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Abstract

We study the behavior of internal signal chain reflections and antenna cross coupling as systematics for 21 cm
cosmological surveys. We outline the mathematics for how these systematics appear in interferometric visibilities
and describe their phenomenology. We then describe techniques for modeling and removing these systematics
without attenuating the 21 cm signal in the data. This has critical implications for low-frequency radio surveys
aiming to characterize the 21 cm signal from the Epoch of Reionization (EoR) and Cosmic Dawn, as systematics
can cause bright foreground emission to contaminate the EoR window and prohibit a robust detection. We also
quantify the signal loss properties of the systematic modeling algorithms, and show that our techniques
demonstrate resistance against EoR signal loss. In a companion paper, we demonstrate these methods on data from
the Hydrogen Epoch of Reionization Array as a proof-of-concept.

Unified Astronomy Thesaurus concepts: Reionization (1383); Cosmology (343); Astronomy data analysis (1858)

1. Introduction

Highly redshifted 21 cm emission from neutral hydrogen in the
intergalactic medium (IGM) promises to be a revolutionary tool
with which we can study the formation of the first generations
of stars and galaxies in the universe and the impact they had on
their large-scale environments (Hogan & Rees 1979; Madau
et al. 1997; Tozzi et al. 2000). The 21 cm signal is a sensitive,
tomographic probe of the astrophysics and cosmology of Cosmic
Dawn, or the era of first luminous structure formation, and the
Epoch of Reionization (EoR) where ionizing photons from star
and galaxy formation ionized all of the neutral hydrogen in the
IGM at z ~ 6 leftover from recombination (for reviews see
Furlanetto et al. 2006; Pritchard & Loeb 2012; Mesinger 2016).
The Cosmic Dawn and the EoR are critical components of a
broader understanding of large-scale structure formation, yet they
remain largely unexplored due to the experimental difficulty of
systematically probing the universe at these redshifts across the
electromagnetic spectrum.

The prospect of robustly characterizing the 21 cm signal
from these epochs is daunting, as galactic and extra-galactic
foreground emission outshine the fiducial cosmological signal
by many orders of magnitude. Nevertheless, the path toward
detecting the 21 cm signal from the Cosmic Dawn and EoR
has seen tremendous progress over the past decade, as first-
generation radio interferometric experiments such as the
Donald C. Backer Precision Array for Probing the Epoch of
Reionization (PAPER; Parsons et al. 2014; Ali et al. 2015;
Jacobs et al. 2015), the Murchison Widefield Array (MWA;
Dillon et al. 2014; Beardsley et al. 2016; Ewall-Wice et al.
2016), the Low Frequency Array (Patil et al. 2017), and the
Giant Metre Wave Radio Telescope (Paciga et al. 2013) have
placed increasingly competitive limits on the 21 cm power
spectrum, while single-dish experiments may have made a
first detection of the global signal (Bowman et al. 2018).
Going forward, second-generation interferometric experiments
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like the Hydrogen Epoch of Reionization Array (HERA; DeBoer
et al. 2017) and the Square Kilometer Array (Koopmans et al.
2015) are expected to have the raw sensitivity needed to not
only detect the 21 cm signal but provide a power spectrum
characterization across a wide range of redshifts, leading to
dramatic improvements in our understanding of astrophysical
and cosmological parameters that govern large-scale structure
and star formation at these epochs (Pober et al. 2014; Greig et al.
2015; Greig & Mesinger 2015, 2018; Ewall-Wice et al. 2016;
Liu & Parsons 2016; Kern et al. 2017).

Due to the faintness of the cosmological signal, tight control of
instrumental systematics is a crucial component of data reduction
pipelines. Indeed, many of the upper limits provided by first-
generation interferometric experiments have already been systema-
tics limited. As second-generation experiments are constructed and
get closer to making a first detection of the 21 cm power spectrum,
our ability to model and remove systematics to a high dynamic
range will be of utmost importance in maximizing the scientific
impact of future 21 cm data sets. Systematic contamination can
be generated in a variety of ways, such as calibration errors,
ionospheric Faraday rotation, primary beam ellipticity, analog
signal chain imperfections (such as impedance mismatches), and
others. Generally, their end result is to distort the strong foreground
signal in the data, thus making it harder to separate it from the
underlying 21 cm signal.

In this work, we focus specifically on a class of systematics
that we refer to as internal instrument coupling, which we
further break down into two subcategories: (1) signal chain
reflections or coupling within an antenna signal chain and (2)
antenna cross coupling, or coupling between antenna signal
chains. Signal chain reflections are generated by impedance
mismatches between transmitting surfaces in the analog signal
chain when the signal is carried as a voltage. Their effect is to
generate a copy of the foreground signal in a region of k space
nominally occupied only by the EoR 21 cm signal and thermal
noise. Cross coupling, on the other hand, can occur from a
variety of mechanisms, but common sources for radio surveys
are stray capacitance between parallel wires or circuit lines in
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the signal chain (i.e., capacitive crosstalk) and reflections
between antennas in the field (i.e., mutual coupling). Cross
coupling produces a spurious phase-stable term in the data
across time that can occupy a wide range of k modes,
depending on its origin. These systematics are of critical
concern for low-frequency radio surveys (Parsons et al. 2012;
Zheng et al. 2014; Chaudhari et al. 2017), and have proven to
be a partially limiting factor in previous 21 cm interferometric
analyses (Beardsley et al. 2016; Ewall-Wice et al. 2016). We
use HERA sky and systematic simulations to study the
temporal and spectral behavior of internal coupling systematics
in the context of HERA data, and propose techniques for
modeling and removing them from the interferometric data
products. We furthermore quantify the signal loss properties of
our algorithms with ensemble subtraction trials containing
simulated EoR observations. In this work we do not simulate
the effects of thermal noise, as we aim to probe the inherent
algorithmic performance to a very high dynamic range,
however, we discuss the anticipated impact of thermal noise
on our algorithms in Section 3.

Recently, Tauscher et al. (2018) studied systematic removal
for 21 cm survey data using a simulation-based, forward-model
approach for separating systematics from the EoR signal. This
seems to work well when the systematic parameter space is
fairly limited and the systematic itself well understood: in their
case they consider only beam-weighted foregrounds as a
systematic, with a few parameters governing its spatial and
spectral dependence. Our work takes a semiempirical approach
to modeling instrument systematics due to (1) the highly
variant nature of the systematics observed in the real data, and
(2) because we require suppression to high dynamic range,
which is often more easily achieved with flexible empirical
methods. The consequence of using semiempirical systematic
models is that they can be overfit and induce loss of EoR
signal, which we test for in this work.

The structure of this paper is as follows. In Section 2 we
provide a mathematical overview of how the two systematics
described in this paper corrupt interferometric data products, and
make predictions for their spectral and temporal behavior. In
Section 3 we introduce algorithms for modeling and removing
these systematics from the data, and then use simulated HERA
data with and without systematics to test the performance of our
techniques. In Section 4 we validate our algorithms by quantifying
their signal loss properties, ensuring they are not lossy to the
desired EoR sky signal. Lastly, in Section 5 we summarize our
results. In a companion paper, Kern et al. (2019), we demonstrate
the performance of these techniques on real data from the HERA
Phase I instrument. Many of the assumptions made in this work
about the functional form of the simulated systematics come from
the actual observed systematics outlined in that paper.

2. Mathematical Overview

In this section, we describe how signal chain reflections and
antenna cross couplings appear in interferometric data products. To
begin, we start with a the two-element interferometer (Hamaker
et al. 1996; Smirnov 2011), consisting of two antennas, 1 and 2,
whose feeds measure an incident electric field and convert it into a
voltage. In Figure 1, we show a schematic of the HERA analog
system and mark possible sources of internal instrument coupling.
These signals travel from the feeds through each antenna’s signal
chain to the correlator, and along the way are amplified, digitized,
channelized, and Fourier transformed into the frequency domain.
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Figure 1. A schematic of two HERA signal chains, 1 and 2, with possible
sources of systematics demarcated. Sky signal (S) enters each antenna’s feed,
is converted into a voltage and travels down their signal chains where it is first
processed at a node housing an amplifier (A). It is then directed to an engine
that digitizes and Fourier transforms the signal (F) and sent to the correlator
(X), which produces the visibility V;,. A possible cable reflection in antenna
1’s signal chain is marked as €;;, traversing up and down the cable connecting
the feed to the node, and possible cross coupling is marked as €;,, where
radiation is reflected off of antenna 2 and into antenna 1, or vice versa. Dashed
lines indicate a signal pathway after digitization, where internal instrument
coupling is no longer a major concern.

The correlator then cross multiplies voltage spectra to form the
fundamental interferometric data product: the cross-correlation
visibility, Vj,, between antenna 1 and 2, written as

Via(v, 1) = vi(v, v (v, 1). (1)

The correlator can also produce the autocorrelation visibility by
correlating an antenna voltage with itself (e.g., V). Here we
have chosen to define the visibility as the product of two
antenna voltage spectra, rather than the correlation of voltage
time streams: although the two are equivalent given the
convolution theorem, the former will prove to be an easier basis
when working with reflections. In addition, we have been
explicit about the frequency and time dependence of each
antenna’s voltage spectrum v, and by extension, the complex
visibility V, although we drop these throughout the text for
brevity. We have also dropped the time averaging done by any
real correlator, which is done for brevity and does not alter our
results in this section. While we could have cast the visibility
equation (Equation (1)) in matrix form (e.g., Hamaker et al.
1996; Smirnov 2011), we find it easier to understand the impact
that the specific systematics we discuss in this paper have on
the resultant data products using a simpler, algebraic form for
the visibility equation.

