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Abstract  

Despite numerous theoretical models, only limited field experiments have been conducted to investigate 

traffic oscillation propagation, and the relationships between traffic oscillation features (e.g., period, speed 

variation, spacing and headway) have not received quantitative analysis. This study conducts a set of field 

experiments designed to inspect such relationships. In these experiments, 12 vehicles equipped with high-

resolution global positioning system (GPS) devices following one another on public roads, and the lead 

vehicle was asked to move with designed trajectory profiles incorporating various parameters. Measurements 

of five features are extracted from processing the field vehicle trajectory data with a time-domain method. 

Frequency analysis is also proposed with the Fourier transform method to verify the effectiveness of the 

features measured by the time-domain method. Compared to the frequency-domain method, the time-domain 

method yields more measurements with comparable quality and is more robust on trajectories with a small 

number of oscillation cycles. Then, a series of linear regression analyses reveal a number of new findings on 

the relationships between these features. For example, the time gap between two consecutive vehicles is 

negatively correlated with the speed standard deviation of the preceding vehicle and the initial speed of the 

following vehicle. It is also positively correlated with the average speed of the preceding vehicle and the 

initial spacing. The findings are helpful in constructing new microscopic traffic models better describing 

traffic oscillation dynamics. To illustrate this benefit, revised car following models are proposed to capture 

the relationship between time gap and other features. The simulation results show that the revised models 

yield better prediction accuracy (in range of 18% to 40% with the oscillation experiment dataset and in range 

of 30% to 63% with the stationary experiment dataset) than the classical models on reproducing real-world 

trajectories. 
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following model. 

 

1. Introduction 

Traffic oscillation, also called “stop-and-go” traffic, causes traffic congestion, capacity drop, travel delay, 

safety hazards and excessive fuel consumption and emissions. The dynamics and impacts of traffic oscillation 

depend on multiple features of traffic oscillation, including period, amplitude, time gap, spacing, headway, 

etc. A great number of theoretical models and empirical studies have been conducted in the past several 

decades to investigate traffic propagation mechanisms via measuring and modeling some of these features. 

A variety of theoretical models have been developed to reproduce the properties of traffic oscillation. In 

microscopic traffic, numerous car-following models were proposed to describe the relationships between two 

consecutive vehicles and to play a vital role in capturing traffic oscillation propagation. Representative 

models include the linear General Motor (GM) model (Chandler et al. 1958; Herman et al. 1959), Newell’s 

model (Newell 1961), Gipps’ model (Gipps 1981), the optimal velocity model (OVM) (Bando 1995) and the 
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intelligent driver model (IDM) (Treiber et al. 2000). Noteworthy most of relevant studies used analytical 

modeling or numerical simulation rather than field experiments due to the lack of precise field data. 

Papageorgiou (1998) also mentioned that traffic oscillation cannot reveal all of its mystery without the 

parameters estimation against field data. 

With the existence of precise field data, some studies focused on calibrating existing car-following models 

(Rakha and Crowther 2003; Treiber and Kesting 2012; Rhoades et al. 2016; Zhang et al. 2018) or proposing 

new car-following models considering traffic oscillation (Laval et al. 2014; He et al. 2015; Tian et al. 2016b; 

Treiber and Kesting 2017; Zhou et al. 2017). Other studies focused on extracting and measuring oscillation 

characteristics (Zielke et al. 2008; Yeo and Skabardonis 2009; Li et al. 2010, 2012, 2014, 2018, Chen et al. 

2012, 2014, Jiang et al. 2014, 2015; Sun 2014; Tian et al. 2016a; Saifuzzaman et al. 2017) and investigating 

traffic oscillation propagation due to driver behaviors (Ahn and Cassidy 2007; Laval et al. 2007; Zheng et al. 

2011a; Oh and Yeo 2015). Among these studies, the most common data were from loop detectors (Zielke et 

al. 2008; Li et al. 2010; Zheng et al. 2010, 2011b; Treiber and Kesting 2012) and cameras (e.g., NGSIM data) 

(Knoop et al. 2008; Yeo and Skabardonis 2009; Laval and Leclercq 2010; Zheng et al. 2011a; Laval 2011; 

Li et al. 2012, 2014, Chen et al. 2012, 2014; Oh and Yeo 2015; Fernandez et al. 2017; Saifuzzaman et al. 

2017). The data used in these studies were, however, limited within short road segments that could not reflect 

the dynamics of traffic flow along a long travel distance. And prevailing errors in the dataset may compromise 

microscopic driving behavioral models (Coifman and Li 2017). Recently, with the development of the global 

positioning system (GPS), researchers started to use high-resolution GPS devices to collect data (Jiang et al. 

2014, 2015; Tian et al. 2016a; Li et al. 2018). They collected high resolution trajectory data for each 

instrumented vehicle for a long travel period and distance, which contains rich information on the advent and 

propagation of traffic oscillation. These recent studies mainly focused on only a subset of oscillation features 

such as speed variance, average speed and spacing, yet did not comprehensively address other features such 

as oscillation periods and time gaps. Further, the relationships between traffic oscillation features have not 

yet received quantitative analysis. 

Despite these fruitful findings, however, it is necessary to inspect all relevant traffic oscillation features 

and quantifying their relationships to fully understanding the mechanisms and impacts of traffic oscillation. 

For example, oscillation period is largely resulted from driving behavior and traffic dynamics (Li and Ouyang 

2011), and causes driving uncomfortable due to repeated acceleration and declaration cycles. Time gap is 

closely related to drivers’ reaction time and vehicle dynamics, and determines spatial and temporal 

propagations of shock waves created from traffic oscillation. Further, these features are likely not 

independent, for example, Li et al. (2014, 2018) noticed that oscillation period increases as oscillation 

amplitude grows. Kesting et al. (2008) analyzed the relationships between traffic oscillation and reaction 

time, update time and adaptation time, and found that long-wavelength string instability is mainly driven by 

the adaptation time while short-wavelength local instabilities are related to update time and reaction time. 

These interesting issues, however, have seldom been quantitatively studied from a statistical point of view 

with field data. This hinders our capability of analyzing and modeling traffic oscillation, imposes knowledge 

gaps in effective managing traffic oscillation and mitigating its adversary impacts, and further makes 

improvement in traffic control and other engineering research and applications to eliminate negative effects 

of traffic oscillation (Aboudina et al. 2016; Arshi et al. 2018; Saxena et al. 2019).   

Motivated by the above gaps, we conducted a set of field experiments with a platoon of 12 human driven 

vehicles on a 5-km-long highway section in Harbin, China. High-resolution GPS devices were mounted on 

the vehicles to record the detailed trajectory of each individual vehicle. Different from Jiang’s experiments 

(Jiang et al. 2014), our experiments focus on the relationships between traffic oscillation features. In the 

proposed field experiments, the leading vehicle was asked to proceed in periodical acceleration and 

deceleration patterns with different oscillation parameters. Several features (e.g., period, average speed, 

speed standard deviation, time gap, initial speed and initial spacing) are extracted from the experiments to 



 3 

investigate the propagation of traffic oscillation with a time-domain method. Frequency analysis is also 

proposed with the Fourier transform (FT) method to verify the effectiveness of the features measured by the 

time-domain method. Compared with the frequency-domain method, the time-domain method in general 

yields comparable measurements and is more robust on trajectory with a small number of oscillation cycles. 

