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Abstract

The effects of kinetic and capillary anisotropies on crystal morphology and growth rate during
solidification of titanium are studied using atomistically-informed phase-field simulations.
Molecular dynamics (MD) is employed to calculate the anisotropic kinetic coefficient and crystal-
melt interface free energy using the free solidification and capillary methods. The phase-field
simulation results for solidification velocity and interface temperature are in quantitative good
agreement with experimental and analytical data for undercoolings below 150K. As the role of
interface kinetic effects increases with undercooling the use of a modified phase-field model
allowed the extension of its quantitative prediction capability to higher undercoolings. In addition,
the effect of MD calculated kinetic and capillary anisotropy parameters on dendrite shape and tip

and solidification velocity was investigated.
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1. Introduction

Titanium and its alloys have unique properties and are among the most important metals for use
as structural materials and are found in applications across many industries [1, 2]. Favorable
properties such as mechanical strength, low density, and corrosion resistance makes titanium a
preferred material in diverse areas such as aerospace [3], marine [4], and chemical industries [5].
Moreover, due to the excellent biocompatibility with human body, titanium and its alloys are the
materials of choice for many medical applications, including bone and dental implants [6]. Given
that the cost of titanium is relative high compared to other metals such as steel and aluminum there
is great interest in further developments of cost effective parts and component fabrication
approaches. As such, casting of titanium and titanium alloy parts offers unique cost savings over
other metallurgical processing techniques as well as technological advantages by allowing the
production of components with complex shapes and geometries. To a large extent the quality and
integrity of the cast ingots is determined by their microstructural characteristics such as solute
micro segregation, grain size and shape, porosity, etc., characteristics which develop during the
dendritic solidification process. Therefore, the development of a better understanding of both
material and technological casting parameters on the solidification process is of central importance
and a great deal of progress in this direction, in addition to experimentation, is obtained by accurate
modeling and simulation of dendritic solidification process [7]. In spite of the great progress in
understanding dendritic solidification important issues remain unsolved, such as the quantitative
prediction of crystal growth in highly undercooled liquid metals. Solidification is a free boundary
problem that poses expensive computational challenges and various simulation methodologies

have been used over the last decades, including phase-field method [7].

Phase-field modeling is a powerful and widely used simulation methodology for investigation
of pattern formation. It was first introduced in the 1980’s to study phase transition [8, 9] and was
later expanded and applied to investigations in a multitude of areas such as solid state phase
transformations [10, 11], crack nucleation and propagation [12], dislocation dynamics, and
precipitation growth [13-16]. The early applications of phase-field modeling provided mainly a
qualitative description of the solidification process. Subsequent improved geometrical models
together with the incorporation of realistic crystal-melt interfacial free energy and/or kinetic
anisotropies allowed for a more quantitative description and lead to the development of a variety

of phase-field models used to study solidification of pure materials [13, 14, 17-23]. The thin
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interface asymptotic analysis of the phase-field equations developed by Karma and Rappel relates
the phase-field parameters to the free boundary solidification equations [24]. The interfacial free
energy, kinetic coefficient, and their anisotropy coefficients are important input parameters and
need to be known accurately for quantitative prediction in a phase-field simulation of
solidification. Many studies show the importance of the effect of crystalline anisotropy on dendrite
shape [25] and growth rate [26]. A major limiting factor of quantitative prediction of the
characteristics of solidification process with phase-field simulation approach is the scarcity of
available experimental data pertaining to crystal-melt interfacial properties, especially the
anisotropy coefficients for interfacial free energy and kinetic coefficients of the materials. Because
the undercooled melt solidifies very rapidly, there are only a few experiments that have
successfully measured the solidification velocity, crystal-melt interfacial free energy and kinetic
coefficient for large undercooling [27-29] and there are no reports on experimental measurement
of interfacial anisotropy coefficients.

In the quest for obtaining accurate description of anisotropic energies and mobilities of crystal-
melt interfaces computer simulations have become an increasingly important tool with MD
simulations well positioned as the main method of choice. Calculations of kinetic coefficient using
MD simulations was reported for various pure elements such as nickel [30, 31], gold and silver
[32], aluminum [31], magnesium [33], and copper [31, 34], and also compounds such as Ni3zAl
[35]. Moreover, the interfacial free energy and anisotropy coefficients was also obtained from MD
simulations for aluminum [36], iron [37], magnesium [33], and gold and silver [38] elements, as
well as alloys such as nickel-aluminum [39] and nickel-copper [40]. There is very limited data on
crystal-melt interfacial properties of titanium. Specifically, the interfacial free energy [41, 42] and
solidification velocity [43, 44] have been measured experimentally for titanium but the reported
results show a large scatter and provide no information on anisotropies of these properties.

In this study, we focus on investigating the effects of kinetic and capillary anisotropies on the
crystal morphology and growth rate in solidification of titanium using a combined MD with phase-
field simulation approach. First, we report our calculations of the interfacial free energy, kinetic
coefficient, and their anisotropies using MD simulations. Then using the MD calculated
parameters in phase-

field simulations, together with other experimentally obtained properties of titanium, we

investigate dendritic solidification of undercooled titanium. The phase-field solidification
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velocities show good agreement with the experiment results for small undercooling but exhibits
some deviations from the experiments for large undercoolings. By adopting and implementing a
variant of phase equations, as proposed by Bragard et al [45], the agreement between simulation
and experimental results is extended to higher undercoolings. Our study of the effect of the
anisotropy parameters on the dendrite tip velocity and the overall solidification velocity also shows

that the tip velocity is affected significantly while the effect on the overall velocity is much smaller.
2. Simulation Methodology

The solidification of a pure melt is governed by the heat diffusion equation in the solid and
liquid with a temperature boundary condition imposed on crystal-melt interface. In addition to heat
diffusion equation, the boundary condition should also include the crystal-melt boundary heat
source term, in the form of the Stefan condition, that relates the solidification velocity to the jump
in normal temperature gradient at the interface. The temperature at any point along the moving
crystal-melt interface, T}, is governed by the velocity-dependent Gibbs-Thomson (GT) relation [7]
given by:

