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ABSTRACT
Optimistic concurrency control, or OCC, can achieve excellent
performance on uncontended workloads for main-memory trans-
actional databases. Contention causes OCC’s performance to de-
grade, however, and recent concurrency control designs, such as
hybrid OCC/locking systems and variations on multiversion con-
currency control (MVCC), have claimed to outperform the best
OCC systems. We evaluate several concurrency control designs
under varying contention and varying workloads, including TPC-
C, and find that implementation choices unrelated to concurrency
control may explain much of OCC’s previously-reported degra-
dation. When these implementation choices are made sensibly,
OCC performance does not collapse on high-contention TPC-C.
We also present two optimization techniques, commit-time updates
and timestamp splitting, that can dramatically improve the high-
contention performance of both OCC and MVCC. Though these
techniques are known, we apply them in a new context and high-
light their potency: when combined, they lead to performance gains
of 3.4× for MVCC and 3.6× for OCC in a TPC-C workload.
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1. INTRODUCTION
The performance of multicore main-memory transactional sys-

tems is a subject of intense study [14, 22, 24, 32, 37, 38, 49–51, 57].
Techniques based on optimistic concurrency control (OCC) per-
form extremely well on low-contention workloads, thanks to their
efficient use of shared memory bandwidth and avoidance of un-
necessary memory writes. On high-contention workloads, however,
OCC can experience frequent aborts and, in the worst case, conten-
tion collapse, where performance for a class of transactions crashes
to nearly zero due to repeated conflicts.

Recent designs targeted at high-contention workloads, including
partially-pessimistic concurrency control [50], dynamic transaction
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reordering [57], and multiversion concurrency control (MVCC) [25,
32], change the transactional concurrency control protocol to better
support high-contention transactions. The evaluations of these de-
signs show dramatic benefits over OCC for high-contention work-
loads, including TPC-C, and some show benefits over OCC even at
low contention [32].

Many of these evaluations compare different code bases, how-
ever, which could cause mere implementation differences to unduly
influence the results. We therefore analyzed several main-memory
transactional systems, including Silo [49], DBx1000 [56], Cicada
[32], ERMIA [25], and MOCC [50]. We found several underappre-
ciated engineering choices – we call them basis factors – that dra-
matically affect these systems’ high-contention performance. For
instance, some abort mechanisms exacerbate contention by obtain-
ing a hidden lock in the language runtime.

To better isolate the effect of concurrency control (CC) on perfor-
mance, we implement and evaluate three CC mechanisms – OCC,
TicToc [57], and MVCC – in a new system, STOv2, that makes
good, consistent implementation choices for all basis factors. We
show results up to 64 cores and for several benchmarks, including
low- and high-contention TPC-C, YCSB, and benchmarks based
on Wikipedia and RUBiS. With basis factors controlled, OCC per-
formance does not collapse on these benchmarks, even at high con-
tention, and OCC and TicToc significantly outperform MVCC at
low and medium contention. This contrasts with prior evaluations,
which reported OCC collapsing at high contention [16] and MVCC
performing well at all contention levels [32].

In addition, we introduce, implement, and evaluate two optimiza-
tion techniques that can improve performance on high-contention
workloads for all concurrency control schemes we evaluated (OCC,
TicToc, and MVCC). These techniques safely eliminate classes of
conflict that were common in our workloads. First, the commit-
time update technique eliminates conflicts that arise when read-
modify-write operations, such as increments, are implemented us-
ing plain reads and writes. Second, many records have fields that
rarely change; the timestamp splitting technique avoids conflicts
between transactions that read rarely-changing fields and trans-
actions that write other fields. These techniques have workload-
specific parameters, but they are conceptually general, and we ap-
plied them without much effort to every workload we investigated.
Like MVCC and TicToc, the techniques improve performance on
high-contention workloads. However, unlike MVCC, these opti-
mizations have little performance impact at low contention; unlike
TicToc and MVCC, they help on every benchmark we evaluate, not
just TPC-C; and they benefit TicToc and MVCC as well as OCC.
Though the techniques are widely known, our variants are new, and
we are the first to report their application to TicToc and MVCC.
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Figure 1: STOv2 overview.

The rest of the paper is organized as follows. After describing
our OCC, TicToc, and MVCC implementations (§2) and our exper-
imental setup (§3), we identify the basis factors we discovered and
characterize their effects on performance (§4). Once basis factors
are fixed, we can fairly compare the performance of OCC, TicToc,
and MVCC on a range of high- and low-contention benchmarks
(§5). Next we describe how we implement the commit-time update
and timestamp splitting techniques (§6), and evaluate their perfor-
mance (§7). We then describe future work (§8) and related work
(§9) before concluding.

2. BACKGROUND
STOv2, or simply STO, is a reimplementation of the STOv1

software transactional memory system [22]. STOv1 supported only
OCC and, as we describe later, made questionable implementation
choices for some basis factors. STOv2 makes good choices and sup-
ports pluggable concurrency control protocols. We focus on three
protocols: OSTO, the OCC variant; TSTO, the TicToc OCC vari-
ant; and MSTO, the MVCC variant.

Figure 1 provides an overview of the STO system and architec-
ture. STO implements primary and secondary indexes using hash
tables and trees. Unordered indexes use a hash table to map keys
to records. To support range scans in ordered indexes, STO uses
Masstree [34], a highly-concurrent B-tree variant that adopts some
aspects of tries. STOv2 transactions are written as C++ programs
that access transactional data structures. Data structure code and the

Timestamp Name Definition
Global write wtsg Periodically incremented
Thread-local write wtsth Per-transaction snapshot of wtsg;

used to mark objects for deletion
Global read rtsg < min

th
wtsth

Thread-local read rtsth Per-transaction snapshot of rtsg

Global GC bound gcts < min
th

rtsth

Figure 2: RCU-related timestamps in STOv2. For all threads th
and at all times, wtsg ≥ wtsth > rtsg ≥ rtsth > gcts.

STOv2 core library work together to ensure transaction serializabil-
ity. Transactions execute in “one-shot” style: all transaction param-
eters are available when a transaction begins, and transactions run
without communicating with users. We do not support durability or
networking, as they are not primary concerns of this work.

2.1 OSTO
OSTO, the OCC variant, follows the Silo [49] OCC protocol.

During execution time, transaction logic generates read and write
sets. Commit time, which ensures serializability and exposes modi-
fications to other transactions, runs in three phases. In Phase 1, the
OSTO library locks all records in the write set, aborting if deadlock
is suspected. The transaction’s timestamp is selected after Phase 1;
this marks its serialization point. In Phase 2, the library validates
that records in the read set have not changed and are not locked
by other transactions, aborting on validation failure. In Phase 3, the
library installs new versions of the records in the write set, updates
their timestamps, and releases locks.

