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It is concerned that system-level benefits of connected automated vehicle control might
only prevail in a far-future centralized control environment, whereas the benefits could be
much offset in a near-future decentralized control system. To address this concern, this
paper proposes a decentralized control model for connected automated vehicle trajectory
optimization at an isolated signalized intersection with a single-lane road where each con-
nected automated vehicle aims to minimize its own travel time, fuel consumption and safety
risks. To improve the computational tractability, the original complex decentralized control
model is reformulated into a discrete model. A benchmark centralized control model is also
formulated to compare with the decentralized control model. The DIRECT algorithm is
adopted to solve the above models. The numerical results show that the decentralized con-
trol model has better computational efficiency than the centralized control model without
significant loss of the system optimality. Finally, analysis on connected automated vehi-
cle market penetration shows that the extra benefit of the centralized control model is not
obvious either in under-saturated traffic or at a low connected automated vehicle market
penetration rate in critically-saturated and over-saturated traffic. The results suggest that,
as apposed to the earlier concern, the near-future decentralized control scheme that requires
less technology maturity and infrastructure investment can achieve benefits similar to the
far-future centralized control scheme with much simple operations in under-saturated traffic,
or in critically-saturated traffic and over-saturated traffic with a low connected automated
vehicle market penetration rate.

Keywords: Decentralized control, Connected automated vehicle, Trajectory optimization,
Signalized intersections, Mixed traffic.

1. Introduction

Connected Automated Vehicle (CAV) technologies are considered as promising tech-
nologies that can substantially improve traffic mobility, energy efficiency and safety. CAV
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enables timely communications between CAVs and infrastructures and precisely control of
CAV trajectories. Especially, at bottlenecks (e.g., signalized intersections), CAV trajectory
optimization can help vehicles pass signalized intersections without drastic acceleration and
full stops to save travel time and energy. To date, a number of researchers have shown great
interests in CAV trajectory optimization at intersections.

Early studies on CAV trajectory optimization at signalized intersections mainly focused
on control of an individual vehicle alone (Asadi and Vahidi, 2011; Ahn et al., 2013; He et al.,
2015; Xinkai Wu et al., 2015; Huang and Peng, 2017). Asadi and Vahidi (2011) designed
a predictive cruise control with traffic signal information to improve fuel economy and trip
time. Ahn et al. (2013) proposed an Eco-driving application to decrease fuel consumption.
He et al. (2015) studied optimal vehicle speed trajectory considering both vehicle queue
and traffic signal timing. Wu et al. (2015) extended energy-optimal trajectory control to
electric vehicles. Huang et al. (2017) utilized sequential convex optimization to get the
optimal vehicle trajectory. While these studies can help an individual vehicle save travel
time and energy, the impacts of surrounding vehicles are not well addressed for the system-
level optimality.

Since then, multiple-vehicle trajectory optimization methods including centralized con-
trol models (CM) and decentralized control models (DM) have been proposed to improve
overall system performance. In CM, the decisions are made in a global manner for all vehi-
cles by a single central controller. In DM, each vehicle is treated as an autonomous agent
that determines its own control policy based on the information sensed or received from
the other vehicles and road side units to maximize its own performance (Rios-torres and
Malikopoulos, 2017).

Several research efforts addressed CM-based CAV trajectory optimization for maximizing
system-level benefits at signalized intersections (Zhou et al., 2017; Ma et al., 2017; Wei et al.,
2017; Zhao et al., 2018; Feng et al., 2018; He and Wu, 2018; Wang et al., 2018). Wei et
al. (2017) proposed a dynamic programming-based vehicle trajectory optimization at a
signalized intersection considering travel time as objective. Li et al. (2017, a; 2017, b)
proposed a parsimonious shooting heuristic method for CAV trajectory control to optimize
a multi-objective of travel time, fuel consumption and safety. Zhao et al. (2018) presented
a cooperative Eco-driving model for mixed traffic. Feng et al. (2018) provided a joint
optimization of vehicle trajectory control and signal control. Wang et al. (2018) came
up with a cluster-wise eco-approach and departure (EAD) model at signalized corridors for
minimizing fuel consumption. The above studies all used CM to smooth vehicles trajectories
and improve traffic mobility, fuel efficiency or safety. Although CM can achieve the optimal
system performance, it requires that all CAVs are compliant with the central controller,
which often demands massive costs and future technologies for computation, communication
and coordination.

Compared with CM, DM does not require such stringent operational settings and has
a higher level of technology readiness for near-future traffic management. Makarem et
al. (2013) mentioned that DM can significantly decrease computational and communica-
tion costs. A number of DM-based approaches have been proposed to address trajectory
optimization problems at intersections (Makarem and Gillet, 2012; Makarem et al., 2013;
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Campos et al., 2014; Zhang et al., 2016; Malikopoulos et al., 2018; Zhang and Cassandras,
2018; Mahbub et al., 2019; Zhang and Cassandras, 2019; Mirheli et al., 2019; Homchaudhuri
et al., 2017; Jiang et al., 2017; Yang et al., 2017; Almutairi, 2016). Makarem and Gillet
(2012) proposed a decentralized method for vehicles with smooth paths to avoid collisions.
Further, Makarem and Gillet (2013) integrated model predicted control with decentralized
control. Campos et al. (2014) formulated a local problem for each vehicle to avoid conflict at
an unsignalized intersection. Zhang et al. (2016) optimized CAV trajectories along a signal-
free corridor with an objective function incorporating vehicle accelerations. Almutairi and
Rakha (2016) applied Eco-cooperative adaptive cruise control (CACC) system at signalized
corridors. Yang et al. (2017) also came up with a method of Eco-CACC at signalized inter-
sections considering queuing effect. Jiang et al. (2017) applied EAD method for mixed CAVs
and manned vehicles traffic with simplified fuel consumption model. Homchaudhuri (2017)
proposed a fast model predictive control-based fuel optimal trajectory planning method at
signalized corridors. Malikopoulos et al. (2018) proposed a decentralized energy-optimal
control at signal-free intersections with analytical solution methods. Zhang et al. (2018)
added dynamic re-sequencing into decentralized control models to maximize traffic through-
put and minimize energy at signal-free intersections. Zhang and Cassandras (2019) extended
their previous work by considering all possible turns to optimize a passenger comfort metric
with travel time and energy consumption. Mirheli et al. (2019) proposed a decentralized
trajectory control model in unsignalized intersections for minimizing travel time, and com-
pared it with a centralized model. Mahbub et al. (2019) conducted field experiments to
implement the decentralized framework for CAVs with the optimal travel time and energy
efficiency. While these DM studies demonstrated that decentralized control can reduce com-
putation time, the performance of DM has not been quantitatively compared with that of
CM and thus it is yet a pending question how much system optimality DM can achieve.

Further, most existing studies focus on pure CAV traffic, whereas near-future highway
traffic is more likely mixed traffic with both CAVs and human driving vehicles (HVs) (which
have completely different driving behaviors from CAVs). A number of studies have investi-
gated the impact of mixed traffic in either DM or CM (Jiang et al., 2017; Yang et al., 2017;
Zhao et al., 2018; Ghiasi et al., 2019; He and Wu, 2018; Homchaudhuri et al., 2017; Almu-
tairi, 2016; Bergenhem et al., 2019). They verified that both DM and CM can yield benefits
of CAV control in near-future mixed traffic. But the difference between DM and CM is not
clarified in mixed traffic. Also, while CAV trajectory control pertains to mobility, energy
and safety aspects of traffic systems, few studies investigate all three aspects holistically,
particularly in the mixed traffic context.

