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Abstract 

The effects of kinetic and capillary anisotropies on crystal morphology and growth rate during 

solidification of titanium are studied using atomistically-informed phase-field simulations. 

Molecular dynamics (MD) is employed to calculate the anisotropic kinetic coefficient and crystal-

melt interface free energy using the free solidification and capillary methods. The phase-field 

simulation results for solidification velocity and interface temperature are in quantitative good 

agreement with experimental and analytical data for undercoolings below 150K. As the role of 

interface kinetic effects increases with undercooling the use of a modified phase-field model 

allowed the extension of its quantitative prediction capability to higher undercoolings. In addition, 

the effect of MD calculated kinetic and capillary anisotropy parameters on dendrite shape and tip 

and solidification velocity was investigated. 
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1. Introduction 

Titanium and its alloys have unique properties and are among the most important metals for use 

as structural materials and are found in applications across many industries [1, 2]. Favorable 

properties such as mechanical strength, low density, and corrosion resistance makes titanium a 

preferred material in diverse areas such as aerospace [3], marine [4], and chemical industries [5].  

Moreover, due to the excellent biocompatibility with human body, titanium and its alloys are the 

materials of choice for many medical applications, including bone and dental implants [6]. Given 

that the cost of titanium is relative high compared to other metals such as steel and aluminum there 

is great interest in further developments of cost effective parts and component fabrication 

approaches. As such, casting of titanium and titanium alloy parts offers unique cost savings over 

other metallurgical processing techniques as well as technological advantages by allowing the 

production of components with complex shapes and geometries. To a large extent the quality and 

integrity of the cast ingots is determined by their microstructural characteristics such as solute 

micro segregation, grain size and shape, porosity, etc., characteristics which develop during the 

dendritic solidification process. Therefore, the development of a better understanding of both 

material and technological casting parameters on the solidification process is of central importance 

and a great deal of progress in this direction, in addition to experimentation, is obtained by accurate 

modeling and simulation of dendritic solidification process [7]. In spite of the great progress in 

understanding dendritic solidification important issues remain unsolved, such as the quantitative 

prediction of crystal growth in highly undercooled liquid metals. Solidification is a free boundary 

problem that poses expensive computational challenges and various simulation methodologies 

have been used over the last decades, including phase-field method [7].  

Phase-field modeling is a powerful and widely used simulation methodology for investigation 

of pattern formation. It was first introduced in the 1980’s to study phase transition [8, 9] and was 

later expanded and applied to investigations in a multitude of areas such as solid state phase 

transformations [10, 11], crack nucleation and propagation [12], dislocation dynamics, and 

precipitation growth [13-16]. The early applications of phase-field modeling provided mainly a 

qualitative description of the solidification process. Subsequent improved geometrical models 

together with the incorporation of realistic crystal-melt interfacial free energy and/or kinetic 

anisotropies allowed for a more quantitative description and lead to the development of a variety 

of phase-field models used to study solidification of pure materials [13, 14, 17-23]. The thin 
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interface asymptotic analysis of the phase-field equations developed by Karma and Rappel relates 

the phase-field parameters to the free boundary solidification equations [24]. The interfacial free 

energy, kinetic coefficient, and their anisotropy coefficients are important input parameters and 

need to be known accurately for quantitative prediction in a phase-field simulation of 

solidification. Many studies show the importance of the effect of crystalline anisotropy on dendrite 

shape [25] and growth rate [26]. A major limiting factor of quantitative prediction of the 

characteristics of solidification process with phase-field simulation approach is the scarcity of 

available experimental data pertaining to crystal-melt interfacial properties, especially the 

anisotropy coefficients for interfacial free energy and kinetic coefficients of the materials. Because 

the undercooled melt solidifies very rapidly, there are only a few experiments that have 

successfully measured the solidification velocity, crystal-melt interfacial free energy and kinetic 

coefficient for large undercooling [27-29] and there are no reports on experimental measurement 

of interfacial anisotropy coefficients.  

In the quest for obtaining accurate description of anisotropic energies and mobilities of crystal-

melt interfaces computer simulations have become an increasingly important tool with MD 

simulations well positioned as the main method of choice. Calculations of kinetic coefficient using 

MD simulations was reported for various pure elements such as nickel [30, 31], gold and silver 

[32], aluminum [31], magnesium [33], and copper [31, 34], and also compounds such as Ni3Al 

[35].  Moreover, the interfacial free energy and anisotropy coefficients was also obtained from MD 

simulations for aluminum [36], iron [37], magnesium [33], and gold and silver [38] elements, as 

well as alloys such as nickel-aluminum [39] and nickel-copper [40]. There is very limited data on 

crystal-melt interfacial properties of titanium. Specifically, the interfacial free energy [41, 42] and 

solidification velocity [43, 44] have been measured experimentally for titanium but the reported 

results show a large scatter and provide no information on anisotropies of these properties.   