OSTO aims to avoid memory contention except as required by
workloads. For instance, it chooses transaction timestamps in a
scalable fashion (as in Silo), with few references to modifiable
global state. Read-copy-update (RCU) techniques [35] are used to
recycle memory and reshape data structures. This form of garbage
collection allows transactions to safely access records after their
logical deletion and avoids all read locks. RCU requires a mecha-
nism for determining when RCU-deleted objects are safe to free, so
STOv2 maintains a set of thread-local variables and several global
variables that are periodically updated by a maintenance function.
Figure 2 lists these variables. To mark an object for deletion (e.g.,
a record or tree node), the transaction running on thread th stores
that object in a list associated with freeing timestamp fts = wtsth.
Since the object might have been accessed by concurrently-running
transactions, it is unsafe to free the object until all such transactions
have committed or aborted. This is detected using rts. Any concur-
rent transaction th′ must have rtsth′ < fts, so, since gcts < rtsth′ , it
will be safe to free the object once fts ≤ gcts. An epoch advancer
thread periodically increments wtsg and recomputes rtsg and gcts;
this introduces little contention since it runs just once a millisecond.

2.2 MSTO
MSTO is an MVCC variant based broadly on Cicada [32], though

it lacks some of Cicada’s advanced features and optimizations.
MSTO maintains multiple versions of each record, allowing trans-
actions to access both past and present states. This effectively main-
tains consistent snapshots of the database over time, which allows
all read-only transactions to execute conflict-free. MVCC also al-
lows MSTO to commit some serializable transaction schedules that
OCC and OSTO cannot, such as the one in Figure 3. However, these
benefits come at the cost of memory usage, which increases mem-
ory allocation and garbage collection overhead and adds pressure
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Figure 3: Although t2 finishes later in time, it can still commit
if placed earlier than t1 in the serial order. OCC will abort t2;
MVCC and TicToc can commit it.

on processor caches. Additionally, MSTO involves more atomic
memory operations than OSTO.

MSTO, like OSTO, uses indexes to map primary keys to records,
but rather than storing data directly in records, introduces a layer of
indirection called the version chain (Figure 1c). A record comprises
a key and a pointer to the head version in the chain. Each version
carries a write timestamp, a read timestamp, and a state, as well
as the record data and a chain pointer. The write timestamp is the
timestamp of the transaction that created the version; it thus cor-
responds to an OSTO record’s timestamp. The read timestamp is
the timestamp of the latest committed transaction that observed the
version. The chain is sorted by write timestamp: a committed chain
v1, . . . ,vn with head version v1 will have rtsi ≥ wtsi, wtsi ≥ rtsi+1,
and wtsi > wtsi+1 for all i.

Before initiating a transaction, MSTO assigns an execution time-
stamp tsth used for all observations during execution time. For
transactions identified in advance as read-only, tsth := rtsg; other-
wise, tsth := wtsg. When observing a record, MSTO selects the vis-
ible version at tsth. For reads, the version and the record are stored
in the read set. For writes, only the record is stored in the write set.

MSTO’s commit protocol follows Cicada’s. At commit time,
MSTO first updates its execution timestamp with an atomic in-
crement on the global write timestamp, tsth := wtsg++. Then, in
Phase 1, MSTO atomically inserts a new PENDING version with the
updated tsth into each modified record’s version chain, ensuring that
the chains maintain the prescribed timestamp order. Irreconcilable
conflicts detected in Phase 1 cause an abort. Meanwhile, concurrent
transactions that access a PENDING version in the execution phase
will spin-wait until the state changes. In Phase 2, MSTO searches
for each record’s visible version at tsth. If this version is not the one
in the read set, the transaction aborts; otherwise, MSTO atomically
updates the read timestamp on each version v in the read set to be
v.rts := max{v.rts, tsth}. Finally, in Phase 3, MSTO changes
its PENDING versions to be COMMITTED and enqueues earlier ver-
sions for garbage collection. If a transaction is aborted, its PENDING
versions are changed to ABORTED instead. The commit protocol is
used only for read/write transactions; read-only transactions always
commit.

MSTO incorporates one important Cicada optimization, inlined
versions: one version can be stored inline with the record. This re-
duces memory indirections, and therefore cache pressure, for val-
ues that change infrequently. MSTO fills the inline version slot
when it is empty or has been garbage collected (we do not imple-
ment Cicada’s promotion optimization [32, §3.3]).

2.3 TSTO
TSTO is an OSTO variant that uses TicToc [57] in place of plain

OCC as the CC mechanism. TicToc, like MVCC, uses separate
read and write timestamps for each record, but it maintains only the
most recent version. It dynamically computes transactions’ commit
timestamps based on read and write set information. This allows
for more flexible transaction schedules than simple OCC, at the

cost of more complex timestamp management. Except for concur-
rency control, TSTO and OSTO share identical infrastructure. We
do not use the TicToc delta-rts encoding [57, §3.6], which leads to
false aborts in read-heavy workloads; instead, we use separate, full
64-bit words for wts and rts. This change caused no reduction in
performance.

3. EXPERIMENT SETUP
We conduct our experiments on Amazon EC2 m4.16xlarge dedi-

cated instances, each powered by two Intel Xeon E5-2686 v4 CPUs
(16 cores/32 threads each, 32 cores/64 threads per machine) with
256GB of RAM. Medians of 5 runs are reported with mins and
maxes shown as error bars. Some results show very little varia-
tion so error bars are not always visible. In all experiments, aborted
transactions are automatically retried on the same thread until they
commit.

3.1 Workloads
We measure two standard benchmarks, YCSB (A and B) [8] and

TPC-C [47], with high and low contention settings. We also mea-
sure two additional high-contention workloads modeled after Wiki-
pedia and RUBiS.

The TPC-C benchmark models an inventory management work-
load. We implement the full mix and report the total number of
transactions committed per second across all transaction types, in-
cluding 45% new-order transactions. As required by the TPC-C
specification, we implement a queue per warehouse for delivery
transactions, and assign one thread per warehouse to preferentially
execute from this queue. (“[T]he Delivery transaction must be ex-
ecuted in deferred mode . . . by queuing the transaction for deferred
execution” [48, §2.7].) Delivery transactions for the same ware-
house always conflict, so there is no point in trying to execute them
in parallel on different cores. TPC-C contention is controlled by
varying the number of warehouses. With one warehouse per core,
contention is relatively rare (cross-warehouse transactions still in-
troduce some conflicts); when many cores access one warehouse,
many transactions conflict. We enable Silo’s fast order-ID optimiza-
tion [49], which reduces unnecessary conflicts between new-order
transactions. We implement contention-aware range indexes (§4.5)
and use hash tables to implement indexes that are never range-
scanned. On MVCC systems (MSTO and Cicada), we run read-
only TPC-C transactions slightly in the past, allowing them to com-
mit with no conflict every time.

YCSB models key-value store workloads; YCSB-A is update-
heavy, while YCSB-B is read-heavy. YCSB contention is controlled
by a skew parameter. We set this relatively high, resulting in high
contention on YCSB-A and moderate contention on YCSB-B (the
benchmark is read-heavy, so most shared accesses do not cause con-
flicts). All YCSB indexes use hash tables.

Our Wikipedia workload is modeled after OLTP-bench [11]. Our
RUBiS workload is the core bidding component of the RUBiS
benchmark [7], which models an online auction site. Both bench-
marks are naturally highly contended. All indexes use Masstree to
support range queries.