Motivated by these research gaps, this paper proposes a DM-based CAV trajectory opti-
mization for mixed traffic considering travel time, fuel consumption and safety at a signalized
intersection. This model considers a single-lane segment with traffic approaching to an iso-
lated signalized intersection. For each individual vehicle, we need to optimize its departure
time and acceleration at each time step in the original decentralized model (OD). In order
to simplify the OD, time discretization is applied to convert OD to a discrete decentralized
model (DD) for finding the exact near-optimal solution. A benchmark CM is also formulated
to compare with DM. CM is again reformulated into the discrete centralized model (DC)
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in a similar manner. The DIRECT algorithm is adopted to solve the above models. The
numerical results show that the extra improvement of CM is not significant in the system
performance, and the computation time of DM is much less than CM. After that, mixed
traffic including CAVs and HVs is considered. In the mixed traffic model, HVs are driven by
a classic car-following model that is used to describe human driving behaviors, and CAVs are
controlled by the corresponding CAV trajectory optimization algorithms. Finally, sensitivity
analysis on CAV market penetration shows that the extra benefit of CM is not obvious in
under-saturated traffic. In critically-saturated and over-saturated traffic, the extra benefit
of CM is minor at a low CAV market penetration rate and is relatively high at interme-
diate and high CAV market penetration rates. The results suggest that DM requiring less
technology maturity and infrastructure investment can achieve benefits similar to CM with
much simple operations at all CAV market penetration rates in under-saturated traffic, or at
a low CAV market penetration rate in critically-saturated traffic and over-saturated traffic.

Compared with the previous DM-based work, our study investigates a problem with
several major differences. Instead of using a simple objective function (Zhang et al., 2017;
Zhang and Cassandras, 2018, 2019; Homchaudhuri et al., 2017; Jiang et al., 2017) to reflect
fuel consumption, a more detailed microscopic fuel consumption model (e.g., the VT-micro
model (Ahn, 1998)) is applied in our study. And a joint objective of travel time, fuel con-
sumption and safety is implemented to improve traffic mobility, energy efficiency and safety
simultaneously. Different from the previous work that compares DM with a benchmark of
traffic light control models (Zhang and Cassandras, 2019; Mirheli et al., 2019; Yang et al.,
2017; Jiang et al., 2017), car following models (Zhang and Cassandras, 2018; Homchaud-
huri et al., 2017) or single vehicle optimization models (Homchaudhuri et al., 2017; Jiang
et al., 2017; Yang et al., 2017), a benchmark CM is formulated to show the comparison
between DM and CM. While the previous work only considers a pure-CAV environment
(Zhang and Cassandras, 2019; Zhang et al., 2017, 2016; Mirheli et al., 2019), mixed traffic
of HVs and CAVs is studied with market penetration analysis in our study. To summarize,
the contributions of this paper include the following aspects.

1) This paper proposes a DM-based CAV trajectory optimization model at an isolated
signalized intersection with the aim of finding the optimal trajectories to minimize travel
time, fuel consumption and safety risks simultaneously.

2) This paper compares DM with CM and verifies that DM yields better computational
efficiency without much compromising solution optimality.

3) The effect of mixed traffic of CAVs and HVs is considered in this paper. The CAV
market penetration analysis shows that the extra benefit of CM is not obvious in under-
saturated traffic, or in critically-saturated and over-saturated traffic with a low CAV market
penetration rate.

The organization of this paper is as follows. Section 2 formulates the original DM-based
trajectory optimization model. A discretization method is used to reformulate the original
DM and CM into discrete models in Section 3. Mixed traffic containing both CAVs and HVs
is also investigated in Section 3. Section 4 conducts numerical experiments to investigate the
applications of DM and CM at different traffic system settings and impacts of CAV market
penetration on mixed traffic performance. Finally, Section 5 concludes this manuscript and
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briefly discusses future research directions.

2. Problem Statement

This section proposes a DM-based CAV trajectory optimization model at a signalized
intersection. For the convenience of readers, the key notation is summarized in Table 1.

Table 1: Notation list.

Notation Definition

N := [1, 2, . . . , N ] Set of vehicles, where the number of vehicles is N .

NC := [1, 2, . . . , NC ] Set of CAVs, where the number of CAVs is NC .

N ′ Set of leading vehicles.

K := [1, 2, . . . ,K] Set of signal cycles in the planning horizon.

t Index of time t ∈ [0, T ], where T is the maximum time.

i Index of the time point at i× θ, where θ is the discrete-time interval.

I := [0, 1, 2, ..., I] Set of discrete-time points, where I = dT/θe.

n Index of a vehicle, n ∈ N .

k Index of a signal cycle, k ∈ K.

lvehn Length of vehicle n ∈ N .

hC Saturated time headway of CAV.

hH Saturated time headway of HV.

sC Minimum spacing of CAV.

sH Minimum spacing of HV.

τC Time gap of CAV.

τH Time gap of HV.

L Location of stop-line, i.e., road segment length.

X := {Xn}n∈N Set of vehicles trajectories.

Xn = {xn (t)}t∈T Trajectory of vehicle n ∈ N .

xn (t) Location of vehicle n ∈ N at time t ∈ [0, T ].

xni Location of vehicle n ∈ N at discrete-time i ∈ I.

t−n
Scheduled time point of vehicle n ∈ N at location 0, i.e., scheduled arrival

time.

t̃−n Actual time point of vehicle n ∈ N at location 0, i.e., actual arrival time.

i−n Discretized arrival time of vehicle n ∈ N , where i−n =
⌈
t−n/θ

⌉
.

t+n Time point of vehicle n ∈ N at location L, i.e., departure time.

i+n Discretized departure time of vehicle n ∈ N , where i+n =
⌈
t+n/θ

⌉
.

ẋn (t) Speed of vehicle n ∈ N at time t ∈ [0, T ].

vni Speed of vehicle n ∈ N at discrete-time i ∈ I.

v+n Speed of vehicle n ∈ N at location L, i.e., departure speed.

v Maximum speed.

ẍn (t) Acceleration of vehicle n ∈ N at time t ∈ [0, T ].

ani Acceleration of vehicle n ∈ N at discrete-time i ∈ I.
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a Maximum acceleration.

a Minimum acceleration (or maximum deceleration with a negative sign).

Gk Green length in signal cycle k ∈ K.

Rk Effective red length in signal cycle k ∈ K.

Ck Cycle length in signal cycle k ∈ K, and Ck = Gk +Rk.

TTn Travel time of vehicle n ∈ N .

D−n Arrival delay of vehicle n ∈ N .

FCn Fuel consumption of vehicle n ∈ N .

SSn Safety surrogate measure of vehicle n ∈ N .

Jn Joint objective of vehicle n ∈ N .

λT Weight of travel time.

λD Weight of arrival delay.

λF Weight of fuel consumption.

λS Weight of safety.

Figure 1: An Illustration of the decentralized control system.