Further, the time-domain method populates more measurements and thus is more suitable for statistical 

analyses investigating the relationships of traffic oscillation features. A number of new findings of the 

relationships between traffic oscillation features are presented. For example, the time gap to the preceding 

vehicle is positively correlated with the average speed of the preceding vehicle and the initial spacing, and 

negatively correlated with the speed standard deviation of the preceding vehicle and the initial speed of the 

following vehicle. Finally, to demonstrate the application of the extracted relationships, we apply the above 

findings to revise the classic car following models and validate significant improvement in its capacity on 

reproducing real-world trajectories.  

The contributions of this paper are summarized as follows. 1) High-resolution GPS trajectory data are 

extracted from traffic oscillation field experiments, which provides a new dataset to calibrate and validate 

traffic flow models considering traffic oscillation. 2) A new time-domain method is proposed to extract traffic 

oscillation features and compared with a FT based frequency-domain method. 3) The relationships between 

traffic oscillation features and their implications to traffic oscillation development are captured through 

empirical analysis. 4) Revised car following models are proposed based on the time gap function from the 

empirical analysis, and the revised car following models show better performance than the classic car 

following models on reproducing field data. The findings from this study will advance our understanding on 

traffic oscillation mechanisms and impacts, and also provide fundamental formulas for developing more 

traffic-oscillation-aware models, strategies and policies for traffic control and management.  

The rest of this paper is organized as follows. Section 2 states the experimental setup and results. In Section 

3, traffic oscillation features are defined, and the method of processing data is described. Section 4 conducts 

linear regression on the features to analyze their relationships, and proposes revised car following models 

based on the findings from empirical analysis. Section 5 concludes this paper and briefly discusses future 

research directions.  

2. Experimental Setup and Results  

2.1. Experimental setup 

The field experiments were implemented on October 24th, 2015. The experiment settings are summarized 

below.  

Location: All experiments were carried out on a 5 km highway section of National Highway G202 (Lanxi 

direction) in Harbin, Heilongjiang, China. See Figure 1Figure 1 (a) for the map of the test road. The black 

curve depicts the road segment in Google Maps, and the blue arrows indicate the traffic moving direction. 

As is shown in Figure 1Figure 1 (b), there are no traffic lights on the test road. The test road is a bi-direction 

and four-lane highway. Note that national highway G202 is not a freeway, and the speed limit is 80 km/h. It 

allows vehicles to have a U-turn on the test road. The traffic is light on the test road so that the vehicle platoon 

is not disturbed by other vehicles. Further, with the cooperation of traffic polices, it is safe and legal to 

conduct a set of traffic oscillation field experiments on the test road.  

Equipment: The vehicle platoon contained 12 vehicles with identical sizes and models (i.e., Kia K5). A 

high-resolution GPS device, called GPS-RTK based STAR-RTK-M9, was installed in each vehicle to collect 

field data (i.e., locations and speed). The data measurement errors of the GPS device are within ±1m for 

location and ±1km/h for speed. And the sampling frequency is 20Hz (i.e., the sampling time interval is 0.05s). 

Configurations: Since the objective of the field experiments was to investigate the propagation of traffic 

oscillation and the relationships in traffic oscillation features, we conducted 12 experiments with different 

traffic oscillation parameter settings for the leading vehicle, as shown in Table 1Table 1. The cruise time 
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indicates the duration time of cruising. The acceleration and the maximum speed decide the adaptation time 

of traffic oscillation. And then, the time period of traffic oscillation consists of cruising time and adaptation 

time. The difference between the maximum and minimum speeds implies the magnitude of traffic oscillation. 

Basically, a leading vehicle driver was asked to periodically vary vehicle speed based on a profile specified 

by the parameters. Within each time period, the ideal leading vehicle speed profile would accelerate to the 

maximum speed with the designed acceleration rate, then cruise at the maximum speed, and finally decrease 

the speed to the minimum speed with a deceleration rate identical to the negation of the previous acceleration 

rate. Note that it is difficult for the leading vehicle driver to follow the perfect speed profile, and the driver 

was just asked to follow this profile as best as he/she can. Other drivers were told to follow the preceding 

vehicle as usual without overtaking. When approaching the end of the road segment, all GPS devices stopped 

collecting data, and the vehicle platoon made a U-turn and stopped. After all vehicles stopped, a new run of 

the experiment began, and the GPS devices restarted to collect data at the same time. 

(a)  (b)  

Figure 1  Experimental section of the field tests: (a) Road geometry in Google maps; (b) Actual experimental 

environment. 

Table 1  Parameter settings for the leading vehicle in different experiments. 

 Cruise time (s) Designed acceleration (km/h/s) Minimum speed (km/h) Maximum speed (km/h) 

Experiment 1 30 1 30 40 

Experiment 2 30 2 30 40 

Experiment 3 30 1 20 40 

Experiment 4 30 2 20 40 

Experiment 5 120 1 30 40 

Experiment 6 120 2 30 40 

Experiment 7 120 1 20 40 

Experiment 8 120 2 20 40 

Experiment 9 30 1 60 70 

Experiment 10 30 2 60 70 

Experiment 11 30 1 50 70 

Experiment 12 30 2 50 70 

 

Figure 2Figure 2 illustrates an ideal speed trajectory with parameters setting. The pre-designed cruise is 

30s. The maximum speed, marked by red dashed line, is 40km/h. The minimum speed is 20km/h. And the 

acceleration is shown by the slope as 2km/h/s.  

(5 
km) 
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Figure 2  An example of ideal speed trajectory with the parameter settings. 

2.2. Field test results 

Figure 3Figure 3 shows an example of time-location trajectories of the test vehicles from one experiment. 

There are some missing data due to the errors of GPS (e.g., vehicle was beneath a bridge or GPS was loss of 

signal). Thus, we will use interpolation to recover the time-location trajectories in Section 3. In Figure 

3Figure 3, we find that there exist frequent traffic oscillations through the 5km road section, which follow 

the experiment settings. The detailed oscillatory series of time-space trajectories can be found in Figure 

5Figure 5 (a). 

 

Figure 3  An example of time-space trajectories of the test vehicles. 

Figure 4Figure 4 shows an example of time-speed trajectories of the 1st, 2nd and 10th vehicles. The blue-

square curve, the black-circle curve and the red-triangle curve plot the time-speed trajectories of the 1st, 2nd 

and 10th vehicles, respectively. And the blue-dotted line shows the average speed of the first vehicle. We 

find the operation of the leading vehicle (i.e., the 1st vehicle). The cruise time is around 30s. The maximum 

speed is a little higher than 40km/h, and the average speed is around 35-40km/h, and the minimum speed is 

about 20km/h. This leading vehicle’s speed trajectory is similar as the ideal leading vehicle’s speed trajectory 

in Figure 2Figure 2. That means the speed fluctuation of the leading vehicle is in general consistent with the 

pre-set parameters. Further, it is clear that the speed trajectory fluctuates more abruptly from the leading 

vehicle to the 10th vehicle. And there exists a shift time between two consecutive vehicles so that the speed 

trajectory of the 10th vehicle is hysteretic compared with the 1st and 2nd vehicles. This indicates that traffic 

oscillation propagates with varying traffic oscillation features from the leading vehicle to the last vehicle.  
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Figure 4  An example of time-speed trajectories of the 1st, 2nd and 10th vehicles. 