We also evaluate other implementations’ TPC-C benchmarks,
specifically Cicada, MOCC, and ERMIA. All systems use Silo’s
fast order-ID optimization (we enabled it when present and imple-
mented it when not present). We modified Cicada to support deliv-
ery queuing, but did not modify MOCC or ERMIA.
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Figure 4: OSTO throughput under TPC-C full-mix showing im-
pact of basis factors. Factor optimizations are individually turned
off from the optimized baseline to demonstrate the capping effect
of each factor.

4. BASIS FACTORS
Main-memory transaction processing systems often implement

their concurrency control using different choices for basis factors
such as memory allocation, index types, and backoff strategy. In
years of running experiments on such systems, we have developed
a list of basis factors where different choices can have significant
impact on performance. For instance, OCC’s contention collapse
on TPC-C stems not from inherent OCC limitations, but on partic-
ular basis factor choices.

This section describes the basis factors we have found most im-
pactful. We describe the factors, suggest a specific choice for each
factor that performs well, and conduct experiments using both high-
and low-contention TPC-C to show their effects on performance.
We end the section by describing how other systems implement the
factors, calling out important divergences.

Figure 4 shows an overview of our results for OSTO, which is
our focus in this section. The heavy line represents our OSTO base-
line, in which all basis factors are implemented according to our
guidelines. In every other line, a single factor’s implementation is
replaced with a different choice taken from previous work. The im-
pact of the factors varies, but on high-contention TPC-C, four fac-
tors have 20% or more impact on performance, and two factors can
cause collapse. In TSTO and MSTO, the basis factors have similar
impact, except that memory allocation in MSTO has even larger im-
pact due to multi-version updates; we omit these results for brevity.

4.1 Contention regulation
Contention regulation avoids repeated cache line invalidations

by delaying retry after a transaction experiences a conflict. Over-
eager retry can cause contention collapse; over-delayed retry can
leave cores idle. We recommend randomized exponential backoff
as a baseline for contention regulation. This is not optimal at all
contention levels – under medium contention, it can cause some
idleness – but as with spinlock implementations [36] and network
congestion [1], exponential backoff balances quick retry at low con-
tention with low invalidation overhead at high contention.

The “No contention regulation” lines in Figure 4 show OSTO
performance with no backoff. Silo does not enable backoff by de-
fault [49]. Lack of contention regulation leads to high performance
variations and even performance collapse as contention gets ex-
treme. Silo supports exponential backoff through configuration, but
some comparisons using Silo have explicitly disabled that backoff,

citing (mild) effects at medium contention [31]. This is an unfortu-
nate choice for evaluations including high-contention experiments.

4.2 Memory allocation
Transactional systems stress memory allocation by allocating

and freeing many records and index structures. This is particu-
larly true for MVCC-based systems, where every update allocates
memory so as to preserve old versions. Memory allocators can im-
pose hidden additional contention (on memory pools) as well as
other overheads, such as TLB pressure and prematurely returning
freed memory to the operating system. We recommend using a fast
general-purpose scalable memory allocator as a baseline, and have
experienced good results with rpmalloc [40]. A special-purpose al-
locator could potentially perform even better, and Cicada and other
systems implement their own allocators. However, scalable alloca-
tors are complex in their own right, and we found bugs in some
systems’ allocators that hobbled performance at high core counts
(§5.3). In our experience scalable allocators are now fast enough
for use in high-performance transactional software. Some systems,
such as DBx1000, reduce allocator overhead to zero by preallo-
cating all record and index memory before experiments begin. We
believe this form of preallocation changes system dynamics signif-
icantly – for instance, preallocated indexes never change size – and
should be avoided.

The “Slow allocator” lines in Figure 4 show OSTO performance
using the default glibc memory allocator. The default allocator is
Silo’s default choice [49]. (Silo also supports jemalloc through con-
figuration, which outperforms glibc, but not by much.) OSTO per-
forms 1.6× better at high contention, and at low contention the
glibc allocator becomes a bottleneck and stops the system from
scaling altogether.

4.3 Abort mechanism
High-contention workloads stress the abort mechanism in trans-

action systems, since even very fast systems can abort 50% of trans-
action attempts or more. High abort rates do not necessarily corre-
spond to lower throughput on modern systems, and in particular,
reducing abort rates does not always improve performance [32].
However, some abort mechanisms impose surprisingly high hidden
overheads. C++ exceptions – a tempting abort mechanism for pro-
grammability reasons – can acquire a global lock in the language
runtime to protects exception-handling data structures from con-
current modification by the dynamic linker. This lock then causes
all aborted transactions to contend! We recommend implementing
aborts using explicitly-checked return values instead.

The “Inefficient aborts” lines in Figure 4a show OSTO perfor-
mance using C++ exceptions for aborts. STOv1, Silo, and ERMIA
abort using exceptions. Fast abort support offers 1.2–1.5× higher
throughput at high contention.

4.4 Index types
Transaction systems support different index types for table in-

dexes. Silo, for instance, uses Masstree [34], a B-tree-like struc-
ture, for all indexes. Other systems can choose different structures
based on transaction requirements. Most TPC-C implementations
we have examined use hash tables for indexes unused in range
queries; some implementations use hash tables for all indexes and
implement complex workarounds for range queries [56]. Hash ta-
bles offer O(1) access time where B-trees offer O(logN); a hash ta-
ble can perform 2.5× or more operations per second than a B-tree
even for a relatively easy workload. We recommend using hash
tables when the workload allows it, and B-tree-like indexes else-
where.
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The “No hash index” lines in Figure 4 show OSTO performance
when all indexes use Masstree, whether or not range scans are re-
quired. Silo and ERMIA lack hash table support. Hash index sup-
port offers 1.2× higher throughput at any contention level; this is
less than 2.5× because data structure lookups are not the dominant
factor in TPC-C transaction execution.

4.5 Contention-aware indexes
Contention-aware indexes do not greatly affect overall TPC-C

performance, but hugely impact the performance of some classes
of transaction. A contention-aware index is an index that avoids
contention between disjoint ranges. For instance, the NEW ORDER

table in the TPC-C benchmark is keyed by 〈wid,did,oid〉, a com-
bination of warehouse ID, district ID, and order ID. The new-order
transaction inserts records at the end of a 〈wid,did〉 range, while
delivery transactions scan 〈wid,did〉 ranges. In a contention-aware
index, new-order transactions and delivery transactions would con-
flict only if they were in the same district (the same 〈wid,did〉 pair).
But if a district boundary falls persistently within a B-tree node,
then in most systems, phantom protection will cause new-order to
the earlier district and delivery to the later district to appear to con-
flict, inducing aborts in delivery (see Figure 5).

We recommend implementing contention-aware indexing, either
automatically or by taking advantage of static workload properties.
Our baselines implement contention-aware indexing by leveraging
a side effect of Masstree’s trie-like structure [34, §4.1]. Certain key
ranges in Masstree will never cause phantom-protection conflicts.
If, for example, a 〈wid,did〉 pair is represented using an exact mul-
tiple of 8 bytes, then scans on one such range will never conflict
with inserts into any other range. To implement contention-aware
indexing, we therefore reserve eight bytes for each key component
in a multi-key index, thus mapping each key component to distinct
layers of B-trees. This technique avoids the false index contention
at the cost of larger key size (24 bytes instead of 8 bytes). We ob-
serve negligible performance overhead under low contention due to
this increase in key size.

