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Abstract

Despite numerous theoretical models, only limited field experiments have been conducted to investigate
traffic oscillation propagation, and the relationships between traffic oscillation features (e.g., period, speed
variation, spacing and headway) have not received quantitative analysis. This study conducts a set of field
experiments designed to inspect such relationships. In these experiments, 12 vehicles equipped with high-
resolution global positioning system (GPS) devices following one another on public roads, and the lead
vehicle was asked to move with designed trajectory profiles incorporating various parameters. Measurements
of five features are extracted from processing the field vehicle trajectory data with a time-domain method.
Frequency analysis is also proposed with the Fourier transform method to verify the effectiveness of the
features measured by the time-domain method. Compared to the frequency-domain method, the time-domain
method yields more measurements with comparable quality and is more robust on trajectories with a small
number of oscillation cycles. Then, a series of linear regression analyses reveal a number of new findings on
the relationships between these features. For example, the time gap between two consecutive vehicles is
negatively correlated with the speed standard deviation of the preceding vehicle and the initial speed of the
following vehicle. It is also positively correlated with the average speed of the preceding vehicle and the
initial spacing. The findings are helpful in constructing new microscopic traffic models better describing
traffic oscillation dynamics. To illustrate this benefit, revised car following models are proposed to capture
the relationship between time gap and other features. The simulation results show that the revised models
yield better prediction accuracy (in range of 18% to 40% with the oscillation experiment dataset and in range
of 30% to 63% with the stationary experiment dataset) than the classical models on reproducing real-world
trajectories.

Keywords: Traffic oscillation, field experiments, high-resolution GPS devices, empirical analysis, car-
following model.

1. Introduction

Traffic oscillation, also called “stop-and-go” traffic, causes traffic congestion, capacity drop, travel delay,
safety hazards and excessive fuel consumption and emissions. The dynamics and impacts of traffic oscillation
depend on multiple features of traffic oscillation, including period, amplitude, time gap, spacing, headway,
etc. A great number of theoretical models and empirical studies have been conducted in the past several
decades to investigate traffic propagation mechanisms via measuring and modeling some of these features.

A variety of theoretical models have been developed to reproduce the properties of traffic oscillation. In
microscopic traffic, numerous car-following models were proposed to describe the relationships between two
consecutive vehicles and to play a vital role in capturing traffic oscillation propagation. Representative
models include the linear General Motor (GM) model (Chandler et al. 1958; Herman et al. 1959), Newell’s
model (Newell 1961), Gipps’ model (Gipps 1981), the optimal velocity model (OVM) (Bando 1995) and the
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intelligent driver model (IDM) (Treiber et al. 2000). Noteworthy most of relevant studies used analytical
modeling or numerical simulation rather than field experiments due to the lack of precise field data.
Papageorgiou (1998) also mentioned that traffic oscillation cannot reveal all of its mystery without the
parameters estimation against field data.

With the existence of precise field data, some studies focused on calibrating existing car-following models
(Rakha and Crowther 2003; Treiber and Kesting 2012; Rhoades et al. 2016; Zhang et al. 2018) or proposing
new car-following models considering traffic oscillation (Laval et al. 2014; He et al. 2015; Tian et al. 2016b;
Treiber and Kesting 2017; Zhou et al. 2017). Other studies focused on extracting and measuring oscillation
characteristics (Zielke et al. 2008; Yeo and Skabardonis 2009; Li et al. 2010, 2012, 2014, 2018, Chen et al.
2012, 2014, Jiang et al. 2014, 2015; Sun 2014; Tian et al. 2016a; Saifuzzaman et al. 2017) and investigating
traffic oscillation propagation due to driver behaviors (Ahn and Cassidy 2007; Laval et al. 2007; Zheng et al.
2011a; Oh and Yeo 2015). Among these studies, the most common data were from loop detectors (Zielke et
al. 2008; Li et al. 2010; Zheng et al. 2010, 201 1b; Treiber and Kesting 2012) and cameras (e.g., NGSIM data)
(Knoop et al. 2008; Yeo and Skabardonis 2009; Laval and Leclercq 2010; Zheng et al. 2011a; Laval 2011;
Li et al. 2012, 2014, Chen et al. 2012, 2014; Oh and Yeo 2015; Fernandez et al. 2017; Saifuzzaman et al.
2017). The data used in these studies were, however, limited within short road segments that could not reflect
the dynamics of traffic flow along a long travel distance. And prevailing errors in the dataset may compromise
microscopic driving behavioral models (Coifman and Li 2017). Recently, with the development of the global
positioning system (GPS), researchers started to use high-resolution GPS devices to collect data (Jiang et al.
2014, 2015; Tian et al. 2016a; Li et al. 2018). They collected high resolution trajectory data for each
instrumented vehicle for a long travel period and distance, which contains rich information on the advent and
propagation of traffic oscillation. These recent studies mainly focused on only a subset of oscillation features
such as speed variance, average speed and spacing, yet did not comprehensively address other features such
as oscillation periods and time gaps. Further, the relationships between traffic oscillation features have not
yet received quantitative analysis.