3. Feature Measurements and Data Processing 

For the convenience of readers, the key notation is summarized in the Appendix A. 

3.1. Notation 

For the convenience of describing traffic oscillation features, following notation is given.  

Time: Consider a set of time indexed by 𝑡 = 0, Δ𝑡, 2 Δ𝑡, … , 𝑇, where Δ𝑡 is the sampling time interval and 

𝑇 is the maximum time. Let 𝚻 ≔ {0, Δ𝑡, 2 Δ𝑡, … , 𝑇} denote the set of time. 

Traffic oscillation pre-set cycle: Traffic oscillation pre-set cycles are indexed by 𝑘 = 1,2, … , 𝐾, where 

𝐾 = ⌊𝑇/𝑡𝑝𝑝𝑟𝑒⌋ is the maximum pre-set cycle number. The length of one traffic oscillation pre-set cycle is 

𝑡𝑝𝑝𝑟𝑒 = 𝑡𝑐𝑝𝑟𝑒 + 2 × ⌊
𝑣𝑣𝑝𝑟𝑒

𝑎𝑝𝑟𝑒 ⌋, where  𝑡𝑐𝑝𝑟𝑒 is the pre-designed cruise time, 𝑣𝑣𝑝𝑟𝑒 is the pre-designed speed 

variation range, and 𝑎𝑝𝑟𝑒 is the pre-designed acceleration. 

Vehicle: Consider a platoon of vehicles indexed by 𝑛 = 1,2, … , 𝑁. Let 𝚴 ≔ {1,2, … , 𝑁} denote the set of 

vehicles.  

Location: Let 𝑥𝑛(𝑡) denote the location of vehicle 𝑛 ∈ 𝚴 at time 𝑡 ∈ 𝚻.  

Speed: Let 𝑣𝑛(𝑡) denote the speed of vehicle 𝑛 ∈ 𝚴 at time 𝑡 ∈ 𝚻. To make consistency with location with 

meters as unit, the unit of speed is set as m/s. Thus, 40km/h is about 11.11m/s, and 70km/h is about 19.44m/s. 

Acceleration: Let 𝑎𝑛(𝑡) denote the acceleration of vehicle 𝑛 ∈ 𝚴 at time 𝑡 ∈ 𝚻.  

3.2. Feature measurements 

In order to measure the duration time and magnitude of traffic oscillation, time period, average speed, and 

speed standard deviation are utilized. 

Time period (𝑡𝑝): Let 𝑡𝑝𝑛𝑘 = 𝑡
𝑛(𝑘+1)

𝑣
− 𝑡𝑛𝑘

𝑣
 denote the cycle length of vehicle 𝑛 ∈ 𝚴 in traffic oscillation 

pre-set cycle 𝑘 ∈ 𝐊. 𝑡𝑛𝑘

𝑣
= 𝑎𝑟𝑔𝑚𝑖𝑛𝑡∈𝐓𝑘

𝑣𝑛(𝑡) is the time point of the local minimum speed of vehicle 𝑛 ∈ 𝚴 

in traffic oscillation pre-set cycle 𝑘 ∈ 𝐊. And 𝛿𝑘 is the time interval to search local minimum speed in pre-

set cycle 𝑘 . Once we find a 𝑡𝑛𝑘

𝑣
 with the global minimum speed 𝑎𝑟𝑔𝑚𝑖𝑛𝑡∈𝐓𝑣𝑛(𝑡) , the current traffic 

oscillation pre-set cycle is set as 𝑘 = ⌊𝑡𝑛𝑘

𝑣
/𝑡𝑝𝑝𝑟𝑒⌋. Then, 𝑡

𝑛(𝑘+1)

𝑣
 is calculated by forward searching in time 

interval 𝛿𝑘+1 ∈ [𝑡𝑛𝑘

𝑣
+ 𝑡𝑝𝑝𝑟𝑒 2⁄ , 𝑡𝑛𝑘

𝑣
+ 3𝑡𝑝𝑝𝑟𝑒 2⁄ ], and 𝑡

𝑛(𝑘−1)

𝑣
 is calculated by backward searching in time 

interval 𝛿𝑘−1 ∈ [𝑡𝑛𝑘

𝑣
− 3𝑡𝑝𝑝𝑟𝑒 2⁄ , 𝑡𝑛𝑘

𝑣
− 𝑡𝑝𝑝𝑟𝑒 2⁄ ]. With this, let 𝑝 ∈ 𝐏 = [1,2, … , 𝑃] denote the index of 

time period, where 𝑃 = 𝐾 − 1. The time period length of vehicle 𝑛 ∈ 𝚴 in period 𝑝 ∈ 𝐏 is 𝑡𝑝𝑛𝑝 = 𝑡𝑝𝑛𝑘. And 

the time interval in period 𝑝 ∈ 𝐏 of vehicle 𝑛 ∈ 𝐍 is 𝛿𝑛𝑝 ∶= [𝑡𝑛𝑘

𝑣
, 𝑡

𝑛(𝑘+1)

𝑣
]. Let 𝐼𝑛𝑝 = 𝑡𝑝𝑛𝑝 × 𝑓 denote the 
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number of data points of vehicle 𝑛 ∈ 𝚴 in period 𝑝 ∈ 𝐏, where 𝑓 = 1/Δ𝑡 is the sampling frequency. See 

Figure 6Figure 6, the time interval between two consecutive local minima (i.e., black circles or red triangles). 

This reflects the duration time that traffic oscillation takes in one complete cycle. 

Average speed (𝑣𝑚𝑛): Let 𝑣𝑚𝑛𝑛𝑝 = 1

𝐼𝑛𝑝
∑ 𝑣𝑛(𝑡)𝑡∈𝛿𝑛𝑝

 denote the average speed of vehicle 𝑛 ∈ 𝚴 in period 

𝑝 ∈ 𝐏.  

Speed standard deviation (𝑣𝑠𝑑 ): Let 𝑣𝑠𝑑𝑛𝑝 = √∑ (𝑣𝑛(𝑡) − 𝑣𝑚𝑛𝑛𝑝)𝑡∈𝛿𝑛𝑝
𝐼𝑛𝑝 − 1⁄  denote the speed 

standard deviation of vehicle 𝑛 ∈ 𝚴 in period 𝑝 ∈ 𝐏 to reflect the magnitude of traffic oscillation.  

In addition, we add other features, average time gap and initial speed and spacing to measure the trajectory 

shifting happened in time-speed trajectories. 

Time gap (𝑡𝑔 ): Let 𝑡𝑔𝑛𝑝 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑡∈𝛿𝑛𝑝
𝑣𝑛(𝑡) − 𝑎𝑟𝑔𝑚𝑖𝑛𝑡∈𝛿𝑛𝑝

𝑣𝑛−1(𝑡)  denote the time interval that 

speed traffic oscillation travels from vehicle 𝑛 − 1 ∈ 𝚴 to vehicle 𝑛 ∈ 𝚴 in period 𝑝 ∈ 𝐏. See Figure 6Figure 

6, the time gap is marked as the time interval between the minima of the first vehicle (i.e., black circles) and 

its neighbor minima of the second vehicle (i.e., red triangles). 