Figure 6 shows the impact of contention-aware indexes on de-
livery transactions in a TPC-C full-mix in OSTO. When not using

contention-aware indexes (the “Index contention” line in the fig-
ure), delivery transactions almost completely starve at high conten-
tion. This starvation is similar to the OCC performance collapse
under high contention reported in prior work [32]. When executing
delivery transactions in deferred mode, as required by the TPC-C
specification, this starvation of delivery transactions alone may not
actually lead to a collapse in overall transaction throughput, be-
cause other transactions can still proceed as normal while delivery
transactions are being starved in the background.

4.6 Other factors
Transaction internals refers to the mechanisms for maintaining

read sets and write sets. The best internals use fast hash tables that
map logical record identifiers to their physical in-memory loca-
tions, and we recommend strong transaction internals by default.
However, the factors listed above have more performance impact
(for example, replacing STO’s highly-engineered internals with Ci-
cada’s somewhat simpler versions reduced performance by just
5%).

Every system that can hold more than one lock at a time must
include a deadlock avoidance or detection strategy. Early OCC
database implementations avoided deadlock by sorting their write
sets into a globally consistent order [26,49,57]. Fast sorts are avail-
able; for instance, the memory addresses of records and nodes are
satisfactory sort keys. Transactional memory systems have long re-
lied instead on bounded spinning, where a transaction that waits
too long to acquire a lock assumes it’s deadlocked, aborts, and tries
again. Bounded spinning can have false positives – it can detect
deadlock where there is none – but it has low overhead, and when
two OCC transactions try to lock the same record, the second trans-
action can benefit from aborting early. (The lock indicates upcom-
ing changes to the underlying record, and if those changes happen
it will often cause the transaction to abort anyway.) Our experience
as well as prior study [52, §7.2] finds that write set sorting is ex-
pensive and we recommend bounded spinning for deadlock avoid-
ance. However, write set sorting generally had relatively low impact
(≈ 10%) on TPC-C. The exception was DBx1000 OCC [57], which
prevents deadlock using an unusually expensive form of write set
sorting: comparisons use records’ primary keys rather than their ad-
dresses, which causes many additional cache misses, and the sort
algorithm is O(n2) bubble sort. Write-set sorting took close to 30%
of the total run time of DBx1000’s “Silo” TPC-C under high con-
tention.

4.7 Summary
Figure 7 summarizes our investigation of basis factors by list-

ing each factor and qualitatively evaluating 8 systems, including
STOv2, according to their implementations of these factors. We
performed this evaluation through experiment and code analysis.
Each system’s choice is evaluated relative to STOv2’s and char-
acterized as either good (“+”, achieving at least 0.9× STO’s per-
formance), poor (“−”, 0.7–0.9×), or very poor (“−−”, less than
0.7×).

5. CONCURRENCY CONTROL EVALUA-
TION

Having implemented reasonable choices for the basis factors, we
evaluate STOv2’s three concurrency control mechanisms on our
suite of benchmarks and at different contention levels. Our goal
is to separate the performance impacts of concurrency control from
those of basis factors.

Prior work showed OCC performance collapsing at high con-
tention on TPC-C, but our findings are quite different. OSTO’s



System
Contention
regulation

Memory
allocation Aborts Index types

Transaction
internals

Deadlock
avoidance

Contention-
aware index

Silo [49] −− −− −− − − + +

STO [22] −− −− −− + + + +

DBx1000 OCC [56] + N/A + + − −− −−
DBx1000 TicToc [57] + N/A + + − + −−
MOCC [50] N/A + + + + + −−
ERMIA [25] + + −− − + + +

Cicada [32] + + + + + N/A N/A
STOv2 (this work) + + + + + + +

Figure 7: How comparison systems implement the basis factors described in §4. On high-contention TPC-C at 64 cores, “+” choices have
at least 0.9× STOv2’s performance, while “−” choices have 0.7–0.9× and “−−” choices have less than 0.7×.

high-contention TPC-C throughput is approximately 0.6× that of
MSTO, even at 64 threads. Neither system either scales or col-
lapses. At low contention, however, OSTO throughput is approx-
imately 2× that of MSTO. These results hold broadly for our other
benchmarks.

5.1 Overview
Figure 8 shows the transaction throughput of all three STOv2

variants on all our benchmarks, and with thread counts varying
from 1 to 64. The committed mix of transactions conforms to the
TPC-C specification except in one-warehouse, high core count set-
tings. (The warehouse delivery thread mandated by the specifica-
tion cannot quite reach 4% of the mix when 63 other threads are
performing transactions on the same warehouse; we observe 3.2%.)
Perfect scalability would show as a diagonal line through the origin
and the data point at 1 thread.

Only low-contention benchmarks (TPC-C with one warehouse
per worker, Figure 8b, and YCSB-B, Figure 8d) approach perfect
scalability. (The change in slope at 32 threads is due to our machine
having 2 hyperthreads per core.) On high-contention benchmarks,
each mechanism scales up to 4 or 8 threads, then levels off. Perfor-
mance declines at higher thread counts, but does not collapse.

When scalability is good, performance differences are due pri-
marily to the inherent overhead of each mechanism. In Figure 8b,
for example, TSTO’s more complex timestamp management causes
it to slightly underperform low-overhead OSTO, while MSTO’s
considerably more complex version chain limits its throughput to
0.52× that of OSTO.

Some of the high-contention benchmarks impose conflicts that
affect all mechanisms equally. For example, YCSB-A has fewer
than 0.1% read-only transactions and high key skew (many transac-
tions touch the same keys). This prevents TicToc and MVCC from
discovering safe commit orders, so OSTO, TSTO, and MSTO all
scale similarly, and OSTO outperforms MSTO by 1.5–1.7× due
to MSTO overhead (Figure 8c). On other benchmarks, the mech-
anisms scale differently. For example, in high-contention TPC-C
(Figure 8a), OSTO levels off after 4 threads, while MSTO and
TSTO scale well to 8 threads. This is due to OSTO observing more
irreconcilable conflicts and aborting more transactions, allowing
MSTO to overcome its higher overhead and outperform OSTO. At
12 threads with 1 warehouse, 47% of new-order/payment transac-
tions that successfully commit in MSTO would have been aborted
by an OCC-style timestamp validation.

In summary, we do not observe contention collapse, and our
MVCC implementation has significant overhead over OCC at low
contention and even some high-contention scenarios. All these re-
sults differ from previous reports. We do not claim that OCC will
never collapse. It is easy to cause OCC contention collapse for
some transaction classes in a workload, such as by combining fast
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(c) YCSB-A (high contention:
update-intensive, 50% updates,
skew 0.99).
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(d) YCSB-B (lower contention:
read-intensive, 5% updates,
skew 0.8).
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(e) Wikipedia (high contention).
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Figure 8: STOv2 performance on Wikipedia and RUBiS work-
loads.

transaction processing (“modify single value”) with analytics (“read
entire database”). And in such workloads, MVCC systems could
avoid collapse by executing the read-only analytics queries in the
recent past. However, we did find it striking that these important,
real-world-inspired benchmarks did not collapse, and that some of
these benchmarks showed MVCC having similar scaling behavior
as OCC under contention.
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Figure 9: Cross-system comparisons: STOv2 baselines and other state-of-the-art systems, TPC-C full mix.