T 1 ~ 9%y (R) Vi
T, =Ty — TMZi=1,zR—i [)’(Tl) + W] - r:;), (1)

where T}, is the melting temperature and L is the latent heat of melting per unit volume. The second
term on the right-hand side of Eq. (1) represents the local change of the interface equilibrium
temperature due to the curvature of the interface, where Ri (i=1,2) are the local principal radii of
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curvature, y (1) is the interfacial free energy, y (i) + is the interfacial stiffness, and 6; are

the local angles between the interface normal direction (77) and the two local principal directions.
The last term on the right-hand-side of Eq. (1) represents the non-equilibrium interface
undercooling that drives the solidification, where u(f) and Vj are the kinetic coefficient and
solidification velocity for the interface normal direction, respectively. It is therefore crucial to

determine both the magnitude and anisotropy of interfacial free energy and kinetic coefficient.
2.1 Selection of interatomic potential for MD simulations

When calculating crystal-melt interfacial properties by MD simulations it is very important to
identify and use the best available inter-atomic potential for the system of interest at the appropriate

external conditions, in this case titanium close to melting temperature. Accordingly, we considered



Computational Materials Science 163 (2019) 218-229.

four existing interatomic potentials for Ti; three of the modified embedded atom method (MEAM)
potential type (MEAM bcc [46], MEAM hcp [47], MEAM spline [48]) and one embedded atom
method (EAM) potential (EAM [49]). In the evaluation process of the four inter-atomic potentials,
we factored in the capability of the potentials to accurately reproduce important properties of
titanium: the high temperature crystal structure, the radial distribution function g(r) of the liquid

phase, the melting temperature, the latent heat of fusion, and the diffusivity in the liquid phase.

Table 1: The melting temperature, latent heat of fusion, and liquid diffusivity at the melting
point as obtained from MD simulations of titanium by using four interatomic interaction
potentials and from experimental data. Unless specified otherwise, the melting
temperatures and latent heats are from the references indicated. The diffusivities for all

four potentials were obtained from our MD calculations

Interatomic potential and Melting Liquid diffusivity
Latent heat [kJ/mol]
crystal structure temperature [K] [x107 cm?/s]

EAM, hep [49] 1918 12.5 4.7*
MEAM, bcce [46] 1651; 1716* 11.7;9.07* 5.7*
MEAM, hep [47] 1706 14.5 3.9%
MEAM spline, bee [48] 1900; 1876* 9.09* 3.9%
Experiment [50] 1941 14.17 4.9

* Result obtained from our MD simulations using the corresponding interatomic potential

Table 1 presents a summary of the MD simulation results for the melting temperature, the
latent heat of fusion, and the liquid diffusivity at the melting temperature for titanium modeled by
each of the four interatomic potentials considered and the corresponding data from experimental
measurements. The latent heat of fusion and the melting temperature for the MEAM bcc and
MEAM spline bce potentials were calculated by the method presented in [51] and the values
obtained were slightly different than the values reported in [46] and [48]. The values for the same
thermodynamic properties reported for the EAM hcp and MEAM hcp potentials are closer to the
experimental data. The diffusivities in the liquid phase are relatively close to the experimental

value for all four potentials. In addition to their ability at predicting thermodynamic and transport
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properties, the four interatomic potentials were evaluated on their potential at reproducing crystal
structure and structural characteristics of the liquid phase. Figure 1 shows the MD-calculated pair
distribution functions, g(r), the experimentally obtained g(r) at 1,965 K [52], and the pair
distribution function obtained by ab initio MD simulation at 2,000 K [53, 54]. Although the EAM
hcp potential predicts the melting point and latent heat of fusion close to experimental values, the
g(r) shows significant deviation from the experimental and ab-initio g(r) functions, especially close
to the second and third extrema. Titanium has a stable hcp crystal structure at room temperature
and, as temperature rises above 1,150 K, it undergoes an allotropic structural transformation to a
bec crystal structure. The MEAM hcep potential was rejected because it does not have a stable bce
phase. The latent heats for the MEAM bcc and MEAM spline bee potentials are similar, but the
g(r) and liquid diffusivities for the MEAM bcc potential are closer to experimental and ab initio
MD simulation data and therefore we settled on the MEAM bcc potential [46] as the inter-atomic
potential for our MD simulations of Ti. All MD simulations were performed using the LAMMPS
software [55].
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Figure 1 : Comparison of radial distribution functions for pure titanium obtained from

classical MD simulations with MEAM spline [48], MEAM bcc[46], MEAM hep [47], EAM

potential [49], ab initio MD simulations [53, 54], and Holland-Moritz experimental data

[52].
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2.2 Calculation of kinetic coefficient

The MD simulation approaches used for calculation of the kinetic coefficient of crystal-melt
interfaces can be divided into equilibrium and non-equilibrium methodologies [7]. The equilibrium
methods rely on the analysis of the fluctuations of the crystal-melt interface through the capillary
fluctuation method [7]. The non-equilibrium MD methods are classified as either forced velocity
[56, 57] or free solidification [57] approaches. In this study the kinetic coefficient was calculated
by using a free solidification method [57]. Under the MD simulation conditions, the crystal-melt
interface, on average, remains planar during the solidification and therefore according to Gibbs-
Thomson relation (see Eq. (1)) the slope of the solidification velocity as function of temperature
gives the kinetic coefficient. Due to the latent heat generated during solidification, the interface
region will be at a higher temperature if only a single global thermostat is used. To eliminate the
temperature gradients and avoid the calculation of interface temperature we used a system of
multiple local thermostats applied independently to thin slabs aligned parallel to the plane of the
solidification interface. This approach was proven to provide nearly identical results to those

obtained by using a global thermostat and the actual interface temperature calculation [57].

