StealthMiner: Specialized Time Series Machine Learning
for Run-Time Stealthy Malware Detection
based on Microarchitectural Features

Hossein Sayadi Yifeng Gao Hosein Mohammadi Makrani
California State University, Long George Mason University University of California, Davis
Beach ygaol2@gmu.edu hmakrani@ucdavis.edu

hossein.sayadi@csulb.edu

Tinoosh Mohsenin
University of Maryland, Baltimore
tinoosh@umbc.edu

Jessica Lin
George Mason University
jessica@gmu.edu

ABSTRACT

Hardware-Assisted Malware Detection (HMD) techniques deploy
Machine Learning (ML) classifiers to detect patterns of malicious ap-
plications based on microarchitectural features captured by modern
microprocessors’ Hardware Performance Counters (HPCs). Existing
HMD methods have limited their analysis on detecting malicious
applications that are spawned as a separate thread during appli-
cation execution, hence detecting embedded malware patterns at
run-time still remains an important challenge. Embedded malware
refers to harmful stealthy cyber attacks in which the malicious
code is hidden within benign applications and remains undetected
by traditional malware detection approaches. In HMD methods,
when the HPC data is directly fed into a machine learning classifier,
embedding malicious code inside the benign applications leads to
contamination of HPC information, as the collected HPC features
combine benign and malware microarchitectural events together.
To address this challenge, in this paper we propose StealthMiner,
a specialized time series machine learning approach to accurately
detect embedded malware at run-time using branch instructions
feature, the most prominent microarchitectural feature. The results
indicate that StealthMiner can detect embedded malware at run-
time with 94% detection performance on average with only one
HPC feature, outperforming the detection performance of state-of-
the-art HMD methods by 42%.

CCS CONCEPTS

« Security and privacy — Security in hardware;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GLSVLSI 20, September 7-9, 2020, Virtual Event, China

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7944-1/20/09...$15.00
https://doi.org/10.1145/3386263.3407585

Avesta Sasan
George Mason University
asasan@gmu.edu

Setareh Rafatirad
George Mason University
srafatir@gmu.edu

Houman Homayoun
University of California, Davis
hhomayoun@ucdavis.edu

KEYWORDS

Embedded Malware, Hardware-Assisted Malware Detection, Ma-
chine Learning, Stealthy Malware, Time Series Classification

ACM Reference Format:

Hossein Sayadi, Yifeng Gao, Hosein Mohammadi Makrani, Tinoosh Mohs-
enin, Avesta Sasan, Setareh Rafatirad, Jessica Lin, and Houman Homayoun.
2020. StealthMiner: Specialized Time Series Machine Learning for Run-
Time Stealthy Malware Detection based on Microarchitectural Features .
In Proceedings of the Great Lakes Symposium on VLSI 2020 (GLSVLSI ’20),
September 7-9, 2020, Virtual Event, China. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3386263.3407585

1 INTRODUCTION

The ever-increasing complexity of modern computing systems has
led to the proliferation of security vulnerabilities, making such
systems suitable targets for sophisticated cyber attacks. The attack-
ers make use of vulnerabilities to compromise systems and deploy
malicious activities [21, 25]. The recent evolution of computing
devices in mobile platforms and Internet-of-Things (IoT) domains
further exacerbates the malware threats calling for effective se-
curity countermeasures against such attacks [11, 19]. Traditional
software-based malware detection techniques have shown to be in-
efficient mostly imposing significant complexity and computational
overheads on the system. In addition, such detection methods rely
on the static signature analysis of the running programs and are
not able to detect unknown attacks at run-time. The emergence of
new variants of malware threats requires continuous updating the
software-based solutions (e.g. off-the-shelf anti-virus) that further
utilizes considerable memory and hardware relevant resources mak-
ing such solutions less practical for emerging computing systems
especially in embedded mobile and IoT devices [3, 13, 15, 18, 20].
In order to address the shortcomings of conventional malware de-
tection techniques, Hardware-Assisted Malware Detection (HMD),
by employing low-level features captured by Hardware Perfor-
mance Counters (HPCs), has emerged as a promising solution [2, 24].
The HPCs are special-purpose registers built into modern micro-
processors to capture the trace of hardware-related events [19, 26].

https://doi.org/10.1145/3386263.3407585
https://doi.org/10.1145/3386263.3407585

HMD techniques have shown that malware can be differentiated
from normal programs using Machine Learning (ML) techniques ap-
plied on hardware performance counter features. In addition, HMDs
reduce the latency of detection process by order of magnitude with
small hardware overhead [19, 20].