Some differences from prior results are worth mentioning. Our
YCSB-A results are lower than those reported previously [32]. This
can be attributed to to our use of the YCSB-mandated 1000-byte
records; DBx1000 uses 100-byte records. Cicada’s reported results
for Silo and “Silo′” (DBx1000 Silo) show total or near performance
collapse at high contention, but our OCC measurements show no
such collapse. We attribute this difference to Silo’s lack of conten-
tion regulation, inefficient aborts, and general lack of optimization,
and to DBx1000’s unnecessarily expensive deadlock avoidance and
lack of contention-aware indexing.

5.2 Benefits of reordering
Figure 8a (high-contention TPC-C) shows that TSTO, which im-

plements TicToc concurrency control, has an advantage even over
MSTO (MVCC). TSTO’s dynamic transaction reordering avoids
some conflicts on this benchmark, helping it outperform OSTO by
up to 1.7×; since it keeps only one version per record, it avoids
multi-version overheads and outperforms MSTO by up to 1.3×.
However, this effect is limited to TPC-C. We observed no signifi-
cant benefit of TSTO over OSTO in any other workload.

We believe this effect centers on a conflict between TPC-C’s
new-order and payment transactions. These transactions conflict
while trying to access the same WAREHOUSE table row; new-order
transactions read the tax rate of the warehouse, while payment
transactions increment the year-to-date payment amount of the ware-
house. Note that this particular conflict is a false conflict: the trans-
actions actually access distinct columns in the warehouse table.
Both TicToc and MVCC can reduce aborts due to this conflict by
rescheduling the new-order transaction to commit with an earlier
commit timestamp. This reduces aborts and improves performance,
but it generalizes poorly: transactions that issue more reads than
new-order are more difficult to reschedule, since reads constrain or-
dering, and TicToc cannot reschedule write-write conflicts. Neither
TicToc nor MVCC addresses the true scalability issue, which is the
false conflict. In §7 we will show that addressing false conflicts di-
rectly with timestamp splitting is a more effective and generalizable
approach that applies to all our benchmarks, not just TPC-C.

5.3 Cross-system comparisons
Figure 9 shows how STOv2 baseline systems compare with other

state-of-the-art main-memory transaction systems on TPC-C. We
use reference distributions of Cicada, ERMIA, and MOCC.

Figure 9a shows that both MOCC and ERMIA struggle at high
contention; the reason is locking overhead. Cicada outperforms
both MSTO and OSTO, and matches TSTO’s performance at high
contention. Cicada is a heavily optimized system. For instance,
where other MVCC systems, including MSTO, use a shared, and
possibly contended, global variable to assign execution timestamps,

Cicada uses “loosely synchronized software clocks”, a scalable dis-
tributed algorithm based on timestamp counters. Cicada also im-
plements several optimizations (“early version consistency check”
and “write set sorting by contention”) that attempt to abort doomed
transactions as soon as possible, thereby reducing wasted work.
MSTO is much less optimized. Nevertheless, Cicada outperforms
MSTO by at most 1.25× at all contention levels, and MSTO slightly
ouperforms Cicada at low contention (Figure 9b). This contrasts
with Cicada’s own evaluation, which compared systems with differ-
ent basis factor choices, and in which Cicada outperformed other
systems by up to 3×, even on low contention benchmarks. Some
of Cicada’s optimizations have costs as well as benefits: its perfor-
mance collapses at high core counts and low contention (Figure 9b)
due to an exhaustion of memory resources. We do not observe
this memory resource exhaustion after replacing Cicada’s special-
purpose allocator with jemalloc (the default allocator in DBx1000),
possibly indicating an issue with Cicada’s allocator.

6. HIGH-CONTENTION OPTIMIZATIONS
This section describes the commit-time update (CU) and time-

stamp splitting (TS) optimization techniques for eliminating classes
of conflict from transactional workloads. These techniques improved
performance, sometimes significantly, on every workload we mea-
sured, and for each of OCC, TicToc, and MVCC. In some cases,
their effects are synergistic, and applying them together improves
performance more than would be expected.

In STOv2, the commit-time update and timestamp splitting tech-
niques require programmer effort, as the instantiation of each tech-
nique depends on workload. The techniques are conceptually gen-
eral, and applying them to a given workload is not difficult. How-
ever, a workload could switch to TicToc or MVCC with no effort
at all. CU and TS are still valuable despite the effort because they
eliminate classes of conflict that CC protocols cannot, resulting in
much better performance than that achievable by CC alone.

6.1 Commit-time updates
The read and write sets central to OCC and MVCC systems rep-

resent read-modify-write operations as pairs of reads and writes.
For example, an increment operation can be represented as a read
of the old value followed by a write of the new value. However,
this two-part representation can cause conflicts that aren’t required
by operation semantics. If the result of an increment is not other-
wise observed by the transaction, then the increment could be rep-
resented in terms of concurrency control as a kind of blind write:
the write set would contain a notation indicating the value should be
incremented when the transaction commits. This design can elimi-
nate whole classes of conflicts.



class NewOrderStockUpdater {
public:

NewOrderStockUpdater(int32_t qty, bool remote)
: update_qty(qty), is_remote(remote) {}

void operate(stock_value& sv) const {
if ((sv.s_quantity - 10) >= update_qty)

sv.s_quantity -= update_qty;
else

sv.s_quantity += (91 - update_qty);
sv.s_ytd += update_qty;
sv.s_order_cnt += 1;
if (is_remote)

sv.s_remote_cnt += 1;
}

private:
int32_t update_qty;
bool is_remote;

};

(a) Commit-time updater for STOCK table records in TPC-C’s new-order
transaction. The operate method encodes the operation (stock deduction
and replenishment).

Record Key Head version Inlined version
COMMITTED

Version
chain

Version
PENDING∆

Version
COMMITTED∆

Version
ABORTED

(b) Record structure in MSTO with commit-time updates. The
COMMITTED∆ version encodes an updater. Concurrent transactions can
insert more delta versions either before or after the COMMITTED∆.

Figure 10: Commit-time updates.

STOv2’s commit-time update feature represents general read-
modify-write operations as write set components, allowing many
transactions to avoid semantically unnecessary conflicts. Commit-
time updates work for OCC, TicToc, and MVCC. The implemen-
tation centers on function objects called updaters that act as oper-
ations on a record type. An updater encodes the operation to be
performed and any parameters to that operation. When invoked on
a record, it modifies that record according to its encoded parame-
ters. Updaters only examine their encoded parameters and the in-
put record, and they must not access or modify other state or other
records. A single transaction may invoke many updaters.

Updaters are useful in so far as they allow a transaction to avoid
observing a record’s timestamp. A transaction T should consider
using an updater when the results of the update do not further affect
T ’s execution, either in terms of control flow or data flow, and the
updated records are not otherwise observed. Here, for example, T1
could use an updater to modify x (the updater would perform the
boxed operations), but T2 should not (the modified value is returned
from the transaction). Both transactions must observe y.