Initial speed (𝑣𝑖𝑛 ): Let 𝑣𝑖𝑛𝑛𝑝 = 𝑣𝑛𝑝(𝑡𝑛𝑘

𝑣
) denote the speed of vehicle 𝑛 ∈ 𝚴 at the beginning of period 

𝑝 ∈ 𝐏. 

Initial spacing (𝑠𝑖𝑛 ): Let 𝑠𝑖𝑛𝑛𝑝 = 𝑠𝑛𝑝(𝑡𝑛𝑘

𝑣
) denote the spacing of vehicle 𝑛 ∈ 𝚴\{1}  at the beginning of 

period 𝑝 ∈ 𝐏. 

3.3. Data processing 

To obtain all oscillation features from the raw field data, we need to do a series of data processing. 

Step 1: Selecting a suitable time interval for each experiment. In order to get more complete cycles of 

traffic oscillation for all vehicles, we need to select a suitable time set T for each experiment.  

Step 2: Smoothing trajectory for every vehicle in all experiments. Before smoothing, linear interpolation 

method is applied to fixed missed data on location trajectories. Then, we extract macroscopic series (black 

dashed line in Figure 5Figure 5 (a)) and oscillatory series (blue dash-dot line in Figure 5Figure 5 (a)) from 

original location trajectories (red solid line in in Figure 5Figure 5 (a)) according to the method in Li’s work 

(2012). Next, moving average method is applied to smooth oscillatory series trajectories so that we can 

eliminate unnecessary noises. Then, smoothed speeds {𝑣̃𝑛(𝑡)}𝑡∈𝐓  and accelerations {𝑎̃𝑛(𝑡)}𝑡∈𝐓  are 

recalculated according to the smoothed trajectories (red solid line in Figure 5Figure 5 (b)). 

Step 3: Finding time periods on smoothed trajectories. Here, we separate a smoothed speed trajectory into 

several parts (i.e., set of traffic oscillation pre-set cycles 𝐊) according to the pre-designed cruise time and 

adaptation time. After that, we plan to find every time period 𝑡𝑝𝑛𝑘 , ∀𝑛 ∈ 𝐍, 𝑘 ∈ 𝐊  in measured time 

intervals. First, the key to find time periods is to find the lowest speed points among a speed trajectory of the 

first vehicle. See Figure 6Figure 6, it illustrates an example of all local lowest speed points (i.e., black circles 

for 1st vehicle and red triangles for 2nd vehicle) among speed trajectories. And the point marked by a bigger 

black circle is the global lowest speed point of the first vehicle. Then, forward searching and backward 

searching with a pre-set time period (e.g., 𝑡𝑝𝑝𝑟𝑒= 35s, 40s, 50s, 125s, 130s or 140 s in these experiments) are 

applied to find other local lowest speed points of the first vehicle within searching intervals, marked by black 

circles in Figure 6Figure 6. For the following vehicles (e.g., 2nd vehicle), the local lowest speed points (i.e., 

red triangles) are picked in the time periods of the first vehicle. In general, they are in the neighborhood of 

the first vehicle’s local lowest speed points. And the time intervals between two consecutive local lowest 

speed points are denoted as time periods. For example, there are 8 local lowest points in Figure 6Figure 6. 

Thus, we collect 7 time periods among this speed trajectory. 
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(a)  

(b)  

Figure 5  An example of trajectory smoothing: (a) Extract macroscopic series and oscillatory series from the original 

trajectory; (b) Smooth oscillatory series trajectory. 

Step 4: Calculating all the other features (i.e., 𝑠𝑖𝑛𝑛𝑝, 𝑣𝑖𝑛𝑛𝑝 𝑣𝑚𝑛𝑛𝑝, 𝑡𝑔𝑛𝑝 and 𝑣𝑠𝑑𝑛𝑝) related to the above 

measured time periods (i.e., 𝑡𝑝𝑛𝑝). Each feature contains 7 data points according to 7 measured time periods. 
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Figure 6  An example of finding all time periods. 

3.4 Frequency analysis 

To verify the above features measured by the time-domain method, a proven and simple implementable 

method, called the Fourier Transform (FT) based frequency-domain method proposed by Li et al. (2012), is 

used to capture the dominant frequency set {𝛺𝑛}𝑛∈𝐍  for comparison with the above time-domain 

measurements.  

 
Figure 7  An illustration of a time-speed trajectory and the corresponding FT spectrum in case 1.  

The dominant frequency set is calculated as follows, 
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𝛺𝑛 = argmaxΩ ∫ |𝑣̃𝑛(𝑡)𝑒−𝑗Ω𝑡|𝑑𝑡
𝐓

, (1) 

where 𝑗 = √−1, 𝑒 ≈ 2.718, 𝛺𝑛 is the dominant frequency of vehicle 𝑛 and 𝑣̃𝑛(𝑡) is the smoothed speed of 

vehicle 𝑛 at time 𝑡 ∈ 𝐓.  

The upper subfigure in Figure 7Figure 7 shows a time-speed trajectory in case 1. It is found the average 

time period is about 50 s. The lower subfigure in Figure 7Figure 7 shows the corresponding FT spectrum in 

case 1. There is an obvious peak, marked by red star, in the FT spectrum at about 0.0203 Hz, which is also 

referred as the dominant frequency. Thus, the corresponding dominant period as the invers of the dominant 

frequency is about 49.26 s, which is almost the same as the time period measured in the time-domain method. 

This verifies that the proposed time-domain method is effective on measuring oscillation features. 

(a)  

(b)  

Figure 8  The comparison results between the time-domain method and the frequency-domain method: (a) time 

period; (b) speed standard deviation. 
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Figure 9  An illustration of a time-speed trajectory and the corresponding FT spectrum in case 2. 

Figure 8Figure 8 shows the comparison results between the time-domain method and the frequency-domain 

method considering the number of oscillation cycles. Compared with the frequency-domain method, the 

time-domain method has comparable results on measuring periods and speed standard deviations. However, 

when the number of oscillation cycles is small, the dominant periods measured by the frequency-domain 

method become more fluctuating due to zero padding, and thus the corresponding comparison data points 

considerably deviate from the 45 degree line. For example, in Figure 9Figure 9, the time-speed trajectory 

shows that the average time period is about 130.4 s with 3 oscillation cycles. While the FT spectrum shows 

the dominant period is 195.6 s. Further, the time-domain method considering each individual oscillation cycle 

captures more data points than the frequency-domain method considering several oscillation cycles. Thus, 

the oscillation features with more data points measured by the time-domain method are used in the following 

empirical analysis to yield a better performance on investigating the relationships of these features. 

4. Empirical Analysis and Revised Car Following Models 

4.1. Empirical analysis with linear regression methods 

To investigate the relationships of the traffic oscillation features between the preceding vehicle and the 

following vehicle, linear regression approach is used to analyze the measured features in Section 3 with R 

language. For the consistency of variables naming in R language, we use 𝑣𝑎𝑟. 𝑝 = {𝑣𝑎𝑟𝑛𝑝}
𝑛∈𝐍∖{𝑁},𝑝∈𝐏

 and 

𝑣𝑎𝑟. 𝑓 = {𝑣𝑎𝑟𝑛𝑝}
𝑛∈𝐍∖{1},𝑝∈𝐏

 to denote the feature sets of the preceding vehicle and the following vehicle, 

respectively. For example, 𝑡𝑝. 𝑝 = {𝑡𝑝𝑛𝑝}
𝑛∈𝐍∖{𝑁},𝑝∈𝐏

 denotes the set of the time period lengths of the 

preceding vehicle, and 𝑡𝑝. 𝑓 = {𝑡𝑝𝑛𝑝}
𝑛∈𝐍∖{1},𝑝∈𝐏

 denotes the set of the time period lengths of the following 

vehicle. The detailed definitions of these variables are summarized in Appendix A. 
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Figure 10  The correlations among all features. 