Malicious software attacks have continued to evolve in quantity
and sophistication during the past decade. Due to ever-increasing
complexity of malware attacks and financial motivations of attack-
ers, malware trends are recently shifting towards stealthy attacks
[16, 23]. Stealthy malware is a type of attack in which the malicious
code is hidden inside the benign application for performing harm-
ful purposes [5, 9, 29]. The main purpose of stealthy malware is to
remain undetected for a longer period of time in the computing
system. The longer the threat remains undiscovered in the system,
the more opportunity it has to compromise computers and/or steal
information before a suitable detection mechanism can be deployed
to protect against it. Stolfo et al. discovered a new type of stealthy
threat referred as embedded malware [23]. Under this threat, the
attacker embeds the malicious file inside a benign program on the
target host such that the benign and malicious applications are
executed as a single thread on the system. It has been shown that
traditional signature-based antivirus applications are unable to de-
tect embedded malware even when the exact signature of malware
is available in the detector database [9, 23]. In this work, we primar-
ily focus on detecting stealthy malware where malicious code is
hidden inside the benign program, both executed as a single thread
on the target system making the detection more challenging.

The existing studies on hardware-based malware detection have
primarily assumed that the malware is spawned as a separate thread
while executing on the target host. However, in real-world scenarios
malicious programs attempt to hide themselves within a benign
application to bypass the detection mechanisms. In HMD methods
the HPC data is directly fed to a detector, therefore, for embedded
malicious code hidden inside the benign application, the HPC data
becomes contaminated as the collected events include the combined
benign and malware microarchitectural events. The recent work
in [30] is the only HMD study on embedded malware in which
they showed that one benign program infused with ransomware
cannot be detected by traditional ML-based detection methods.
However, they have not proposed any effective solution to tackle
the challenge of detecting stealthy malware using HPC features.

In this work, we propose StealthMiner, a specialized lightweight
time series machine learning approach to accurately detect the
embedded malicious patterns hidden inside the benign programs
using only one HPC feature (branch instruction). To the best of
our knowledge, this is the first work that addresses the challenge
of detecting stealthy/embedded malware at run-time using hard-
ware performance counters features. The main objective of this
work is to effectively detect the malicious application embedded
inside the benign program using the least number of microarchi-
tectural events (only one HPC feature) in which the traditional
machine learning-based solutions are unable to detect them with
even 8-16 features. To this aim, using an effective feature reduction
technique, we first identify the most prominent low-level feature
for embedded malware detection. Next, we propose a lightweight
scalable time series-based Fully Convolutional Neural Network
(FCN) model that automatically identifies potentially contaminated

~ ey |2 Benion * Benign
cr gt Lo Malware - - * Malware

Figure 1: Visualizing the complete benign and malware dataset us-
ing t-SNE algorithm: a) malware spawned as a separate thread b)
malware embedded inside benign applications

samples in HPC-based time series and utilizes them to distinguish
the stealthy malware from benign applications at run-time using
branch instructions as the most significant low-level feature.

2 PROPOSED STEALTHY MALWARE
DETECTION FRAMEWORK

In this section, we describe the proposed machine learning-based
approach for effective hardware-based stealthy malware detection.

2.1 Challenge of Detecting Stealthy Malware

Figure 1 illustrates the challenge of detecting embedded malware.
Figure 1-(a) visualizes the complete benign and malware HPC data
(described in details in Section 2), when the malware is spawned as
a separate thread, via t-distributed Stochastic Neighbor Embedding
(t-SNE) algorithm a widely used algorithm for visualizing high di-
mensional data. As seen, the marginal area between malware and
benign program is large when malware is spawned as a separate
thread indicating that by using traditional ML models (prior works)
the malware can be easily detected. However, the converted points
of embedded malware data are mixed with each other in Figure
1-(b) depicting the impact of embedding malicious code inside be-
nign applications. The figure highlights the challenge of stealthy
malware detection indicating that due to the dense distribution of
malware and benign applications features, traditional classification
approaches are not able to achieve a high accuracy in detecting
embedded malware. As a case study, by applying nearest neighbor
classifier on both complete and embedded malware dataset, the clas-
sifier can achieve an accuracy of 90% in detecting the malware as a
separate thread. However, the classifier can only achieve nearly 60%
accuracy in embedded malware detection task when the malicious
code is hidden inside the normal program.