Despite these fruitful findings, however, it is necessary to inspect all relevant traffic oscillation features
and quantifying their relationships to fully understanding the mechanisms and impacts of traffic oscillation.
For example, oscillation period is largely resulted from driving behavior and traffic dynamics (Li and Ouyang
2011), and causes driving uncomfortable due to repeated acceleration and declaration cycles. Time gap is
closely related to drivers’ reaction time and vehicle dynamics, and determines spatial and temporal
propagations of shock waves created from traffic oscillation. Further, these features are likely not
independent, for example, Li et al. (2014, 2018) noticed that oscillation period increases as oscillation
amplitude grows. Kesting et al. (2008) analyzed the relationships between traffic oscillation and reaction
time, update time and adaptation time, and found that long-wavelength string instability is mainly driven by
the adaptation time while short-wavelength local instabilities are related to update time and reaction time.
These interesting issues, however, have seldom been quantitatively studied from a statistical point of view
with field data. This hinders our capability of analyzing and modeling traffic oscillation, imposes knowledge
gaps in effective managing traffic oscillation and mitigating its adversary impacts, and further makes
improvement in traffic control and other engineering research and applications to eliminate negative effects
of traffic oscillation (Aboudina et al. 2016; Arshi et al. 2018; Saxena et al. 2019).

Motivated by the above gaps, we conducted a set of field experiments with a platoon of 12 human driven
vehicles on a 5-km-long highway section in Harbin, China. High-resolution GPS devices were mounted on
the vehicles to record the detailed trajectory of each individual vehicle. Different from Jiang’s experiments
(Jiang et al. 2014), our experiments focus on the relationships between traffic oscillation features. In the
proposed field experiments, the leading vehicle was asked to proceed in periodical acceleration and
deceleration patterns with different oscillation parameters. Several features (e.g., period, average speed,
speed standard deviation, time gap, initial speed and initial spacing) are extracted from the experiments to



investigate the propagation of traffic oscillation with a time-domain method. Frequency analysis is also
proposed with the Fourier transform (FT) method to verify the effectiveness of the features measured by the
time-domain method. Compared with the frequency-domain method, the time-domain method in general
yields comparable measurements and is more robust on trajectory with a small number of oscillation cycles.
Further, the time-domain method populates more measurements and thus is more suitable for statistical
analyses investigating the relationships of traffic oscillation features. A number of new findings of the
relationships between traffic oscillation features are presented. For example, the time gap to the preceding
vehicle is positively correlated with the average speed of the preceding vehicle and the initial spacing, and
negatively correlated with the speed standard deviation of the preceding vehicle and the initial speed of the
following vehicle. Finally, to demonstrate the application of the extracted relationships, we apply the above
findings to revise the classic car following models and validate significant improvement in its capacity on
reproducing real-world trajectories.

The contributions of this paper are summarized as follows. 1) High-resolution GPS trajectory data are
extracted from traffic oscillation field experiments, which provides a new dataset to calibrate and validate
traffic flow models considering traffic oscillation. 2) A new time-domain method is proposed to extract traffic
oscillation features and compared with a FT based frequency-domain method. 3) The relationships between
traffic oscillation features and their implications to traffic oscillation development are captured through
empirical analysis. 4) Revised car following models are proposed based on the time gap function from the
empirical analysis, and the revised car following models show better performance than the classic car
following models on reproducing field data. The findings from this study will advance our understanding on
traffic oscillation mechanisms and impacts, and also provide fundamental formulas for developing more
traffic-oscillation-aware models, strategies and policies for traffic control and management.

The rest of this paper is organized as follows. Section 2 states the experimental setup and results. In Section
3, traffic oscillation features are defined, and the method of processing data is described. Section 4 conducts
linear regression on the features to analyze their relationships, and proposes revised car following models
based on the findings from empirical analysis. Section 5 concludes this paper and briefly discusses future
research directions.

2. Experimental Setup and Results

2.1. Experimental setup

The field experiments were implemented on October 24th, 2015. The experiment settings are summarized
below.

Location: All experiments were carried out on a 5 km highway section of National Highway G202 (Lanxi
direction) in Harbin, Heilongjiang, China. See Figure 1Figuret (a) for the map of the test road. The black
curve depicts the road segment in Google Maps, and the blue arrows indicate the traffic moving direction.
As is shown in Figure 1 Figuret (b), there are no traffic lights on the test road. The test road is a bi-direction
and four-lane highway. Note that national highway G202 is not a freeway, and the speed limit is 80 km/h. It
allows vehicles to have a U-turn on the test road. The traffic is light on the test road so that the vehicle platoon
is not disturbed by other vehicles. Further, with the cooperation of traffic polices, it is safe and legal to
conduct a set of traffic oscillation field experiments on the test road.

Equipment: The vehicle platoon contained 12 vehicles with identical sizes and models (i.e., Kia K5). A
high-resolution GPS device, called GPS-RTK based STAR-RTK-MO9, was installed in each vehicle to collect
field data (i.e., locations and speed). The data measurement errors of the GPS device are within =1m for
location and =1km/h for speed. And the sampling frequency is 20Hz (i.e., the sampling time interval is 0.05s).

Configurations: Since the objective of the field experiments was to investigate the propagation of traffic
oscillation and the relationships in traffic oscillation features, we conducted 12 experiments with different
traffic oscillation parameter settings for the leading vehicle, as shown in Table 1Fable-}. The cruise time
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indicates the duration time of cruising. The acceleration and the maximum speed decide the adaptation time
of traffic oscillation. And then, the time period of traffic oscillation consists of cruising time and adaptation
time. The difference between the maximum and minimum speeds implies the magnitude of traffic oscillation.
Basically, a leading vehicle driver was asked to periodically vary vehicle speed based on a profile specified
by the parameters. Within each time period, the ideal leading vehicle speed profile would accelerate to the
maximum speed with the designed acceleration rate, then cruise at the maximum speed, and finally decrease
the speed to the minimum speed with a deceleration rate identical to the negation of the previous acceleration
rate. Note that it is difficult for the leading vehicle driver to follow the perfect speed profile, and the driver
was just asked to follow this profile as best as he/she can. Other drivers were told to follow the preceding
vehicle as usual without overtaking. When approaching the end of the road segment, all GPS devices stopped
collecting data, and the vehicle platoon made a U-turn and stopped. After all vehicles stopped, a new run of
the experiment began, and the GPS devices restarted to collect data at the same time.
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Figure 1 Experimental section of the field tests: (a) Road geometry in Google maps; (b) Actual experimental
environment.