Then, we check the relationships among all features (i.e., 𝑡𝑝. 𝑝, 𝑣𝑚𝑛. 𝑝, 𝑣𝑠𝑑. 𝑝, 𝑡𝑝. 𝑓, 𝑣𝑚𝑛. 𝑓, 𝑣𝑠𝑑. 𝑓, 𝑡𝑔, 

𝑠𝑖𝑛 and 𝑣𝑖𝑛. 𝑓) by plotting the correlation matrix and calculating the correlation coefficients between each 

two features. See Figure 10Figure 10, some of the scatter diagrams have two classifications. This is because 

of the settings of field experiments (i.e., two kinds of time periods and two kinds of maximum speeds). We 

find that there exist linear relationships between the same features of the preceding vehicle and the following 

vehicle, e.g. the correlation between 𝑡𝑝. 𝑝 and 𝑡𝑝. 𝑓. This shows the truth of car-following behavior. And 

there exists a linear relationship between 𝑣𝑚𝑛. 𝑓 and 𝑣𝑖𝑛. 𝑓. However, the linear correlations among other 

features are not obvious with small correlation coefficients. In order to explore more detailed relationships 

in traffic oscillation features, we conduct a set of linear regression tests using 𝑡𝑔, 𝑡𝑝. 𝑓, 𝑣𝑚𝑛. 𝑓, and 𝑣𝑠𝑑. 𝑓 

as dependent variables, respectively.  

Table 2  Linear Regression Result Using 𝑣𝑚𝑛. 𝑓 as Dependent Variable. 

 Estimate Std. Error t value Pr(> |𝑡|) Significance 

(Intercept) -0.0153 0.0368 -0.417 0.677  

𝑣𝑚𝑛. 𝑝 0.9935 0.0033 297.932 <2e-16 *** 

𝑣𝑖𝑛. 𝑓 0.0046 0.0007 6.077 2.3e-09 *** 

Residual standard error:  0.2233 on 547 degrees of freedom. Multiple R-squared:  0.9954, Adjusted R-squared:  0.9954. F-statistic: 

8.948e+04 on 2 and 544 DF, p-value: < 2.2e-16. 

Table 2Table 2 shows the regression result using 𝑣𝑚𝑛. 𝑓 as the dependent variable. We find that 𝑣𝑚𝑛. 𝑓 

is strongly linear correlated with independent variables (𝑣𝑚𝑛. 𝑝 and 𝑣𝑖𝑛. 𝑓) with all t-statistic values above 

6 and great goodness of fit with a high adjusted R-squared of 0.9954. As shown in Table 2Table 2, 𝑣𝑚𝑛. 𝑝 

shows a strong positive correlation with 𝑣𝑚𝑛. 𝑓. This follows the car-following laws and means that the 

average speed of the following vehicle is almost the same as the preceding vehicle. The significant linear 

relationship between 𝑣𝑚𝑛. 𝑓  and 𝑣𝑚𝑛. 𝑝  can be also found in Figure 10Figure 10. Thus, the linear 

relationship of 𝑣𝑚𝑛. 𝑓 and the significant independent variables is formulated as follows, 

 𝑣𝑚𝑛. 𝑓 = 0.9935𝑣𝑚𝑛. 𝑝 + 0.0046𝑣𝑖𝑛. 𝑓. (2) 
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Table 3  Linear Regression Result Using 𝑣𝑠𝑑. 𝑓 as Dependent Variable. 

 Estimate Std. Error t value Pr(> |𝑡|) Significance 

(Intercept) 0.0723 0.0441 1.64 0.1015  

𝑣𝑚𝑛. 𝑝 0.0131 0.0036 3.66 0.0003 *** 

𝑣𝑠𝑑. 𝑝 0.8785 0.0219 40.15 <2e-16 *** 

Residual standard error:  0.2567 on 547 degrees of freedom. Multiple R-squared:  0.7822, Adjusted R-squared:  0.7814. F-statistic: 

982 on 2 and 547 DF, p-value: < 2.2e-16. 

Table 2 shows the regression result using 𝑣𝑚𝑛. 𝑓  as the dependent variable. We find that 𝑣𝑚𝑛. 𝑓  is 

strongly linear correlated with independent variables (𝑣𝑚𝑛. 𝑝 and 𝑣𝑖𝑛. 𝑓) with all t-statistic values above 6 

and great goodness of fit with a high adjusted R-squared of 0.9954. As shown in Table 2, 𝑣𝑚𝑛. 𝑝 shows a 

strong positive correlation with 𝑣𝑚𝑛. 𝑓. This follows the car-following laws and means that the average 

speed of the following vehicle is almost the same as the preceding vehicle. The significant linear relationship 

between 𝑣𝑚𝑛. 𝑓 and 𝑣𝑚𝑛. 𝑝 can be also found in Figure 10. Thus, the linear relationship of 𝑣𝑚𝑛. 𝑓 and the 

significant independent variables is formulated as follows, 

 𝑣𝑚𝑛. 𝑓 = 0.9935𝑣𝑚𝑛. 𝑝 + 0.0046𝑣𝑖𝑛. 𝑓. (2) 

 

Table 3Table 3 shows the linear regression result using 𝑣𝑠𝑑. 𝑓 as the dependent variable. The adjusted R-

squared value is 0.7814 indicating acceptable goodness of fit. Two independent variables are statistically 

significant with t-statistic values above 3. And we find 𝑣𝑠𝑑. 𝑝 is highly positively correlated with 𝑣𝑠𝑑. 𝑓 due 

to the car-following behavior. Besides, the average speed of the preceding vehicle provides a positive effect 

on 𝑣𝑠𝑑. 𝑓, which means that a higher speed will cause a sharper speed fluctuation. Therefore, the linear 

relationship of 𝑣𝑠𝑑. 𝑓 is formulated as follows, 

𝑣𝑠𝑑. 𝑓 = 0.0131𝑣𝑚𝑛. 𝑝 + 0.8785𝑣𝑠𝑑. 𝑝.  (3) 

Table 4  Linear regression result using 𝑡𝑝. 𝑓 as a dependent variable. 

 Estimate Std. Error t value Pr(> |𝑡|) Significance 

(Intercept) -0.0515 0.7188 -0.072 0.9429  

𝑡𝑝. 𝑝 0.9977 0.0044 226.129 <2e-16 *** 

𝑣𝑚𝑛. 𝑝 0.3857 0.1106 3.486 0.0005 *** 

𝑣𝑠𝑑. 𝑝 -0.7144 0.3229 -2.212 0.0273 * 

𝑠𝑖𝑛 -0.3772 0.1028 -3.669 0.0003 *** 

Residual standard error:  3.619 on 544 degrees of freedom. Multiple R-squared:  0.9904, Adjusted R-squared:  0.9903. F-statistic: 

1.117e+04 on 5 and 544 DF, p-value: < 2.2e-16. 