2.2 Experimental Setup and Configuration

This section provides the details of the experimental setup and data
collection process. The benign and malware applications are exe-
cuted on an Intel Xeon X5550 machine (4 HPC registers available)
running Ubuntu 14.04 with Linux 4.4 Kernel and HPC features are
captured using Perf tool available under Linux at sampling time of
10ms. Perf provides rich generalized abstractions over hardware
specific capabilities. HPC-based profilers are currently built into
almost every popular operating systems. Linux perf is a new im-
plementation of performance counter support for Linux which is
based on the Linux kernel subsystem perf-event and provides users

a set of commands to analyze performance and trace data. It ex-
ploits perf-event-open function call in the background which can
measure multiple events simultaneously. In our experiments, we
executed more than 3500 benign and malware applications for data
collection. Benign applications include real-world applications com-
prising MiBench and SPEC2006 , Linux system programs, browsers,
and text editors. Malware applications collected from virustotal
and virusshare online repositories include Linux ELFs and scripts
created to perform malicious activities and include 850 Backdoor,
640 Rootkit, and 1460 Trojan samples. The functionality of Back-
door applications is trying to provide remote access to the remote
user (attacker) and facilitates information leakage; Rootkits provide
the attackers with privilege access to modify the registers and au-
thorized programs; and Trojans perform phishing of confidential
information in the system.

In our experiments, the HPC information is collected by running
applications in an isolated environment referred as Linux Contain-
ers (LXC) which unlike common virtual platforms such as VMWare
or VirtualBox, provides access to actual hardware performance
counters data instead of emulating HPCs. In order to effectively
address the non-determinism and overcounting issues of HPC regis-
ters in hardware-based security analysis discussed in recent works
[1, 30], we have extracted 56 low-level CPU events available under
Perf tool using static performance monitoring approach where we
can profile applications several times measuring different events
each time. In other words, since Intel Xeon processor hosts only
4 HPC registers physically available [4], we can only measure 4
events at a time. As a result, multiple runs are required to fully
capture all events. We divided 56 events into 14 batches of 4 events
and executed each application 14 times at sampling time of 10ms
to gather all microarchitectural events. Furthermore, to ensure that
running malware inside the LXC does not contaminate the system’s
environment and also no contamination occurs in collected data
due to the previous run of the program, the container is destroyed
after each run.

2.3 Microarchitectural Features Analysis

Identifying the most important microarchitectural features is an
crucial step for building efficient ML classifiers [17]. For selection
of features, we first use Correlation Attribute Evaluation to rank
all captured features by calculating Pearson correlation between
each attribute and class. Next, we apply Principle Component Anal-
ysis (PCA) to find the best HPCs suited for training the ML-based
malware detectors. PCA is a class of dimensionally reduction tech-
niques that captures most of the data variation by rotating the
original data to a new variable in a new dimension [22, 28]. We em-
ploy PCA to reduce the features and apply a hierarchical clustering
technique to group similar features and identified the top 4 HPCs
to capture the behavior of specific class of malware. The feature
reduction results indicate that the identified prominent 4 HPCs are
the same across various classes of malware which include branch
instructions, cache references, branch misses, and node-stores.

2.4 Stealthy Malware Threat Models

For modeling the embedded malware threats, we have considered
persistent malicious attacks which occur once in the benign ap-
plication with notable amount of duration attempting to infect

the system. Persistent malicious codes are primarily a subset of
Advanced Persistent Threat (APT) which is comprised of stealthy
and continuous computer hacking processes, mostly crafted to per-
form a specific malfunction activities. For the purpose of thorough
analysis, we deployed various malware types for embedding the
malicious code inside the benign application including Backdoor,
Rootkit, Trojan, and Hybrid (Blended) attacks. For per-class em-
bedded malware analysis, malware traces taken from one category
of malware, are randomly embedded inside the benign applica-
tions and the proposed detection approach attempts to detect the
malicious pattern. Furthermore, the Hybrid threat combines the
behavior of all classes of malware.