Table 1 Parameter settings for the leading vehicle in different experiments.

Cruise time (s) Designed acceleration (km/h/s)  Minimum speed (km/h) Maximum speed (km/h)

Experiment 1 30 1 30 40
Experiment 2 30 2 30 40
Experiment 3 30 1 20 40
Experiment 4 30 2 20 40
Experiment 5 120 1 30 40
Experiment 6 120 2 30 40
Experiment 7 120 1 20 40
Experiment 8 120 2 20 40
Experiment 9 30 1 60 70
Experiment 10 30 2 60 70
Experiment 11 30 1 50 70
Experiment 12 30 2 50 70
Figure 2Figure2 illustrates an ideal speed trajectory with parameters setting. The pre-designed cruise is @

30s. The maximum speed, marked by red dashed line, is 40km/h. The minimum speed is 20km/h. And the
acceleration is shown by the slope as 2km/h/s.
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Figure 2 An example of ideal speed trajectory with the parameter settings.
2.2. Field test results

Figure 3Figure-3 shows an example of time-location trajectories of the test vehicles from one experiment.
There are some missing data due to the errors of GPS (e.g., vehicle was beneath a bridge or GPS was loss of
signal). Thus, we will use interpolation to recover the time-location trajectories in Section 3. In Figure
3Fisure-3, we find that there exist frequent traffic oscillations through the Skm road section, which follow
the experiment settings. The detailed oscillatory series of time-space trajectories can be found in Figure

SEigureS (a).
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Figure 3 An example of time-space trajectories of the test vehicles.

Figure 4Figure4 shows an example of time-speed trajectories of the 1st, 2nd and 10th vehicles. The blue-
square curve, the black-circle curve and the red-triangle curve plot the time-speed trajectories of the 1st, 2nd
and 10th vehicles, respectively. And the blue-dotted line shows the average speed of the first vehicle. We
find the operation of the leading vehicle (i.e., the 1st vehicle). The cruise time is around 30s. The maximum
speed is a little higher than 40km/h, and the average speed is around 35-40km/h, and the minimum speed is
about 20km/h. This leading vehicle’s speed trajectory is similar as the ideal leading vehicle’s speed trajectory
in Figure 2Figure2. That means the speed fluctuation of the leading vehicle is in general consistent with the
pre-set parameters. Further, it is clear that the speed trajectory fluctuates more abruptly from the leading
vehicle to the 10th vehicle. And there exists a shift time between two consecutive vehicles so that the speed
trajectory of the 10th vehicle is hysteretic compared with the 1st and 2nd vehicles. This indicates that traffic
oscillation propagates with varying traffic oscillation features from the leading vehicle to the last vehicle.
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Figure 4 An example of time-speed trajectories of the 1st, 2nd and 10th vehicles.

3. Feature Measurements and Data Processing
For the convenience of readers, the key notation is summarized in the Appendix A.

3.1. Notation
For the convenience of describing traffic oscillation features, following notation is given.
Time: Consider a set of time indexed by t = 0, At, 2 At, ..., T, where At is the sampling time interval and
T is the maximum time. Let T := {0, At, 2 At, ..., T} denote the set of time.
Trafﬁc oscillation pre-set cycle: Traffic oscillation pre-set cycles are indexed by k = 1,2, ..., K, where
= [T /tpP"¢] is the maximum pre-set cycle number. The length of one traffic oscillation pre-set cycle is

tppre = tcP" + 2 X [

—o |, where tcP"® is the pre-designed cruise time, vvP" is the pre-designed speed

variation range, and aP”¢ is the pre-designed acceleration.

Vehicle: Consider a platoon of vehicles indexed by n = 1,2, ..., N. Let N := {1,2, ..., N} denote the set of
vehicles.

Location: Let x,, (t) denote the location of vehicle n € N attime t € T.

Speed: Let v, (t) denote the speed of vehicle n € N at time ¢t € T. To make consistency with location with
meters as unit, the unit of speed is set as m/s. Thus, 40km/h is about 11.11m/s, and 70km/h is about 19.44m/s.

Acceleration: Let a,, (t) denote the acceleration of vehicle n € N at time t € T.

3.2. Feature measurements
In order to measure the duration time and magnitude of traffic oscillation, time period, average speed, and
speed standard deviation are utilized

Time period (tp): Let tp, = t denote the cycle length of vehicle n € N in traffic oscillation

n(k+1) nk
pre-set cycle k € K. tr—lk = argminger, v, (t) is the time point of the local minimum speed of vehicle n € N
in traffic oscillation pre-set cycle k € K. And &y, is the time interval to search local minimum speed in pre-
set cycle k. Once we find a trzlk with the global minimum speed argmin.cpv,(t), the current traffic

oscillation pre-set cycle is set as k = [tgk / tppreJ Then, tn(k +1) is calculated by forward searching in time
interval &y, € [tE + tpPTe /2, 1:Z + 3tpPre/ 2] and t~ nlke-1) is calculated by backward searching in time
interval &;_, € [ — 3tpPT¢/2,t nk - tppre/Z]. With this, let p € P = [1,2, ..., P] denote the index of
time period, where P K — 1. The time period length of vehicle n € N in period p € P is tpy, = tppk. And

the time interval in period p € P of vehicle n € N is &y, : t, . Let I,,,, = tp,, X f denote the
nk (k+1) np Pnp



number of data points of vehicle n € N in period p € P, where f = 1/At is the sampling frequency. See
Figure 6Figure-6, the time interval between two consecutive local minima (i.e., black circles or red triangles).
This reflects the duration time that traffic oscillation takes in one complete cycle.