In this study, we focus on investigating the effects of kinetic and capillary anisotropies on the 

crystal morphology and growth rate in solidification of titanium using a combined MD with phase-

field simulation approach. First, we report our calculations of the interfacial free energy, kinetic 

coefficient, and their anisotropies using MD simulations. Then using the MD calculated 

parameters in phase- 

field simulations, together with other experimentally obtained properties of titanium, we 

investigate dendritic solidification of undercooled titanium. The phase-field solidification 
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velocities show good agreement with the experiment results for small undercooling but exhibits 

some deviations from the experiments for large undercoolings. By adopting and implementing a 

variant of phase equations, as proposed by Bragard et al [45], the agreement between simulation 

and experimental results is extended to higher undercoolings. Our study of the effect of the 

anisotropy parameters on the dendrite tip velocity and the overall solidification velocity also shows 

that the tip velocity is affected significantly while the effect on the overall velocity is much smaller. 

2. Simulation Methodology 

The solidification of a pure melt is governed by the heat diffusion equation in the solid and 

liquid with a temperature boundary condition imposed on crystal-melt interface. In addition to heat 

diffusion equation, the boundary condition should also include the crystal-melt boundary heat 

source term, in the form of the Stefan condition, that relates the solidification velocity to the jump 

in normal temperature gradient at the interface. The temperature at any point along the moving 

crystal-melt interface, 𝑇ூ, is governed by the velocity-dependent Gibbs-Thomson (GT) relation [7] 

given by: 

𝑇ூ ൌ 𝑇ெ െ ்ಾ
௅
∑ ଵ

ோ೔
൤𝛾ሺ𝑛ොሻ ൅ డమఊሺ௡ොሻ

డఏ೔
మ ൨ െ ௏೙ෝ

ఓሺ௡ොሻ௜ୀଵ,ଶ  ,                                       (1)  

where 𝑇ெ is the melting temperature and L is the latent heat of melting per unit volume. The second 

term on the right-hand side of Eq. (1) represents the local change of the interface equilibrium 

temperature due to the curvature of the interface, where Ri (i=1,2) are the local principal radii of 

curvature, 𝛾ሺ𝑛ොሻ is the interfacial free energy,  𝛾ሺ𝑛ොሻ ൅ డమఊሺ௡ොሻ

డఏ೔
మ   is the interfacial stiffness, and 𝜃௜ are 

the local angles between the interface normal direction (𝑛ො) and the two local principal directions. 

The last term on the right-hand-side of Eq. (1) represents the non-equilibrium interface 

undercooling that drives the solidification, where 𝜇ሺ𝑛ොሻ and 𝑉௡ො  are the kinetic coefficient and 

solidification velocity for the interface normal direction, respectively. It is therefore crucial to 

determine both the magnitude and anisotropy of interfacial free energy and kinetic coefficient. 

2.1 Selection of interatomic potential for MD simulations  

When calculating crystal-melt interfacial properties by MD simulations it is very important to 

identify and use the best available inter-atomic potential for the system of interest at the appropriate 

external conditions, in this case titanium close to melting temperature. Accordingly, we considered 
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four existing interatomic potentials for Ti; three of the modified embedded atom method (MEAM) 

potential type (MEAM bcc [46], MEAM hcp [47], MEAM spline [48]) and one embedded atom 

method (EAM) potential (EAM [49]). In the evaluation process of the four inter-atomic potentials, 

we factored in the capability of the potentials to accurately reproduce important properties of 

titanium: the high temperature crystal structure, the radial distribution function 𝑔ሺ𝑟ሻ of the liquid 

phase, the melting temperature, the latent heat of fusion, and the diffusivity in the liquid phase. 

Table 1: The melting temperature, latent heat of fusion, and liquid diffusivity at the melting 

point as obtained from MD simulations of titanium by using four interatomic interaction 

potentials and from experimental data. Unless specified otherwise, the melting 

temperatures and latent heats are from the references indicated. The diffusivities for all 

four potentials were obtained from our MD calculations  

Interatomic potential and 

crystal structure 

Melting 

temperature [K] 
Latent heat [kJ/mol] 

Liquid diffusivity 

[10-5 cm2/s] 

  EAM, hcp  [49] 1918 12.5 4.7* 

  MEAM, bcc [46] 1651; 1716* 11.7; 9.07* 5.7* 

  MEAM, hcp [47] 1706 14.5 3.9*  

  MEAM spline, bcc [48] 1900; 1876* 9.09* 3.9*  

  Experiment  [50] 1941 14.17 4.9  

  * Result obtained from our MD simulations using the corresponding interatomic potential 

 

Table 1 presents a summary of the MD simulation results for the melting temperature, the 

latent heat of fusion, and the liquid diffusivity at the melting temperature for titanium modeled by 

each of the four interatomic potentials considered and the corresponding data from experimental 

measurements. The latent heat of fusion and the melting temperature for the MEAM bcc and 