See Figure 1, consider a platoon of vehicles indexed by n = 1, . . . , N running on a single
lane road segment with length L approaching a signalized intersection at the downstream
end of the segment. Set location 0 as the entrance of the road segment and location L at the
stop-line before the signalized intersection. For notation convenience, let N := {1, 2, . . . , N}
denote the set of vehicles. Consider time horizon T := [0, T ] for the trajectory optimization
decisions. Let t := x−1

n (l) denote the first time for vehicle n at location l ∈ (−∞,+∞).
Then t−n := x−1

n (0) denotes the scheduled arrival time for vehicle n ∈ N at location 0, which
we assume can be precisely predicted with upstream information. And t+n := x−1

n (L) denotes
the departure time of vehicle n at location L, which will depend on the decision variables.
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We assume that the signal timing plan is pre-determined, and let K := {1, 2, . . . , K} denote
the set of signal cycles within time horizon T . In each signal cycle k ∈ K, let Gk and Rk

denote the effective green and red phase lengths, respectively, and let Ck = Gk +Rk denote
the corresponding cycle length. Without loss of generality, assume the signal begins a green
phase at time 0, and thus the start time of cycle k is (k − 1) × Ck. Let X := {Xn}n∈N
denote the set of time-space vehicle trajectories, where Xn = {xn (t)}t∈T is the trajectory
of vehicle n and xn (t) denotes the location of vehicle n at time t. Let ẋn (t) ∈ [0, v] denote
the speed of vehicle n at time t, where v is the maximum speed. We assume that the arrival
speed v−n := ẋn (t−n ) of vehicle n at location 0 can also be precisely predicted with upstream
information. Let v+

n := ẋn (t+n ) denote the departure speed of vehicle n at location L, which
will depend on the decision variables. And let ẍn (t) ∈ [a, a] denote the acceleration of
vehicle n at time t, where a and a are the minimum and maximum acceleration rates of
vehicle n, respectively.

Normally, vehicles without control will stop before the stop-line due to the interruption
of red signal. In the decentralized control system, see Figure 1, vehicles can communicate
with the surrounding environment (including signal lights and other CAVs) with Vehicle-to-
Vehicle (V2V) and Vehicle-to-Infrastructures (V2I) technologies. And all CAVs are equipped
with on-board controller that can control CAVs at each time and each location based on
signal timing and vehicle information. In order to smooth vehicle trajectories for improving
mobility, fuel efficiency and safety, CAVs will be controlled to have smoother trajectories
without abrupt acceleration and deceleration before approaching a signalized intersection.

In DM, each individual vehicle controls its own trajectory to optimize its performance in
terms of travel time, fuel consumption and safety risks with local information (e.g., from the
preceding vehicle and infrastructure) subject to car following constraints. With this, DM
with pure CAVs (i.e., all vehicles being CAVs) is formulated as follows.

For each vehicle n ∈ N , the optimization objective is comprised of travel time, fuel
consumption and safety components.

• Travel time: The travel time of vehicle n is formulated as

TTn (Xn) =
(
t+n − t−n

)
+ λDD

−
n , ∀n ∈ N , (1)

where λD is the weight of arrival delay. D−n = t̃−n − t−n is the arrival delay of vehicle n,
where t̃−n is the actual arrival time of vehicle n. At a light traffic, t̃−n is typically identical to
the scheduled arrival time t−n . However, if “spillback” traffic occurs, i.e., when downstream
slowdown shock wave spills back and forces upstream vehicles delay their arrivals, we may
have t̃−n > t−n .

• Fuel consumption: The fuel consumption of vehicle n is the integral of the instanta-
neous fuel consumption function of speed and acceleration between the actual arrival
time t̃−n and departure time t+n . The formulation with the VT-micro fuel consumption
model is as follows.

FCn (Xn) =

∫ t+n

t̃−n

exp{
3∑

j1=0

3∑
j2=0

Kj1j2ẋ
j1
n (t) ẍj2n (t)}dt, ∀n ∈ N , (2)
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where j1 and j2 are the power indexes and, Kj1j2 is a constant coefficient. See Table 2
for the value of the coefficients (Zegeye et al., 2013).

Table 2: Coefficients for fuel consumption (the unit of fuel consumption, speed and acceleration are in l/s,
m/s, and m/s2, respectively).

Kj1j2 j2 = 0 j2 = 1 j2 = 2 j2 = 3

j1 = 0 -7.537 0.4438 0.1716 -0.0420

j1 = 1 0.0973 0.0518 0.0029 -0.0071

j1 = 2 -0.0030 -7.42E-4 1.09E-4 1.16E-4

j1 = 3 5.3E-5 6E-6 -1E-5 -6E-6

• Safety: The safety of vehicle n is measured by inverse time-to-collision based on Ma
et al. (2017), as formulated below:

SSn (Xn) =

∫ t+n

t̃−n

max

{
0,

ẋn (t)− ẋn−1 (t)

xn−1(t)− xn(t)− lvehn−1

}
dt, ∀n ∈ N , (3)

where lvehn−1 is the length of vehicle n ∈ N \ {1}. Since this paper assumes the traffic is
homogeneous, we set lvehn = lveh, ∀n ∈ N . In order to make Equation (3) compatible with
the first vehicle, set a dummy vehicle with x0(t) =∞ and ẋ0 (t) = v, ∀t ∈ T .

In addition, vehicle n should satisfy the following constraints.

• Departure time constraints: Departure time t+n is bounded by a time range of
[
t+n , t

+
n

]
,

i.e.,

t+n ≤ t+n ≤ t+n , n ∈ N . (4)

Lower bound t+n is defined as follows,

t+n = G(max{t−n +
(v − ẋn (t−n ))

2

2av
+
L

v
, t+n−1 + τC +

sC + lveh

v
}), ∀n ∈ N , (5)

where

G(t) :=

{
t, if mod (t, C) ∈ [0, G),

dt/Ce × C, otherwise.
(6)

τC and sC are the minimum time gap and spacing between two consecutive CAVs, respec-
tively. In order to make it available for the first vehicle, we assume t+0 = −Inf . If vehicle n
accelerates to the maximum speed with the maximum acceleration and then cruises with the
maximum speed to pass the intersection, we obtain t+n1 = t−n + (v−ẋn(t−n ))

2

/2av+L/v. If vehicle
n follows the preceding vehicle to pass the intersection, we obtain t+n2 = t+n−1+τC+(sC+lveh)/v.
Then check the maximum value of t+n1 and t+n2. If this value falls in an effective green phase,
set it as the lower bound departure time of t+n . Otherwise, it hits a red light and will be
pushed off to the beginning of the next effective green phase.
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We assume that the departure time must be in an effective green time with a reasonable
throughput. Hereinafter, upper bound departure time t+n is set as

t+n = min

(⌊
t+n

C

⌋
× C +G, t+n + τC +

sC + lveh

v

)
, ∀n ∈ N . (7)

• Entry boundary constraints: Vehicle n arrives at location 0 at time t̃−n . Assume t̃−0 = 0
to make the following equation compatible for the first vehicle,

t̃−n ≥ t−n , ∀n ∈ N . (8)

xn
(
t̃−n
)

= 0, ∀n ∈ N . (9)

• Exit boundary constraints: Vehicle n departs from location L at time t+n ,

xn
(
t+n
)

= L, ∀n ∈ N . (10)

• Safety constraints: The minimum safety spacing is always ensured between two con-
secutive vehicles,

xn (t) ≤ xn−1

(
t− τC

)
−
(
sC + lveh

)
, ∀n ∈ N , t ∈ T \ {0, θ, 2θ, . . . , τC}, (11)

Since we assume x0 (t) = Inf, Equation (11) is applicable for the first vehicle.

• Speed constraints: Overtaking or backing up is not allowed,

0 ≤ ẋn (t) ≤ v, ∀n ∈ N , t ∈ T . (12)

• Acceleration constraints: Acceleration values are bounded in [a, a],

a ≤ ẍn (t) ≤ a, ∀n ∈ N , t ∈ T . (13)

Now, the original DM is formulated as N sub-problems of individual vehicles,

OD : min
Xn

JOD
n (Xn) := λT × TTn (Xn) + λF × FCn (Xn) + λS × SSn (Xn) ,∀n ∈ N , (14)

subject to Equations (4)-(13). In Equation (14), λT , λF and λS are the weights of travel
time, fuel consumption and safety, respectively. Note that these sub-problems are linked with
constraints (11). In actual driving, the decisions of down-stream vehicles are rarely affected
by upstream ones, and thus, these sub-problems will be solved sequentially from the first
vehicle upstream to the last vehicle. See Figure 2, it shows the optimization framework
of the decentralized control system. Strictly speaking, sub-problem JOD

n is solved after all
downstream sub-problems JOD

1 , · · · , JOD
n−1 are solved.
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Figure 2: Optimization framework of the decentralized control system.