Average speed (vmn): Let vmn,,,, = ﬁzte(gm) v, (t) denote the average speed of vehicle n € N in period

p € P.

Speed standard deviation (vsd): Let vsdy, = \/ Ztegnp(vn(t) — vmnnp) / I, — 1 denote the speed

standard deviation of vehicle n € N in period p € P to reflect the magnitude of traffic oscillation.

In addition, we add other features, average time gap and initial speed and spacing to measure the trajectory
shifting happened in time-speed trajectories.

Time gap (tg): Let tgn, = argminies, ,vn (t) — argminte(gnpvn_l(t) denote the time interval that
speed traffic oscillation travels from vehicle n — 1 € N to vehicle n € N in period p € P. See Figure 6Fisure
6, the time gap is marked as the time interval between the minima of the first vehicle (i.e., black circles) and
its neighbor minima of the second vehicle (i.e., red triangles).

Initial speed (vin): Let vin,, = vnp(tgk) denote the speed of vehicle n € N at the beginning of period
p € P.

Initial spacing (sin ): Let sin,, = sy, (tgk) denote the spacing of vehicle n € N\{1} at the beginning of
period p € P.

3.3. Data processing

To obtain all oscillation features from the raw field data, we need to do a series of data processing.

Step 1: Selecting a suitable time interval for each experiment. In order to get more complete cycles of
traffic oscillation for all vehicles, we need to select a suitable time set T for each experiment.

Step 2: Smoothing trajectory for every vehicle in all experiments. Before smoothing, linear interpolation
method is applied to fixed missed data on location trajectories. Then, we extract macroscopic series (black
dashed line in Figure SFigure-5 (a)) and oscillatory series (blue dash-dot line in Figure SFigure-5 (a)) from
original location trajectories (red solid line in in Figure 5SEigure-5 (a)) according to the method in Li’s work
(2012). Next, moving average method is applied to smooth oscillatory series trajectories so that we can
eliminate unnecessary noises. Then, smoothed speeds {7,(t)};er and accelerations {@,(t)}.er are
recalculated according to the smoothed trajectories (red solid line in Figure SFigure-5 (b)).

Step 3: Finding time periods on smoothed trajectories. Here, we separate a smoothed speed trajectory into
several parts (i.e., set of traffic oscillation pre-set cycles K) according to the pre-designed cruise time and
adaptation time. After that, we plan to find every time period tp,,, Vn € N,k € K in measured time
intervals. First, the key to find time periods is to find the lowest speed points among a speed trajectory of the
first vehicle. See Figure 6Figure-6, it illustrates an example of all local lowest speed points (i.e., black circles
for 1st vehicle and red triangles for 2nd vehicle) among speed trajectories. And the point marked by a bigger
black circle is the global lowest speed point of the first vehicle. Then, forward searching and backward
searching with a pre-set time period (e.g., tpP"¢= 35s, 40s, 50s, 125s, 130s or 140 s in these experiments) are
applied to find other local lowest speed points of the first vehicle within searching intervals, marked by black
circles in Figure 6Figure-6. For the following vehicles (e.g., 2nd vehicle), the local lowest speed points (i.e.,
red triangles) are picked in the time periods of the first vehicle. In general, they are in the neighborhood of
the first vehicle’s local lowest speed points. And the time intervals between two consecutive local lowest
speed points are denoted as time periods. For example, there are 8 local lowest points in Figure 6Figure-6.
Thus, we collect 7 time periods among this speed trajectory.
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Figure 5 An example of trajectory smoothing: (a) Extract macroscopic series and oscillatory series from the original
trajectory; (b) Smooth oscillatory series trajectory.

Step 4: Calculating all the other features (i.e., Sin,,, Ving,, vmn,,, tg, and vsdy,,) related to the above
measured time periods (i.€., tpyy). Each feature contains 7 data points according to 7 measured time periods.
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Figure 6 An example of finding all time periods.

3.4 Frequency analysis

To verify the above features measured by the time-domain method, a proven and simple implementable
method, called the Fourier Transform (FT) based frequency-domain method proposed by Li et al. (2012), is
used to capture the dominant frequency set {,},en for comparison with the above time-domain
measurements.
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Figure 7 An illustration of a time-speed trajectory and the corresponding FT spectrum in case 1.

The dominant frequency set is calculated as follows,
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0, = argmaxﬂf |7, (D) e 7| dt, (1)
T

where j = vV—1, e = 2.718, (2,, is the dominant frequency of vehicle n and #,(t) is the smoothed speed of
vehicle n at time t € T.

The upper subfigure in Figure 7Fisure-7 shows a time-speed trajectory in case 1. It is found the average
time period is about 50 s. The lower subfigure in Figure 7Figure-7 shows the corresponding FT spectrum in
case 1. There is an obvious peak, marked by red star, in the FT spectrum at about 0.0203 Hz, which is also
referred as the dominant frequency. Thus, the corresponding dominant period as the invers of the dominant
frequency is about 49.26 s, which is almost the same as the time period measured in the time-domain method.
This verifies that the proposed time-domain method is effective on measuring oscillation features.
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Figure 9 An illustration of a time-speed trajectory and the corresponding FT spectrum in case 2.