The linear regression result using 𝑡𝑝. 𝑓 as the dependent variable is shown in Table 2 shows the regression 

result using 𝑣𝑚𝑛. 𝑓  as the dependent variable. We find that 𝑣𝑚𝑛. 𝑓  is strongly linear correlated with 

independent variables (𝑣𝑚𝑛. 𝑝 and 𝑣𝑖𝑛. 𝑓) with all t-statistic values above 6 and great goodness of fit with a 

high adjusted R-squared of 0.9954. As shown in Table 2, 𝑣𝑚𝑛. 𝑝 shows a strong positive correlation with 

𝑣𝑚𝑛. 𝑓. This follows the car-following laws and means that the average speed of the following vehicle is 

almost the same as the preceding vehicle. The significant linear relationship between 𝑣𝑚𝑛. 𝑓 and 𝑣𝑚𝑛. 𝑝 can 

be also found in Figure 10. Thus, the linear relationship of 𝑣𝑚𝑛. 𝑓 and the significant independent variables 

is formulated as follows, 

 𝑣𝑚𝑛. 𝑓 = 0.9935𝑣𝑚𝑛. 𝑝 + 0.0046𝑣𝑖𝑛. 𝑓. (2) 

 

Table 3 shows the linear regression result using 𝑣𝑠𝑑. 𝑓 as the dependent variable. The adjusted R-squared 

value is 0.7814 indicating acceptable goodness of fit. Two independent variables are statistically significant 
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with t-statistic values above 3. And we find 𝑣𝑠𝑑. 𝑝 is highly positively correlated with 𝑣𝑠𝑑. 𝑓 due to the car-

following behavior. Besides, the average speed of the preceding vehicle provides a positive effect on 𝑣𝑠𝑑. 𝑓, 

which means that a higher speed will cause a sharper speed fluctuation. Therefore, the linear relationship of 

𝑣𝑠𝑑. 𝑓 is formulated as follows, 

𝑣𝑠𝑑. 𝑓 = 0.0131𝑣𝑚𝑛. 𝑝 + 0.8785𝑣𝑠𝑑. 𝑝.  (3) 

Table 4Table 4. There is a strong linear correlation between 𝑡𝑝. 𝑓 and independent variables with all t-

statistic values higher than 2.2 and a goodness of fit with an adjusted R-squared value of 0.9903. We find 

that 𝑡𝑝. 𝑓  has a strong and positive correlation with 𝑡𝑝. 𝑝 . which has a much higher t-value than other 

independent variables. This implies that the time period length of the preceding vehicle has a drastically 

strong linear relationship with the time period length of the following vehicle. Figure 10Figure 10 also shows 

the linear relationship between 𝑡𝑝. 𝑝 and 𝑡𝑝. 𝑓. This makes the time period length maintain almost the same 

from the first vehicle to the last vehicle. Further, 𝑡𝑝. 𝑓 is also positively correlated with 𝑣𝑚𝑛. 𝑝 and 𝑣𝑖𝑛. 𝑓. It 

is possible that higher average speed and initial speed of the preceding vehicle cause a higher average speed 

of the following vehicle, this means the following vehicle is less likely to accelerate and then decelerate that 

much compared with vehicles with lower average speed. This is to say that the following vehicle’s trajectory 

tends to be smoother with a longer oscillation period. Additionally, 𝑡𝑝. 𝑓 is negatively correlated with 𝑣𝑠𝑑. 𝑝 

and 𝑠𝑖𝑛. This is probably because a higher speed standard deviation of the preceding vehicle causes a higher 

speed standard deviation of the following vehicle, which means the following vehicle’s trajectory becomes 

unsmooth with a smaller oscillation period. As for the initial spacing, a lager initial spacing will cause a lager 

average spacing so that the driver of the following vehicle tends to accelerate to catch up then decelerate until 

at least the safety distance is guaranteed. This will result in a smaller oscillation period. According to the 

linear regression result, we formulate 𝑡𝑝. 𝑓 as follows 

𝑡𝑝. 𝑓 = 0.9977𝑡𝑝. 𝑝 + 0.3857𝑣𝑚𝑛. 𝑝 − 0.7144𝑣𝑠𝑑. 𝑝 − 0.3772𝑠𝑖𝑛 + 0.0326𝑣𝑖𝑛. 𝑓.  (4) 

As shown in Error! Not a valid bookmark self-reference.Table 5, it shows the linear regression 

result using 𝑡𝑔 as the dependent variable. We find 𝑡𝑔 has a weak linear relationship with 𝑣𝑚𝑛. 𝑝, 𝑣𝑠𝑑. 𝑝, 𝑠𝑖𝑛 

and 𝑣𝑖𝑛. 𝑓 due to the low adjusted R-squared value (i.e., 0.3243). The average time gap is strongly and 

positively correlated with the average speed of the preceding vehicle. This is because that drivers need more 

time to react when speed becomes higher. In addition, 𝑡𝑔 is significantly and positively correlated with 𝑠𝑖𝑛. 

It is because a longer initial spacing may cause a longer average spacing and consequentially a longer time 

gap. Further, there is a significant negative correlation between the speed standard deviation of the preceding 

vehicle and the average time gap. This is probably that the following vehicle would react fast (i.e., time gap 

decreases) when the speed fluctuation increases. And 𝑣𝑖𝑛. 𝑓 has a negative correlation with 𝑡𝑔. Because a 

higher initial speed of the following vehicle leads to a greater average spacing, the average time gap is longer. 

Finally, the formulation of 𝑡𝑔 is shown as follows 

𝑡𝑔 = 0.2909𝑣𝑚𝑛. 𝑝 − 0.5173𝑣𝑠𝑑. 𝑝 + 0.0769𝑠𝑖𝑛 − 0.1272𝑣𝑖𝑛. 𝑓.  (5) 

Table 5  Linear Regression Result Using 𝑡𝑔 as Dependent Variable. 

 Estimate Std. Error t value Pr(> |𝑡|) Significance 

(Intercept) 0.4299 0.3371 1.275 0.2027  

𝑣𝑚𝑛. 𝑝 0.2909 0.0579 5.020 7.02e-17 *** 

𝑣𝑠𝑑. 𝑝 -0.5173 0.1697 -3.047 0.00242 ** 

𝑠𝑖𝑛 0.0769 0.0071 10.752 < 2e-16 *** 

𝑣𝑖𝑛. 𝑓 -0.1272 0.0530 -2.400 0.0167 * 

Residual standard error:  1.904 on 545 degrees of freedom. Multiple R-squared:  0.3292, Adjusted R-squared:  0.3243. F-statistic: 

66.87 on 4 and 545 DF, p-value: < 2.2e-16. 

Although, the adjusted R-squared value is not large. We compare the fitted time gap values from Equation 
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(5)(5) (i.e., the red solid curve) and the actual observations (i.e., the dashed black curve) in Figure 11Figure 

11, and find that these results are in general consistent, though the observed data are heavier on the extreme 

values. This could be because noises and errors in measurements may amplify time gap variations.  

 

Figure 11  Regression results of time gap. 

After linear regression analysis, empirical analysis results are summarized as follows.  