Calculation of the kinetic coefficient requires determination of the velocity of the crystal-melt
interface at different undercoolings, but initially an equilibrated crystal-melt coexistence system
at the melting temperature of 1716 K is needed. For a (001) oriented solidification interface, shown
in Figure 2, the whole simulation system was initialized on a lattice consisting of 14x14x69 bcc
unit cells (27,048 atoms) of approximate dimensions 46x46x230 A. The simulation systems with
different orientations of the crystal-melt interface, (110) and (111), have similar dimensions and
number of atoms. Next, the system was equilibrated for 50 ps as a solid under the NPT ensemble
where P = 0, followed by an additional 300 ps simulation during which the mean lattice parameter
was determined. To create the crystal-liquid coexistence system, the central three quarters portion
of the simulation box along the z-direction (see Figure 2) was melted by heating it at 2,600 K for
about 50 ps under the NVT ensemble while the other quarter of the system remained in the original
(solid) state. This lead to the creation of two crystal-melt interfaces. Finally, the equilibrated
crystal-melt coexistence system was obtained by a 100 ps MD simulation under NP, T conditions
in which the temperature of the entire system is set to the melting temperature and the normal
stress in the z direction, P, is zero. The box sizes in the x and y directions, after they were adjusted

to the values determined by the average lattice parameter for the melting temperature, were
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maintained fixed. An additional 100 ps NPT simulation was used to obtain the equilibrated crystal-
melt coexistence configurations that were used as the starting configurations for non-equilibrium

solidification.

2, |Solid

“ Liquid

Boundary

Figure 2: The starting configuration of the system used for the nonequilibrium MD
simulations of solidification of pure titanium. Red/pink and dark gray/light gray regions
are located in liquid and solid phases respectively. Alternating dark/light colors are used
to clearly indicate the adjacent slabs that are thermostated independently. The green atoms
are boundary atoms which were restrained to have an average force of zero in the x and y

directions.

Starting from the equilibrated crystal-melt coexistence system, the kinetic coefficient is
calculated from the investigation of the variation of the crystal-melt interface velocity with the
applied undercooling. For these, the values of the lattice parameter for various undercooling
temperatures were needed. These were obtained from a set of separate MD simulations of the solid
at the corresponding temperatures similar to those performed at the melting point but with a
smaller box size of only 13x13x13 unit cells (4394 atoms). Starting from an equilibrated crystal-
melt coexistence configuration, the velocities of all atoms are scaled down to obtain the desired
temperature below the melting point. |The boundary conditions in the z-direction are changed from
periodic to free boundaries, the barostat is turned off, and the box sizes and atom positions are

scaled in the x- and y-directions (the interface plane) such that the solid regions have the lattice
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parameter appropriate for the undercooled temperature. The solidification step is effectively run
under conditions of constant normal stress due to the free boundaries (Pzz = 0) and constant
temperature where the undercooled temperature is maintained by using the multiple thermostats
approach in which the simulation system is divided along the z direction into a set of slab regions
parallel to the interface and each slab is independently thermostatted. The free boundaries along
the z-direction are required in order to be able to use multiple regional thermostats. Surface melting
was observed at the free boundaries, especially for small undercoolings. To prevent surface
melting, the atoms located in the two atomic planes adjacent to the free boundaries were restrained
such that the average forces in the x and y directions on those groups of atoms were set to zero and
the temperature in these regions was maintained to the desired undercooling by applying a
Langevin thermostat with a damping parameter of 0.1 ps only in the z direction. The thickness of
all of the other regional thermostats was set to 5.0 A and velocity rescaling was used whenever the
temperature deviated more than 1 K from the target temperature. Ten independent solidification
simulations were run starting from different initial coexistence configurations to determine the

uncertainty in interface velocity for each undercooling.

150

U

~

()]
}

—
vy
()
[
T

130 + - .

Interface velocity [m/s]
=
(]

125 —mA—Mm———4——t—
2 4 6 8 10 12

Thermostat layer thickness [A]

Figure 3: Crystal-melt interface velocity as a function of thermostat bin thickness with 200

K undercooling. Error bars represent 95% confidence intervals.

The selection of the optimum thermostats bin thickness was based on the analysis of the

variation of crystal-melt interfacial velocity with the bin thickness for a given temperature
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undercooling. Figure 3 shows that the decrease of bin thickness leads to an increase of interface
velocity and for a 200K undercooling it reaches a plateau for bin thickness less than 5 A.

The velocity of the interface was calculated by using two methodologies. The so-called indirect
method relies on the relationship between interface velocity and the average slope of the variation
of the total potential energy with time during a steady state solidification simulation at a given

undercooling temperature T and is given by

1 dE
Vint = 570 )

where vint is the interface velocity, A is the area of the interface, E is the total interatomic potential

energy of the system. L is latent heat per volume of solid, (Vy,;), and can be calculated as:

_ (Hliq)—<Hsol)

L= Vsor) 3)

where (Hg,;) and (Hj;q) are the enthalpies of solid and liquid respectively at the simulation
undercooling temperature. The interface velocity is also obtained by direct tracking of the interface
position as function of time and using

o = {2 ) @
d; = z;: — 21 and dgys = z; — 2}, where z;, and z;;, are the positions of the top and bottom
interfaces and z; and z,, are the positions of the upper and lower solid layers, see Figure 4. Note
that z; and z;, change due to the volume change of solidification which must be accounted for
when calculating the interface velocity. The time to reach steady state solidification is taken as the
time to create solid with a 12 A depth or about 3 layers at each interface which is sufficient so that

the calculated velocity is no longer dependent on starting time.

Obtaining z;, and z; ), requires use of an order parameter whose average value is clearly
different in the liquid and solid phases. For convenience we use the centrosymmetry parameter,
CS, based on 12 nearest neighbors, which is calculated for each atom in the system [58]. Twelve
nearest neighbors is close to the number in the liquid phase and gave a larger difference between
liquid and solid than the 8 nearest neighbors typically used for the bcc crystal. Although the

centrosymmetry parameter fluctuates, the mean values in the liquid and solid phases are clearly

10
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different as shown in Figure 4. To obtain the interface positions, the fitting of error function to CS

is used:
5,0 - 0.5 ((CSsor) +(CSuiq) + ({CSso) — (CSyig)) erf [%]), seenter <7 < Fupper
0.5 ((CSsor) + (CSiiq) = ({CSso) = (CSug)) erf [=72|), Ziower < 7 < Zeenter
Zeenter = 0.5(2¢ — zp) + 2z, (0)
Zypper = 0.95(2; — 2,) + zp, (7)
Ziower = 0.05(z; — z,) + zp. (8)