Figure 8Figure-8 shows the comparison results between the time-domain method and the frequency-domain
method considering the number of oscillation cycles. Compared with the frequency-domain method, the
time-domain method has comparable results on measuring periods and speed standard deviations. However,
when the number of oscillation cycles is small, the dominant periods measured by the frequency-domain
method become more fluctuating due to zero padding, and thus the corresponding comparison data points
considerably deviate from the 45 degree line. For example, in Figure 9Figure-9, the time-speed trajectory
shows that the average time period is about 130.4 s with 3 oscillation cycles. While the FT spectrum shows
the dominant period is 195.6 s. Further, the time-domain method considering each individual oscillation cycle
captures more data points than the frequency-domain method considering several oscillation cycles. Thus,
the oscillation features with more data points measured by the time-domain method are used in the following
empirical analysis to yield a better performance on investigating the relationships of these features.

4. Empirical Analysis and Revised Car Following Models

4.1. Empirical analysis with linear regression methods
To investigate the relationships of the traffic oscillation features between the preceding vehicle and the
following vehicle, linear regression approach is used to analyze the measured features in Section 3 with R

language. For the consistency of variables naming in R language, we use var.p = {varnp}neN\{N} DeP and

var.f = {varnp}neN\{l}'pep to denote the feature sets of the preceding vehicle and the following vehicle,

respectively. For example, tp.p = {tpnp} denotes the set of the time period lengths of the

neN\{N},peP

preceding vehicle, and tp. f = {tpnp} denotes the set of the time period lengths of the following

neN\{1},peP
vehicle. The detailed definitions of these variables are summarized in Appendix A.
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Figure 10 The correlations among all features.

Then, we check the relationships among all features (i.e., tp.p, vmn.p, vsd.p, tp. f, vmn. f, vsd. f, tg,
sin and vin. f) by plotting the correlation matrix and calculating the correlation coefficients between each
two features. See Figure 10Figure1+0, some of the scatter diagrams have two classifications. This is because
of the settings of field experiments (i.e., two kinds of time periods and two kinds of maximum speeds). We
find that there exist linear relationships between the same features of the preceding vehicle and the following
vehicle, e.g. the correlation between tp.p and tp. f. This shows the truth of car-following behavior. And
there exists a linear relationship between vmn. f and vin. f. However, the linear correlations among other
features are not obvious with small correlation coefficients. In order to explore more detailed relationships
in traffic oscillation features, we conduct a set of linear regression tests using tg, tp. f, vmn. f, and vsd. f
as dependent variables, respectively.

Table 2 Linear Regression Result Using vmn. f as Dependent Variable.

Estimate Std. Error t value Pr(> |t]) Significance
(Intercept) -0.0153 0.0368 -0.417 0.677
vmn.p 0.9935 0.0033 297.932 <2e-16 ok
vin. f 0.0046 0.0007 6.077 2.3e-09 ek

Residual standard error: 0.2233 on 547 degrees of freedom. Multiple R-squared: 0.9954, Adjusted R-squared: 0.9954. F-statistic:
8.948e+04 on 2 and 544 DF, p-value: <2.2e-16.

Table 2Fable2 shows the regression result using vmn. f as the dependent variable. We find that vmn. f
is strongly linear correlated with independent variables (vmn. p and vin. f) with all t-statistic values above
6 and great goodness of fit with a high adjusted R-squared of 0.9954. As shown in Table 2Fable 2, vmn.p
shows a strong positive correlation with vmn. f. This follows the car-following laws and means that the
average speed of the following vehicle is almost the same as the preceding vehicle. The significant linear
relationship between vmn. f and vmn.p can be also found in Figure 10Figure—10. Thus, the linear
relationship of vmn. f and the significant independent variables is formulated as follows,

vmn. f = 0.9935vmn.p + 0.0046vin. f. 2)
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Table 3 Linear Regression Result Using vsd. f as Dependent Variable.

Estimate Std. Error t value Pr(> |t]) Significance
(Intercept) 0.0723 0.0441 1.64 0.1015
vmn.p 0.0131 0.0036 3.66 0.0003 ok
vsd.p 0.8785 0.0219 40.15 <2e-16 ok

Residual standard error: 0.2567 on 547 degrees of freedom. Multiple R-squared: 0.7822, Adjusted R-squared: 0.7814. F-statistic:
982 on 2 and 547 DF, p-value: <2.2e-16.

Table 2 shows the regression result using vmn. f_as the dependent variable. We find that vmn. f s+
strongly linear correlated with independent variables (vmn. p_and vin. f) with all t-statistic values above 6
and great goodness of fit with a high adjusted R-squared of 0.9954. As shown in Table 2. vmn.p shows a
strong positive correlation with vmn. f. This follows the car-following laws and means that the average
speed of the following vehicle is almost the same as the preceding vehicle. The significant linear relationship
between vmn. f and vmn. p_can be also found in Figure 10. Thus, the linear relationship of vmn. f and the
significant independent variables is formulated as follows,

vmn. f = 0.9935vmn.p + 0.0046vin. f. (2)

Table 3Fable-3 shows the linear regression result using vsd. f as the dependent variable. The adjusted R-
squared value is 0.7814 indicating acceptable goodness of fit. Two independent variables are statistically
significant with t-statistic values above 3. And we find vsd. p is highly positively correlated with vsd. f due
to the car-following behavior. Besides, the average speed of the preceding vehicle provides a positive effect
on vsd. f, which means that a higher speed will cause a sharper speed fluctuation. Therefore, the linear
relationship of vsd. f is formulated as follows,

vsd. f = 0.0131vmn.p + 0.8785vsd. p. 3)

Table 4 Linear regression result using tp. f as a dependent variable.