The correlator outputs time-ordered visibilities as a function
of local sidereal time (LST; denoted as 7) and frequency
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Figure 2. The real component of a simulated cross-correlation visibility with foregrounds, a signal chain reflection inserted at 7 = 800 ns, and a cross-coupling term
inserted at 7 = 400 ns, plotted in dimensionless units for visual clarity. Left: visibility in time and frequency space. Center: visibility in time and delay space. Right:
visibility in fringe rate and delay space. Different components of the visibility—in particular systematics—are usually better separated in delay and fringe-rate space

than in the original time and frequency space.

(denoted as v). When Fourier transforming the data across the
frequency axis, we put the data into a temporal domain. To
separate this from the original time domain, we refer to the
Fourier dual of frequency as the delay domain (denoted as 7).
Similarly, the Fourier transform of our data across time puts the
data into a spectral domain, which we refer to as the fringe-rate
domain (denoted as f), using similar notation as that used by
Parsons et al. (2016). In the absence of explicit markers, we
will use V to mean the visibility in time and frequency space,
and use V to mean the visibility in one or both of the Fourier
domains, which should be clear based on context, otherwise we
will use explicit notation.

Different components of the visibility are generally more
localized in Fourier space. Foreground signal, for example, is
intrinsically spectrally smooth and will therefore occupy low
delay modes, whereas a fiducial EoR model, being non-
spectrally smooth, occupies low and high delay modes.
Figure 2 shows a simulated foreground + systematic visibility
in real and Fourier space, demonstrating how systematics are
usually better separated in Fourier spaces (center and right
panel). We present the figure here to guide the reader’s
intuition about the phenomenology of the systematics in real
and Fourier space while we discuss their mathematical form
below. Note that the parameters of the systematics as simulated
in Figure 2, for example, the delays they show up at, have been
chosen merely for visual clarity, and are not necessarily the
systematic parameters seen in actual data. We describe the
simulations used throughout this work in Appendix A.

2.1. Describing Signal Chain Reflections

A reflection in the signal chain of an antenna inserts a copy
of the original signal with a time lag. An example of this is a
reflection at the end of an analog cable, where the signal travels
back up the cable, reflects again at the start of the cable, and
travels back down and is transmitted through the system along
with the original signal. The time lag, or delay, the reflected
signal has acquired is two times the cable length divided by the
speed of light in the cable. The reflected signal also acquires an
amplitude suppression, meaning that it is generally only a
fraction of the input signal, but even a small fraction of the
foreground signal in the data can dwarf the expected EoR
signal and therefore needs to be accounted for. If v; is antenna

1’s voltage spectrum without a signal chain reflection, then the
presence of a reflection can be encapsulated as

v, 1) = v, 1) + en@)n, 1),

@

where v/ is the voltage spectrum of antenna 1 with the
reflection component, and € is a coupling coefficient describing
the reflection in antenna 1’s signal chain (denoted as 11
because it is coupling the signal with itself). The coupling
coefficient can be broken into three constituent parameters as

3

where A is the amplitude, 7 is the delay offset (the total time it
takes to be reflected), and ¢ is the phase offset the reflected
signal may have acquired relative to the original signal. In
Equation (2) we have assumed time and frequency stability of
the reflection parameters, although in practice these parameters
will have some variation with time and frequency.

If we insert the corrupted voltage spectra into the visibility
equation (Equation (1)), we get

e11(v) = Apermmivtion,

V{z = V]VS'< + 611V1V2* + V]E?zvz* + 611V16§2V2*. )
We can see that in addition to the original cross-correlation
term (v;vy) we now also have copies of it at positive and
negative delay offsets that are suppressed in amplitude by a
factor of A;; and A,,, respectively. The time behavior of a
reflection mimics that of the original data, in that it shows the
same temporal oscillation (i.e., fringing) as the foregrounds,
and thus also appears at the same fringe-rate modes as the
foregrounds (e.g., right panel of Figure 2). The conjugation of
€>> means that the reflected signal from antenna 2 appears at
negative delays in Vj,, while the reflected signal from antenna
1 appears at positive delays.
The resultant autocorrelation visibility can also be computed,
and is given by
V]/1 = V1V1* + 611V1V1* + vllevl* + |611|2V1V1*, (5)
where we see that the first-order reflections show up at £7j,
while the second-order reflection appears at 7 = 0 ns, due to
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the conjugation of the coupling coefficient with itself. If we
assume that the first-order reflections are at sufficiently high
delay and neglect the second-order term, we can approximate
the visibility at 7=0 ns as V,,(r = 0) ~ (") (1 = 0).
Similarly, near the reflection delay of 7,; the autocorrelation
visibility simplifies to

~/
Vi(r = 7)) & envivy™. (6)

This means that one can estimate the reflection coefficient
amplitude in delay space as

~/
_ V@ =+l

Apy —
[Vii(T = 0)]

(N

which will be useful when modeling reflection systematics.

If one can estimate their parameters from the data, reflections
can be removed via standard (direction-independent) antenna-
based calibration. In this paradigm, the raw voltage spectrum of
antenna 1 corrupted by the instrument is related to its true value
as

v =gy, ()
which when inserted into the visibility equation yields the
standard antenna-based calibration equation,

VY = Viag1gy=(vivy) g8, )

The g term is called the antenna gain, and accounts for
amplitude and phase errors introduced by the various stages of
the signal chain from the feed all the way to the correlator. Note
that this form of the calibration equation does not account for
polarization leakage induced by cross-feed coupling, which is
generally a higher order correction (Hamaker et al. 1996; Sault
et al. 1996). By rearranging Equation (2) as

v =vi(l + 1) = vig, (10)

we can see that signal chain reflections can be completely
encompassed in this gain term, and hence corrected for by
dividing the corrupted data by a gain constructed from an
estimate of the reflection coefficient.

2.2. Describing Antenna Cross Coupling

We now turn our attention to another systematic we refer to as
antenna cross coupling, which acts to couple one antenna’s
voltage stream with another antenna’s voltage stream before
reaching the correlation stage. Note that our model for cross
coupling is different than “capacitive crosstalk” created by the
electric field of two parallel signal chains interacting with each
other within cabling, receivers, and analog-to-digital conversion
units, which is a common systematic for radio interferometers
(Parsons & Backer 2009; Zheng et al. 2014; Ali et al. 2015; Patil
et al. 2017; Cheng et al. 2018). There are well-established
hardware solutions for suppressing crosstalk, such as phase
switching (Chaudhari et al. 2017). However, if residual crosstalk
remains, or if phase switching is not implemented in the system,
we need to model and remove it for robust EoOR measurements.

Our cross coupling systematic model simply states that,
before correlation, one antenna’s voltage is added to another
antenna’s voltage with a coupling coefficient that determines
the amplitude and relative delay with which the voltage is
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added. For the purposes of our description, we additionally
assume that this coupling coefficient can be decomposed into
the same three parameters as before, technically making it a
form of reflection systematic.” While this model may indeed be
capable of describing certain some forms of capacitive
crosstalk, we do not expect all forms of capacitive crosstalk
to necessarily fall within the bounds of these assumptions.

To write down how this affects the interferometric visibility,
we can start by writing the corrupted antenna voltages as

!/
Vi =V + €12

v, = Vs + €12V, (11)

where €, describes the voltage coupling of antenna 2 into
antenna 1 and vice versa for €,. Substituting these equations
into Equation (1), we get

’ * * ok * * %
Vi = vivs + viepyy + eivav, + e1vaepyy . (12)

We can see that the cross-correlation visibility now contains the
autocorrelation visibility terms v;v;* and v,v;* at the first-order
level, which are purely real quantities and thus have identically
zero phase. In the complex plane, the cross-correlation term
vi1vy" winds around the origin as a function of time because its
phase varies temporally. Because the autocorrelation has no
phase, the act of the cross-coupling terms is to introduce an
additive bias to the data with an arbitrary phase set by the
coupling coefficient itself. Assuming the coupling coefficient is
slowly variable (if not completely stable), the first-order
systematic terms in Equation (12) only change in amplitude
over time set by the natural variation in the amplitude of the
autocorrelation, (e.g., viv;*). This variation is generally fairly
slow on timescales of a beam crossing, which for HERA is
roughly 1hr. This leads us to two critical insights about the
behavior of the cross-coupling terms: (1) their time variability
is slow, thus occupying low-fringe rate modes (e.g., see right of
Figure 2) and (2) they have a time-stable phase determined
solely by the phase of the coupling coefficient.