Although (CS,;) and (CS);;) can be obtained from averages by separate bulk solid and liquid
simulations, we consider them to be adjustable parameters along with z; ¢, z; ,, and o. The fitting
is performed using the /mfit python package [59] during the simulation at 0.375 ps intervals by
utilizing the ability of LAMMPS [55] to use python functions. This feature also allows the

simulations to be terminated when the distance between interfaces is less than 50 A.
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Figure 4: Variation of the centrosymmetry parameter along the z direction (the
solidification direction) at a given time during a MD simulation of the solidification in a
crystal- melt coexisting system. The solid green and red lines depict the error function fit
of the order parameter around the lower and upper interface respectively. The dashed

green and vertical lines indicate the current location of the two crystal melt interfaces.
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2.3 Calculation of interfacial free energy and stiffness

There are various MD methods used to calculate the crystal-melt interfacial free energy such
as the cleavage method [60], the critical nucleus method [61], metadynamics [62], transition
interface sampling [63], the mold integration method [64], the interface pinning method [65], and
the capillary fluctuation method [66]. Here, we use the capillary fluctuation method which was
chosen due to its relative simplicity, ability to obtain anisotropy coefficients, and applicability to
alloys for future use.

In the capillary fluctuation method, the MD simulation is performed at the melting temperature
with crystal-melt coexistence. The system is quasi-two dimensional; the interface length (W) in
the x direction is much larger than its width (b) in the y direction. The system is very long (L) in
the interface normal direction to avoid any interactions between interfaces. The simulation system
is shown in Figure 5.

Let h(x) be the position along the z direction of an interface separating solid and liquid phases.
Its deviation from the mean value, (h), can be written as a summation of Fourier modes: h(x) —
(h) = X, A(k) e™*. Based on the equipartition of energy on the degrees of freedom applied to

individual capillary fluctuation modes, the interface stiffness can be calculated using:

2 2 _ kpT
y+d°y/doc = WIAGOERE )

where, kgT is the thermal energy, (|A(k)|?) is the mean squared amplitude of the Fourier modes
and k is the mode wave number. The crystal-melt interface can also be considered two dimensional
so instead of one stiffness, two different stiffness values must be considered in equation (9) [67].
Plotting kzT /(bW {|A(k)|?)) versus k? and fitting for small values of k gives a slope which is
the interface stiffness. The same procedure is repeated for different crystallographic orientations
to obtain interface stiffness anisotropy coefficients.

The MD simulation starting configuration consists of a periodic system with dimensions of
80x4x220 bee unit cells. The central half of the system is melted in the NVT ensemble at 2,600
K, while the remaining half of the atoms are fixed. The resulting crystal-melt coexistence system
is equilibrated at the melting point for 1 ns in the NPz T ensemble, using an extended system
thermostat and barostat. Assuming the melting point is accurate, one can infer that the system is

now close to equilibrium. The positions of the two crystal-melt interfaces are then obtained from

12
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an NPH simulation lasting for 240 ps. During this step, the system configuration is saved every

0.2 ps for later analysis of the interface fluctuations.

Figure 5: A snapshot from the MD simulation of pure titanium depicting the thermal
fluctuations of the crystal-melt interface. The phase of each atom is based on the value of
the atomic order parameter Y defined in Equation (11). The gray atoms represent the solid
and the red atoms represent the liquid phase. The green atoms are those located at the
crystal-melt interface and the solid line represents the interface location where the order

parameter has a value halfway between that of bulk solid and bulk liquid.

To obtain the interface positions, h(x) (see Figure 5), an order parameter is needed to allow us
to distinguish the solid from the liquid. In the case of the kinetic coefficient calculations, only the
average interface position was needed and therefore the choice of order parameter was not so
critical. However, for the calculation of the interfacial free energy in addition to the average
interface position one also needs to know the local interface position and, as such, the order
parameter must be chosen more carefully. In this study we used the order parameter introduced by
Sun et al. [30]. To start, for each atom, j, the order parameter, 3}, is calculated from the difference
of the vectors to the INN and 2NN atoms, 7;, to those same vectors in a perfect bee crystal, 7.,

and normalized by the number of INN and 2NN neighbors and the lattice parameter squared, a?.

13
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Figure 6: The local order parameter, y, as a function of z for the (001) oriented interface

for one value of x and f for atoms within 0.25a of that value of x.

The values of this order parameter still exhibit large fluctuations which makes the determination
of interface position difficult. To solve this issue, the smoothed order parameter, introduced by

Asadi et al. [37], was used in this work:

P (x, z) = Zivaribi (11)

Tiwgri’

where wy = [1 — (r;/d)?]?, 1, = /(x; — x)% + (z; — 2)? and d is a smoothing distance. Large
smoothing distances lead to inaccurate results and small smoothing distances do not sufficiently
dampen the fluctuations. Note that 1 is obtained from a smoothing over cylinders perpendicular
to the y direction, so it does not need to be calculated for each atom, only on a grid in the x — z
plane. We use a grid spacing of 0.5a and a smoothing distance of d = 2.5a, where a is the lattice
parameter. Figure 6 shows 1) for one value of x and f for atoms within 0.25a of the same value of
x along the z direction. The average values of 1 in the solid and liquid phases are estimated to be
0.038 and 0.135 respectively. The interface location is taken to be where 1 is halfway between
those values, 0.086. Figure 6 shows that the interface positions can be easily determined using the

1 order parameter.

14
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Once h(x) for each interface was calculated, the Fourier transform was applied and amplitude
of each Fourier mode was determined. The amplitudes of the Fourier modes for all times were then

squared and averaged to obtain (|A(k)|?). The slope of kzT /(bW ({|A(k)|?)) versus k? for small
k yields the stiffness value.

2.4 Phase-field model
2.4.1 Governing equations

The specific of the implementation of the phase-field model and the governing equations for
solidification of pure materials are found in the book of Provatas and Elder [68]. In the following,
only the important equations are provided and discussed.