T1:
tmp = y.col1;

x.col2 += 1;
x.col3 = max(tmp, x.col1);

return tmp;

T2:
tmp = y.col1;
x.col1 += tmp;
return x.col1;

OCC and TicToc call updaters at commit time, in the install
phase (see §2.1, Phase 3), when the relevant record is locked. In
MVCC, however, updaters are added to the version chain as in-
dependent entities called delta versions. Delta versions contain an
updater rather than a materialized record value, as shown in Fig-
ure 10b. This design preserves the transaction ordering flexibility

characteristic to MVCC, which, unlike OSTO and TSTO, can com-
mit blind writes out of order. A delta version with a lower write
timestamp can be inserted before another delta version in the ver-
sion chain. However, it does introduce a cost for reads. To read a
delta version, it is necessary to first materialize its value by flat-
tening it, which collapses all previous delta versions by applying
updaters in order, oldest to newest, starting with the most recent
full version. A thread computes the materialized value then locks
the delta version and copies the materialized value into it, trans-
forming it into the correct full version. This allows multiple threads
to safely flatten concurrently. MSTO must also prevent concurrent
transactions from inserting delta versions into a chain that is con-
currently being flattened.

Delta versions impact MSTO’s garbage collection, since a ver-
sion may be marked for deletion only if a newer full version exists.
MSTO ensures that whenever a full version is created, all versions
older than this full version are enqueued for RCU garbage collec-
tion. With commit-time updates, full versions can be created ei-
ther directly, through a conventional write, or through flattening of
delta versions, as a side effect of reading. Both operations mark old
versions for garbage collection. Also, infrequently-read records are
periodically flattened by garbage collection.

We evaluate many classes of commit-time updates, such as 64-bit
integer addition, integer max, blind writes, and updates specialized
for specific TPC-C transactions.

Commit-time updates relate to commutativity, which has long
been used to reduce conflicts and increase concurrency in trans-
actional systems [3, 6, 22, 54]. Commit-time updates can represent
both commutative and non-commutative read-modify-write opera-
tions. However, truly commutative operations allow some optimiza-
tions, such as efficient operation combination and cancellation [38],
that our implementation of commit-time updates does not currently
support.

Our current implementation has several restrictions. Each record
type supports at most one updater, although that updater can be
parameterized to support different semantics in different transac-
tions. To facilitate safe interactions between updates and reads in
MSTO, transactions containing commit-time updates initially exe-
cute at timestamp tsth = rtsg, the global read timestamp, rather than
wtsg, the global write timestamp. This forces all reads (which may
trigger flattening) to happen before all commit-time modifications
(the only operations that insert delta versions).

6.2 Timestamp splitting
Many database records combine multiple state fragments sub-

ject to different access patterns. For instance, records in a rela-
tional database may have many columns, some of which are ac-
cessed more often or in different ways. Schema transformations
such as row splitting and vertical partitioning [39] use these pat-
terns to reduce database I/O overhead by, for example, only keep-
ing frequently-accessed record fragments in a memory cache. The
timestamp splitting optimization uses these patterns to avoid classes
of contention.

Timestamp splitting divides a record’s columns into subsets and
assigns one timestamp per subset. When modifying a record, the
system updates all timestamps that overlap the modified columns,
but when observing a record, the system can observe just those
timestamps sufficient to cover the observed columns. In a typical
example, shown in Figure 11, one timestamp covers infrequently-
modified columns while another timestamp covers the rest of the
record. Simple splitting like this is frequently useful. For exam-
ple, in TPC-C’s CUSTOMER table, the columns with the customer’s
name and ID are often observed but never modified, whereas other
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Figure 11: Record structure in OSTO with timestamp splitting.
The frequent timestamp protects the frequently-updated columns,
while the infrequent timestamp only updates if col1 or col2
change. This allows transactions that only read col1 and col2 to
avoid conflicts with those that only write col3 and col4.

columns, such as those containing the customer’s balance, change
frequently. Using a separate timestamp for name and ID allows
modifications to balance-related columns and concurrent observa-
tions that only access name and ID to proceed without conflict.

OSTO and TSTO implement timestamp splitting by changing
records to contain one or more timestamps, rather than exactly one
timestamp, as shown in Figure 11. MSTO currently implements
timestamp splitting in a more heavyweight manner, with vertical
partitioning: each record is split into multiple tables with the same
primary key. This is more expensive than OSTO’s implementation,
and we plan to investigate a lighter-weight implementation strategy
in future work. Although all systems support arbitrary numbers of
timestamps per record, our evaluation only shows results for two
timestamps. Additional timestamps have costs as well as benefits
– for instance, read and write sets as well as record layouts take
more memory – and on all of our benchmarks, three timestamps
performed worse than two. The implementation also currently re-
quires record subsets to be disjoint.

Timestamp splitting can also expose additional opportunities for
commit-time updates. For example, this transaction appears not to
benefit from commit-time updates, since it observes x and y:

tmp = y.col1;
x.col1 += tmp;
return x.col2;

However, if x.col1 and x.col2 are covered by different times-
tamps, the modification to x.col1 can be implemented via an up-
dater, since x.col1 is not otherwise observed.

6.3 Implementation in workloads
To implement CU and TS, we manually inspected our workloads.

For timestamp splitting, we generally assign records’ frequently-
updated columns to a separate timestamp. In YCSB, column access
is random, and we partition columns evenly into two disjoint times-
tamps. Transaction programs identify the columns they access, but
the column-to-timestamp assignment is handled automatically by
our library. For commit-time updates, we create an updater type
per operation. Some examples: in RUBiS, an updater changes an
item’s max-bid and quantity columns; in TPC-C, an updater on
warehouse increments its ytd (orders year-to-date) field, and one
on customer updates several of its fields for orders and payments.
The shortest updater takes about 10 lines of code, including boil-
erplate; the longest, on TPC-C’s CUSTOMER table, takes about 30
lines.

Commit-time updates reduce transaction read set sizes. For ex-
ample, the read sets for TPC-C new-order transactions shrink by
30% on average, and payment transactions by 50%. Smaller read
sets mean fewer read-write dependency edges between transactions
and fewer conflicts.

Our implementation was facilitated by our use of STO [22],
which allows application programmers to participate in some as-
pects of concurrency control through its transaction-aware datatypes.

7. OPTIMIZATIONS EVALUATION
We now evaluate the commit-time update and timestamp split-

ting optimizations to better understand their benefits at high con-
tention, their overheads at low contention, and their applicability to
different workloads and CC techniques. We conduct a series of ex-
periments on STOv2 with these optimizations, using all three CC
mechanisms, and measure them against TPC-C, YCSB, Wikipedia,
and RUBiS workloads.

7.1 Combined effects
Figure 12 shows the effects of applying commit-time updates

(CU) and timestamp splitting (TS) together under high and low con-
tention, and on TPC-C and YCSB workloads.

In high-contention TPC-C (Figure 12a), CU+TS greatly improves
throughput of all three CC mechanisms, with gains ranging from
2× (TSTO) to 3.9× (OSTO). These gains are larger than those of
the CC algorithms alone.