3. Discretization and Mixed Traffic Model

3.1 Discrete model
The OD model is difficult to be solved as the continuous time points where decision

variables dwell lead to infinite dimensionality and the complex fuel consumption and safety
objective terms impose high non-linearity. Thus, this section will reformulate OD as a
discrete model (DD) to find an exact near-optimal solution.

Let I := [0, 1, 2, . . . , I] denote the set of discrete-time points with a discrete-time interval
θ and a maximum discrete-time I = T/θ. Let i ∈ I denote the index of a discrete-time point.
Let i−n :=

⌈
t−n/θ
⌉
and ĩ−n :=

⌈
t̃−n/θ
⌉
denote the discretized scheduled and actual arrival time

of vehicle n ∈ N , respectively. Let i+n :=
⌈
t+n/θ
⌉
denote the discretized departure time of

vehicle n. Let xni, vni and ani denote the location, speed and acceleration of vehicle n at
discrete-time point i, respectively. Let X I :=

{
XI
n

}
denote the set of discretized time-space

trajectories, where XI
n = {xni} is the discretized time-space trajectory of vehicle n.

Then, Equation (1) is reformulated as TTDDn

(
XI
n

)
= t+n − t−n + λDD

−
n . Equation (2)

is reformulated as FCDD
n

(
XI
n

)
=
∑i+n

ĩ−n
exp{

∑3
j1=0

∑3
j2=0Kj1j2v

j1
nia

j2
niθ}. And Equation (3)

is reformulated as SSDDn
(
XI
n

)
=
∑i+n

ĩ−n
max{0, θ×(vni−vn(i−1))/(xn(i−1)−xni−lveh)}, ∀n ∈ N . Set

x0i =∞ and v0i = v, ∀i ∈ I, thus it is applicable to the first vehicle.
For vehicle n ∈ N , DD is formulated as follows,

DD : min
XI
n

JDD
n

(
XI
n

)
:= λT × TTDDn

(
XI
n

)
+ λF × FCDD

n

(
XI
n

)
+ λS × SSDDn

(
XI
n

)
, (15)

subject to
10



• Speed constraints:

vni =
xni − xn(i−1)

θ
∈ [0, v] , ∀n ∈ N , i ∈ I \ {0} . (16)

• Acceleration constraints:

ani =
vn(i+1) − vni

θ
=
xn(i+1) − 2xni + xn(i−1)

θ2
∈ [a, a] , ∀n ∈ N , i ∈ I \ {0, I} . (17)

• Entry boundary constraint: Equation (8) and

xñi−n = v−n ×
(
θ × ĩ−n − t̃−n

)
, ∀n ∈ N . (18)

• Exit boundary constraint: Equation (8) and

xni+n = L+ vni+n ×
(
θ × i+n − t+n

)
, ∀n ∈ N . (19)

• Safety constraints:

xni ≤ xs(n−1)i, ∀n ∈ N , i ∈ I, (20)

where xs(n−1)i is the shadow trajectory of vehicle n− 1. It is formulated as

xs(n−1)i = x(n−1)(i−ΓC)−
(
sC + lveh

)
+v(n−1)(i−ΓC)×

(
ΓC × θ − τC

)
, ∀n ∈ N \{1}, i ∈ I, (21)

where ΓC = dτC/θe is the discretized time gap of CAV. In order to let Equation (20) work
for the first vehicle, we set x0i =∞, v0i = v and a0i = 0, ∀i ∈ I.

• Departure time constraints: Equations (4) - (7) and

t+n = i+n × θ −
xni+n − L
vni+n

, ∀n ∈ N . (22)

Again, these sub-problems will be solved sequentially from the first vehicle upstream to the
last vehicle.

To compare with DM, we also formulate a discrete model of the centralized control (DC)
with measurements of the average system travel time TTDC

(
X I
)

= 1
N

∑N
n=1 (t+n − t−n + λDD

−
n ),

the average system fuel consumption FCDC
(
X I
)

= 1
N

∑N
n=1 FC

DD
n

(
XI
n

)
and the average

system safety SSDC
(
X I
)

= 1
N

∑N
n=1 SS

DD
n

(
XI
n

)
.

DC : min
X I

JDC (X I
)

:= λT × TTDC
(
X I
)

+ λF × FCDC
(
X I
)

+ λS × SSDC
(
X I
)
. (23)

subject to Equations (16) - (21), and departure time constraints including Equation (22)
and

t+n ≤ t+n ≤ T , ∀n ∈ N , (24)
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where t+n = G(max{t−n +
(v−ẋn(t−n ))

2

2av
+ L

v
, t+n−1 + τC + sC+lveh

v
}).

t+n ≥ t+n−1 + τC +
sC + lveh

v
, ∀n ∈ N \ {1} . (25)

While DD and DC are bounded nonlinear problems, we use the Dividing Rectangles
(DIRECT) method (Jones et al., 1993) to numerically search for near-optimal solutions.
Shortly speaking, the DIRECT method is a sampling method that initially transform the
domain of the problem into the unit hyper-cube and then divide the unit hyper-cube into
smaller hyper-cubes with the sampling information. The detailed description of the DIRECT
method can refer to Jones et al. (1993) and Finkel (2003). The initial solutions needed in
the DIRECT method can be easily found by the shooting heuristic algorithm (Zhou et al.,
2017; Ma et al., 2017) with selected start points

(
t̃−n , a

f
n, a

f
n, v

f
n, a

b
n, a

b
n, v

+
n , t

+
n

)
for each vehicle

n ∈ N , where afn is the acceleration of forward shooting, afn is the deceleration of forward
shooting, vfn is the cursing speed after forward shooting, abn is the acceleration of backward
shooting, and abn is the deceleration of backward shooting.

3.2 Mixed traffic model
In this subsection, we consider the impacts of mixed traffic including CAVs and HVs in

the near future. Let NC and N − N c denote the number of CAVs and HVs, respectively.
Let NC denote the set of CAVs. Thus, the market penetration rate (MPR) of CAVs can be
represented by NC/N. Assume that all HVs proceed according to the classic Gipps’ model
(Treiber and Kesting, 2013).

vn(i+ΓH) = FGipps
(
vni, v(n−1)i, sni

)
:=

min

{
vni + a× ΓH , v, a× ΓH +

√
a2 × (ΓH)2 + v2

(n−1)i − 2× a× (sni − (sH + lveh))

}
,

∀n ∈ N \ NC , i ∈
[
0, I − ΓH

]
, (26)

where τH is the time gap of HV and ΓH = dτH/θe is the discretized time gap of HV. sH is
the minimum spacing of HV. sni = x(n−1)i − xni is the spacing between vehicle n and n− 1
at discrete-time point i. Assume v0i = v and x0i = ∞, ∀i ∈ I, Equation 26 works for the
first vehicle. For HVs, they need to stop at a red light. And the queuing effect should be
considered. Thus, the operation rules of HVs can be formulated as follows,

vn(i+ΓH) =


FGipps

(
vni, v(n−1)i, sni

)
,

if mod (t, C) ∈ [0, G),

min
{
FGipps

(
vni, v(n−1)i, sni

)
, FGipps (vni, 0, L− xni)

}
,

otherwise.