Estimate Std. Error t value Pr(> |t]) Significance
(Intercept) -0.0515 0.7188 -0.072 0.9429
tp.p 0.9977 0.0044 226.129 <2e-16 ok
vmn.p 0.3857 0.1106 3.486 0.0005 ek
vsd.p -0.7144 0.3229 -2.212 0.0273 *
sin -0.3772 0.1028 -3.669 0.0003 ok

Residual standard error: 3.619 on 544 degrees of freedom. Multiple R-squared: 0.9904, Adjusted R-squared: 0.9903. F-statistic:
1.117e+04 on 5 and 544 DF, p-value: < 2.2e-16.

The linear regression result using tp. f as the dependent variable is shown in Table 2 shows the regression+
result using vmn. f_as the dependent variable. We find that vmn. f_is strongly linear correlated with
independent variables (vmn. p_and vin. f) with all t-statistic values above 6 and great goodness of fit with a
high adjusted R-squared of 0.9954. As shown in Table 2, vmn.p shows a strong positive correlation with
vmn. f. This follows the car-following laws and means that the average speed of the following vehicle is
almost the same as the preceding vehicle. The significant linear relationship between vmn. f_and vmn.p_can
be also found in Figure 10. Thus, the linear relationship of vmn. f and the significant independent variables
is formulated as follows,

vmn. f = 0.9935vmn.p + 0.0046vin. f. 2)

Table 3 shows the linear regression result using vsd. f _as the dependent variable. The adjusted R-squared
value i1s 0.7814 indicating acceptable goodness of fit. Two independent variables are statistically significant
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with t-statistic values above 3. And we find vsd. p_is highly positively correlated with vsd. f due to the car-
following behavior. Besides, the average speed of the preceding vehicle provides a positive effect on vsd. f,
which means that a higher speed will cause a sharper speed fluctuation. Therefore, the linear relationship of
vsd. f is formulated as follows,

vsd. f = 0.0131vmn.p + 0.8785vsd. p. 3)
Table 4Fable4. There is a strong linear correlation between tp. f and independent variables with all t-
statistic values higher than 2.2 and a goodness of fit with an adjusted R-squared value of 0.9903. We find
that tp. f has a strong and positive correlation with tp.p. which has a much higher t-value than other
independent variables. This implies that the time period length of the preceding vehicle has a drastically
strong linear relationship with the time period length of the following vehicle. Figure 10Eigure10 also shows
the linear relationship between tp.p and tp. f. This makes the time period length maintain almost the same
from the first vehicle to the last vehicle. Further, tp. f is also positively correlated with vmn. p and vin. f. It
is possible that higher average speed and initial speed of the preceding vehicle cause a higher average speed
of the following vehicle, this means the following vehicle is less likely to accelerate and then decelerate that
much compared with vehicles with lower average speed. This is to say that the following vehicle’s trajectory
tends to be smoother with a longer oscillation period. Additionally, tp. f is negatively correlated with vsd.p
and sin. This is probably because a higher speed standard deviation of the preceding vehicle causes a higher
speed standard deviation of the following vehicle, which means the following vehicle’s trajectory becomes
unsmooth with a smaller oscillation period. As for the initial spacing, a lager initial spacing will cause a lager
average spacing so that the driver of the following vehicle tends to accelerate to catch up then decelerate until
at least the safety distance is guaranteed. This will result in a smaller oscillation period. According to the

linear regression result, we formulate tp. f as follows
tp.f = 0.9977tp.p + 0.3857vmn.p — 0.7144vsd.p — 0.3772sin + 0.0326vin. f. 4)

As shown in Error! Not a valid bookmark self-reference.Table 5, it shows the linear regression
result using tg as the dependent variable. We find tg has a weak linear relationship with vmn. p, vsd.p, sin
and vin. f due to the low adjusted R-squared value (i.e., 0.3243). The average time gap is strongly and
positively correlated with the average speed of the preceding vehicle. This is because that drivers need more
time to react when speed becomes higher. In addition, tg is significantly and positively correlated with sin.
It is because a longer initial spacing may cause a longer average spacing and consequentially a longer time
gap. Further, there is a significant negative correlation between the speed standard deviation of the preceding
vehicle and the average time gap. This is probably that the following vehicle would react fast (i.e., time gap
decreases) when the speed fluctuation increases. And vin. f has a negative correlation with tg. Because a
higher initial speed of the following vehicle leads to a greater average spacing, the average time gap is longer.
Finally, the formulation of tg is shown as follows

tg = 0.2909vmn.p — 0.5173vsd.p + 0.0769sin — 0.1272vin. f. %)

Table 5 Linear Regression Result Using tg as Dependent Variable.

Estimate Std. Error t value Pr(> |t]) Significance
(Intercept) 0.4299 0.3371 1.275 0.2027
vmn.p 0.2909 0.0579 5.020 7.02e-17 ok
vsd.p -0.5173 0.1697 -3.047 0.00242 ok
sin 0.0769 0.0071 10.752 <2e-16 HAk
vin. f -0.1272 0.0530 -2.400 0.0167 *

Residual standard error: 1.904 on 545 degrees of freedom. Multiple R-squared: 0.3292, Adjusted R-squared: 0.3243. F-statistic:
66.87 on 4 and 545 DF, p-value: <2.2e-16.

Although, the adjusted R-squared value is not large. We compare the fitted time gap values from Equation

(Fo
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(553 (i.e., the red solid curve) and the actual observations (i.e., the dashed black curve) in Figure 1 1Figure
1+, and find that these results are in general consistent, though the observed data are heavier on the extreme
values. This could be because noises and errors in measurements may amplify time gap variations.
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Figure 11 Regression results of time gap.