High-contention TPC-C and YCSB-A did not scale to 64 threads
under any of our three CC algorithms, but once CU+TS are added,
MSTO does scale at least that far (though not perfectly). OSTO and
TSTO schemes cannot sustain throughput at high contention due to
the inherent limitations of single-version CCs for handling read-
only transactions. However, optimized MSTO does not outperform
its OSTO or TSTO counterparts until extremely high contention
(1-warehouse TPC-C at more than 20 cores, skewed write-heavy
YCSB-A at more than 12 cores), and optimized OSTO and TSTO
always outperform unoptimized MSTO.

For low-contention TPC-C, CU+TS adds about 10% performance
overhead to OSTO and TSTO. This is roughly comparable to the
difference between unoptimized TSTO and OSTO at low conten-
tion, and is significantly less than the difference between unop-
timized MSTO and OSTO. However, CU+TS adds close to 30%
overhead for low-contention TPC-C in MSTO. The cause is garbage
collection of long delta version chains, specifically warehouse ytd
values. Garbage collector improvements could potentially reduce
this overhead; alternately, perhaps MVCC systems should consider
switching off CU when contention is low. In all cases, the added
overhead of CU+TS does not affect scalability.

Although YCSB-B is a relatively low-contention benchmark,
CU+TS improves the performance of both OSTO and TSTO. Upon
investigation, we discovered that CU+TS reduces the amount of
data retrieved from and written to the database by accessing only
the columns specified. CU+TS still incurs a small overhead for
MSTO because (1) TS is implemented using vertical partitioning,
which results in additional index lookups, and (2) CU for MSTO
introduces delta versions for updates, which incurs allocation and
flattening overhead.

CU+TS also benefits all three CCs under the high-contention Wi-
kipedia and RUBiS workloads, as shown in Figures 12e and 12f.
In Wikipedia, CU+TS improves performance by 2.6–3.5× at high
core counts, while in RUBiS the gains vary from 1.2–1.4×, depend-
ing on the underlying CC used.

In summary, CU+TS benefits all three CCs measured, and can
be applied to benefit many different workloads.

7.2 Separate effects
Figure 12g shows the distinct effects of CU and TS on our

high-contention benchmarks for OCC and MVCC. In some work-
loads, such as TPC-C, CU and TS produce greater benefits to-
gether than would be expected from their individual performance.
This is especially clear for MSTO: CU and TS reduce performance
when applied individually, but improve performance by 3.38× at
64 threads when applied in combination. This is because many
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(b) TPC-C, one warehouse per worker (low contention).
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(c) YCSB-A (high contention: update-intensive, 50% updates, skew 0.99).
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(d) YCSB-B (lower contention: read-intensive, 5% updates, skew 0.8).
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(e) Wikipedia (high contention).
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(f) RUBiS (high contention).

Benchmark OSTO OSTO+CU OSTO+TS OSTO+CU+TS MSTO MSTO+CU MSTO+TS MSTO+CU+TS
TPC-C 276 286 (1.04×) 432 (1.57×) 1001 (3.63×) 431 269 (0.62×) 410 (0.95×) 1456 (3.38×)
YCSB 473 855 (1.81×) 466 (0.99×) 844 (1.78×) 326 1851 (5.68×) 687 (2.11×) 2487 (7.64×)
Wikipedia 170 487 (2.86×) 167 (0.98×) 483 (2.84×) 128 311 (2.43×) 128 (1.01×) 449 (3.52×)
RUBiS 1378 1924 (1.40×) 1368 (0.99×) 1957 (1.42×) 1475 1692 (1.15×) 1505 (1.02×) 1721 (1.17×)

(g) Throughput in Ktxns/sec at 64 threads in high-contention benchmarks, with improvements over respective baselines in parentheses.

Figure 12: STOv2 performance with commit-time updates and timestamp splitting (CU+TS).

frequently-updated columns can be updated using CU, but only if
the infrequently-updated column values use a separate timestamp.
Of the two optimizations, CU is more frequently useful on its own.
For instance, the highest overall performance for Wikipedia is ob-
tained by applying CU to OSTO. This is a indication that write-
write conflicts are predominant in these workloads, since CU re-
duces the impact of write-write conflicts while TS reduces the im-
pact of read-write false sharing.

8. FUTURE WORK
In future work, we hope to investigate the remaining bottlenecks

in STOv2’s performance. For instance, MSTO could benefit from
garbage collection improvements, additional Cicada optimizations,
and a more efficient version of timestamp splitting. In OSTO, how-
ever, transaction processing machinery accounts for just 4.2% of
the total runtime in low-contention TPC-C, leaving little room for
additional improvement.

Additionally, we believe that static analysis could help identify
potential hotspots for false sharing in indexes and database records.
This could lead to tools that more fully automate the application of
commit-time updates and timestamp splitting.

9. RELATED WORK

9.1 Modern concurrency control research
Concurrency control is a central issue for databases, with work

going back many decades [19]. As with many database proper-
ties, the best concurrency control algorithm can depend on work-
load, and OCC has long been understood to work best for work-
loads “where transaction conflict is highly unlikely” [28]. Since
OCC transactions cannot prevent other transactions from execut-
ing, OCC workloads can experience starvation of whole classes
of transactions. Locking approaches, such as two-phase locking
(2PL), lack this flaw, but write more frequently to shared mem-
ory. But performance tradeoffs between OCC and locking depend
on technology characteristics as well as workload characteristics,
and on multicore main-memory systems, with their high penalty for
memory contention, OCC can perform surprisingly well even for
relatively high-conflict workloads and long-running transactions.
This work was motivated by a desire to better understand the limi-
tations of OCC execution, especially on high-conflict workloads.

The main-memory Silo database [49,58] introduced an OCC pro-
tocol that, unlike other implementations [9, 28], lacked any per-



transaction contention point, such as a shared timestamp counter.
Though Silo addresses some starvation issues by introducing snap-
shots for read-only transactions, and reports some reasonable re-
sults on a high-contention workload, subsequent work has reported
that Silo still experiences performance collapsing on other high-
contention workloads. These discrepancies are due to its basis fac-
tor implementations, as discussed in §4.

Since Silo, many new concurrency control techniques have been
introduced. We concentrate on those with the goal of preserving
OCC’s low-contention advantages and mitigating its high-conten-
tion flaws.

TicToc’s additional read timestamp allows it to commit some
apparently-conflicting transactions by reordering them [57]. Time-
stamp maintenance becomes more expensive than OCC, but re-
ordering has benefits for high-contention workloads. We present
results for our implementation of TicToc.

Transaction batching and reordering [12] aims to discover more
reordering opportunities by globally analyzing dependencies within
small batches of transactions. It improves OLTP performance at
high contention, but requires more extensive changes to the com-
mit protocol to accommodate batching and intra-batch dependency
analyses. We consider our workload-specific optimizations orthog-
onal to these techniques as our optimizations eliminate unnecessary
dependency edges altogether instead of working around them.

Hybrid concurrency control in MOCC [50] and ACC [46] uses
online conflict measurements and statistics to switch between OCC-
like and locking protocols dynamically. Locking can be expensive
(it handicaps MOCC in our evaluation), but prevents starvation.

