the data is heavily skewed.
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