After linear regression analysis, empirical analysis results are summarized as follows.

1) The initial spacing is positively correlated with the average spacing and time gap, and negatively
correlated with the time period length of the following vehicle. It is found that a traffic oscillation starting
with a long initial spacing can cause a long average spacing and a long time gap. Thus, it will shorten the
oscillation period of the following vehicle.

2) The initial speed of the following vehicle is negatively correlated with the average spacing and time gap,
and positively correlated with the average speed and time period length of the following vehicle. A traffic
oscillation starting with a low initial speed leads to a large average spacing and a long time gap. This results
in a lower average speed and lower time period due to less range of speed than can be accelerated.

3) The average speed and the time period length of the following vehicle are highly and positively
correlated with the average speed and the time period length of the preceding vehicle, respectively. This
reflects the fact the average speed and time period length maintain almost the same from the first vehicle to
the last one.

4) The speed standard deviation of the following vehicle is positively correlated with the average speed
and speed standard deviation of the preceding vehicle. It shows that the speed is amplified from the first
vehicle to the last one.

Among these findings, while 3) and 4) are consistent with classic traffic flow models, 1) and 2) add new
knowledge into related literature about the impacts of traffic oscillation to traffic flow characteristics.

4.2. Revised car following models with a time gap function
We firstly review some classical car following models.
1) Intelligent driver model
The Intelligent Driver Model (IDM) (Treiber et al. 2000) is given by

~ a0\ sn()\?
a,(t) = a (1—( > ) —(Sn(t)) ) ©)

where s;;(t) = sy + max (0, v, (DT, + %) is the desired gap, v, is the desired speed, a, is the
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maximum acceleration, b, is the comfortable deceleration, s, is the safety spacing, Av,(t) = v,(t) —
v,_1(t) is the speed difference between vehicle n and n — 1, and T, is the constant time gap. § is the
exponent, set as 4 in general.

2) Optimal velocity model

The optimal velocity model (OVM) (Bando 1995) is given by

an(t) — vopt(sn(tz) - Un(t)' (7)

where vopt(sn(t)) = max [O, min (vo,%)] defines the “optimal velocity”, and t is the adaptation
time.
3) Gipps’ model
The Gipps’ model (Gipps 1981) is given by
vn(t + At) = min[v‘n(t) + aOAt; vOr vsafe (Sn(t)l vn—l(t))]l (8)
where

Vease(5n (D), vnor () = —boAt + J BEAE? + v2_ (£) + 2bo (50 (6) — 50)

defines the “safe speed”, and the simulation update time step At is equal to the time gap T.

As we known, the time gap is a constant parameter in the above three classical car following models. From
the empirical analysis in Section 4.1, however, there exist relationships between the average time gap and
other features. Thus, we revise the above classical car following models with Equation (5¢5). That is to say,
the time gap T, will be replaced by a time gap function for each vehicle.

4.3. Calibration and validation
The least square error method is applied for parameter calibration, which calculates the mean square error
of speed (MSE?) with the following formulation,

N
1 1 In : 2
— b d predicted
MSE? = = E = E  (peret = vy : ©9)
nei n =1
where v°P5€"7¢4 is the observed speed of vehicle n at data point i , and ppredicted io the predicted speed
ni p p ni p p

of vehicle n at data point i . Here, the trajectories of the preceding vehicles and the following vehicles’
initial states (e.g., locations and speeds) are input data, and the following vehicles’ trajectories are output
data. And the first 70% data is set as training set and the remaining 30% data is set as validation set.

Table 6 Parameter Bounds and Calibration Results.

Parameter Lower bound Upper bound Classical model Revised model

IDM a, (m/s?) 0.5 3 0.6389 0.6389
by (m/s?) 0.5 3 2.2130 0.9167
vy (Mm/s) 10 30 20 26.6667
s (m) 1 5 1.2222 1.6667
Ty (s) 1 5 1.6667

OVvM T(8) 0.5 1 0.9722 0.9907
so (M) 1 5 1.0741 1.0741
vy (M/s) 10 30 17.037 16.7901
To () 1 5 2.4074

Gipps’ a, (m/s?) 0.5 3 0.9167 1.1944
by (m/s?) 0.5 3 0.5463 0.6389
vy (Mm/s) 10 30 17.7778 17.7778
so (M) 1 5 1.2222 43333
At (s) 1 5 3
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Table 6Fable—6 shows the calibrated parameters of the above classical and revised models. All the
parameters are calibrated in a reasonable level. Table 7Fable-7 presents the comparison results between the
classical and revised models. We find that all revised models yield better performance than classical models
in validation. R-IDM gives a better performance than IDM with 28% improvement. R-OVM gives a better
performance than OVM with 40% improvement. And R-Gipps’ gives a better performance than Gipps’ with
18% improvement.

Table 7 Comparison of fitting results on classical and revised models with the oscillation experiment dataset.

MSEY (training) MSE? (validation) IMPROVEMENT
IDM 0.2374 0.2891
0
R-IDM 0.2446 0.2089 ?i?l/\(:ali dation)
OVvM 0.3464 0.4621
0
R-OVM 0.2817 0.2791 é?l/“;ah dation)
Gipps’ 0.2720 0.2759
., 18%
R-Gipps 0.2694 0.2250

(in validation)

Figure 12Figure12 plots oscillation trajectory examples (the 2nd vehicle in experiment 1) of evolution of
speed of the following vehicle with the above classical and revised car following models. The black-dotted
curve represents the observed data. The blue dashed curve represents the predicted data of classical models.
The red solid curve represents the predicted data of revised models. Figure 12Fisure12 (a), (b) and (c) plot
the results of IDM, OVM and Gipps’ model, respectively. We find that the speed trajectory of these three
revised models are closer to the observed data compared with the classic models without revision. Thus, with
the proposed time gap function, we can replace the constant time gap in classical car following models to
yield an improvement in prediction accuracy with the oscillation experiment dataset.
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Figure 12 Oscillation trajectory examples of evolution of speed of the following vehicle with classical and revised
models: (a) IDM; (b) OVM; (c) Gipps’ model.

