THE RECORD LOW BERING SEA ICE EXTENT IN 2018:
CONTEXT, IMPACTS, AND AN ASSESSMENT
OF THE ROLE OF ANTHROPOGENIC CLIMATE CHANGE
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Record low Bering Sea sea ice in 2018 had profound regional impacts. According to climate

models, human-caused warming was an overwhelmingly likely contributor,

and such low levels will likely be typical by the 2040s.

uring the 2017/18 Northern Hemisphere cold

season, sea ice extent in the Bering Sea was less

than any winter in the observed or reconstructed
past. The eastern and northern Bering Sea covers
a shallow and expansive continental shelf that has
historically exhibited 40%-100% ice cover at its an-
nual winter maximum. This sea ice provides many
important ocean climate and ecosystem services.
For example, winter ice insulates warmer ocean
waters from extreme cold in the atmosphere. During
spring, algae growth on the undersurface of sea ice
initiates the annual onset of biological productiv-
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ity (Szymanski and Gradinger 2016). The seasonal
ice cover is critical to the regional climate, marine
ecosystems, societal expectations, and econom-
ics through maintenance of a thermal barrier that
separates two distinct temperature-adapted marine
ecosystems in the northern and southern portions of
the Bering Sea shelf (Schumacher et al. 1983; Mueter
and Litzow 2008). We utilized remote sensing derived
ice extent products for ice context; governmental and
academic investigations, media, and public reports for
impacts; and the Community Earth System Model’s
Large Ensemble Project (CESM-LENS) for assessment
of the relative likelihoods of current low ice extent.

OBSERVATIONS AND HISTORICAL CON-
TEXT. Sea ice cover. Mean Bering Sea ice extent (SIE)
for January through April for the 40-yr satellite-
derived passive microwave record in the National
Snow and Ice Data Center’s Sea Ice Index version 3
(Fetterer et al. 2017) shows that 2018 was the lowest of
record (Fig. 1a), with the greatest anomalies compared
to a 1981-2010 baseline north and west of St. Matthew
Island (Fig. 1b). Analysis of late winter Bering Sea ice
extent 1956-80 (Pease et al. 1982) and reconstructed
monthly Arctic-wide ice extent since 1850 (Walsh
et al. 2017) also supports the unprecedented nature
of the 2018 ice extent. The maximum daily Bering
Sea SIE was reached in early February and was the
lowest on record (~411,500 km?), only 47% of the
1979-2016 mean seasonal maximum extent. The SIE
then dropped ~215,000 km? (Perovich et al. 2018).

Ocean. Bering Sea sea surface temperatures (SSTs)
and upper ocean heat content overall were both above
the 1981-2010 mean during late summer and autumn
2017 (Timmermans et al. 2017) and this persisted
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FiG. I. (@) Annual time series of mean January-April Bering Sea ice extent since 1979 from the Sea Ice Index
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into early 2018 (Fig. 1c). Chukchi Sea SSTs were also
above normal and delayed freeze-up north of Bering
Strait, which possibly triggered atmosphere-ocean
feedbacks that contributed to this winter’s southerly
airflow (Tachibana et al. 2019).

Atmosphere. The winter of 2017/18 was persistently
stormy over the Bering Sea. The mean sea level pres-
sure anomaly fields for both autumn (September-
November) and winter (December-February) were
characterized by negative anomalies over Chukotka
and positive departures (>5 hPa) south of the Aleu-
tians. The departures from normal air temperature
(at 925 hPa) were positive throughout autumn and
winter, with the largest positive anomalies in the
January to March season, when the western Bering
Sea was more than 5°C above normal (Overland et
al. 2018x) and the eastern Bering Sea had the highest
mean January-April 2-m air temperature of record
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(Fig. Lc). Stabeno and Bell (2019) highlight the par-
ticular importance of episodic but recurring southerly
winds during this winter that advected relatively
warm air over the Bering Sea and the relationship to
the extremely low ice extent.

IMPACTS OF LOW ICE. Impacts of record low
sea ice extent in the Bering Sea beyond the climate
system were widespread and profound, and included
unprecedented weather events, marine wildlife die-
offs, and sightings of animals outside of their normal
range, such as the ecosystem impacts discussed in
Duffy-Anderson et al. (2019). The Local Environ-
mental Observer (LEO) Network (https://www.
leonetwork.org/bering-sea-ice-2018) received more
than 50 reports of notable events in western Alaska
through August 2018. Persistently warm weather
contributed to poor ice conditions resulting in a fatal
accident on the Kuskokwim River ice road (Alaska



Dispatch News 2018). In the Bering Strait, retreating
and fractured sea ice during a late February storm
allowed a coastal sea ice-laden flooding event that
caused a power outage and infrastructure damage at
Little Diomede, Alaska (Walsh 2018). Historically in
February, stable landfast ice at Little Diomede Island
provided an ice airstrip for primary transportation.
In the Bering Strait region, the limited duration,
poor quality, and unseasonable retreat of the sea ice
was coincident with the loss or impairment of mari-
time subsistence activities for coastal communities.
Ecologically, changes in the northern Bering Sea ma-
rine ecosystem included the first documented mass
strandings of ice-associated seals in the Bering Strait
region (Sheffield 2018), redistribution of thermally
sensitive fish species, and a multi-species seabird die-
off attributed to starvation (Siddon and Zador 2018).