1) The initial spacing is positively correlated with the average spacing and time gap, and negatively 

correlated with the time period length of the following vehicle. It is found that a traffic oscillation starting 

with a long initial spacing can cause a long average spacing and a long time gap. Thus, it will shorten the 

oscillation period of the following vehicle.  

2) The initial speed of the following vehicle is negatively correlated with the average spacing and time gap, 

and positively correlated with the average speed and time period length of the following vehicle. A traffic 

oscillation starting with a low initial speed leads to a large average spacing and a long time gap. This results 

in a lower average speed and lower time period due to less range of speed than can be accelerated. 

3) The average speed and the time period length of the following vehicle are highly and positively 

correlated with the average speed and the time period length of the preceding vehicle, respectively. This 

reflects the fact the average speed and time period length maintain almost the same from the first vehicle to 

the last one.  

4) The speed standard deviation of the following vehicle is positively correlated with the average speed 

and speed standard deviation of the preceding vehicle. It shows that the speed is amplified from the first 

vehicle to the last one.  

Among these findings, while 3) and 4) are consistent with classic traffic flow models, 1) and 2) add new 

knowledge into related literature about the impacts of traffic oscillation to traffic flow characteristics.  

4.2. Revised car following models with a time gap function 

We firstly review some classical car following models. 

1) Intelligent driver model  

The Intelligent Driver Model (IDM) (Treiber et al. 2000) is given by 

 𝑎𝑛(𝑡) = 𝑎0 (1 − (
𝑣𝑛(𝑡)

𝑣0
)

𝛿

− (
𝑠𝑛

∗(𝑡)

𝑠𝑛(𝑡)
)

2

), (6) 

where 𝑠𝑛
∗(𝑡) = 𝑠0 + max (0, 𝑣𝑛(𝑡)𝑇0 + 𝑣𝑛(𝑡)×∆𝑣𝑛(𝑡)

2√𝑎0𝑏0
) is the desired gap, 𝑣0  is the desired speed, 𝑎0  is the 
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maximum acceleration, 𝑏0  is the comfortable deceleration, 𝑠0  is the safety spacing, ∆𝑣𝑛(𝑡) = 𝑣𝑛(𝑡) −
𝑣𝑛−1(𝑡) is the speed difference between vehicle 𝑛  and 𝑛 − 1, and 𝑇0  is the constant time gap. 𝛿  is the 

exponent, set as 4 in general.  

2) Optimal velocity model  

The optimal velocity model (OVM) (Bando 1995) is given by  

 𝑎𝑛(𝑡) =
𝑣𝑜𝑝𝑡(𝑠𝑛(𝑡)) − 𝑣𝑛(𝑡)

𝜏
, (7) 

where 𝑣𝑜𝑝𝑡(𝑠𝑛(𝑡)) = max [0, min (𝑣0, 𝑠𝑛(𝑡)−𝑠0
𝑇0

)] defines the “optimal velocity”, and 𝜏  is the adaptation 

time. 

3) Gipps’ model 

The Gipps’ model (Gipps 1981) is given by  

 𝑣𝑛(𝑡 + Δ𝑡) = min[𝑣𝑛(𝑡) + 𝑎0Δ𝑡, 𝑣0, 𝑣𝑠𝑎𝑓𝑒(𝑠𝑛(𝑡), 𝑣𝑛−1(𝑡))], (8) 

where  

𝑣𝑠𝑎𝑓𝑒(𝑠𝑛(𝑡), 𝑣𝑛−1(𝑡)) = −𝑏0Δ𝑡 + √𝑏0
2Δ𝑡2 + 𝑣𝑛−1

2 (𝑡) + 2𝑏0(𝑠𝑛(𝑡) − 𝑠0) 

defines the “safe speed”, and the simulation update time step Δ𝑡 is equal to the time gap 𝑇0. 

As we known, the time gap is a constant parameter in the above three classical car following models. From 

the empirical analysis in Section 4.1, however, there exist relationships between the average time gap and 

other features. Thus, we revise the above classical car following models with Equation (5(5). That is to say, 

the time gap 𝑇0 will be replaced by a time gap function for each vehicle. 

4.3. Calibration and validation 

The least square error method is applied for parameter calibration, which calculates the mean square error 

of speed (𝑀𝑆𝐸𝑣) with the following formulation, 

 𝑀𝑆𝐸𝑣 =
1

𝑁
∑

1

𝐼𝑛
∑ (𝑣𝑛𝑖

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑣𝑛𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

)
2𝐼𝑛

𝑖=1

 𝑁

𝑛=1

, (9) 

where 𝑣𝑛𝑖
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the observed speed of vehicle 𝑛 at data point 𝑖 , and 𝑣𝑛𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
 is the predicted speed 

of vehicle 𝑛 at data point 𝑖 . Here, the trajectories of the preceding vehicles and the following vehicles’ 

initial states (e.g., locations and speeds) are input data, and the following vehicles’ trajectories are output 

data. And the first 70% data is set as training set and the remaining 30% data is set as validation set.  

Table 6  Parameter Bounds and Calibration Results. 

 Parameter Lower bound Upper bound Classical model Revised model 

IDM 𝑎0 (𝑚/𝑠2) 0.5 3 0.6389 0.6389 

 𝑏0 (𝑚/𝑠2) 0.5 3 2.2130 0.9167 

 𝑣0 (𝑚/𝑠 ) 10 30 20 26.6667 

 𝑠0 (𝑚) 1 5 1.2222 1.6667 

 𝑇0 (𝑠) 1 5 1.6667  

OVM 𝜏 (𝑠) 0.5 1 0.9722 0.9907 

 𝑠0 (𝑚) 1 5 1.0741 1.0741 

 𝑣0 (𝑚/𝑠 ) 10 30 17.037 16.7901 

 𝑇0 (𝑠) 1 5 2.4074  

Gipps’ 𝑎0 (𝑚/𝑠2) 0.5 3 0.9167 1.1944 

 𝑏0 (𝑚/𝑠2) 0.5 3 0.5463 0.6389 

 𝑣0 (𝑚/𝑠 ) 10 30 17.7778 17.7778 

 𝑠0 (𝑚) 1 5 1.2222 4.3333 

 Δ𝑡 (𝑠) 1 5 3  
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Table 6Table 6 shows the calibrated parameters of the above classical and revised models. All the 

parameters are calibrated in a reasonable level. Table 7Table 7 presents the comparison results between the 

classical and revised models. We find that all revised models yield better performance than classical models 

in validation. R-IDM gives a better performance than IDM with 28% improvement. R-OVM gives a better 

performance than OVM with 40% improvement. And R-Gipps’ gives a better performance than Gipps’ with 

18% improvement.  

Table 7  Comparison of fitting results on classical and revised models with the oscillation experiment dataset. 

 𝑀𝑆𝐸𝑣 (training) 𝑀𝑆𝐸𝑣 (validation) IMPROVEMENT 

IDM 0.2374 0.2891  

R-IDM 0.2446 0.2089 
28%  

(in validation) 

OVM 0.3464 0.4621  

R-OVM 0.2817 0.2791 
40%  

(in validation) 

Gipps’ 0.2720 0.2759  

R-Gipps’ 0.2694 0.2250 
18%  

(in validation) 

Figure 12Figure 12 plots oscillation trajectory examples (the 2nd vehicle in experiment 1) of evolution of 

speed of the following vehicle with the above classical and revised car following models. The black-dotted 

curve represents the observed data. The blue dashed curve represents the predicted data of classical models. 