∀n ∈ N \ N C, i ∈
[
0, I − ΓH

]
. (27)
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Then, we can calculate acceleration ani and location xni of vehicle n ∈ N \ NC at
discrete-time point i ∈

[
0, I − ΓH

]
according to Equations (16) and (17).

Considering mixed traffic, Equations (5) and (21) are reformulated as

xs(n−1)i =

{
x(n−1)(i−ΓC) −

(
sC + lveh

)
+ v(n−1)(i−ΓC) ×

(
ΓC × θ − τC

)
, if n ∈ NC ,

x(n−1)(i−ΓH) −
(
sH + lveh

)
+ v(n−1)(i−ΓH) ×

(
ΓH × θ − τH

)
, otherwise.

(28)

t+n =

G(max{t−n +
(v−ẋn(t−n ))

2

2av
+ L

v
, t+n−1 + τC + sC+lveh

v
}), if n ∈ N C,

G(max{t−n +
(v−ẋn(t−n ))

2

2av
+ L

v
, ts+n−1}), otherwise.

(29)

In Equation (29), ts+n−1 := is+n−1 × θ − (xs+n−1−L)/vs+n−1 is the departure time of shadow tra-
jectory of vehicle n−1, where xs+n−1 := mini∈I,s.t.xs

(n−1)i
≥L+η

(
xs(n−1)i

)
is the near-location when

the shadow trajectory of vehicle n−1 passes location L. is+n−1 := argmini∈I,s.t.xs
(n−1)i

≥L+η

(
xs(n−1)i

)
is the discrete-time point at location xs+n−1. v

s+
n−1 is the departure speed of the shadow tra-

jectory of vehicle n− 1. And η is an extremely small value (i.e., 1e−6 in this paper).

Figure 3: Control logic of the DM-based mixed traffic model.
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Figure 3 plots the control logic of the proposed DM-based mixed traffic model. First, we
need to identify whether vehicle n is a CAV or HV. If vehicle n ∈ NC , the corresponding
trajectory optimization model is applied to obtain the location, speed and acceleration of
vehicle n. If vehicle n ∈ N \NC , it would follow Gipps’ car-following rules to calculate the
location, speed and acceleration of vehicle n.

4. Numerical Experiments

This section tests the above proposed DM, CM and the mixed traffic model in a set of
numerical experiments. The parameter settings are described in Subsection 4.1. The results
of DM and CM are compared to investigate the effectiveness of DM under pure CAVs traffic
in Subsection 4.2. The sensitivity analysis of CAV market penetration is conducted in
Subsection 4.3 to investigate the impacts of mixed traffic.

4.1. Parameter settings
Parameters are set as following default values: The maximum time is T = 500 s. The

vehicle length is lveh = 4 m. The maximum speed is v = 16 m/s. The maximum acceleration
is a = 2 m/s2 and the minimum acceleration is a = −2 m/s2. we set the minimum CAV
spacing as sC = 1 m and the minimum CAV time gap as τC = 0.7 s. Assume that Gk = G,
Rk = R, and Ck = C = 2 × G, ∀k ∈ K to represent fixed-time signals. The number of
signal cycles is K = T/C. Note that most vehicles may not be influenced by red lights
and there is less stop-and-go traffic when we fix t−1 in the setting of a long green length.
Thus, we set t−1 with a random value from [1, G] and generate the scheduled arrival times as
t−n = t−n−1+

(
τC + (sC+lveh)/v

)
×(1 + ξn × (C/fsG− 1)) ,∀n ∈ N \{1}, where ξn is an uniformly

distributed random number over [0,2] and f s ∈ (0, C/G] is the traffic saturation rate. Note
that the scheduled arrival times may be pushed back after trajectory optimization, otherwise
the safety constraints will be violated. Then, we generate v−n with a random value uniformly
distributed over [v/2, v] from vehicle 1 to vehicle N . When v−n violates the safety constraint,
we let v−n = v−n−1 and t−n = t−n−1 + τ + (s+lveh)/v−n−1.

Similar to Ma et al. (2017), set λT = $20/h (weight of travel time), λF = $1/liter
(weight of fuel consumption), and λS = 0.1 ( weight of safety). And we try to find a robust
λD ∈ [1, 100] for both of the system arrival delay and system joint objective in DM under
a set of problem scenarios with different parameter settings in under-saturated traffic (f s =
0.5): the road segment lengths (L = 400, 800 and 1200 m) and the signal cycle lengths (C =
30, 60 and 90 s). The results are plotted in Figure 4. We notice that when λD ≥ 50, both of
the system arrival delay and system joint objective maintain at stable levels implying that
any λD ∈ [50, 100] can be a robust weight of arrival delay for the system joint objective
and ensuring the system arrival delay is marginal in under-saturated traffic. Thus, we set
λD = 50 in this study.

With all weights determined, we are ready to investigate the system performance of DM
and CM. To generate feasible trajectories with a better solution quality for both DM and CM,
the shooting heuristic algorithm starts at three selected points in parallel for each instance.
These three start points have the same

{
t̃−n , a

f
n, a

b
n, v

f
n, a

f
n, a

b
n, a

b
n, v

+
n

}
= {t−n , a, a, v, a, a, v}
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Figure 4: Determination of λD.

with three different t+n =
{
t+n , t

+
n , (t

+
n ,+t

+
n )/2

}
values. Figure 5 plots an illustration of the

DIRECT method in DM with L = 400 m, C = 30 s and f s = 0.5. We find that the
DIRECT method is started with three different start points and then converge to near-
optimal solutions. The lowest near-optimal solution (i.e., the red-circle curve) will be chosen
as the final solution in this illustration.

Figure 5: An illustration of the DIRECT method.
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4.2. Comparison of DM and CM
In this subsection, the system performance results of DM and CM are investigated with

sensitivity analysis experiments considering traffic levels, road segment lengths and signal
cycle lengths. The traffic saturation rates range from 0.5 to 1.8 with an increment of 0.1.
The road segment lengths range from 200 m to 1200 m with an increment of 200 m. And
the signal cycle lengths range from 30 s to 120 s with an increment of 15 s. The other
parameters are set as default.

Figure 6 plots three examples trajectories of DM and CM. Figures 6 (a) and (b) plot
the trajectory results of DM and CM with L = 1200 m, C = 90 s and f s = 0.5, respectively.
Figures 6 (c) and (d) plot the trajectory results of DM and CM with L = 800 m, C = 60 s
and f s = 1.0, respectively. Figures 6 (e) and (f) plot the trajectory results of DM and CM
with L = 400 m, C = 30 s and f s = 1.5, respectively. We see that the trajectory shapes
of DM and CM are similar in the first example due to a low level of traffic saturation rate
(i.e., under-saturated traffic). When the traffic saturation rate grows to an intermediate
level (i.e., critically-saturated traffic), little “spillback” traffic occurs in both CM and DM,
which is marked as blue-dotted line in Figure 6. Then, more “spillback” traffic occurs when
the traffic saturation rate grows to a higher level (i.e., over-saturated traffic). Further, the
trajectories in CM are more compact than those in DM under the critically-saturated traffic
and over-saturated traffic. This indicates that CM can yield more benefits in the system
travel time compared with DM.
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(a) DM with L = 1200 m, C = 90 s, and fs = 0.5. (b) CM with L = 1200 m, C = 90 s and fs = 0.5.

(c) DM with L = 800 m, C = 60 s and fs = 1.0. (d) CM with L = 800 m, C = 60 s and fs = 1.0.

(e) DM with L = 400 m, C = 30 s, and fs = 1.5. (f) CM with L = 400 m, C = 30 s, and fs = 1.5.