In a more generalized case, the cross coupling between
antenna 1 and 2 may have an angular dependence on the sky.
Take for example the case of mutual coupling (or feed-to-feed
reflections), where part of the radiation incident on antenna 1’s
feed is reflected and received by antenna 2’s feed. This
behavior will be highly angular dependent due to the nontrivial
electromagnetic properties of the feed itself. Nonetheless, we
can reason that the systematic phenomenology will be similar
to as before. We can think of this angular dependence as a
windowing function on the primary beam of the underlying
autocorrelation, meaning that the first-order terms in
Equation (12) will be proportional to only a fraction of v;v;*,
such that they have a smaller amplitude. It may also mean that
these terms will have a slightly faster time dependence in the
data, as the “effective beam” created by the angular windowing
function is smaller on the sky than the total primary beam, and
thus leads to a faster “effective beam crossing time.”

> While we adopt this assumption in this section to make the algebra simpler,

the algorithm we present in Section 3 is more general and does not rely on this
assumption.
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We can also compute the effects of cross coupling on the
measured autocorrelation visibility, Vi, which yields

! * ko k * 2 *
Vii=vivi +viey, + evavy + el vav,. (13)

In this case, we find that the cross correlation is inserted into
the measured autocorrelation at the first-order level with a delay
offset of 75,. These terms are likely many order of magnitudes
below the peak autocorrelation visibility amplitude, given that
the cross-correlation visibilities are generally a few orders of
magnitude below the autocorrelation inherently, which is
further compounded by the amplitude suppression from €.

We can see simply from Equation (12) that the corruption of
V/, by cross coupling cannot be factorized into antenna-based
gains, based simply on the presence of the €;,-like terms, which
are baseline dependent. Removal of cross-coupling terms in the
data must therefore be done on a per-baseline basis by
constructing a model of the systematic in each visibility and
then subtracting it.

2.3. Summary

To summarize, reflections along a single antenna’s signal
chain produces a duplicate of the signal with suppressed
amplitude and some delay offset. This is true for both the cross-
correlation and autocorrelation visibility products. Example
mechanisms include cable reflections and dish-to-feed reflec-
tions within the confines of a single antenna. Reflections in the
cross-correlation visibility have the same time structure as the
un-reflected visibility, meaning reflected foreground signal
occupies the same fringe-rate modes as un-reflected foreground
signal, but is shifted to high delays (e.g., Figure 2). Reflections
can be removed from the raw data by creating a model of the
reflections and incorporating them into the per-antenna
calibration gains.

Another systematic we describe is created by antenna-to-
antenna cross coupling, which mixes the voltage signals
between the antennas. This has the effect of introducing a
copy of the autocorrelation visibility into the measured cross-
correlation visibility at positive and negative delay offsets, and
similarly introduces copies of the cross-correlation visibility
into the measured autocorrelation visibility. In the measured
cross-correlation visibility, the first-order coupling terms are
slowly time variable and occupy low-fringe-rate modes
centered at f = 0 Hz. Cross-coupling terms cannot be removed
via antenna-based calibration, and must be modeled and
subtracted at the per-baseline level.

3. Systematic Modeling

Next we discuss our approach for modeling reflection and
cross-coupling systematics in the data. We use sky and instrument
simulations to generate mock visibilities of diffuse foregrounds
and systematics, which we use to test our algorithms and provide
benchmarks on their performance. More details on the construc-
tion of the simulated data products used in this work can be found
in Appendix A. The fiducial parameters of our systematic
simulations are chosen to roughly reflect the behavior of
systematics seen in HERA Phase I data (Kern et al. 2019).
Systematics in the HERA Phase I system can be found at variable
amplitudes and delays in the data, depending on the baseline or
antenna at hand, but are generally seen at an amplitude of
~3 x 107 times the peak foreground amplitude at 7 = O ns and
at delays spanning 200—1500 ns. For these simulations we do not
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include instrumental thermal noise so that we can test the
underlying performance of our algorithms to a high dynamic
range.

3.1. Modeling Signal Chain Reflections

Modeling signal chain reflections can in theory be done
simultaneously with standard gain calibration because reflec-
tions factor as an antenna-based effect (see Section 2).
However, there are reasons why we might be wary of using
standard calibration techniques for deriving reflection para-
meters. Principally, standard bandpass calibration typically
operates on the ~N2, number of cross-correlation visibilities,
and generally allows each frequency channel’s gain to be
solved independently from other channels. Frequency-depen-
dent calibration errors will therefore set a fundamental floor to
the precision with which reflections can be calibrated via
standard antenna-based bandpass techniques (Barry et al. 2016;
Ewall-Wice et al. 2017; Orosz et al. 2019). Furthermore, the
dynamic range of the signal to noise is considerably higher in
the autocorrelation than in the cross-correlation visibility, as it
is a measurement of the total power received by an antenna: in
many cases a signal chain reflection cannot even be seen above
the noise floor in a cross-correlation visibility but is highly
apparent in the autocorrelation visibility. This latter point
is important, because it implies that reflection parameters
estimated from the autocorrelation visibilities will have a
signal-to-noise ratio (S/N) that is drastically higher than the
S/N of the cross-correlation visibilities, meaning that, when
calibrating out systematics in the cross-correlation visibilities,
the S/N of the derived reflection parameters will never be a
limiting factor. Of course other real-world factors can limit the
precision of the derived reflection parameters such as nontrivial
frequency evolution, which is discussed in more detail in the
context of HERA in Kern et al. (2019).

Reflection parameters must be estimated to high precision in
order to get even a modest suppression of their systematic
power in the visibilities. For example, Ewall-Wice et al. (2016)
employed a reflection fitting algorithm on MWA autocorrela-
tion visibilities by fitting sinusoids in the frequency domain and
was able to suppress reflection systematics by a couple orders
of magnitude in the power spectrum, although their end-result
band powers were still systematic limited at some k& modes.
Similarly, Beardsley et al. (2016) explored reflection calibra-
tion on MWA data as an extension to their restricted
polynomial gain calibration scheme and also achieved a couple
of orders of magnitude of suppression in the 2D power
spectrum, although their more deeply integrated power spectra
show its reemergence.

The algorithm we present here also operates on the
autocorrelation visibility, but we choose to model the reflection
in the delay domain rather than the frequency domain. Recall
from Section 2 that in the autocorrelation visibility, V;, a
signal chain reflection appears as a shifted copy of the original
visibility at symmetric positive and negative delay offsets. The
Fourier transformed autocorrelation visibility, |V11|, is intrinsi-
cally quite peaky in delay space, meaning that a reflection is
essentially a narrow spike appearing at its corresponding
reflection delay. The reflection amplitude is then estimated via
Equation (7), and the reflection phase is estimated by
transforming back to frequency space and aligning reflection
templates while varying their phase until a squared error metric
is minimized. This yields an initial estimate of the reflection
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Figure 3. Reflection modeling and removal on a simulated autocorrelation visibility. Left: foreground-only autocorrelation in delay space with a simulated cable
reflection at 600 ns (blue line). The orange-dashed line shows the visibility after initial reflection calibration, demonstrating roughly two orders of magnitude of
suppression. The inset highlights the reflection bump, showing a spectral fit via quadratic interpolation (green curve) to achieve more precise estimates of the reflection
delay and amplitude (red star). The calibration is then refined using an iterative technique until the reflection bump is minimized (purple). Right: simulated visibility
with reflection in frequency space (blue line), a scaled version of the fitted reflection coefficient (red line) highlighting its phase coherence with the reflection ripple in

the data, and the visibility after initial calibration (orange-dashed line).

parameters, but it needs to be refined in order to suppress the
systematic to high dynamic range. In order to refine our
parameter estimates, we set up a nonlinear optimization system
that perturbs the initial guesses, applies the calibration to the
data in frequency space, transforms to Fourier space, estimates
the amplitude of the residual reflection bump, and repeats until
it is minimized or a stopping threshold is reached. Solving this
with an iterative minimization technique allows us to estimate
the reflection parameters with sufficient accuracy to suppress
the reflection in our systematic simulations by eight orders of
magnitude in the power spectrum.

To summarize, our approach for estimating the reflection
parameters from the data takes the following steps:

1. Zero-pad the autocorrelation in frequency space and
apply a windowing function before Fourier transforming
to delay space to minimize sidelobe power.

2. Fit for the peak of the reflection bump in |V| via quadratic
interpolation of its nearest neighbors.

3. The estimated reflection delay, 7, is equal to Tpeax.

4. The estimated reflection amplitude, A, is the ratio |V (7 =
Tpeat)|/IV (7 = 0)| (Equation (7)).

5. Set all modes of V to zero except the modes nearest Tpeak
and Fourier transform back to frequency space to get Vg,

6. The estimated reflection phase, ¢, is found by minimizing
|Viie — Ae?™7+i%|2 while varying ¢ from 0 to 2.

7. Set up a nonlinear optimization that perturbs the initial
reflection parameter estimates, applies the calibration and
transforms to Fourier space until the residual near the
original reflection bump is minimized or a stopping
threshold is reached.