In order to create embedded malware time series and model the
real-world applications scenario, with capturing interval of 10ms
for HPC features monitoring, we consider 5 sec. infected running
application (benign application infected by embedded malware).
For this study, 10,000 test experiments were conducted in which
malware appeared at a random time during run of a benign program.
In our experiments, three different sets of data including training,
validation, and testing sets are created for comprehensive evalu-
ation of the StealthMiner approach. Each dataset contains 10,000
complete benign HPC time series and 10,000 embedded malware
HPC time series. Since the attacker can deploy unseen malware
program to attack system, we create these three datasets with three
groups of recorded malware HPC time series consisting of 33.3% for
training, 33.3% for validation, and the remaining of whole recorded
data for testing evaluation.

2.5 Overview of StealthMiner

StealthMiner malware detection framework is based on a light-
weight Fully Convolutional Neural Network (FCN)-based time se-
ries classification. Primarily, it attempts to automatically identify
potentially contaminated intervals in HPC-based time series at run-
time and utilize them to distinguish the embedded malware from
benign applications. The overview of StealthMiner and its compar-
ison with prior works is described in Figure 2. The network is a
simplified version of neural network models inspired from previous
general convolutional neural network-based time series classifica-
tion models [6, 27]. As shown in Figure 2-(a), our proposed solution
is based on the least number of HPCs and targets detecting stealthy
malware that have been ignored in prior studies. Furthermore, as
seen in Figure 2-(b), the proposed FCN-based malware detector
is created by stacking two 1-D convolution layers with 16 and 2
kernels, respectively. The size of kernel in these two convolution
layers is 2 and 3, respectively. These convolution layers aim at
selecting the subsequence of HPC time series for identifying the
malware. Next, a global average pooling layer is applied to convert
the output of the convolution layer into low dimension features.
These features are then fed into a fully connected neural network
to distinguish the embedded malware from benign applications.

Concretely, given a time series of HPC features of x = x1, x2, ..., XN,
where N is the length of the time series in the first 1-D convolution
layer, an output of k;j, kernel is computed by:

1
ti(,k) = Z Wk j1Xi+j-1 + by (1)
Jj€EL2

Applications Computer Systems
P il

10

Prior works: Malware spawned as a
separate thread

Malware Detected using
Traditional ML Algorithms

(a) Prior Works | This Work _1/\/_\/\/\/\,7
Detection using low-level features v v
Least number of HPCs (Only one) X Vv
Embedded Malware Detection X v

This work: Malware embedded inside benign application

Malware Detected with
StealthMiner Framework

Input HPC Time Series _ _ _ _____ (c)

HPC-based Time | input HpC Time series (B)
Series Size: IxN

1
I
1-D Convolution | ¢..vure Maps of1) of i
Layer Size: 16X 1
1
1
1

16 o
BN+RelLu __m_n_._l‘—**_-_..wlt{—\..!“""\‘

1 i
1 1
1-D Convolution Feature Maps o(2) o 1 :
Layer Size: 2xV 2 l | H
2 A A !
' | FS——

Low Dimension Feature:
Global Pooling o 0@ [0.26, 0.32]
Low Dimension Features o(3)
Output: [0.001, 0.999]
Fully connected Neuron Network (2x2) ¢ (Benign) (Malware)

Figure 2: Overview of StealthMiner, the proposed specialized time series machine learning approach for embedded malware detection

where 2-d vector [wy 1 1, Wk 2.1] € W is the weight of k;j, kernel and
w={wgjilk=1...,16,j = 1,2} isa 16X2 matrix that describes all
weights of first layer. Given t,il) = [t1(1k)’ e tj(vl)k

ization function, tl£2) = BN (tlil)), and a ReLu activation function,

o)

], a batch normal-

= ReLu(tliz)), are then applied. BN(.) is a function which nor-

malizes mean and variance of the tl((l) to 0 and 1, respectively, and

ReLu activation function sets any negative value in tliz) to 0. Also,

o,(cl) is a N dimension feature map generated from the k;;, kernel.

We denote o(!) = [ogl), .. .,oié)] as the output of the convolution
layer. Intuitively, convolution layer converts original time series of
length N into 16 different N dimensional feature maps capturing
different potential local features that can be used to classify the
input data [27].