Figure 6: Examples of trajectory results of DM and CM.
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Table 3: Comparison results of DM and CM. Notes: In each case, we run 5 times of DM and CM with
stochastic arrival times and speeds to yield average results. JDM and JCM are the optimal system joint
objective values for DM and CM, respectively; ∆JCM−DM is the extra improvement of CM v.s. DM; DDM−

and DCM− are the system arrival delay caused by “spillback” traffic in DM and CM, respectively; TDM is
the solution time per vehicle in DM.

fs C (s) L (m) JDM ($) JCM ($) DDM− (s) DCM− (s) ∆JCM−DM TDM (s)

0.5 30 400 0.2703 0.2703 0.00 0.00 0.00% 13.70

800 0.4529 0.4527 0.00 0.00 0.04% 14.02

1200 0.6323 0.6308 0.00 0.00 0.24% 13.70

60 400 0.3106 0.3106 0.00 0.00 0.00% 14.52

800 0.4872 0.4870 0.00 0.0083 0.04% 14.37

1200 0.6677 0.6672 0.00 0.00 0.07% 12.82

90 400 0.4323 0.4321 0.0242 0.0037 0.05% 14.02

800 0.5645 0.5628 0.0003 0.0031 0.30% 12.50

1200 0.6425 0.6416 0.00 0.00 0.14% 12.72

Brief average 0.0027 0.0016 0.10% 13.60

1 30 400 0.3404 0.3072 0.0453 0.0056 9.75% 10.82

800 0.5003 0.4759 0.0009 0.0003 4.88% 11.57

1200 0.6785 0.6410 0.0005 0.0007 5.53% 14.47

60 400 0.4021 0.3857 0.0133 0.0221 4.08% 15.52

800 0.5208 0.5138 0.0001 0.0130 1.34% 10.1

1200 0.7410 0.7258 0.0001 0.0081 2.05% 12.47

90 400 0.4635 0.4446 0.0561 0.0158 4.08% 13.27

800 0.5825 0.5665 0.0004 0.0225 2.75% 10.67

1200 0.6985 0.6937 0.0002 0.00 0.69% 13.02

Brief average 0.0129 0.0097 3.90% 12.43

1.5 30 400 0.4722 0.3891 0.9465 0.1034 17.6% 4.77

800 0.5485 0.4842 0.0913 0.0037 11.7% 4.95

1200 0.6786 0.6403 0.0006 0.0009 5.64% 4.12

60 400 0.4331 0.3735 0.2040 0.0114 13.7% 2.47

800 0.4939 0.4698 0.0001 0.0352 4.88% 3.10

1200 0.7876 0.7652 0.0116 0.0037 2.84% 5.72

90 400 0.5634 0.5083 0.4080 0.1509 9.78% 5.20

800 0.5008 0.4847 0.0153 0.0048 3.21% 4.95

1200 0.6752 0.6741 0.0001 0.00 0.16% 3.55

Brief average 0.1864 0.0349 7.73% 4.32

Total average 0.0673 0.0154 3.91% 10.11

Table 3 shows the comparison results of DM and CM with varying parameters. The
total average extra improvement of CM is not significant (i.e., with an average of 3.91%).
Especially, the extra improvement of CM can be ignored (i.e., with an average of 0.10% ) in
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the under-saturated traffic. With the traffic saturation rate grows, the extra improvement
of CM becomes more obvious. The average values are 3.90% and 7.73% in the critically-
saturated traffic and over-saturated traffic, respectively. We also find that the average arrival
delay in both DM and CM become higher with the increasing traffic saturation rate. And
the average arrival delay in CM is smaller than in DM, which indicates that CM has the
ability to avoid serious “spillback” traffic. Furthermore, we find that DM is much better
than CM in computation. The average solution time for each vehicle of DM and CM are
about 10 s and 60 s, respectively. Note that, if a higher level computer with multiple cores
and a simplified model with less decision variables are applied, the average solution time for
each vehicle can be reduced to less than 1 s for DM. In conclusion, DM is much better than
CM in computational efficiency without significant loss in the system optimality.

Figure 7: An illustration of the divided over-saturated traffic.

To better reflect the reality in the over-saturated traffic, we further divide the over-
saturated period into two parts according to Sun et al. (2015): the queuing period when
stop-and-go traffic occurs seriously at high traffic saturation rates; and the dissipation period
when the stop-and-go traffic is dissipating gradually at low traffic saturation rates. Figure
7 plots an illustration of the divided over-saturated traffic. In this case, the first 20 vehicles
arrive at high traffic saturation rates (with an average of 1.5), and the last 20 vehicles arrive
at low traffic saturation rates (with an average of 0.5). And the black dashed line shows
the average traffic saturation rate is around 1.0. Table 4 shows the comparison results
between DM and CM in the divided over-saturated traffic. The average extra improvement
of CM is 4.78%, which is smaller than in the over-saturated traffic (with an average of
7.73%) and a little bit higher than in the critically-saturated traffic (with an average of
3.90%). Because the stop-and-go traffic is dissipating in the dissipation period, the average
arrival delay and the extra improvement of CM are smaller than those in the over-saturated
traffic. Compared with the critically-saturated traffic, more stop-and-go movements occur
in the queuing period, and thus the average arrival delay and the extra improvement of CM
become higher. Further, the extra improvement of CM in the divided over-saturated traffic
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(the average traffic saturation rate is 1.0) is between the critically-saturated traffic (the traffic
saturation rate is 1.0) and the over-saturated traffic (the traffic saturation rate is 1.5). With
this understanding, the following analysis, with a focus on time-invariant traffic saturation
rates, will investigate how different saturation rates impact the extra improvement of CM.

Table 4: Comparison result between DM and CM in the divided over-saturated traffic. Notes: the average
traffic saturation rate is 1.0.

C (s) L (m) JDM ($) JCM ($) DDM− (s) DCM− (s) ∆JCM−DM

30 400 0.3409 0.2944 1.0605 0.0434 13.6%

800 0.3930 0.3464 0.0613 0.0382 11.8%

1200 0.4737 0.4382 0.0117 0.0001 7.49%

60 400 0.4829 0.4699 0.0013 0.0013 2.69%

800 0.4979 0.4920 0.0002 0.0002 1.18%

1200 0.5780 0.5756 0.0095 0.0040 0.42%

90 400 0.6743 0.6667 0.0014 0.0019 1.13%

800 0.7635 0.7230 0.0005 0.0303 4.40%

1200 0.6520 0.6517 0.0016 0.0100 0.05%

Average 0.1276 0.0144 4.76%

In order to understand the variation tendency of the extra improvement of CM, sensitiv-
ity analysis results with varying parameters are plotted in Figure 8. Figure 8 (a) indicates
that the extra improvement of CM increases with a convex shape as the traffic saturation
rate grows. That is to say the extra improvement of CM grows with the increasing traffic
saturation rate until the traffic saturation rate reaches an intermediate level (i.e., fs ≤ 1.3);
and then the extra improvement of CM drops a little with the further increasing traffic
saturation rate (i.e., fs > 1.3). Because DM only focuses on local optimization, the fol-
lowing vehicles may be affected by the local optimization of the subject vehicle and serious
“spillback” traffic may form. However, CM focuses on global optimization considering all
vehicles and thus can mitigate serious “spillback” traffic. When vehicles arrive with longer
gaps at a lower traffic saturation rate, DM yields similar system optimality as CM with
fewer negative effects on the following vehicles; and compared with DM at a higher traffic
saturation rate, CM also has less room to regulate the trajectories and thus cannot yield
further extra improvement. Figure 8 (b) plots that the extra improvement of CM decreases
as the road segment length goes up. This is probably because vehicles have more room to be
regulated with smoother trajectories (i.e., smaller speed variation) and thus DM causes less
“spillback” traffic with smaller speed variations and yields similar system optimality as CM,
when the road segment length becomes longer. Figure 8 (c) shows that the extra improve-
ment of CM decreases as the signal cycle length increases. This is probably because a longer
signal cycle length makes more vehicles pass a signalized intersection in one cycle and yields
less stop-and-go traffic, and thus the extra improvement of CM becomes smaller. In reality,
CM requires highly compliance of all CAVs and has stringent requirements on computation,
communication and coordination. While DM slightly compromises system optimality, it is
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much easier to implement and circumvent the difficulty of enforcing individual vehicles to
follow exact prescribed trajectories sent from a traffic management center. When the traffic
saturation rate is low, the road segment length is long, and/or the signal cycle length is
long, DM yields the similar system optimality as CM. Considering the cost and complexity
in implementation, DM is suggested to be used in these conditions. However, if the system
performance is the absolute priority and traffic is heavily congested, implementation of CM
will yield further improvements of the system performance.