We demonstrate this algorithm on a simulated HERA
autocorrelation visibility corrupted by a cable reflection with
a (frequency-independent) amplitude of 1072 at a delay of
600 ns (Figure 3). The natural delay resolution of HERA data is
10 ns, which is much too coarse to achieve precision estimates
of the reflection delay. Zero-padding the data by a factor of
three gets us to a delay resolution of 3 ns, but this is still not
precise enough for accurate reflection delay estimates. By
employing quadratic interpolation on the spectral peak, we can
recover the input cable delay to roughly +0.1ns (left of

Figure 3). In this idealized, noise-free simulation, the initial
reflection calibration estimates the reflection delay to within
40.1 ns of its true value, and its phase to within £0.01 radians,
yet we only see systematic power suppression of two orders of
magnitude in the visibilities. This is representative of the
precision needed to achieve even modest systematic suppres-
sion. With the refined reflection calibration, however, we find
we can achieve reflection systematic suppression of up to four
orders of magnitude in the visibility, and recover the reflection
parameters to within 1 part in 10° of their true value.

Fiducial EoR levels are expected to be roughly 107> times
the peak cross-correlation foreground power in the visibility at
kj~0.1h Mpc ™', and is generally thought to be even weaker
at higher k; (Mesinger et al. 2011). If reflection systematics
have inherent amplitudes of around 10_3, then a few orders of
magnitude of further suppression will push them below
expected EoR levels at low k. In practice, nonideal effects
like frequency evolution of the reflection parameters will limit
the precision of reflection calibration, which has been observed
in real instruments (Ewall-Wice et al. 2016). Indeed, inclusion
of such effects in our systematic simulation will likely degrade
our algorithm performance. However, if frequency evolution is
a limiting factor for reflection calibration, one simple strategy is
to split the full bandwidth into multiple subbands and perform
reflection calibration independently on each of them, with the
caveat that non-negligible frequency evolution within each
subband may need to be mitigated in other ways. One can also
do this more self-consistently by estimating the reflection
parameters and their frequency dependence across the full
band, however, we defer this to future work.

3.2. Modeling Cross Coupling

Antenna cross-coupling systematics are a baseline-dependent
effect and as such must be modeled and subtracted for each
cross-correlation visibility independently. In other works, cross
coupling has been modeled as a phase-stable term in the data
that can be removed by applying a finite-impulse response
(FIR) high-pass filter to the data (Parsons et al. 2010; Ali et al.
2015; M. Kolopanis et al. 2019, in preparation). The algorithm
described in this work is conceptually quite similar in that we
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take advantage of cross-coupling’s slow time variability to
model it, but is different in its methodology. A comparison of
cross-coupling subtraction techniques is done in Appendix B.
Note that the method presented here does not assume that the
instrumental bandpass has been calibrated out: these two steps
are in principle interchangeable. In practice, it helps if at least
the antenna cable delays are calibrated out such that the main
foreground lobe shows up at the expected delays of 7 ~ Ons,
but again this is not strictly necessary.

Our semiempirical approach starts with the cross-correlation
visibility Fourier transformed across frequency, V},, such that it
is in the time and delay domain. If we think of the visibility as a
2D rectangular matrix, we can use singular value decomposi-
tion (SVD) to decompose the matrix as

V = 1SD", (14)

where T is a unitary matrix containing basis vectors (also
referred to as eigenmodes) across time, D is a unitary matrix
containing basis vectors across delay, and S is a diagonal
matrix containing the weight (or their singular values) of each
mode in the data. There may be components of our data matrix,
V, that are inherently low rank, like a slowly time-variable
systematic for example. Thermal noise in the visibility, on the
other hand, occupies the full rank of the data matrix. SVD can
help us model and pull out the low-rank components of the
matrix, thus providing an approach for systematic removal on a
per-baseline basis.

Our SVD-based systematic removal algorithm operating on
an individual visibility takes the following steps:

1. Fourier transform the visibility waterfall to delay space.

2. Apply a rectangular band-stop window across delay to
down-weight foregrounds at low delays.

3. Decompose the visibility via SVD.

4. Choose the first N modes to describe the systematic and
truncate the rest.

5. Take the outer product of the remaining T and D modes
to form N data-shaped templates.

6. Multiply each template with their corresponding singular
value in S and sum them to generate the full-time and
delay-dependent systematic model.

7. Fourier transform the systematic model from delay space
back to frequency space and subtract it from the data.

A demonstration of this process on simulated visibilities is
shown in Figure 4. In this example, the simulation contains
foregrounds and cross-coupling systematics, but is free of both
thermal noise and EoR components. We start with a simulated
visibility spanning roughly 9 hr in LST with 1000 time bins and
spanning a bandwidth from 120-180 MHz with 256 frequency
bins. By Fourier transforming it to the delay domain (a), we see
that foregrounds are confined to low delays, while cross-
coupling systematics span a wide range of delays at positive
and negative delay offsets. Applying a band-stop windowing
function across the delay before taking the SVD (hatched
region) assigns zero weight to delay modes dominated by
foreground signal at|7| < 300 ns. The result of the SVD shows
significant isolation of the information content of the
systematic in the visibility into the first eigenmode (c). The
first time eigenmode (b) indeed shows it to be slowly time
variable, as we would expect for a cross-coupling systematic
(see Section 2). The outer product of the first time and delay
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eigenmodes multiplied with their singular value yields a
systematic template with the shape of our original data matrix
(d). Taking this single template as our systematic model
(equivalent to setting N = 1) and subtracting it from the data
yields the systematic-subtracted data (f).

We see in (d) that a cross-coupling model with N =1
provides good subtraction of the systematic, but is not enough
to completely remove it: based on Figure 4 (c) we can see that
it provides effectively three orders of magnitude of suppres-
sion, which, depending on the inherent amplitude of the
systematic, may or may not be enough to push it below fiducial
EoR levels. We can remove more and more of the systematic
by increasing the number of SVD modes we incorporate into
the systematic model. However, as is the case with empirically
based models, this has the side effect of possibly introducing
structure from other components of the visibility that we do not
want in our systematic model, such as the EoR itself. If the EoR
signal was somehow soaked up by our systematic model, then
by subtracting the model from the data we are inducing EoR
signal loss, which is highly undesirable.

To limit EoR signal loss in the process of systematic
subtraction, we can filter the systematic model to reject Fourier
modes that we know hold EoR power. In general, if a signal
occupies the visibility in the fringe-rate domain with variance
given by o(f)* and we enact a filter on it by multiplying by a
weighting function w(f), then the total power of the signal
before filtering, Ppefore, can be related to the total power after
filtering, Pager, as

Pbefore — fdf g(f)z (15)
Pree  [df o(fPw(f)?

Therefore, if we know statistically how the EoR will populate the
visibilities in the fringe-rate domain—in a sense deriving their
power spectral density functions (PSDs)—we can construct a
Fourier filter that is tailored to reject Fourier modes in the
systematic model that we know hold EoR power.

This is closely related to the optimal fringe-rate formalism
outlined in Parsons et al. (2016). In Figure 5 we show peak-
normalized PSDs of an EoR sky model at 120 MHz for various
baselines in the array, which describe the relative amount of
signal power occupied by different fringe rates. We derive
these via ensemble simulations of the same EoR sky while
varying the initial seed (Appendix A). The PSD of a simulated
HERA cross-coupling systematic is also plotted (black-dashed
curve). While centered at a fringe rate of 0 mHz, the systematic
has a tail that extends out to negative and positive fringe rates,
the latter being where most of the power from the EoR also lies.
Conversely, while most of the EoR power lies at positive fringe
rates for many baselines, some of its power also extends to zero
and negative fringe rates. Baselines that are longer along the
east-west direction have more EoR power pushed to higher
fringe rates and thus are more naturally separated from cross-
coupling systematics, while baselines that are purely north—
south in orientation see an EoR signal that is centered at
f ~ 0mHz, and almost completely overlaps the cross-coupling
systematic.

Each curve in Figure 5 integrated out to 99% of their total
area yields the domain in fringe-rate space where 99% of the
EoR power is contained in the visibility. We tabulate these
bounds in Table 1 for a few HERA baselines at v = 120 MHz.
If we low-pass filter any of the visibilities in Figure 5 in
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Figure 4. Semiempirical modeling and removal of cross-coupling systematics from a simulated cross-correlation visibility. (a) A simulated visibility with foregrounds
(center) and cross-coupling systematics (left and right). The hatched region of || < 300 ns is assigned zero weight before taking the SVD. (b)-(d) The resulting T
modes, singular values, and D modes after factorization via SVD. The D modes are artificially offset for visual clarity. (e) The outer product of the first T’ and D mode
multiplied with its singular value yields the first basis vector having the shape of the original data matrix. (f) The difference of the systematic model and the original
data shows decent subtraction of the systematic, but is not enough to completely remove it from the data.