The 0V is then fed into next convolution layer with total number
of kernels equal to 2. This layer summarizes 0(!) into two different
feature maps which can be computed via:

16 3
(3 _ (1)
b = D) D Wik g+ b2 @
k=1j=1

where the weight of all kernels is a 3-d tensor wy k. ;5 of size
2 X 16 X 3. For each tl.(3), BN(.) and ReLu(.) functions are further

applied and four feature maps (denoted as 0@ = [oiz), 052)]) are
generated. Intuitively, stacking two convolution layers can increase
the accuracy of the framework and the ability of model to detect
complicated features which are not possible to be captured by single
convolution layer [27]. Note that any positive value inside the
oiz) ogz) indicates the potential HPC intervals used to determine
whether the input HPC time series contains an embedded malware.
Next, we conduct a global average pooling step to convert feature
map 0® into low dimension features. In particular, given a feature

>

map of OI(<2) €0®, we deploy the average value of all elements

inside o](cz) as the low dimension feature. As a result, this step
converts 02 into a 2-d vector (denoted as o).
Finally, 03 is fed into a fully connected neural network with

softmax activation function formulated below where a standard

neural network layer is designed for our target classification task
in detecting embedded malware:

0= Softmax(WTo(S) + b3) (3)
where Softmax(x) = Zf—x’ex]{ Eq. (3) first converts 0® into a new
k=1

2-d real value vector via linear transformation WZo(3) + b3, where
W is a 2 X 2 matrix and b3 is a 2 X 1 vector. Next, all elements in the
vector is mapped to [0,1] via So ftmax function. The final output
is a 2-d vector o = [01, 02] which describes the possibility that the
time series is benign or infected by malware.

Suppose that we denote all the weights and the output of network
is © and O(x) = [O1(x), O2(x)], respectively. Given a training
dataset O and the network weights ©, we update ® by minimizing
the binary cross-entropy loss as follows:

L= 3 —yilog(®:(xi) - (1-y;)log(®2(x:))) (4)
(x1,y;) €D

where x; and y; is the HPC time series and the associated ground
true label of the i;j record in D. And y; € {0, 1} indicates whether
the time series is benign or contains malware. Equation 4 can be
minimized via standard back propagation algorithm, a widely used
model for training various types of neural networks [6, 27]. It pri-
marily updates weights in neural network by propagating the loss
function value from the output to the input layer and iteratively
minimizes the loss function for each layer via gradient descent
method. In this work, for each layer, the weights are optimized via
Adam optimizer [8], a stochastic gradient descent method used to
efficiently update weights of neural network.

In order to demonstrate the functionality of the StealthMiner
approach in identifying the malware embedded inside the benign
program, a detection case study is presented in Figure 2-c. As shown,
an HPC-based time series is the input to the classifier which con-
tains an embedded rootkit malware (the embedded malware is high-
lighted in red). To identify the hidden malicious pattern, Stealth-
Miner generates two feature maps 052) oéz)
(2)
1

via the proposed fully
(2)
2

>

convolution neural network. The 0,” and 0, are then categorized

as a 2-d feature vector o3 by calculating the simple average of all
the value in the feature map. In the given example, 03 is equal
to [0.26, 0.32]. This 2-d feature is then fed into a fully connected
neural network layer and the detector analyzes the input HPC time

series and attempts to find that whether the input trace contains
an embedded malware or not. In this case it successfully identifies
the embedded malware with significantly high probability (0.999).

We implemented the proposed embedded malware detection
framework via Pytorch deep learning library. For evaluating Stealth-
Miner framework using accuracy and F-measure (described in Sec-
tion 3.1), the proposed detector determines whether the input time
series contains embedded malware by computing the argmax (o).
And for measuring the the Area Under the Curve (AUC), we directly
use the output computed via equation (3). Different from existing
neural network time series classification models proposed in prior
works, StealthMiner framework has small total number of kernels
and layers which dramatically reduces the number of parameters
and the cost of detecting malware in new HPC time series. For
instance, in the latest neural network introduced by [6], to classify
a time series the proposed solution needs more than 150,000 param-
eters. Hence, applying such heavyweight classification models to
our embedded malware detection problem would significantly in-
crease the overhead and complexity of our design, which certainly
makes the solution impractical. In contrast, StealthMiner framework
only contains 200 parameters. Having small number of parame-
ters enhances the efficiency of the proposed ML-based malware
detection solution highlighting the effectiveness and applicability
of StealthMiner to efficiently identify the embedded malware.