The red solid curve represents the predicted data of revised models. Figure 12Figure 12 (a), (b) and (c) plot 

the results of IDM, OVM and Gipps’ model, respectively. We find that the speed trajectory of these three 

revised models are closer to the observed data compared with the classic models without revision. Thus, with 

the proposed time gap function, we can replace the constant time gap in classical car following models to 

yield an improvement in prediction accuracy with the oscillation experiment dataset. 

(a)  (b)  
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(c)  

Figure 12  Oscillation trajectory examples of evolution of speed of the following vehicle with classical and revised 

models: (a) IDM; (b) OVM; (c) Gipps’ model. 

Further, we validate the classical and revised models with the stationary trajectory data that was also 

collected by our field experiments. 7 stationary field experiments were conducted with varying average speed 

from 10 km/h to 70 km/h with an increment of 10 km/h. The leading vehicle was asked to cruise with the 

average speed in each stationary field experiment. Table 8Table 8 shows the validation results on classical 

and revised models with the stationary experiment dataset. Due to more stable speed in the stationary 

experiments, the MSEs with the stationary experiment dataset are smaller than those with the oscillation 

experiment dataset. Compared with the classical models, the revised models still have better performance 

(with improvement from 29.9% to 63.7%) in the stationary experiment dataset. Further, Figure 13Figure 13 

plots stationary trajectory examples (the 2nd vehicle in experiment 1) of evolution of speed of the following 

vehicle with the above classical and revised car following models. The example experiment is set with an 

average speed of 20 km/h. We find that the speed trajectory of these three revised models are closer to the 

observed data compared with the classic models without revision. Therefore, we can say that the revised 

models also perform excellent in prediction accuracy with the stationary experiment dataset. 

Table 8  Comparison of validation results on classical and revised models with the stationary experiment dataset. 

 𝑀𝑆𝐸𝑣 (validation) IMPROVEMENT 

IDM 0.0204  

R-IDM 0.0143 29.9%  

OVM 0.0309  

R-OVM 0.0175 43.4%  

Gipps’ 0.0402  

R-Gipps’ 0.0146 63.7%  
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(a)  (b)  

(c)  

Figure 13  Stationary trajectory examples of evolution of speed of the following vehicle with classical and revised 

models: (a) IDM; (b) OVM; (c) Gipps’ model. 

 

5. CONCLUSION 

This paper reports the implementation of a set of field experiments and analyzes the results for the insights 

into oscillation propagation and associated car-following models. 12 vehicles with high-resolution GPS 

devices were used to conduct the field tests to investigate the propagation of traffic oscillation. With pre-

setting trajectory profiles of the leading vehicle, several traffic oscillation features are specified to investigate 

the mechanisms of traffic oscillation. 

In data processing, oscillation features are measured by a time-domain method. Then, the FT based 

frequency-domain method is used to verify the effectiveness of the features measured by the time-domain 

method. The results show that the time-domain method yield comparable measurements with the frequency 

domain method when the data length is sufficient. Nonetheless, the time-domain method is more robust than 

the frequency-domain method when the number of oscillation cycles is small. Further, the measurements 

from the time-domain method have more data points and thus are used in statistical analyses investigating 

the relationships of traffic oscillation features. 

After linear regression analysis, the empirical analysis results shed the following insights not revealed in 

classic traffic flow models. For example, we find that the average time gap is negatively correlated with the 

speed standard deviation of the preceding vehicle and the initial speed of the following vehicle, and it is also 

positively correlated with the average speed of the preceding vehicle and the initial spacing to the preceding 

vehicle.  
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According to the above empirical analysis, revised car following models are proposed to capture the 

relationships between time gap and other traffic features. From the computer simulation results, we find that 

the revised models with time gap as a function yield better performance in fitting field data compared to the 

classic car following models with a fixed time gap. 

This work provides new empirical data and traffic modeling perspectives and thus can be extended in 

several directions. We plan to 1) integrate our field data with other data sets, e.g., NGSIM and Jiang’s data 

to reproduce the evolution of speed standard deviation considering different platoon sizes; 2) conduct a set 

of experiments with higher speeds on freeway to study the impact of high speed on traffic oscillation; and 3) 

apply the field data with machine learning methods to predict the human driving behavior, or control 

trajectories of autonomous vehicles. 
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APPENDIX A. KEY NOTATION TABLE 

 

Notation Definition 

𝑡  Index of time 𝑡 ∈ {0, Δ𝑡, 2 Δ𝑡, … , 𝑇}, where 𝑇 is the maximum time and Δ𝑡 is a 

sampling time interval. 

𝑘  Index of pre-set cycles 𝑘 ∈ {1,2, … , 𝐾}, where 𝐾 is the maximum pre-set cycle. 

𝑛  Index of vehicle 𝑛 ∈ 𝐍 ≔ {1,2, … , 𝑁}, where 𝐍 is the set of vehicles and 𝑁 is the 

maximum number of vehicles. 

𝑝  Index of time period 𝑝 ∈ 𝐏 = {1,2, … , 𝑃}, where 𝑃 is the maximum period number. 

𝑥𝑛(𝑡)  Location of vehicle 𝑛 ∈ 𝚴 at time 𝑡 ∈ 𝚻. 

𝑣𝑛(𝑡)  Speed of vehicle 𝑛 ∈ 𝚴 at time 𝑡 ∈ 𝚻. 

𝑎𝑛(𝑡)  Acceleration of vehicle 𝑛 ∈ 𝚴 at time 𝑡 ∈ 𝚻. 

𝑡𝑝𝑛𝑘  Cycle length of vehicle 𝑛 ∈ 𝚴 in traffic oscillation pre-set cycle 𝑘 ∈ 𝐊. 

𝑣𝑚𝑛𝑛𝑝  Average speed of vehicle 𝑛 ∈ 𝚴 in period 𝑝 ∈ 𝐏. 

𝑣𝑠𝑑𝑛𝑝  Speed standard deviation of vehicle 𝑛 ∈ 𝚴 in period 𝑝 ∈ 𝐏. 

𝑡𝑔𝑛𝑝  Time gap of vehicle 𝑛 ∈ 𝚴 in period 𝑝 ∈ 𝐏. 

𝑣𝑖𝑛𝑛𝑝  Initial speed of vehicle 𝑛 ∈ 𝚴 in period 𝑝 ∈ 𝐏. 

𝑠𝑖𝑛𝑛𝑝  Initial spacing of vehicle 𝑛 ∈ 𝚴 in period 𝑝 ∈ 𝐏. 

𝑡𝑝. 𝑝  Time period length set of the preceding vehicle. 
𝑡𝑝. 𝑓  Time period length set of the following vehicle. 

𝑣𝑚𝑛. 𝑝  Average speed set of the preceding vehicle. 
𝑣𝑚𝑛. 𝑓  Average speed set of the following vehicle. 
𝑣𝑠𝑑. 𝑝  Speed standard deviation set of the preceding vehicle. 
𝑣𝑠𝑑. 𝑓  Speed standard deviation set of the following vehicle. 
𝑡𝑔  Time gap set to the preceding vehicle. 

𝑠𝑖𝑛  Initial spacing set to the preceding vehicle. 
𝑣𝑖𝑛. 𝑓  Initial speed set of the following vehicle. 

 