fringe-rate space by applying a symmetric top-hat filter with a
maximum extent f.x given by these lower bounds, then
Equation (15) tells us we will retain 99% of the EoR power in
the data after filtering, which for our purposes is an effectively
lossless operation given other more dominant sources of error.
This result means that our ability to safely remove cross-
coupling systematics is baseline-dependent: for baselines with
large east—west lengths (e.g., blue curve), we can filter out the
vast majority of the systematic without attenuating the EoR.
For shorter baselines (e.g., green curve), we may only be able
to remove part of the systematic, and for baselines oriented
along the north—south direction (e.g., red), we may not be able
to remove any cross-coupling systematics, if they exist.
Armed with the ability to filter an arbitrary signal without
attenuating its EOR component, we can return to the problem of
choosing the appropriate number of eigenmodes to use in
describing a cross-coupling systematic in the data. We noted in
Figure 4 that by increasing the number of SVD eigenmodes
used to describe our systematic model, we might be able to

remove more of the systematic from the data. Figure 6 proves
this on a simulated visibility, now simulated with an EoR and
foreground component (green curve) corrupted by a cross-
coupling systematic at high delays (blue curve). We also show
SVD-based systematic removal with increasingly more eigen-
modes used to describe the systematic (orange curve). We can
see that going from N =1 (a) to N =35 (b) enables us to
subtract more of the systematic from the data. However, at
some point we expect low-level eigenmodes to be influenced
by other components of the data, such as EoR, foregrounds, or
noise, which raises the possibility of removing those
components along with the systematic. This is shown in (c),
where with N = 15 we have over subtracted the systematic and
caused signal loss of EoR power at high delays. One might
conclude from this that N = 5 is the “sweet spot” choice for the
number of eigenmodes to use, but this choice is conditional on
the relative amplitude between EoR and systematic: without
knowing the amplitude of EoR in the data a priori, we have no
way of knowing the appropriate number of eigenmodes to use
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Figure 5. Peak-normalized PSDs in fringe-rate space of an uncorrelated Gaussian EoR sky model for HERA baselines at 120 MHz. Left: a subset of the HERA array
showing its shortest baselines arranged in a hexagonal pattern. The arrows denote four unique baseline orientations. Right: peak-normalized PSDs describing how an
EoR sky signal populates the inteferometric visibility in the fringe-rate domain, as well as a cross-coupling systematic (black-dashed curve).

Table 1
EoR Visibility Power Bounds

Baseline Length Baseline Angle 99% Power Bounds

29.2m 0° 0.46 < f < 0.95 mHz
253 m 30° 0.31 < f< 0.77 mHz
14.6 m 0° 0.14 < f < 0.58 mHz
14.6 m 60° —0.05 < f < 0.40 mHz
253 m 90° —0.27 < f < 0.21 mHz

Note. Power bounds are defined at v = 120 MHz. Baseline angle is defined in
east north up coordinates as ¢° north of east (e.g., left of Figure 5).

that would enable us to subtract the systematic without
attenuating EoR. This makes the algorithm as originally
described in effect unusable, because it is an operation that is
dangerously lossy to EoR signal.

The solution to this problem is to apply a low-pass time filter to
the systematic model that is tailored to reject fringe-rate modes
occupied by the EoR. Specifically, we can apply a filter to the
systematic model 7' matrix that only keeps structure below some
predefined maximum fringe rate, fi,.x, such that in the process of
subtracting it from the data, all fringe rates |f]| > |f,,, are left
unaffected. For example, if we could tolerate a maximum of 1%
attenuation of EoR power in the process of systematic removal,
then f,.x would be set at the lower bounds tabulated in Table 1.
The result of applying such a filter to the SVD eigenmodes is
demonstrated in Figure 6(d), which shows the systematic-
subtracted data with N = 15 having first applied a low-pass filter
to T'. Although a significant amount of systematic remains, we can
now be confident that we have not attenuated the EoR signal in
the data, even while using a large number of eigenmodes to
describe the systematic.

In this section we have argued and shown via sky and
instrument simulations that we can construct a cross-coupling
model that removes the vast majority of the systematic while
remaining lossless to the EoR signal (for certain baseline
orientations). In real data, however, the fidelity of this model
will be fundamentally limited by the thermal noise floor of the
observation, as is the case for any signal term modeled on a
per-baseline basis. If the cross-coupling systematic is truly
baseline-dependent and is uncorrelated between baselines, then

the residual systematic term will integrate down like thermal
noise when we combine visibilities and we would not expect it
to re-appear in the integrated power spectra. In HERA, for
example, there is evidence that the observed cross-coupling
systematics are at least partially uncorrelated between baselines
(Kern et al. 2019).

4. Signal Loss

We have thus far presented an overview of instrumental
systematics that can hinder if not prohibit the detection of the
EoR for current and future 21 cm intensity mapping surveys,
and have outlined algorithms for modeling and removing them
from the data. However, any experiment that wishes to use a
systematic removal technique on the data must show that the
subtraction did not attenuate the desired signal in the data. In
other words, one must quantify and account for possible
sources of signal loss in a data reduction pipeline. In this work,
we use signal loss to refer specifically to the inadvertent
subtraction of sky signal (EoR or foreground) from the
visibilities.

Quantifying signal loss can be done in a variety of ways,
depending on the nature of the algorithm one wants to test (Cheng
et al. 2018; Mouri Sardarabadi & Koopmans 2019). In general,
however, we can quantify the amount of signal loss induced by an
algorithm by generating two identical mock data sets, introducing
a systematic to one of them, attempting to remove it, and then
comparing the end result power between the two data sets. For
this analysis, we generate mock observations using the same
simulations used in Section 3, but now in addition to diffuse
foregrounds and systematics we introduce an EoR component.
The EoR sky model is an uncorrelated Gaussian random field
across both the spatial and frequency axes with a variance of
25 mK? (see Appendix A for details).

We simulate the EoR and foreground visibilities separately,
and then assign their sum as V;. Next we create and add in a
systematic visibility and assign their sum as V,. Lastly, we
create a visibility model of the systematic using our algorithms
presented above, remove it from the data and assign the
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Figure 6. Cross-coupling systematic removal on simulated EoR + foreground visibilities for a 15 m east-west baseline with various choices of N. We show the
visibility amplitude averaged over LST for the uncorrupted data (green curve), the data corrupted by a cross-coupling systematic (blue curve) and the systematic-
model-subtracted data (orange curve) for N = 1, 5, and 15 (a, b, and ¢ respectively). In the last panel, we show the result of low-pass filtering the SVD T' modes before
forming the full systematic model and subtracting it from the data. For the baseline at hand, we do this with a fringe-rate cutoff of f,,,x = 0.14 mHz (Table 1). This
shows that by low-pass filtering the systematic model, we can constrain it such that it removes the systematic as much as possible while not attenuating the EoR, and is

therefore optimal even if it leaves some of the systematic in the data.

residual as V3, which can be summarized as follows:

VIZVeor"_Vfg
V2:Vl+vsys

Vs=F(V2) = V2 — Voo (16)

where F is a systematic removal algorithm whose signal loss
properties we would like to quantify, and whose effect is to
subtract a model of the systematic, V,oq, from the corrupted
visibility. Note we do not include a thermal noise term, which
is done so that we can probe the signal loss properties of the
algorithms down to the extremely weak levels of a fiducial EoR
signal.

Each visibility has an associated total power, which is a real-
valued quantity and can be calculated as the square of the
Fourier transformed visibility. In the ideal EoR + foreground
case, this is

~ ~ok
Pr=WV, = Ror + Pig + 2Re(Rorfg), a7

where V signifies the visibility Fourier transformed from
frequency to delay space, and R g, represents the cross-power
between \Zor and \7fg. Similarly, we can write the power of the
systematic-subtracted visibility as

~ ~ok

P3;=V;V3 = Ror + Py + 2Re(Peor,fg)
+ [;ys + Pmod - ZRe(Rys,mod)
+ 2Re(Peor,sys) - 2Re(Peor,mod)

+2 Re(Pfg,sys) -2 Re(Pfg,mod)~ (18)

In the case where we have perfectly subtracted the systematic
from the visibility (i.e., Vinoa = Viys), we see that the systematic
power terms cancel with the model power terms such that, not
surprisingly, we get that P; = P;. In the case where we have
imperfectly subtracted the systematic—either by incorrect estima-
tion of its phase and/or amplitude—the cross terms no longer
cancel. What this means for the total power of the resultant
visibility, P5, depends on how well matched the model visibility is
to the systematic, in addition to the relative inherent amplitude of
the sky signal versus the systematic. For example, in the case of
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an imperfect systematic model, then we can see that this will
always be true: Ry + Fnoa > 2Re(Rysmod), meaning their
difference results in excess power. Whether or not the EoR and
foreground cross term residuals in Equation (18) result in overall
positive or negative power depends on how well matched the
systematic model is to either EoR or foregrounds.

Given this, we can construct a simple metric,

(P3(1))

Ry(1) = )
3(7) i)

19)

to determine whether or not a step in our data analysis induces
signal loss. Here the () denotes an ensemble average over many
realizations of the visibilities with the same kind of sky signal and
systematic. Taking the ensemble average before taking the ratio is
done to ensure the power spectra are properly normalized. Signal
loss occurs anytime R;(7) < 1, meaning that our model-subtracted
visibility, V3, has less power in it than our uncorrupted visibility,
Vi. Specifically, EoR signal loss occurs anytime R;(7) < 1 at
delays we know to be dominated by EoR over foregrounds, such
as all delays significantly outside the geometric delay of the
baseline. In the case of R;(7) > 1, the resultant visibility is
systematic limited, but importantly, is not underreporting the
power in the data relative to the pure sky signal visibility. We can
also form the metric R,(7) using P, instead of P3, which informs
us of the relative amplitude of the raw systematic (without any
removal) compared to the underlying sky signals.