3 EXPERIMENTAL RESULTS
3.1 Performance Evaluation Criteria

The StealthMiner approach is evaluated using precision, recall, F-
score, and detection accuracy (the overall rate of correctly classified
samples). In binary classification techniques the precision (p) is the
proportion of the sum of true positives versus the sum of positive
instances. For instance, it is the probability for a positive sample to
be classified correctly. The recall (r) is the proportion of instances
that are predicted positive and are also actually positive of all the
instances that are positive. The F-score or F-measure is the weighted

harmonic mean of the precision and recall reaches its best value at

2 X (pxr)
B

Since the F-measure and accuracy are not the only metrics to
determine the performance of the ML-based malware detectors, we
also evaluate StealthMiner using Receiver Operating Characteris-
tics (ROC) graphs. The ROC curve represents the fraction of true
positives versus false positives for a binary classifier as the thresh-
old changes. We further deploy the Area under the Curve (AUC)
measure for ROC curves which corresponds to the probability of
correctly identifying malware and benign programs. and is more
related to the robustness of the classifier. Robustness is referred
to how well the classifier distinguishes between binary malware
and benign classes, for all possible threshold values. The AUC of
the best possible classifier is equal to 1, meaning that we can find
a discrimination threshold under which the classifier obtains 0%
false positives and 100% true positives.

1 and worst at 0 and is formulated as

3.2 Evaluation of StealthMiner

For the purpose of comprehensive evaluation, we compare our
proposed approach with both the recent general time series classi-
fication approaches and recent traditional machine learning-based

HMD techniques. We studied two general time series classification
methods including a k-Nearest Neighbour (KNN) classifier, a classi-
cal time series classification method, and Bag-of-Pattern-Features
(BOPF) [10] classifier, which is a recently proposed scalable time
series classification approach. Given the input time series, KNN
classifier will assign same class label to the input time series based
on the most similar observed time series in training set in which
the similarity is measured by Euclidean distance.

Table 1: Evaluation results of StealthMiner for validation set

[Type [Precision [Recall [F-score [Accuracy]
Hybrid 0.85 0.89 0.88 0.87
Rookit 0.93 0.88 0.91 0.91
Trojan 0.91 0.87 0.89 0.89
Backdoor 0.88 0.94 0.91 0.91
Average 0.89 0.9 0.9 0.89

As described before, Bag-of-Pattern-Features based time series
classification approach is one of the recent fast time series classifica-
tion algorithm that has a significantly low time and computational
complexity compared with other existing time series classification
approaches while maintaining a very high accuracy. As a result,
for a comprehensive comparison of StealthMiner with state-of-the-
arts, we implemented different ML-based HMD techniques and
time series classification presented in recent prior works including
JRIP [14, 19], J48 [14, 19], Logistic Regression [7, 12, 14], KNN [2],
and BOPF [10] that are representing the rule-based, decision tree,
regression-based, and time series machine learning classifiers and
have demonstrated high accuracy for detecting malware (spawned
as separate thread) in recent works.

True Positive
True Positive

BOPF
—Proposed

—Proposed

0 02 0.4 06 08 1 0 0.2 0.4 0.6 0.8 1
False Positive False Positive

(a) Blended Malware (b) Rootkit Malware

True Positive
True Positive

BOPF
—Proposed

0 02 0.4 06 08 1 0 02 0.4 06 08 1
False Positive False Positive

—Proposed

(c) Trojan Malware (d) Backdoor Malware

Figure 3: ROC graphs of StealthMiner vs. various state-of-the-arts
for detecting different classes of embedded malware

Table 1 presents the evaluation results of malware detection for
different classes of embedded malware for validation set. The results
show that our proposed lightweight neural network-based solution
can achieve average accuracy, precision, recall and F-score of nearly
0.9 across all types of experimented embedded malware only by
using the most prominent HPC feature (branch instructions). This
makes the run-time detection of stealthy malware feasible which
is primarily eliminating the need to execute applications multiple
times to capture various low-level features suitable for HMD.