(a) Considering the traffic saturation rates. (b) Considering the road segment lengths.

(c) Considering the signal cycle lengths.

Figure 8: Sensitivity analysis with varying traffic saturation rates, road segment lengths and signal cycle
lengths.

4.3. CAV market penetration analysis
In this subsection, CAV market penetration analysis is investigated to study the impacts

of mixed traffic in DM and CM. The time gap of HV is set as τH = 1 s, and the minimum
spacing of HV is set as sH = 4 m. Let f s = 0.5, 1.0 and 1.5 to investigate the impacts
of mixed traffic under different traffic saturation rates. The scheduled arrival times of HVs
are set as t−n = t−n−1 +

(
τH + (sH+lveh)/v

)
× (1 + ξn × (C/fsG− 1)) ,∀n ∈ N \ N C. The other

parameters are set as default.Then, a set of CAV market penetration rates (i.e., NC/N =
[0, 100%] with an increment of 10%) is tested in the following experiments.
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Table 5: CAV market penetration analysis results of DM and CM. Note: ∆JDM−MPR−0.5 and
∆JCM−MPR−0.5 are percent improvements in the cases of MPR> 0% v.s. benchmark (i.e., MPR= 0%)
for DM and CM in the under-saturated traffic, respectively. ∆JDM−MPR−1.0 and ∆JCM−MPR−1.0 are
percent improvements in the cases of MPR> 0% v.s. benchmark (i.e., MPR= 0%) for DM and CM in the
critically-saturated traffic, respectively. ∆JDM−MPR−1.5 and ∆JCM−MPR−1.5 are percent improvements
in the cases of MPR> 0% v.s. benchmark (i.e., MPR= 0%) for DM and CM in the over-saturated traffic,
respectively. ∆JCM−DM−0.5, ∆JCM−DM−1.0 and ∆JCM−DM−1.5 are extra improvements of CM v.s. DM
in the under-saturated traffic, critically-saturated traffic and over-saturated traffic, respectively.

MPR 0% (benchmark) 20% 40% 60% 80% 100%

∆JDM−MPR−0.5 0.00% 7.84% 12.95% 17.39% 19.37% 23.75%

∆JCM−MPR−0.5 0.00% 8.41% 13.45% 17.41% 19.40% 23.83%

∆JCM−DM−0.5 0.00% 0.61% 0.58% 0.03% 0.04% 0.10%

∆JDM−MPR−1.0 0.00% 14.28% 17.11% 20.76% 27.68% 29.55%

∆JCM−MPR−1.0 0.00% 15.66% 19.31% 24.29% 30.72% 32.13%

∆JCM−DM−1.0 0.00% 1.64% 2.66% 4.56% 4.36% 3.90%

∆JDM−MPR−1.5 0.00% 21.62% 23.89% 25.26% 29.85% 35.81%

∆JCM−MPR−1.5 0.00% 23.76% 27.25% 34.59% 37.08% 40.59%

∆JCM−DM−1.5 0.00% 2.84% 4.46% 7.34% 8.29% 7.73%

Table 5 summaries CAV market penetration analysis results of DM and CM. 0% CAV
MPR is the benchmark that all vehicles are HVs, and 100% CAV MPR is the pure CAVs
traffic. All the improvements of DM and CM in different CAV MPRs compared to the
benchmark can be found in Table 5 . For example, JDM−MPR−0.5 and JCM−MPR−0.5 are the
improvements of DM and CM compared to the benchmark in the under-saturated traffic,
respectively. First, we horizontally compare the results in Table 5. The improvements of
DM and CM both increase as CAV MPR grows across all traffic saturation rates. This is
because more controlled CAVs can further reduce the queuing effect of HVs as CAV MPR
increases. Then, we vertically compare the results in Table 5. In the under-saturated traffic,
the improvements are from 8% to 23%. In the critically-saturated traffic, the improvements
are from 14% to 32%. And in the over-saturated traffic, the improvements are from 21%
to 40%. This is because that more stop-and-go traffic occurs and both DM and CM yield
better performance at a higher traffic saturation rate. Further, the extra improvements
of CM are shown as JCM−DM−0.5, JCM−DM−1.0 and JCM−DM−1.5 in the under-saturated
traffic, critically-saturated traffic and over-saturated traffic, respectively. We find that the
extra improvement of CM is marginal in the under-saturated traffic and becomes obvious in
the critically-saturated traffic and over-saturated traffic.
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Figure 9: Extra improvements of CM v.s. DM with varying CAV MPRs.

Figure 9 plots the extra improvements of CM with varying CAV MPRs. The black-
circle curve, the blue-square curve and the red-triangle curve denote the extra improvements
of CM in the under-saturated traffic, critically-saturated traffic and over-saturated traffic,
respectively. First, we find that the extra improvement of CM is marginal (i.e., less than
1%) in the under-saturated traffic and becomes obvious in the critically-saturated traffic and
over-saturated traffic. Additionally, an obvious variation tendency is found in the critically-
saturated and over-saturated traffic: the extra improvement of CM is marginal at a low CAV
MPR; and then, it becomes significant at an intermediate CAV MPR; finally it drops a little
at a high CAV MPR. That is because the impact of HVs is predominant at a low CAV MPR,
and there is less potential for CM to improve. With CAV MPR increases, the impact of
HVs decreases and both CM and DM yield significant benefit. However, DM only focuses on
local optimization. CM focuses on the total system optimization, which considers more HV
impacts and yields more benefits than DM with the increasing CAV MPR. When CAV MPR
grows to a high level, DM can control more CAVs to decrease HV impacts and the extra
improvement of CM drops a little. Therefore, the above results suggest that DM can be used
in the under-saturated traffic instead of CM to improve computational efficiency without
significant loss of the system optimality. In the critically-saturated traffic and over-saturated
traffic, DM is welcomed to be used in a low level of CAV MPRs to decrease solution time,
otherwise CM should be used to maintain the optimality of the system performance.