MVCC [4, 41] systems, like ERMIA [25] and Cicada [32], keep
multiple versions of each record. The multiple versions allow more
transactions to commit through reordering, and read-only transac-
tions can always commit. ERMIA uses a novel commit-time valida-
tion mechanism called the Serial Safety Net (SSN) to ensure strict
transaction serializability. ERMIA transactions perform a check at
commit time that is intended to be cheaper and less conservative
than OCC-style read set validations, and to allow more transaction
schedules to commit. The SSN mechanisms in ERMIA, however,
involve expensive global thread registration and deregistration op-
erations that limited its scalability [50]. In our experiments, ER-
MIA’s locking overhead – a kind of basis factor– further swamps
any improvements from its commit protocol. Cicada contains opti-
mizations that reduce overhead common to many MVCC systems,
and in its measurements, its MVCC outperforms single-version al-
ternatives under both low- and high- contention situations. This
disagrees with our results, which show OSTO outperforming Ci-
cada at low contention (Figure 9b). We believe the explanation in-
volves basis factor choices in Cicada’s OCC comparison systems.
Our MSTO MVCC system is based on Cicada, though we omit
several of its optimizations.

Optimistic MVCC still suffers from many of the same problems
as single-version OCC. When executing read-write transactions
with serializability guarantees, read-write and write-write conflicts
still result in aborts. Optimizations such as commit-time updates
and timestamp splitting can alleviate these conflicts.

Static analysis can improve the performance of high-contention
workloads, since given an entire workload, a system can discover
equivalent alternative executions that generate many fewer con-
flicts. Transaction chopping [44] uses global static analysis of all
possible transactions to break up long-running transactions such
that subsequent pieces in the transaction can be executed conflict-
free. More recent systems like IC3 [51] combine static analysis
with dynamic admission control to support more workloads. Static
analysis techniques are complementary to our work, and we hope

eventually to use static analysis to identify and address false shar-
ing in secondary indexes and database records, and to automate the
application of commit-time updates and timestamp splitting.

9.2 Basis factors
Several prior studies have measured the effects of various basis

factors on database performance. A recent study found that a good
memory allocator alone can improve analytical query processing
performance by 2.7× [15]. A separate study presented a detailed
evaluation of implementation and design choices in main-memory
database systems, with a heavy focus on MVCC [55]. Similar to our
findings, the results acknowledge that CC is not the only contribut-
ing factor to performance, and lower-level factors like the memory
allocator and index design (physical vs. logical pointers) can play a
role in database performance. While we make similar claims in our
work, we also describe more factors and expand the scope of our
investigation beyond OLAP and MVCC.

Contention regulation [18] provides dynamic mechanisms, of-
ten orthogonal to concurrency control, that aim to avoid scheduling
conflicting transactions together. Cicada includes a contention reg-
ulator. Despite being acknowledged as an important factor in the
database research community, our work demonstrates instances in
prior performance studies where contention regulation is left un-
controlled, leading to potentially misleading results.

A review of database performance studies in the 1980s [2] ac-
knowledged conflicting performance results and attributed much of
the discrepancy to the implicit assumptions made in different stud-
ies on how transactions behave in a system. These assumptions,
such as how a transaction restarted and systems resource consider-
ations, are analogous to basis factors we identified in that they do
not concern the core CC algorithm, but significantly affect perfor-
mance results. Our study highlights the significance of basis factors
in the modern context, despite the evolution of database system ar-
chitecture and hardware capabilities.

9.3 High-contention optimizations
Our commit-time update and timestamp splitting optimizations

have extensive precursors in other work. Timestamp splitting re-
sembles row splitting, or vertical partitioning [39], which splits
records based on workload characteristics to optimize I/O. Taken to
an extreme, row splitting leads to column stores [29,45] or attribute-
level locking [33]. Compared to these techniques, timestamp split-
ting works at the granularity of two groups per row, containing the
fine-grained locking overhead.

Commutativity has long been used to improve concurrency in
databases, file systems, and distributed systems [3, 27, 38, 42, 43,
54], but we know of no other work that applies commutativity to
MVCC record updates. (Many systems reason about the commu-
tativity properties of modifications to MVCC indexes.) Upserts in
BetrFS [23, §2.2] resemble how we encode commit-time updates.
They are used to avoid expensive key-value lookups in lower-layer
LSMs instead of for concurrency control reasons. Differential tech-
niques used in column store databases [20] involve techniques and
data structures that resemble the commit-time update mechanisms
described in this work. Their goal is to reduce I/O bandwidth usage
in an OLAP system with occasional updates, and they do not take
advantage of the semantics of many differential updates.

9.4 Transactional memory
Extensive experience with transactional system implementation

is also found in the software transactional memory space [10, 13,
21]; there are even multiversion STMs [5, 17]. Efficient STMs can
run main-memory database workloads, and we base our platform



on one such system, STO [22]. Some of our baseline choices were
inspired by prior STM work, such as SwissTM’s contention reg-
ulation [13]. STO’s type-aware concurrency control included sup-
port for commit-time updates and timestamp splitting, but only for
OCC.

STO has also been used as a baseline for other systems that
address OCC’s problems on high-contention workloads, such as
DRP [37]. DRP effectively changes large portions of OCC transac-
tions into commit-time updates by using lazy evaluation, automat-
ically implemented by C++ operator overloading, to move most
computation into OCC’s commit phase. This works well at high
contention, but imposes additional runtime overhead that our sim-
pler implementation avoids.

Several systems have achieved benefits by augmenting software
CC mechanisms with hardware transactional memory (HTM) [30,
52, 53]. HTM can also be used to implement efficient deadlock
avoidance as an alternative to bounded spinning [52].

10. CONCLUSION
We investigated three approaches to improving the throughput of

main-memory transaction processing systems under high conten-
tion, basis factor improvements, concurrency control algorithms,
and high-contention optimizations. Poor basis factor choices can
cause damage up to and including complete performance collapse.
We urge future researchers to consider basis factors when imple-
menting systems, and especially when evaluating older systems
with questionable choices. Given good choices for basis factors,
we believe that high-contention optimizations – commit-time up-
dates and timestamp splitting –) are arguably more powerful than
concurrency control algorithms. CU+TS can improve performance
by up to 3.6× over base concurrency control for TPC-C, while the
difference between unoptimized CC algorithms is at most 2×.

It is possible that a future workload-agnostic concurrency control
algorithm with no visibility into record semantics might capture the
opportunities exposed by CU+TS, but we are not optimistic. We be-
lieve that the improvement shown by TicToc and MVCC on high-
contention TPC-C is more likely to be the exception rather than the
rule. The best way to improve high-contention main-memory trans-
action performance is to eliminate classes of conflict, as CU+TS
explicitly do. Though in our work these mechanisms require some
manual intervention to apply, we hope future work will apply them
automatically.

Finally, we are struck by the overall high performance of OCC
on both low and high contention workloads, although MVCC and
other CC mechanisms may have determinative advantages in work-
loads unlike those we tried.

Our code and benchmarks are available online at this address:

https://readablesystems.github.io/sto
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