Table 2: AUC values of testing set results of StealthMiner vs. tradi-

tional ML-based detectors in prior works
[Attack Type || StealthMiner | JRIP [J48 [LR | KNN | BOPF |

Hybrid 0.92 0.64 | 0.62 | 053 | 06 0.7
Rookit 0.98 077 | 062 | 05 | 054 | 053
Trojan 0.93 085 | 0.69 | 057 | 0.65 | 0.79
Backdoor 0.91 073 | 054 | 051 | 06 | 0.68
Average 0.94 0.75 | 0.62 | 052 | 058 | 0.67

Figure 3 illustrates the ROC graphs of the proposed approach
compare to state-of-the-art HMD and time series classification
techniques. The correspondent AUC values for each embedded
malware category are further presented in Table 2. A higher AUC
value means that the ROC graph is closer to the optimal threshold
and the classifier is performing better in terms of identifying the
stealthy malware and classification of malware and benign appli-
cations. The ROC results clearly indicate the effectiveness of the
proposed approach in this work as compared with prior ML-based
malware detection and time series classification. As can be seen, our
proposed approach, StealthMiner, achieves an average AUC value
of 0.94 across all experimented categories of embedded malware.
Furthermore, StealthMiner significantly outperforms the traditional
ML algorithms used in recent HMD works, JRip, J48, and LR, by
up to 0.48, and further outperforms tested time series classification
approaches by up to 0.45 for embedded Rootkit detection.

4 CONCLUSION

Detection of applications’ malicious patterns using microarchi-
tectural features has emerged recently as a promising alternative
solution to address the inefficiency of software-based malware de-
tection mechanisms. Prior works on Hardware-Assisted Malware
Detection (HMD) using Machine Learning (ML) have primarily con-
sidered that the malicious software is spawned as a separate thread
while infecting the target computer system. This essentially means
that the HPCs data captured at run-time inserted to the classifier
belongs only to the malware program. In real-world applications
however, the malware can be embedded inside a benign applica-
tion, rather than spawning as a separate thread producing a more
harmful attack. Therefore, the HPCs information collected at run-
time could belong to both malware and benign applications. Our
analysis showed that this HPCs data pollution could result in perfor-
mance degradation of traditional ML-based malware detectors. In
response to this challenge, in this work we proposed StealthMiner, a
lightweight specialized time series-based Fully Convolutional Neu-
ral Network approach to effectively detect the stealthy malware
inside the the benign applications at run-time. Our experimental
results demonstrated that the proposed detector, using only the
most prominent HPC feature, branch instructions, can detect the
embedded malware with 94% detection performance on average at
run-time outperforming the detection performance of state-of-the-
art hardware-based malware detection methods and general time
series classification methods by up to 42% and 36%, respectively.

5 ACKNOWLEDGMENT

This research was supported in part by DARPA SSITH program
under the award number 97774952.

REFERENCES

[1] S.Das and et al. 2019. SoK: The challenges, pitfalls, and perils of using hardware
performance counters for security. In IEEE Symposium on Security and Privacy.

[2] J. Demme and et al. 2013. On the Feasibility of Online Malware Detection with
Performance Counters. In International Symposium on Computer Architecture
(ISCA’13). ACM, 559-570.

[3] A.S. Gazafroudi and et al. 2017. Energy flexibility assessment of a multi agent-
based smart home energy system. In IEEE 17th International Conference on Ubig-
uitous Wireless Broadband (ICUWB). 1-7.

[4] Intel. 2016. Intel 64 and ia-32 architectures software developer manual, volume
3b: System programming guide.

[5] X.Jiang and et al. 2007. Stealthy Malware Detection Through Vmm-based "Out-
of-the-box" Semantic View Reconstruction. In ACM Conference on Computer and
Communications Security (CCS’07). 128-138.

[6] Fazle Karim and et al. 2018. LSTM fully convolutional networks for time series
classification. IEEE Access 6 (2018), 1662—1669.

[7] Kh.N.Khasawneh and et al. 2015. Ensemble Learning for Low-Level Hardware-
Supported Malware Detection. In International Workshop on Recent Advances in
Intrusion Detection (RAID’15). 3-25.

[8] D.P.Kingma and J. Ba. 2014. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980 (2014).

Wei-Jen Li and et al. 2007. A Study of Malcode-Bearing Documents. In Detection

of Intrusions and Malware Vulnerability Assessment (DIMVA’07). Springer, Berlin,

Heidelberg, 231-250.

[10] X.Liand et al. 2017. Linear Time Complexity Time Series Classification with
Bag-of-Pattern-Features. In ICDM’17. 277-286.

[11] A. Mosenia and N. K. Jha. 2017. A Comprehensive Study of Security of Internet-

of-Things. IEEE Transactions on Emerging Topics in Computing 5, 4 (Oct 2017),

586-602.