4.4. HV car following setting analysis
In this subsection, the effects of different HV car following settings with varying CAV

MPRs are investigated. First, we investigate the effect of using the intelligent driver model
(IDM) (Treiber and Kesting, 2013). The IDM is formulated as follows,

ani = F IDM
(
vni, v(n−1)i, sni

)
= a×

1−
(vni
v

)δ
−

(
s∗n
(
vni, v(n−1)i

)
sni

)2
 ,

∀n ∈ N \ NC , i ∈
[
0, I − ΓH

]
, (30)
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where s∗n
(
vni, v(n−1)i

)
= sH + max

{
0, vniτ

H + vni×(vni−v(n−1)i)/2
√
|aa|
}
is the desired gap, and

δ is the exponent (set as 4 in general).
The IDM is tested in the critically-saturated traffic (i.e., f s = 1) with the same settings

in subsection 4.3. Table 6 shows the results of the IDM and Gipps’ model. We find that
the improvements of using the IDM are higher than using Gipps’ model. This is probably
that vehicles will accelerate with the maximum acceleration due to the Equation (26) in the
Gipps’ model, but might accelerate with a value less than the maximum acceleration due to
Equation (??) in the IDM. Thus, both DM and CM can yield more benefits by eliminating
more “stop-and-go” traffic in the IDM than in the Gipps’ model. Compared CM with DM,
the extra improvement of using IDM shows a similar tendency as of using Gipps’ model. We
also find that ∆JCM−DM−IDM is smaller than ∆JCM−DM−Gipps at a low CAV MPR, and
∆JCM−DM−IDM is larger than ∆JCM−DM−Gipps at a high CAV MPR. Because the impact
of HVs is predominant at a low CAV MPR and the IDM cause more “stop-and-go” traffic
than the Gipps’ model. Thus, the extra improvement of using the IDM is less than using
the Gipps’ model at a low CAV MPR. When the CAV MPR is high, CM can eliminate more
“stop-and-go” traffic and thus ∆JCM−DM−IDM is larger than ∆JCM−DM−Gipps.

Table 6: CAV market penetration analysis results of DM and CM with the IDM and Gipps’ model in the
critically-saturated traffic. Note: ∆JDM−IDM and ∆JCM−IDM are percent improvements in the cases of
MPR> 0% v.s. benchmark (i.e., MPR= 0%) for DM and CM with the IDM, respectively. ∆JDM−Gipps

and ∆JCM−Gipps are percent improvements in the cases of MPR> 0% v.s. benchmark (i.e., MPR= 0%)
for DM and CM with the Gipps’ model, respectively. ∆JCM−DM−IDM and ∆JCM−DM−IDM are extra
improvements of CM v.s. DM with the IDM and the Gipps’ model, respectively.

MPR 0% (benchmark) 20% 40% 60% 80% 100%

∆JDM−IDM 0.00% 33.91% 40.52% 48.52% 52.72% 58.17%

∆JCM−IDM 0.00% 34.90% 43.79% 52.33% 55.91% 60.79%

∆JCM−DM−IDM 0.00% 1.50% 5.50% 7.39% 6.75% 6.28%

∆JDM−Gipps 0.00% 14.28% 17.11% 20.76% 27.68% 29.55%

∆JCM−Gipps 0.00% 15.66% 19.31% 24.29% 30.72% 32.13%

∆JCM−DM−Gipps 0.00% 1.64% 2.66% 4.56% 4.36% 3.90%

Then, we test the Gipps’ model with different parameter settings (e.g., sH) in the
critically-saturated traffic under different CAV MPRs. The other settings are the same
as in subsection 4.3. See Table 7, we find that the improvements of both CM and DM are
decrease with the increasing sH . This is probably that a lower sH indicates a more aggressive
driver and causes more “stop-and-go” traffic. Thus, DM and CM can yield more benefits
by eliminating the “stop-and-go” traffic. Compared CM with DM, we find that the extra
improvement of CM with different sH shows a similar tendency. That is to say, sH shows
a marginal effect on the extra improvement between CM and DM. In conclusion, both DM
and CM are capable to implement with different HV car following models and with different
parameter settings.
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Table 7: CAV market penetration analysis results of DM and CM with different sH in the critically-
saturated traffic. Note: ∆JDM−6 and ∆JCM−6 are percent improvements in the cases of MPR> 0% v.s.
benchmark (i.e., MPR= 0%) for DM and CM with sH = 6 m, respectively. ∆JDM−8 and ∆JCM−8 are
percent improvements in the cases of MPR> 0% v.s. benchmark (i.e., MPR= 0%) for DM and CM with
sH = 8 m, respectively. ∆JDM−15 and ∆JCM−15 are percent improvements in the cases of MPR> 0% v.s.
benchmark (i.e., MPR= 0%) for DM and CM with sH = 15 m, respectively. ∆JCM−DM−6, ∆JCM−DM−8

and ∆JCM−DM−15 are extra improvements of CM v.s. DM with sH = 6 m, sH = 8 m and sH = 15 m,
respectively.

MPR 0% (benchmark) 20% 40% 60% 80% 100%

∆JDM−6 0.00% 15.33% 21.80% 25.43% 30.76% 31.91%

∆JCM−6 0.00% 17.54% 23.22% 27.61% 33.15% 34.92%

∆JCM−DM−6 0.00% 1.94% 2.84% 4.54% 3.98% 3.87%

∆JDM−8 0.00% 14.28% 17.11% 20.76% 27.68% 29.55%

∆JCM−8 0.00% 15.66% 19.31% 24.29% 30.72% 32.13%

∆JCM−DM−8 0.00% 1.64% 2.66% 4.56% 4.36% 3.90%

∆JDM−15 0.00% 10.73% 14.73% 20.49% 23.00% 26.22%

∆JCM−15 0.00% 11.23% 16.39% 24.26% 25.89% 29.09%

∆JCM−DM−15 0.00% 1.66% 1.95% 4.73% 4.08% 3.89%

5. Conclusion

This paper proposes a DM-based CAV trajectory optimization model at an isolated sig-
nalized intersection with a single-lane road to smooth CAVs trajectories with a system joint
objective including travel time, fuel consumption and safety. Then, discrete model is refor-
mulated from the original DM to find the exact near-optimal solution. A benchmark CM is
also formulated in a discrete model to compare with DM. The DIRECT method is applied to
solve these two models with initial solutions generated from the shooting heuristic approach.
Sensitivity analysis results show that DM is better than CM in computation efficiency with-
out significant loss in the system optimality. The extra improvement of CM becomes more
obvious as the traffic saturation rate increases, the road segment length decreases and the
signal cycle length decreases. Further, the results of CAV market penetration analysis shows
that the extra improvement of CM is marginal at a low CAV MPR; with CAV MPR in-
creases, the extra improvement of CM increases; when CAV MPR approaches to 100% (i.e.,
the pure CAVs traffic), the extra improvement of CM drops a little. Therefore, either in the
under-saturated traffic or at a low level of CAV MPRs in the critically-saturated traffic and
over-critically traffic, DM is suggested to yield a faster computation efficiency with a similar
system performance as CM; otherwise, CM is suggested to maintain the system optimality.
Finally, we use a set of numerical experiments to verify that DM and CM are capable under
different HV car following settings.

In the future, we will consider to extent the proposed decentralized control at a signal-
ized intersection with a multi-lane road, where lane changing behaviors must be considered.
Due to a larger gap generated by smoothed trajectories, vehicles in the adjacent lanes might
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change lane in front of CAVs, and thus might impair the system performance of trajectory
optimization. Second, the trajectory optimization can be considered as a way to maximize
the utility of space (e.g., smoothed trajectories). To maximize the utility of time, we will
incorporate the trajectory optimization with a signal optimization. Additionally, we will
extend the small scale problem (i.e., an isolated intersection) to a large scale problem (i.e.,
signalized corridor and urban network). A large scale problem may involve more complexi-
ties, e.g., origin and destination selection, route selection, and cooperation among multiple
intersections, and might be hard to be solved. While we solve the large scale problem (e.g.,
multiple intersection cooperation), the spill back traffic in the decentralized control might be
addressed. Further, the computation time of the proposed model is about 10 seconds that is
still hard to implement in real-time control. Therefore, we will study other algorithms (e.g.,
piecewise approaximation) to improve the computation efficiency peer real-control needs.
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