Whether or not an algorithm is lossy in practice can depend
on the relative amplitude between the signal and systematic
present in the data. As such, we need to compute the R metric
while varying the relative amplitude between the EoR and
systematics. Cheng et al. (2018), for example, do this by
repeatedly injecting mock EoR signals into their analysis
pipeline with increasing amplitude. In this study we take the
opposite approach. We adopt a fixed EoR amplitude consistent
with rough theoretical expectations and insert systematics at
amplitudes below, equal to, and above the adopted EoR
amplitude and compute R. This approach is more consistent
with what we expect to find in the real data: at certain times,
frequencies, or baselines, we may find systematics to be heavily
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Figure 7. Signal loss trials of reflection calibration with noise-free, foreground + EoR simulated visibilities. Top row: power spectra of the corrupted visibility V,
(blue-dashed curve), the uncorrupted visibility V; (green-solid region) and the calibrated visibility V3 (orange-dashed line) from a signal loss trial with a reflection
amplitude of A = 107>, Bottom row: heatmaps of the signal loss R metric computed for the corrupted data (left) and the calibrated data (right) as a function of
reflection amplitude (y-axis) and delay (x-axis). The residual fluctuation about R = 1 in the right panel is encompassed within the 1/+/N sample variance of our finite

ensemble average.

dominant, while at other times, frequencies, or baselines, there
may be no systematics at all.

4.1. Signal Loss in Reflection Calibration

To test signal loss in the context of reflection calibration, we
precompute the visibilities for a single diffuse foreground model
and 100 independent EoR models, with each simulation spanning
8hr of LST and 1000 individual time integrations. Because
HERA has a beam crossing time of about 1 hr, this yields an
effective number of independent foreground + EoR simulations
of ~800. The adopted EoR model is an uncorrelated Gaussian
field across angular position and frequency with a variance of
25 mK? (Appendix A).

A single signal loss trial takes the following steps. First we
choose a random EoR model from our library of precomputed
visibilities and add it to our foreground visibility (V). We then
make a copy of it and insert a reflection with a delay of 600 ns, a
random phase, and a single amplitude across frequency using
Equation (4) (V,). We then model the reflection in the simulated
autocorrelation knowing only the approximate delay range at
which it appears, and then apply the derived gain solution to the
cross-correlation visibilities (V3). Next we compute power spectra
of each data product (P;, P,, and P3). We then repeat this on the
order of 100 times, each with a different random EoR model, and
then take their average to approximate the ensemble average in
Equation (19). We then form the R, and R; metrics as a function
of time and delay, i.e., R3(¢, 7), and average over time to collapse
them onto a single axis across delay. This entire procedure
produces one signal loss trial, which is defined uniquely by the
amplitude, A, of the reflection inserted into the visibility.

Figure 7 shows multiple trials for different reflection amplitudes
in the range of 107°-10~". The top row shows power spectra of
each of the three visibility products as a function of delay for one
trial when A = 107>°. Recall that the reflection amplitude is
defined with respect to the visibility, meaning that the observed
reflection amplitude in the power spectrum is A% The bottom row
shows a heatmap of the signal loss R metric as a function of delay
(x-axis) and each trial’s reflection amplitude (y-axis). The left
panels shows R, and the right panel shows R, highlighting the
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amount of delay space that is brought down to R ~ 1 after
reflection calibration, with negligible amounts of signal loss
(purple-shaded regions). Furthermore, the weak Ilevels of
fluctuating residual systematic and signal loss observed at the
~2% level are within the 1/+/N sample variance of our finite
ensemble average. For context, HERA cable reflection amplitudes
are seen at around 107> (Kern et al. 2019).

4.1.1. Multi-reflection Regime

Above we probed for signal loss when performing reflection
calibration on a single reflection that was isolated in delay
space. Next, we relax this assumption and test how the the
algorithm performance and signal loss properties change when
we add in more reflections, which is relevant for any instrument
with multiple cables, or with cables that have sub-reflections
along the length of the cable (Ewall-Wice et al. 2016; Kern
et al. 2019). We choose to model the relative amplitude of these
reflections as an inverse power law as a function of delay with a
nominal reflection amplitude of A = 3 x 103. Our algorithm
models and calibrates out each reflection one at a time, starting
with the reflection with the largest amplitude. We do not feed
the algorithm the position of each reflection (it searches for it
automatically within a specified range of delays), but we do
assume we know the number of reflection inherent in the data,
which controls how many times we iterate the algorithm.

Our first test shown in Figure 8§ involves only five reflections
inserted across a relatively wide region in delay, such that they
can be considered nonoverlapping (or unconfused). In the top
panels, we show power spectra of the uncorrupted data (Ps;
green), the corrupted data (P,; blue line) and the reflection
calibrated data (Ps; orange-dashed line), along with a line
marking the EoR amplitude in the data (gray). We show this for
the autocorrelation visibility (left) and a 29 m cross-correlation
visibility (right). In the bottom panels we show the signal loss
metrics R, (blue) and R; (orange-dashed line). Recall that
reflection calibration builds up a set of gains strictly from the
autocorrelation, and then applies those gains to the cross
correlations. We find that our algorithm performs exceptionally
well in this regime: removing reflections down to the inherent
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Figure 8. Reflection calibration run on an autocorrelation (left) in a low-confusion, multi-reflection regime, where we then apply the resultant gains to a cross-
correlation visibility with a 29 m baseline length (right) and repeat a few dozen times. In the top panels, the (ensemble average) power spectrum of the uncorrupted
data (Py; green), corrupted data (P,; blue curve) and calibrated data (P3; orange-dashed curve) are plotted along with a line denoting the underlying EoR amplitude in
the data (gray). Signal loss metrics R, (blue curve) and R; (orange curve are shown in the bottom panels. We see that while reflection calibration can lead to a slight
amount of signal loss at the reflection delays of the autocorrelation visibility (bottom-left, dashed line), signal loss is not observed to an appreciable degree in the cross-

correlation visibility (bottom-right, dashed line).

— Uncorrupted

— Corrupted

Auto-Correlation Visibility

400 600 800 1000

T |nanosec

0 200

1200

Calibrated — EoR Amplitude

1011 P
Cross-Correlation Visibility

400 600 800 1000 1200

T |nanosec

0 200

Figure 9. Same figure as Figure 8 but now in a higher-confusion, multi-reflection regime. Importantly, even when reflection calibration encounters confusion in its
peak finding algorithm and fails to perfectly model the reflection, it still does not induce appreciable signal loss in the cross-correlation visibility (bottom-right,

orange).

sidelobe floor of the autocorrelation, which is more than
enough to bring the systematics to the EoR level in the cross-
correlation visibility. We find that while reflection calibration
can lead to slight signal loss in the autocorrelation visibility, we
find no appreciable levels of signal loss in the cross correlation.

Our next test shown in Figure 9 increases the number of
reflection modes inserted into the same region, such that they
become almost entirely overlapping. In this case we can see
that our algorithm fails to perfectly calibrate out the reflections
in both the autocorrelation (left) and cross correlation (right)
due to the partial confusion. Nonetheless, we still find that
while imperfect reflection calibration can lead to slight signal
loss in the autocorrelation, the cross correlation is resistant to
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signal loss. Reflection calibration’s resistance to signal loss in
the cross correlations is perhaps not surprising, given that
reflection calibration operates in an antenna-based space, while
EoR and other sky signals live in a baseline-based space.
Furthermore, our algorithm solely uses the autocorrelations to
estimate the reflection parameters.

In total, our findings suggest that (1) our reflection calibration
algorithm performs moderately well even in the many-reflection
regime, and that (2) even if a broad delay region is contaminated
by reflections, we can still in principle use this region for EoR
measurements (or upper limits in the case of imperfect systematic
removal) after reflection calibration because it does not suffer
appreciable levels of signal loss.
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Figure 10. Signal loss trials of cross-coupling removal with noise-free, foreground + EoR simulated visibilities for a 15 m east-west HERA baseline. The systematic
model is formed using 20 SVD modes and applies a low-pass time filter with an f;,.,x = 0.14 mHz. Top row: power spectra of the corrupted visibility P, (blue-dashed
curve), the uncorrupted visibility P; (green-solid region) and the systematic model-subtracted visibility P; (orange-dashed curve) from a signal loss trial with a
coupling amplitude A = 10, Bottom row: signal loss R metric computed for the corrupted visibility (left) and the model-subtracted visibility (right) as a function of
coupling amplitude (y-axis) and delay (x-axis), with the model-subtracted visibility (right). No appreciable amounts of signal loss is observed, and the model-
subtracted data show roughly four orders of systematic suppression in the power spectrum.
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Figure 11. The same signal loss trials for removal of a cross-coupling systematic as described in Figure 10, but for a 29 m east—west baseline using a low-pass time
filter with fi,.x = 0.46 mHz. In this case we get upwards of six orders of magnitude in systematic suppression in the power spectrum.