M. Ozsoy and et al. 2015. Malware-aware processors: A framework for efficient

online malware detection. In HPCA’15. 651-661.

[13] S. M. P. Dinakarrao and et al. 2019. Lightweight Node-level Malware Detection

and Network-level Malware Confinement in IoT Networks. In Design, Automation

Test in Europe Conference Exhibition (DATE). 776-781.

N. Patel and et al. 2017. Analyzing Hardware Based Malware Detectors. In DAC’17.

ACM, 25:1-25:6.

S. Rezaei and et al. 2018. Scalable Multi-Queue Data Transfer Scheme for FPGA-

based Multi-Accelerators. In IEEE 36th International Conference on Computer

Design (ICCD’18). IEEE, 374-380.

[16] E. M. Rudd and et al. 2017. A Survey of Stealth Malware Attacks, Mitigation
Measures, and Steps Toward Autonomous Open World Solutions. IEEE Commu-
nications Surveys Tutorials 19, 2 (2017), 1145-1172.

[17] H. Sayadi and et al. 2017. Machine learning-based approaches for energy-
efficiency prediction and scheduling in composite cores architectures. In 35th
International Conference on Computer Design (ICCD’17). 129-136.

[18] H. Sayadi and et al. 2018. Comprehensive Assessment of Run-Time Hardware-

Supported Malware Detection Using General and Ensemble Learning. In ACM

International Conference on Computing Frontiers (CF’18).

H. Sayadi and et al. 2018. Ensemble learning for effective run-time hardware-

based malware detection: A comprehensive analysis and classification. In 2018

55th ACM/ESDA/IEEE Design Automation Conference (DAC’18). 1-6.

[20] H. Sayadi and et al. 2019. 2SMaRT: A Two-Stage Machine Learning-Based

Approach for Run-Time Specialized Hardware-Assisted Malware Detection. In

Design, Automation Test in Europe Conference Exhibition (DATE’19). 728-733.

Nader Sehatbakhsh and et al. 2019. REMOTE: Robust external malware detection

framework by using electromagnetic signals. IEEE Trans. Comput. 69, 3 (2019),

312-326.

Aghaei E. Serpen G. 2018. Host-based misuse intrusion detection using PCA

feature extraction and kNN classification algorithms. In Intelligent Data Analysis.

[23] S.J. Stolfo and et al. 2007. Towards Stealthy Malware Detection. In Malware
Detection. Springer US, Boston, MA, 231-249.

[24] A. Tang and et al. 2014. Unsupervised Anomaly-Based Malware Detection Using
Hardware Features. In International Workshop on Recent Advances in Intrusion
Detection (RAID’14). Springer, 109-129.

[25] Han Wang and et al. 2020. Mitigating Cache-Based Side-Channel Attacks through
Randomization: A Comprehensive System and Architecture Level Analysis. In
Design, Automation Test in Europe Conference Exhibition (DATE 20).

[26] Han Wang and et al. 2020. SCARF: Detecting Side-Channel Attacks at Real-
time using Low-level Hardware Features. In International Symposium on On-Line
Testing and Robust System Design (IOLTS 20). IEEE.

[27] Z.Wang and et al. 2017. Time series classification from scratch with deep neural
networks: A strong baseline. In IJCNN’17. IEEE, 1578-1585.

[28] S. Wold and et al. 1987. Principal component analysis. Chemometrics and Intel-
ligent Laboratory Systems 2, 1 (1987), 37 — 52. Proceedings of the Multivariate
Statistical Workshop for Geologists and Geochemists.

[29] H. Zhang and et al. 2014. Detection of stealthy malware activities with traffic
causality and scalable triggering relation discovery. In ASIACCS’14.

[30] B. Zhou and et al. 2018. Hardware Performance Counters Can Detect Malware:
Myth or Fact?. In ASIACCS’18. 457-468.

[9

=
&

[14

[15

[19

[21

~
5,

	Abstract
	1 Introduction
	2 Proposed Stealthy Malware Detection Framework
	2.1 Challenge of Detecting Stealthy Malware
	2.2 Experimental Setup and Configuration
	2.3 Microarchitectural Features Analysis
	2.4 Stealthy Malware Threat Models
	2.5 Overview of StealthMiner

	3 Experimental Results
	3.1 Performance Evaluation Criteria
	3.2 Evaluation of StealthMiner

	4 Conclusion
	5 Acknowledgment
	References