ATTRIBUTION. To evaluate the role of anthropo-
genic climate change in the 2018 Bering Sea ice ex-
treme anomaly, we employed monthly gridded sea ice
concentration data from the CESM Large Ensemble
(CESM-LENS). CESM-LENS features fully coupled
simulations with 40 ensemble members reflecting his-
torical (1850/1920-2005) and projected (2005-2100;
RCP8.5) climate forcing and a pre-industrial control
simulation (1,800 yr) reflecting climate forcing from
1850 (Kay et al. 2015). Arctic sea ice extent (Jahn
et al. 2016) and sea ice thickness (Labe et al. 2018)
in the CESM-LENS have been shown to be realistic
when compared to satellite observations post-1978.
The Bering Sea region grid points were masked and
monthly SIE was derived by summing the area of the
grid cells with concentrations greater than or equal to
15% annually for the January to April period. There is
a weak (not statistically significant) negative trend in
the observed January to April mean SEI (though a sig-
nificant trend is found in other aspects of Bering Sea
ice extent; see Fig. ES1 in the online supplemental ma-
terial), although some sub-intervals (e.g., 1979-2012)
show an increasing trend. This is expected since the
subdecadal-scale variability of Bering SIE is known
to be driven by internal atmospheric variability (e.g.,
Pease et al. 1982; Overland et al. 2018x). The CESM-
LENS ensembles averages display declining trends
over 1980-2018 that are mostly (35 of 40 members)
greater in magnitude than the observed trend (and
one member exceeds the 1979-2012 observed trend)
while similar 39-yr subsets of the pre-industrial
simulation have mixed increasing and decreasing
trends (see Fig. ES2). The variances of the model
ensembles are generally higher than the observa-
tions although the standard deviation decreases by
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about 50% between 2010 and 2080. The Bering SIE
observations from 1980 to 2018 (Fetterer et al. 2017)
were quantile-mapped to fit the CESM-LENS distri-
bution (Fig. 2a). The SIE for each ensemble member
during this period was sorted by increasing value and
each quantile was then averaged over all ensemble
members and matched to the corresponding quantile
from the observations. The resulting distribution (see
blue line in Fig. 2a) gives an model-adjusted observed
2018 SIE minimum of 406,332 km?, which is used to
assess the role of anthropogenic climate change. This
is done by calculating the fraction of attributable risk
(FAR; Stott et al. 2004; National Academies of Sci-
ences, Engineering, and Medicine 2016) where FAR
=1- ProbprerIn dustriall Probpresem, and the probability is
the likelihood of exceeding (i.e., being lower than)
the 2018 SIE. Figure 2b shows the pre-industrial
simulation of the January-April ice extent, together
with the adjusted (blue) and unadjusted (red) values
for 2018. There were two exceedances during the
1,800-yr pre-industrial simulation and a total of 117
from the 40 CESM-LENS ensemble members from
the 2003-33 “present” climate, resulting in a FAR of
0.99. Individual LENS members ranged from 0 to 7
occurrences from 2003 to 2033. However, if the pres-
ent climate were defined as the 1980-2018 historical
period, there would have been only 29 exceedances of
2018 in the 40 ensemble members, making the FAR
correspondingly smaller (0.94). Finally, Fig. 2c shows
the probability, over all 40 CESM-LENS simulations,
that the 2018 minimum will be exceeded in each de-
cade. The probability is essentially zero through the
1990s, after which it increases to 0.06 in the 2010s,
0.14 in the 2020s, 0.29 in the 2030s, 0.52 in the 2040s,
and 0.94 by the 2060s. Thus CESM-LENS indicates
that 2018 extreme ice extent in the Bering Sea may
become the mean extent by the 2040s and essentially
an upper bound (with only a 6% probability of greater
extent) by the 2060s.

CONCLUSIONS. The 2018 January through April
seaice extent in the Bering Sea was far lower than any
previous winter in the reconstructed or observed past
(since 1850). This had ramifications for the weather
and climate system, economic impacts, and long-last-
ing ecosystem impacts. Ocean warmth, late ice devel-
opment, and frequent atmospheric storminess were
important factors. Using CESM-LENS, we find that
the observed 2018 January through April mean sea
ice extent to be extremely rare in the pre-industrial
control simulation (2 out of 1,800) but becomes much
more frequent in the current era. The FAR exceeds
0.9 using either the current era (2003-33) or recent
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past (1980-2018) simulations and that with ongoing
Earth system warming the 2018 extent and could
potentially be typical by the 2040s and represent an
upper bound within 50 years.
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FiG. 2. (a) Average January—April Bering Sea ice ex-
tent (km?) from: 40 members of the CESM-LENS
(1940-2080; black), observations 1980-2018 (Fetterer
et al. 2017; red), and model-adjusted observations
(1980-2018; blue). (b) Average January-April ice ex-
tent for 1,800 model years from a pre-industrial (PI)
simulation (black) with the 2018 observed (red) and
bias-adjusted (blue) values as in (a) superimposed. (c)
Decadal probability of having lower ice extent than the
2018 adjusted value. Each dot represents the average
for the 10 preceding years (i.e., the 1950 point is the
1941-50 average).
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