4.2. Signal Loss in Cross-coupling Subtraction

In this section, we quantify signal loss for cross-coupling
subtraction in a similar manner. Based on our conclusions from
Section 3.2, we expect our cross-coupling subtraction to be
effectively lossless to EoR by construction, but testing this against
ensemble signal loss trials is a good double-check and validation of
our arguments. The rough functional form of the simulated cross
coupling inserted into the visibilities is informed by cross-coupling
systematics observed in the HERA Phase I system (Kern et al.
2019). The simulations used are fundamentally the same as those
used in Section 4.1, except simulated with cross-coupling
systematics rather than cable reflections. To simulate cross
coupling in a cross-correlation visibility, we use Equation (12) to
insert ~25 modes spanning 700 < |7| < 900 ns with a decaying
power law as a function of || for their relative amplitudes,
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normalized such that the maximum amplitude relative to the peak
autocorrelation foreground power equals a predefined amplitude,
A. In the process of systematic removal, we model the systematic
with N = 20 SVD eigenmodes and apply a low-pass fringe-rate
filter on the SVD T modes using a Gaussian process (GP)
smoothing (see Appendix B) with a maximum fringe rate given by
the lower bound in Table 1. We then Fourier transform the data
from frequency to delay space using a seven-term Blackman—
Harris window, and average across ensemble trials. After forming
the R, and R; metrics as a function of time and delay, we truncate
5% of the time bins on either edge of the time axis before taking
their time average to limit the influence of boundary effects in the
smoothing process.

The result is shown in Figures 10 and 11, which shows
signal loss trials run on a 15 m east—west baseline and a 29 m
east—west baseline, respectively. As expected, we see better
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systematic suppression for the longer baseline, where the EoR
signal is inherently more isolated from the systematic in fringe-
rate space. We also see that in the case of strong coupling
amplitudes we cannot completely suppress the systematic down
to EoR levels; however, we can nonetheless suppress the
systematic by roughly four orders of magnitude in power for
the 15 m baseline and eight orders of magnitude in power for
the 29 m baseline. Importantly, we show that the algorithm
presented does not significantly attenuate EoR in the data, with
residual fluctuations about R = 1 at the 1% level in power.
While this result is not surprising given the fact that in
Section 3 we constructed our systematic model to explicitly be
lossless to EoR, it is still a useful cross-check on our algorithm
and its implementation on the data.

5. Summary

In this work, we present an overview of 21 cm radio survey
systematics related to internal instrument coupling, including
signal chain reflections and antenna cross couplings. Such
systematics will hinder cosmological surveys aiming to detect
and characterize the 21 cm signal from the EoR and Cosmic
Dawn. We study the temporal and spectral behavior of these
systematics in simulations, and propose techniques for
modeling and removing them from the data without attenuating
the desired cosmological signal. We further test the signal loss
properties of these techniques with simulated HERA sky and
systematic simulations.

For simulated cable reflection systematics in the absence of
noise, our method can estimate its parameters to 1 part in 10°
and achieve suppression of over eight orders of magnitude in
the power spectrum for both isolated and semi-isolated
reflections. In practice, nonideal effects like frequency evol-
ution in the reflection parameters will limit the performance of
this technique on real data. Through signal loss trials we show
that reflection calibration, when modeled from the autocorrela-
tion visibility, is resistant to EoR signal loss in the cross-
correlation visibilities.

Antenna cross couplings are another category of systematics
that we address in this work. We present an SVD-based
modeling technique that, when low-pass filtered along the time
axis, can suppress cross-coupling systematics by four orders of
magnitude in the power spectrum for HERA’s short east—west
baseline, and eight orders of magnitude or more for baselines of
longer projected east—west separation in the absence of noise.
We show that we can tailor our systematic model to minimize
its susceptibility to inducing EoR signal loss, and additionally
prove this with signal loss trials. This result has critical
implications for enabling 21cm experiments to mitigate
systematics that would otherwise hinder if not prohibit them
from making a robust detection of the EoR signal. A
companion paper (Kern et al. 2019) applies these methods to
HERA Phase I data as a method demonstration, showing we
can suppress reflection and cross-coupling systematics down to
the array-integrated noise floor of the data for a single nightly
observation.
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Appendix A
Simulated Visibilities with healvis and hera sim

We use the numerical visibility simulation package heal-
vis® to compute mock observations of foreground and EoR
sky models. healvis numerically integrates the measurement
equation (Equation (1)) by representing the sky and direction-
dependent antenna primary beam response as HEALpix maps
(Gorski et al. 2005), and summing their product with the
baseline fringe pattern to compute the visibility. The mechanics
of healvis as a simulator is described in more detail in
Lanman & Pober (2019). Our simulations use HEALpix sky
maps with NSIDE = 128 and use a frequency and angular-
dependent electromagnetic simulation of the HERA dish and
feed primary beam response (Fagnoni et al. 2019). The adopted
beam model does not include mutual coupling effects. The
beam has been smoothed across frequency to limit excess
spectral structure above 250 ns, mimicking an idealized HERA
beam response. We simulate visibilities for HERA baselines of
various orientations and separations, ranging from Om in
separation (i.e., the autocorrelation) out to 60 m in separation.
The sky resolution provided by a HEALpix NSIDE = 128 map
is roughly 10 times smaller than the fringe wavelength of the
longest baseline in consideration at the highest simulated
frequency of v = 180 MHz.

Foreground visibilities are simulated with HEALpix maps of
the diffuse, low-frequency radio sky from the PyGSM
package,” which is a repackaging of the original 2008 Global
Sky Model (GSM; de Oliveira-Costa et al. 2008). We simulate
a bandwidth spanning 120-180 MHz with 256 channels and an
LST range of roughly 0-8 hr with a time cadence of 30 s (about
1000 time bins), which corresponds to the transit of the cold
part of the radio sky. Figure 12 shows the diffuse radio sky
from the GSM, a mock EoR realization, and the adopted
antenna primary beam response at ¥ = 120 MHz. The EoR
model is constructed as an uncorrelated 67 field with a variance
of 25 mK?, consistent with fiducial expectations for the signal
at EoR redshifts (Mesinger et al. 2011). Its Fourier correlations
are modeled as a flat spectrum in P(k): while fiducial EoR
models tend to favor EoR as a roughly flat spectrum field in

P(k) for the purpose of using these simulations as mock
VISIbllltleS for validation and testing we require only a semi-
realistic EoR model, and believe this difference to have
negligible impact on our results. The pixel size of an NSIDE
128 map corresponds to a transverse comoving length scale of
~70 cMpc at z = 8, which is larger than the size scales where
EoR is correlated during the beginning and middle of
reionization. The frequency axis is simulated with a channel
resolution of 234 kHz, which at redshift z = 8 corresponds to a
comoving length scale of ~4 cMpc, which is roughly the scale
at which our uncorrelated Gaussian field approximation begins
to break down. However, we also believe this to have a
negligible impact on our performance and signal loss tests: the
most sensitive part of our analysis is the computation of the
EoR PSD functions (Figure 5) which relies on the time

® hitps: //github.com/RadioAstronomySoftwareGroup /healvis
7 https: //github.com/telegraphic/PyGSM
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Figure 12. HEALpix sky maps at v = 120 MHz used for simulating diffuse foregrounds (left) and an uncorrelated EoR field (center). The antenna primary beam
response (right) is taken from an electromagnetic simulation of the HERA dish and feed (Fagnoni et al. 2019).
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Figure 13. Mock visibilities computed with healvis and hera_sim showing (left) an autocorrelation visibility of diffuse foregrounds, (center) a cross-correlation
visibility of diffuse foregrounds, and (right) a cross-correlation visibility of an EoR model.

correlations of the EoR model, not its frequency correlations.
Figure 13 shows simulated healvis visibilities of the diffuse
foreground (left) and EoR model (center) described above.

We also use the visibility simulation toolbox hera_s im® to
model signal chain reflection and cross-coupling systematics.
hera_sim is a general purpose toolbox for creating mock
observations with realistic instrumental and environmental
effects, like thermal noise, reflections and RFI. For inserting
systematics into the data, hera_sim uses the equations
outlined in Section 2, in particular Equations (5) and (12). For
the signal loss trials described in Section 4, we simulate 100
independent EoR visibilities coming from EoR sky maps
generated with unique random seeds, and add the GSM
foreground visibility to each one. We then add in the relevant
systematic to be tested, and use this set of EoR + foreground +
systematic visibilities to perform the ensemble average needed
for quantifying signal loss.

A.l. EoR PSD Functions for HERA

We use healvis-simulated HERA observations to calcu-
late the expected PSD functions of an EoR-like signal for
HERA visibilities. At any given time, a point source locked to
the celestial sphere generates a complex sinusoid in the
inteferometric visibility with a time period determined by its
position on the sky and the fringe profile of the baseline at
hand. Over a short time interval, its Fourier transform across
time is nearly a delta function at a fringe rate set by the inverse

8 hitps://github.com/HERA-Team /hera_sim
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of its time period. Thus, over short time intervals, points on the
sky map to specific fringe rates in the visibility (Parsons et al.
2016), which is also related to the m-mode analysis (Shaw et al.
2014). The analytically derived “optimal fringe-rate filter” in
Parsons et al. (2016) is a filter that minimizes the noise
component of the visibility-based power spectrum error bars,
and is related to the PSD of EoR-like signals in the visibility.
However, the analytic derivation hinges crucially on the
assumption that the beam crossing time is much longer than
the fringe-crossing time for a point source on the sky, which
was a fairly valid assumption for a wide-field experiment like
PAPER. This is not the case for HERA, which has both shorter
baselines with wider fringes and also a more compact primary
beam. Therefore, calculating the PSD of an EoR-like sky signal
is more easily done numerically. We do this by generating over
100 independent EoR sky models with the same variance but
different initial seeds. We perform HERA visibility simulations
of each sky using healvis, Fourier transform them from LST
into the fringe-rate domain, and then take their absolute value
and average across each realization. The square of these
profiles is shown in Figure 5, which represents a numerically
derived PSD of a theoretical EoR-like signal in HERA
visibilities. These profiles allow us to tailor visibility Fourier
filters to do things like minimize EoR signal loss in systematic
subtraction, or to minimize the thermal noise component in the
power spectrum error bars. We tabulate the 99% power bounds
of these curves in Table 1 for the few baselines presented in
this study. We also plot these bounds and provide a fitting
formula as a function of projected east—west baseline length in
Figure 14, such that one can extrapolate these data points to
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Figure 14. PSD bounds of EoR sky models for HERA baselines in fringe-rate
space at v = 120 MHz. The PSD curves are shown in Figure 5, and the bounds
quoted correspond to 99% of the total power. Best-fit lines are shown for
extrapolation to other HERA baselines.

other baselines in the HERA array. Error bars on the 99%
bounds in Figure 14 are calculated via bootstrap resampling
over the independent realizations (Efron & Tibshirani 1994).