The solidification of a pure material can be described by considering two field variables. One
is the phase-field order parameter, ¢ (¢p = 0 for liquid and ¢ = 1 for solid), and the other is the
temperature, T. The evolution of the solidifying system is driven by the decrease of total free

energy of the system which can be written in the form of the Ginzburg-Landau type free energy:

F = [ P22 7p12 + fu (§,T)] av . (12)

The first term is the excess free energy due to the interface and the second term is the bulk free
energy density. Phase-field simulation methodologies allow for significant freedom when
choosing the functional form for bulk free energy term. In this study, we consider the form of

faw (@, T) as follows:
faw(@®.T) = wg () +h(¢);—:l(T_Tm), (13)

where g(¢) = ¢p2(1 — ¢)? represents the double-well Ginzburg-Landau free energy function,
wg(¢) is the free energy distribution, and h(¢) = ¢3(10 — 15¢ + 6¢?) is the so-called
smoothing function with 0 and 1 values in the liquid and solid phases, respectively [45]. The time

evolution of the order parameter is described by the phase-field equation:

6_¢__M6F

e = Myg (14)

where M is the mobility related to the kinetic coefficient as described below. After taking the
functional derivative in (14) and by considering the time evolution of the thermal diffusion field
subject to the crystal-melt interface conditions, the final time-evolution equations [69] for the two

field variables, T and ¢, are:

15
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oT

27 L Lopresy 20
5 = DV*T + 2R ($) 3¢ (15)

oy 0P y s 0
1 0 , d (e(@)e (9) W) 9] (8(9)5 @) @) ,
M@)ot V.((0)*Ve) + 3y - ) - wg'(¢)

—h'(¢) ;—; (T —T,,) + Noise(¢). (16)

Both ¢ and T are functions of position, r, and time, t. For most crystalline materials, especially
metals, both the crystal-melt interfacial free energy and the kinetic coefficient depend on the
orientation of the crystal-melt interface. Typically, in a phase-field model the anisotropy effect is
accounted for by considering the dependence of the € and M parameters on the angle, 8, between

the direction normal to the interface and a specified direction in crystal.

The side branching of dendrites arises from thermal fluctuations. To mimic the thermal

fluctuations in a phase-field model, a continuous source of noise is added to the right hand side of

Eq. (16):
Noise(¢p) = 16Rp*(1 — ¢)?, (17)
where R is a randomly generated number that takes values between -1 and +1.

The system of governing equations (Egs. (15), and (16)) for the evolution of the phase-field
order parameter and temperature are solved numerically using a finite difference algorithm. All
terms on the right-hand side of Eq. (16), except the Laplacian term, are discretized using a second
order scheme, and for the Laplacian term we used the fourth order skewed 9-point scheme. The
simulations are carried out on a 400 x 400 grid with Ax = Ay = 0.5{, and At = 10 ps where {,

is the interface thickness which was set to be larger than the microscopic capillary length.
2.4.2 Relationship between phase-field and thin-interface models

The present work focuses on a two-dimensional (2D) implementation of a phase-field model
for investigation of solidification in undercooled titanium. Thin interface analysis was used to map
the phase-field equations to the classical sharp-interface moving boundary equations for
solidification; the mapping is applicable in the limit where the interface thickness is small
compared to the characteristics length-scales of the microstructure which is the case for metals.

Using this method, the €y, w, and M parameters present in the phase-field equations are calculated
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by using the MD calculated crystal-melt interfacial free energy and its kinetic coefficient by using

the following equations:

— %o
&y = Wz\/i In3, (18)
_alw
y - 3\/5) (19)

1 _ 1 TmVw Ly & 1h@)(A-h(s))

i 32 elgM  DepV2w o g

d¢ (20)

The asymptotic analysis to construct the mapping of the parameters as given in Egs. (18), (19),
and (20) is rather complicated and can be found in [24]. All of the other thermophysical properties

and phase-field parameters for titanium are listed in Table 4 in Section 3.3.

3 Results and Discussion
3.1 Kinetic coefficient

Figure 7 shows the MD simulation results for interface velocity versus undercooling
temperature for different interface orientations where the interface velocity was obtained using
both direct (Eq. 4) and indirect (Eq. 2) methods. Due to the periodic boundary conditions, the
interface is planar on average. Therefore, based on the Gibbs-Thomson equation, we expect a
linear relationship between interface velocity and undercooling temperature. The kinetic
coefficient is given by the slope of the velocity-undercooling curve.

For a crystal with cubic symmetry, the kinetic coefficient as a function of interface orientation
is given by:

1 1
M=E(1+3ek—4£kzi3=1n;*) , (21)

where n; are the components of the unit vector, 7, normal to the interface plane, p, is the average
kinetic coefficient, and ¢ is the anisotropy parameter [66].

Table 2 summarizes the information about the orientations, the kinetic coefficient expressions
as given by Eq. (21), and the calculated values from MD simulations. < > denotes the interface
in-plane crystallographic orientation in the x direction and { } denotes the orientation characterized
by the normal to the crystallographic plane parallel to the interface. For crystals with cubic
symmetry, only the crystal orientation in the interface normal direction should affect the kinetic

coefficient. The MD results proved that this is indeed true as evident from the results obtained for
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(110) {110} and (001) {110} orientations for which the kinetic coefficient differ by only about
1%. Direct and indirect calculation of interface velocity gives approximately the same results, but

the indirect method gives consistently lower kinetic coefficients.

200 energy method direct method
—e— (001){100} —o— (001){100}
—A— {(110¥Y{110} —a— {110){110}
150 + —=— (oo1){110} —=— (001){110}
—e— (110¥111} —o— (110){111}
100 4

U
o
|

Interface velocity [m/s]

100
AT [K]

Figure 7: The interface velocity versus undercooling temperature from MD simulations of
titanium obtained using two different methods. Four different interface orientations were
considered. Uncertainties are comparable to the symbol sizes, so error bars are not shown.
Uncertainties ranges from 3 to 13 % with lower velocities having larger percent

uncertainty.

Table 2: The crystal melt interface kinetic coefficient for various interface orientations

as given by Eq. (21) and MD simulations.