Further, we validate the classical and revised models with the stationary trajectory data that was also
collected by our field experiments. 7 stationary field experiments were conducted with varying average speed
from 10 km/h to 70 km/h with an increment of 10 km/h. The leading vehicle was asked to cruise with the
average speed in each stationary field experiment. Table 8Fable-& shows the validation results on classical
and revised models with the stationary experiment dataset. Due to more stable speed in the stationary
experiments, the MSEs with the stationary experiment dataset are smaller than those with the oscillation
experiment dataset. Compared with the classical models, the revised models still have better performance
(with improvement from 29.9% to 63.7%) in the stationary experiment dataset. Further, Figure 13Figure 13
plots stationary trajectory examples (the 2nd vehicle in experiment 1) of evolution of speed of the following
vehicle with the above classical and revised car following models. The example experiment is set with an
average speed of 20 km/h. We find that the speed trajectory of these three revised models are closer to the
observed data compared with the classic models without revision. Therefore, we can say that the revised
models also perform excellent in prediction accuracy with the stationary experiment dataset.

Table 8 Comparison of validation results on classical and revised models with the stationary experiment dataset.

MSE” (validation) IMPROVEMENT
IDM 0.0204
R-IDM 0.0143 29.9%
OVM 0.0309
R-OVM 0.0175 43.4%
Gipps’ 0.0402

R-Gipps’ 0.0146 63.7%
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Figure 13 Stationary trajectory examples of evolution of speed of the following vehicle with classical and revised
models: (a) IDM; (b) OVM; (¢) Gipps’ model.

5. CONCLUSION

This paper reports the implementation of a set of field experiments and analyzes the results for the insights
into oscillation propagation and associated car-following models. 12 vehicles with high-resolution GPS
devices were used to conduct the field tests to investigate the propagation of traffic oscillation. With pre-
setting trajectory profiles of the leading vehicle, several traffic oscillation features are specified to investigate
the mechanisms of traffic oscillation.

In data processing, oscillation features are measured by a time-domain method. Then, the FT based
frequency-domain method is used to verify the effectiveness of the features measured by the time-domain
method. The results show that the time-domain method yield comparable measurements with the frequency
domain method when the data length is sufficient. Nonetheless, the time-domain method is more robust than
the frequency-domain method when the number of oscillation cycles is small. Further, the measurements
from the time-domain method have more data points and thus are used in statistical analyses investigating
the relationships of traffic oscillation features.

After linear regression analysis, the empirical analysis results shed the following insights not revealed in
classic traffic flow models. For example, we find that the average time gap is negatively correlated with the
speed standard deviation of the preceding vehicle and the initial speed of the following vehicle, and it is also
positively correlated with the average speed of the preceding vehicle and the initial spacing to the preceding

vehicle.
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According to the above empirical analysis, revised car following models are proposed to capture the
relationships between time gap and other traffic features. From the computer simulation results, we find that
the revised models with time gap as a function yield better performance in fitting field data compared to the
classic car following models with a fixed time gap.

This work provides new empirical data and traffic modeling perspectives and thus can be extended in
several directions. We plan to 1) integrate our field data with other data sets, e.g., NGSIM and Jiang’s data
to reproduce the evolution of speed standard deviation considering different platoon sizes; 2) conduct a set
of experiments with higher speeds on freeway to study the impact of high speed on traffic oscillation; and 3)
apply the field data with machine learning methods to predict the human driving behavior, or control
trajectories of autonomous vehicles.
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APPENDIX A. KEY NOTATION TABLE

Notation Definition

t

k
n

p

xn (1)
Un(t)
an (t)
tPnk
UMy,
vSdyy,
t.gnp
Vily,
SiNyy
tp.p
tp. f
vmn.p
vmn. f
vsd.p
vsd. f
tg

sin
vin. f

Index of time t € {0,At, 2 At, ..., T}, where T 1s the maximum time and At 1s a
sampling time interval.

Index of pre-set cycles k € {1,2, ..., K}, where K is the maximum pre-set cycle.
Index of vehicle n € N := {1,2, ..., N}, where N is the set of vehicles and N is the
maximum number of vehicles.

Index of time period p € P = {1,2, ..., P}, where P is the maximum period number.
Location of vehicle n € N at time t € T.

Speed of vehicle n € N at time t € T.

Acceleration of vehicle n € N at time t € T.

Cycle length of vehicle n € N in traffic oscillation pre-set cycle k € K.
Average speed of vehicle n € N in period p € P.

Speed standard deviation of vehicle n € N in period p € P.

Time gap of vehicle n € N in period p € P.

Initial speed of vehicle n € N in period p € P.

Initial spacing of vehicle n € N in period p € P.

Time period length set of the preceding vehicle.

Time period length set of the following vehicle.

Average speed set of the preceding vehicle.

Average speed set of the following vehicle.

Speed standard deviation set of the preceding vehicle.

Speed standard deviation set of the following vehicle.

Time gap set to the preceding vehicle.

Initial spacing set to the preceding vehicle.

Initial speed set of the following vehicle.