Appendix B
Comparison of Cross-coupling Removal Techniques

In this section, we compare techniques for suppressing
slowly fringing systematics (e.g., crosstalk), including the one
presented in this work in Section 3. Specifically, we compare
the technique from the PAPER Collaboration of convolving an
FIR filter in the time domain following the procedures outlined
in Parsons et al. (2016), which was applied to PAPER power
spectrum analyses for crosstalk suppression (Ali et al. 2015;
Cheng et al. 2018; M. Kolopanis et al. 2019, in preparation). In
comparing this against the technique from this work, we use
two different methods for low-pass filtering the output T
modes, the first being a fringe-rate domain deconvolution
(DEC), and the second being a Gaussian process regression
(GPR) with a fixed-length-scale hyper-parameter. In summary,
we find that the SVD-based algorithm with a GPR filtering
provides the best systematic suppression outside the foreground
wedge. In addition, we find that all algorithms can be tuned to
be safe against EoR signal loss in that the structure they
subtract from the data can be confined to low-fringe-rate modes
where the EoR signal is subdominant.

Filtering visibilities by constructing an FIR filter that zeros
out low-fringe rate modes of the data is a technique used by the
PAPER Collaboration for suppressing slowly fringing sys-
tematics like crosstalk (see Figure 10 of Cheng et al. 2018), and
given the convolution theorem, is identical to direct Fourier
filtering. In practice, this technique suffers from boundary
effects, where because the visibility is not both infinitely
sampled and periodic, the systematic subtraction closer to the
starting and ending time boundaries is degraded. Another
approach is to use a deconvolution in the Fourier domain,
which builds a model for the signal by employing the standard
CLEAN algorithm (Hogbom 1974). By limiting the Fourier
modes of the model components to low-fringe-rate modes, one
can construct a model that is by construction low-pass filtered.
This too suffers from time domain boundary effects, and in
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Figure 15. GP fixed-hyper-parameter degree of freedom test, showing
simulated noise (black curve), GP smoothing with a squared-exponential
kernel and a fixed-length-scale hyper-parameter equivalent to f,,x = 1.0 mHz
(GP) and constrained-GP smoothing with a fixed-length-scale hyper-parameter
equivalent to fi,.x = 0.95 mHz (GP-C). We can see the former GP model (GP)
picks up on signal power slightly outside of the fringe-rate cutoff defined by its
length-scale hyper-parameter (shaded region). Degrading this hyper-parameter
by 5% makes the model diverge from the signal at the desired fringe-rate cutoff
(GP-C).

addition comes with all the subtleties of using the CLEAN
algorithm to high dynamic range.

Modeling the time-covariance of the data with a GP
eliminates the need to use a Fourier transform, because the
modeling is done entirely in the time domain and does not
assume exact periodicity of the underlying signal (Rasmussen
& Williams 2006); although for our purposes it does assume
the signal to be statistically stationary across time. One major
concern for a GP-based low-pass filter is the issue of what
kinds of time structure it does and does not allow into the
model. In other words, we seek to understand its effective
degrees of freedom while fitting the data. Without going into
too much detail, a GP models the covariance of the data
through a kernel function, which sets how correlated two data
points are given their distance from each other. For example, a
standard squared-exponential kernel describing the covariance
between two points in time, #; and t,, can be written as

k(n, 2l0) = exp| =31 = )2 - )], @0)
where ¢ is a characteristic length scale of correlations and is a
hyper-parameter of the kernel. The GP maximum a posteriori
function (in addition to its credible intervals) can be calculated,
and is generally the desired product of GP modeling (Equation
(2.23) of Rasmussen & Williams 2006). By decreasing or
increasing the length-scale hyper-parameter, £, we can create
GP best-fit functions that have more or less structure in them,
respectively.

To use a GP as a low-pass filter, we adopt a squared-
exponential kernel with a fixed-length-scale hyper-parameter. If
the data is a time series, then this fixed-length scale in time, Z,
sets the maximum fringe rates allowed by the filter as
finax = €1 If we define the effective degrees of freedom of a
model as the extent to which it allows power in fringe-rate
space, then the effective degrees of freedom of a GP model can
be tested via regressing over random noise simulations. We
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Figure 16. Cross-coupling removal comparison test for a FIR filter model, an SVD model with deconvolution low-pass filtering (SVD-DEC), and an SVD model with
constrained-GP low-pass filtering (SVD-GP-C), applied to a 15 m baseline (left) and a 29 m baseline (right). The top panels show modeling and removal in delay
space, and the bottom panels show the difference of each method’s systematic model with the true systematic as a function of time, highlighting the severe boundary

effects suffered by the FIR and SVD-DEC techniques.

generate 100 independent, uncorrelated complex Gaussian
noise visibilities, compute our GP best-fit function given our
fixed-length-scale hyper-parameter, and take its Fourier trans-
form into fringe-rate space. We then take the absolute value of
each Fourier transformed GP fit and average over the
independent realizations. We do this for a GP with a
Jfmax = 1.0mHz (GP) and for a GP with a more constrained
cutoff of fi,.x = 0.95mHz (GP-C). The results are shown in
Figure 15, showing that indeed the normal GP allows power
slightly beyond its cutoff scale, whereas the constrained version
with a 5% degraded cutoff diverges from the signal at the
desired fringe rate. Therefore, when using a fixed-length-scale,
squared-exponential GP as a low-pass filter, one should
consider increasing the length-scale hyper-parameter by
roughly 5% its nominal value in order to ensure that the filter
is not allowing power beyond the desired fringe-rate scale.
Next we compare how the several techniques outlined here
perform on simulated visibilities containing only foregrounds
and a cross-coupling systematic. Our comparison will focus on
three methods for building a cross-coupling visibility model:
(1) a top-hat FIR filter that is 1 for all fringe-rate modes
| £l < fi.ax and zero otherwise (labeled FIR), (2) the SVD-based
method with a deconvolution low-pass filter applied to its T
modes with a CLEAN boundary |f]| < f;,,, (labeled SVD-
DEC), and (3) the SVD-based method with a GP-C low-pass
filter applied to its T modes (labeled SVD-GP-C). The top
panels in Figure 16 plots the corrupted foreground + EoR +
systematic visibility (black line), with the systematic-subtracted
visibility for each technique, for a 15 m baseline (left) and a
29 m baseline (right). The bottom panels plot the difference of
each systematic model with the true systematic at a single delay
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as a function of time. We can clearly see the boundary effects
that most severely plague the FIR method, but also the SVD-
DEC method as well. When the GP-C method brings the
systematic down to EoR levels, it too suffers slightly from
boundary effects, but they are significantly less prevalent than
the boundary effects seen in the other techniques, highlighting
one benefit of using a GP-based low-pass filter.

Appendix C
Software

The analysis presented in this work relies heavily on the
Python programming language (https:/ /python.org), and Python
software developed by HERA collaboration members. Here
we provide a list of these packages and their version or Git hash:
aipy [v2.1.12] (https://github.com/HERA-Team/aipy),
healvis [v1.0.0] (https://github.com/RadioAstronomy
SoftwareGroup /healvis; Lanman & Pober 2019), hera_cal
[v2.0] (https://github.com/HERA-Team/hera_cal), hera_
sim [v0.0.1] (https://github.com/HERA-Team/hera_sim),
pyuvdata [v1.3.6] (https://github.com/RadioAstronomy
SoftwareGroup/pyuvdata; Hazelton et al. 2017), and uvtools
[v0.1.0] (https://github.com/HERA-Team/uvtools). These
packages in turn rely heavily on other publicly available
software packages, including: astropy [v2.0.14] (https://
astropy.org; The Astropy Collaboration et al. 2013), healpy
[v1.12.9] (https://github.com/healpy/healpy), h5py [v2.
8.0]1 (https://www.h5py.org/), matplotlib [v2.2.4]
(https:/ /matplotlib.org), numpy [v1.16.2] (https://www.
numpy.org), scipy [v1.2.1] (https://scipy.org), and sci-
kit-learn [v0.19.2] (https://scikit-learn.org).
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