Interface Kinetic coefficient [m/(s-K)]
orientation | Expression (Eq. 21) Direct method Indirect method
(001) {100} oor = pto/ (1 — &) 0.740 £ 0.030  0.729 = 0.031
(1T0) {110} pygo = pto/ (1 + &) 0.684 +£0.038  0.668 = 0.039
(001) {110} pyyo = pto/ (1 + ) 0.691+0.030 0.677 +0.033
(1T0) {111} pyyy = pto/ (1 + 1.667,)  0.654+0.034  0.647 = 0.034
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Using the results from MD calculations and Eq. (21) one can calculate the mean kinetic
coefficient and anisotropy. The direct method for obtaining interface velocities gives ek = 0.037
and po = 0.71 m/(s-K) and the indirect method gives ek = 0.04 and po = 0.7 m/(s-K). The values
for the parameters o and ex were obtained without using the data for (110) {111} orientation and
therefore this can instead be used as a check. Specifically, the values of p,4,, obtained by using po
and &k, are 0.669 m/(s-K) and 0.656 m/(s-K) for the direct and indirect methods, respectively.

These values are reasonably close to the simulation values.

3.2 Interfacial free energy and stiffness

Figure 8 shows the variation of kg T/bW< |A(k)|? > versus k? for three different crystal-melt
interface orientations in the x direction as obtained from MD simulations. The slope of the solid
line is the stiffness value for that orientation. The data shows deviation from linearity for large
values of k?, and therefore there is a question of how much data at large k? value one should use
for fitting. There is no precise way to decide on this issue, therefore in our procedure we keep
adding points with higher k until the R? for the fit falls below 0.95 which is similar to [37] where
the criterion used was the norm of the residuals being greater than 3. Eq. (22) suggests that the
stiffness value is only a function of interface normal orientation. In MD simulations, two systems
with {111} orientations in interface normal direction are studied. In one of the systems the x
direction was chosen to be (110) and in the other it was (112). In spite of choosing a quasi-2D
system geometry with different crystallographic orientations for the x direction, the stiffness values
are approximately equal. The same is true for the two simulation systems with {110} orientations.

Similar to kinetic coefficient, for a crystal with cubic symmetry, the interfacial free energy as

a function of orientation can be represented by the following equation:
3
vy =vo [1+6 (Ihint —2) + 6,3 Xynf +66nindn3 —17/7)]  (22)

where y, is the average interfacial free energy, 61 and 62 are the anisotropy parameters, and n; is
defined as in Eq. (21) [37]. Table 3 contains the calculated interface stiffness using the capillary
fluctuation method. The parameters from Eq. (22) were obtained by a best fit to the MD data are
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v0=176 mJ/m?, 8:=0.018, and $>=-0.0001. The MD calculated interface free energy is consistent

with the reported experimental values ranging between 147 and 207 mJ/m? [42].

Table 3: The crystal

melt interface stiffness for various interface orientations as given by

Eq. (22) and obtained from MD simulations.

Interface Interface stiffness [mJ/m?]
orientation Expression (Eq. 22) MD simulations
(100) {001}  yo[1- (18/5) &1- (80/7) &3] 156
(110) {110}  yo[1+ (39/10) 81+ (155/14) &2] 179
(001) {110} Yo[1-(21/10) 81+ (365/14) 62] 177
(110) {111} yo[1+4 (12/5) 81- (1280/63) 62] 193
(112) {111}  vyo[1+ (12/5) &1- (1280/63) &2] 186
16

—_
oo
I

o0

N

ks T/bW<A(K)]2 >[mJ/A4] (x10-20)

]

L 4a
A (110){110} S
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O (100){010}
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0.02 0.04 0.06 0.08
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Figure 8: The varition of kgzT /bW < |A(k)|* > versus k? for different orientations as

obtained from MD simulation of titanium. The solid lines are linear fits where the color of

the line is the same as the symbols for the data it was fit to.
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3.3 Phase-field simulation

The set of parameters entering the phase-field equations (Egs. (15), and (16)) are summarized
in Table 4. These parameters were obtained by either MD simulations combined with thin-
interface to phase-field mapping, as explained previously, or were taken from existing
experimental data [50]. In 2D, the anisotropic € and M parameters can be obtained from Egs. (23),

and (24) in which 0 is given by Eq. (25) where ¢, and ¢,, are the derivatives of ¢ with respect to

x and y respectively:

e =¢&y(1+ 6, cos(48)) (23)
== Mio (1 — 8, cos(40)) (24)
0 = tan (%) . 25)

Although the mobility anisotropy parameter, &,;, depends on both y and € anisotropy parameters
as shown in Eq. (20), it will be referred to as the kinetic anisotropy and §, will be referred to as

the capillary anisotropy.

Table 4: Thermophysical properties and phase-field parameters for titanium. The
parameters were obtained by either MD simulations or by combined MD with thin-
interface to phase-field mapping or, for those properties indicated by *, were taken from

existing experimental data [50].

Lo [kJ/mol] 1437 D [m%/s] 9.5x 103"
Cp [kJ/mol K] 455" Tm [K] 1943 *

p [kg/m’] 4130 " vo [mJ/m?] 176

w [J/m’] 2.9 x 107 Cp [m] 8x 10
&0 [yJ/m] 0.000138 Mo [m*/s]]  6.76

8 0.00455 Sm 0.021
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Figure 9 shows the comparison of the steady-state solidification rate obtained from our phase-
field simulations, two sets of experimental data [43, 44], and from the analytical Lipton-Kurz-
Trivedi (LKT) model [70] parameterized for titanium. The results from the phase-field
simulations, based on the model described by Equations (15), and (16), are in reasonable
agreement with the results from both experiments and LKT model for undercooling, AT, below
200 K. When AT is larger than 200 K, the phase-field and experimental results start to deviate
from each other and the deviation increases with increasing undercooling. The question is, what is
the source of this discrepancy? Is it caused by the inaccuracies of experimental investigations, by
the limitations and inaccuracies of the phase-field model or by both simulations and experiment?
In the experiments, the solidification investigations at large undercoolings were done under
electromagnetic levitation conditions. The nucleation of the solid phase was initiated by using a
needle and establishing a contact with the levitating titanium droplet; the subsequent solidification
time was estimated by tracking the evolution of the temperature at the top and bottom edge of the
solidifying droplet. The solidification was considered to be completed when the temperature of the
droplet top surface started to increase with respect to the undercooling temperature. As predicted
by homogeneous nucleation theory, for undercooling in titanium smaller than 400 K, the
probability of homogeneous nucleation in the liquid phase is very low, and therefore the nucleation
process is unlikely to play any major role in determining the high solidification velocities obtained
experimentally for large undercooling. It is therefore important to focus on possible sources of
inaccuracies associated with model formulation, parameterization, and code implementation of

phase-field simulation methodology.
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Figure 9: Interface velocity versus undercooling in titanium as obtained from phase-field
simulations, two sets of experiments (Walder and Ryder 1995, R. Algoso, S. Altgilbers et
al. 2003), and from the LKT analytical model.

As evident from Figure 9, the phase-field simulations indicate that the variation of the interface
velocity with undercooling exhibits a crossover from linear to an approximately square root
dependence when the undercooling is about 150 K. To gain additional insight into the role of the
phase-field simulation model on the existence of such a crossover we performed additional phase-
field simulations based on slightly modified models. First, we investigate the solidification in a
system with one-dimensional (1D) symmetry. Specifically, the equivalent of equation (16) for the
order parameter in one dimension and in a reference frame that is translating with velocity Vn

along the +x direction can be written in the following form:

_m20 _ p20% —wg'(¢) —h'($) (26)

M 9x dx?

This can be rewritten in dimensionless form by normalizing the spatial and temperature variables

= e where X = 107¢ m. The dimensionless form of Eq. (26) in terms the new
o/Cp

variables is:

V09 _ €292 7
X ox1 X2 6x2

27)
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In the phase-field method, the order parameter increases monotonically from zero to one as a
function of position in the interfacial region and remains constant far from the interface. For each
undercooling, there is only one specific value of 1},, which results in a physically valid solution of
Eq. (27); it complies with the desired order parameter shape explained above [45]. Solving this
boundary value problem with one unknown parameter was done by using bvp4c solver in
MATLAB [71]. The solution of this second order boundary value problem with one unknown
parameter requires the knowledge of three boundary conditions. The order parameter values are
zero and one at -oo and o respectively and the derivative of the order parameter far from the
interface is zero in both liquid and solid phases.

By solving the Equation (27) for different values of AT, one can compute the interface
velocity ,(AT). Figure 10 shows the variation of the interface velocity with undercooling during
solidification in a 1D system. Similar to the results obtained in phase simulations in the 2D system,
discussed previously, for small undercoolings, up to AT ~ 150 K, V},(AT) varies approximately
linearly with AT. At larger undercoolings, the interface velocity variation with undercooling
follows a trend similar to 2D simulations at high undercoolings, and the undercooling temperature
at which the deviation from linearity occurs is very close to undercooling temperature at which the

2D phase-field simulation results start to deviate from the experimental results as seen from Figure

9.

16 T
B OO
127 o °
2 0©
E 84 ©
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I O
1T o
[ O
R
0 100 200 300 400

AT [K]
Figure 10: Variation of the steady state velocity of a planar one-dimensional interface with

undercooling.
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Based on the phase-field simulation results in both 2D and 1D systems one can infer that the
deviation from linearity of the interface velocity versus undercooling at large undercoolings might
be related to the actual phase-field model as represented in Equations (15) and (16). Building on
the methodology developed by Bragard et al. [45] we implemented and used a modified phase-
field model that seem to mitigate the shortcomings present at large undercooling in the regular
phase-field model. The modification proposed by Bragard et al. consist of introduction of a new
form of the driving force term in the bulk free energy density function (the second term in the
right-hand side of Eq. 13) of the phase-field method. Specifically, in this method the relationship
between thermodynamic driving force and undercooling is chosen to behave like V; 1 (AT), which
is the inverse of the function V. The simulation results, based on the Bragard et al. modifications,
hereby referred to as the BKLP phase-field model, are also shown in Figure 9 and are in good
agreement with the experimental results.

Another way that one can check the accuracy of phase-field simulation results is to compare
the values of the interface temperature as obtained from simulation with those calculated by using
the analytic Gibbs-Thomson (GT) relation in Equation (1). Based on the phase-field formulation,
the crystal-melt interface is at local equilibrium and as such the interface temperature must follow
the GT equation. According to GT relation, the deviation of the interface temperature from the
melting point is due to both capillary and kinetic effects and can be calculated by knowing: the
interface velocity, interface stiffness, dendrite tip curvature, and kinetic coefficient. Figure 11
shows the variation with undercooling of the interface temperature as obtained directly from the
phase-field simulations and from the GT relation. The results from both phase-field and BKLP
phase-field are presented. The calculation of the interface temperature from the GT relation is
based on the following data: the MD calculated kinetic coefficient and stiffness, the phase-field

calculated interface velocities (depends on the actual phase-field model used), and tip curvatures.
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Figure 11: The variation with undercooling of the interface temperature as obtained by

direct temperature calculation from phase-field simulations and by use of Gibbs-Tompson

equation.

As evident from Figure 11, for small undercoolings, AT < 150 K, there is a good agreement
between the interface temperatures obtained directly from the phase-field model and GT relation;
this is true for both phase-field models used. As the undercooling increases above 150K the
deviation between the interface temperature calculated directly from phase-field simulation and
the value calculated from GT equation increases for both phase-field models. It is however evident
that when the BKLP phase-field is used, the direct and GT interface temperatures are close to each
other even at high undercoolings; the difference is less than 10 K at AT = 300 K. When the phase-
field model based on Eq. (15) and (16) is used the difference between the GT temperature and the
direct temperature from phase-field is about 32 K at AT = 300 K. One can rationalize these
differences by the following observations: For small undercooling, both the capillary and kinetic
effects play a role in determining the interface temperature. Although the dendrite tip shape has a
higher curvature for larger undercooling, the effect of the kinetic term is still more dominant than
the capillary one due to the large solidification velocity. Therefore, underestimation of the velocity
calculated from the phase-field method accounts for most of the deviation of the interface
temperature from the GT equation.

Numerous studies show the importance of crystalline anisotropy on dendrite shapes [25] and
growth rate [26]. The capillary and kinetic anisotropy calculated using MD simulations for

titanium are d.=0.0045 and ou=0.021respectively and, in comparison with those for FCC metals,
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these are very small. Given that the spectrum of anisotropy present in various metals and metallic
alloys of different crystal structures is pretty large it is important to investigate, in a more general
framework, its effect on solidification characteristics such as: solidification morphology, dendrite
tip velocity, and mean solidification velocity. Therefore, in this section in addition to the
simulations parameterized for titanium we will also explore model systems with anisotropies
varying over a large range.

Figure 12 shows the shape of solid-phase generated during solidification by considering
titanium and four other model systems at undercoolings of AT=100 K and AT=250 K. Figures 12
(a) and 12(d) are the morphologies of the simulated systems with anisotropy parameters
corresponding to titanium. The other four morphologies correspond to model systems in which
alternately one of the anisotropy terms was turned off. The anisotropy parameters were changed
separately to study the individual effect of each term on dendrite morphology. Figures 12(a), 12(b),
and 12(c) illustrate the effect of the anisotropy parameters on the dendrite shapes for small
undercooling of AT=100 K. Both the tip radius and the preferred growth direction are affected by
the capillary and kinetic anisotropy parameters, 6. and dm. For the larger undercooling of AT=250
K shown in Figures 12 (d), 12(e), and 12(f), the effect of kinetic undercooling on the shape of the
dendrites and preferred growth direction is much more pronounced and shows the emergence of
side branches in the dendrites. Generation of secondary dendrite arms is related to the thermal
diffusion layer thickness which in turn can be estimated as the ratio of thermal diffusivity over
interface velocity (D/V). For large undercoolings, the small thermal layer thickness leads to large
temperature gradients at the tips of protrusions. When the front of the protrusion faces an
undercooled liquid, the heat is dissipated from solid into the liquid. In this case, the protrusion
grows and generates side branching. At low undercoolings, the temperature gradient at the tips of

protrusions is small, therefore those protrusions cannot survive, and no side branching is observed.
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Figure 12: The effect of capillary, de, and kinetic, dm, anisotropy on dendrite morphology

development during solidification in systems at two undercoolings

Figure 13 shows variation of the tip and average solidification velocities with kinetic
anisotropy at undercoolings of AT=100 K and AT=250 K. The capillary anisotropy was maintained
constant at 0,=0.0045 while the kinetic anisotropy was varied between om=0 and om=0.08. For
both undercoolings, the simulation results show that the increase of dm leads to significant increase
of the tip velocity while the average solidification velocity increased by only a small amount.
Based on Eq. (21), higher kinetic anisotropy leads to a more preferred growth in directions parallel
to the x and y-axis directions which in turn increases the tip velocity. When increasing dm from 0
to 0.08, at larger undercooling, the tip velocity increases from 16.85 to 23.4 m/s and the average
solidification velocity increases from 25.83 and 26.78 m/s. At smaller undercooling when varying
dm, the tip velocity increases from 1.91 to 2.85 m/s and the average solidification rate increases
from 3.28 to 3.62 m/s. These simulation results are in agreement with previous simulations [26]

which also show that the effect of kinetic anisotropy is more dominant for large undercoolings.
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Figure 13: Variation of the tip and average solidification velocities with kinetic anisotropy

at two undercoolings.

The same analysis is repeated by varying the capillary anisotropy and maintaining the kinetic

anisotropy, oM=0.021. Figure 14 illustrates the variation of the tip and solidification velocities with

capillary anisotropy for two undercoolings. At small undercooling, the increase of d: from 0 to

0.03 increases the tip velocity from 2.1 to 2.76 m/s and increases the average solidification velocity

from 3.3 to 3.7 m/s. For larger undercooling, the increase of d: from 0 to 0.03 increases the tip

velocity from 18.21 to 20.86 m/s and increases the average solidification velocity from 25.58 and

26.7 m/s. As with kinetic anisotropy, increasing the capillary anisotropy parameter affects the tip

velocity more than the average solidification velocity, especially at larger undercoolings.
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4 Conclusions

Solidification of highly undercooled titanium was investigated using a combined MD and
phase-field simulation approach. Building on the ongoing developments and applications of
atomistic simulation methods to the computation of important thermodynamic and kinetic
properties of crystal-melt interfaces in metals, we performed detailed MD calculations of titanium
crystal-melt interfacial free energy, kinetic coefficient, and their corresponding anisotropies. Using
the MD capillary fluctuation method, the calculated crystal-melt interface free energy of 176
mJ/m? is in good agreement with the reported experimental data ranging between 149 and 207
mJ/m?. By using the free solidification method, implemented based on a multiple layered
thermostats approach, the kinetic coefficient calculated is 0.71 m/(s-K). The capillary and kinetic
anisotropies obtained from MD simulations are 0.0045 and 0.021 respectively. These MD
calculated crystal-melt interfacial properties when combined with the thin interface analysis
method provided us with a path for obtaining a subset of the phase-field model parameters that
are, in many cases, very difficult to obtain by experimental investigations alone. By adopting the
rest of the parameters needed in the model from experiments allowed us to perform parameter-free
phase-field simulations of solidification which in turn allowed us to make quantitative comparison

between the simulation results and the existing experimental data.

Two slightly different phase-field models were implemented and tested on their ability at
predicting the solidification velocity at various undercoolings. For undercoolings below 150K,
when using the classical phase-field model, in which the driving force term in the bulk free energy
function was considered to vary linearly with undercooling, the simulation and experiment data
are in good agreement. However, at larger undercoolings the simulation results show significant
deviations from experimental data. By modifying the thermodynamic driving force term in the
free energy definition based on the Bragard et al. model, the phase-field method not only predicts
the solidification velocity consistent with the experiments over a large spectrum of undercoolings,
but also provides good estimation of the crystal-melt interface temperature consistent with the
Gibbs-Thomson equation. In addition to solidification kinetics, we have studied the effect of
anisotropy parameters on the dendritic morphology and growth rate at small and large
undercoolings. For both undercoolings, modifications of capillary and kinetic anisotropies affected

the dendrite shapes and the tip velocity, while it did not change the solidification velocity
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significantly. Moreover, the simulations showed that the effect of capillary anisotropy is larger for

small undercoolings, while the kinetic effect becomes more dominant for larger undercoolings.

The results of our study demonstrate that MD simulations combined with phase-field modeling
has the potential to provide quantitative, parameter-free, predictions on multiple features

characterizing solidification behavior in titanium.
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