MEAM spline bcc potentials were calculated by the method presented in [51] and the values 

obtained were slightly different than the values reported in [46]  and [48]. The values for the same 

thermodynamic properties reported for the EAM hcp and MEAM hcp potentials are closer to the 

experimental data. The diffusivities in the liquid phase are relatively close to the experimental 

value for all four potentials.  In addition to their ability at predicting thermodynamic and transport 
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properties, the four interatomic potentials were evaluated on their potential at reproducing crystal 

structure and structural characteristics of the liquid phase. Figure 1 shows the MD-calculated pair 

distribution functions, 𝑔ሺ𝑟ሻ, the experimentally obtained g(r) at 1,965 K [52], and the pair 

distribution function obtained by ab initio MD simulation at 2,000 K [53, 54].  Although the EAM 

hcp potential predicts the melting point and latent heat of fusion close to experimental values, the 

g(r) shows significant deviation from the experimental and ab-initio g(r) functions, especially close 

to the second and third extrema. Titanium has a stable hcp crystal structure at room temperature 

and, as temperature rises above 1,150 K, it undergoes an allotropic structural transformation to a 

bcc crystal structure. The MEAM hcp potential was rejected because it does not have a stable bcc 

phase. The latent heats for the MEAM bcc and MEAM spline bcc potentials are similar, but the 

𝑔ሺ𝑟ሻ and liquid diffusivities for the MEAM bcc potential are closer to experimental and ab initio 

MD simulation data and therefore we settled on the MEAM bcc potential [46] as the inter-atomic 

potential for our MD simulations of Ti. All MD simulations were performed using the LAMMPS 

software [55]. 

 

Figure 1 : Comparison of radial distribution functions for pure titanium obtained from 

classical MD simulations with MEAM spline [48], MEAM bcc[46], MEAM hcp [47], EAM 

potential [49], ab initio MD simulations [53, 54], and Holland-Moritz experimental data 

[52]. 
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2.2 Calculation of kinetic coefficient 

The MD simulation approaches used for calculation of the kinetic coefficient of crystal-melt 

interfaces can be divided into equilibrium and non-equilibrium methodologies [7]. The equilibrium 

methods rely on the analysis of the fluctuations of the crystal-melt interface through the capillary 

fluctuation method [7]. The non-equilibrium MD methods are classified as either forced velocity 

[56, 57] or free solidification [57] approaches. In this study the kinetic coefficient was calculated 

by using a free solidification method [57]. Under the MD simulation conditions, the crystal-melt 

interface, on average, remains planar during the solidification and therefore according to Gibbs-

Thomson relation (see Eq. (1)) the slope of the solidification velocity as function of temperature 

gives the kinetic coefficient. Due to the latent heat generated during solidification, the interface 

region will be at a higher temperature if only a single global thermostat is used. To eliminate the 

temperature gradients and avoid the calculation of interface temperature we used a system of 

multiple local thermostats applied independently to thin slabs aligned parallel to the plane of the 

solidification interface. This approach was proven to provide nearly identical results to those 

obtained by using a global thermostat and the actual interface temperature calculation [57]. 

Calculation of the kinetic coefficient requires determination of the velocity of the crystal-melt 

interface at different undercoolings, but initially an equilibrated crystal-melt coexistence system 

at the melting temperature of 1716 K is needed. For a (001) oriented solidification interface, shown 

in Figure 2, the whole simulation system was initialized on a lattice consisting of 14×14×69 bcc 

unit cells (27,048 atoms) of approximate dimensions 46×46×230 Å. The simulation systems with 

different orientations of the crystal-melt interface, (110) and (111), have similar dimensions and 

number of atoms. Next, the system was equilibrated for 50 ps as a solid under the NPT ensemble 

where P = 0, followed by an additional 300 ps simulation during which the mean lattice parameter 

was determined. To create the crystal-liquid coexistence system, the central three quarters portion 

of the simulation box along the z-direction (see Figure 2) was melted by heating it at 2,600 K for 

about 50 ps under the NVT ensemble while the other quarter of the system remained in the original 

(solid) state. This lead to the creation of two crystal-melt interfaces.  Finally, the equilibrated 

crystal-melt coexistence system was obtained by a 100 ps MD simulation under NPzzT conditions 

in which the temperature of the entire system is set to the melting temperature and the normal 

stress in the z direction, Pzz, is zero. The box sizes in the x and y directions, after they were adjusted 

to the values determined by the average lattice parameter for the melting temperature, were 
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maintained fixed.  An additional 100 ps NPT simulation was used to obtain the equilibrated crystal-

melt coexistence configurations that were used as the starting configurations for non-equilibrium 

solidification.  

 

Figure 2: The starting configuration of the system used for the nonequilibrium MD 

simulations of solidification of pure titanium. Red/pink and dark gray/light gray regions 

are located in liquid and solid phases respectively. Alternating dark/light colors are used 

to clearly indicate the adjacent slabs that are thermostated independently. The green atoms 

are boundary atoms which were restrained to have an average force of zero in the x and y 

directions. 

Starting from the equilibrated crystal-melt coexistence system, the kinetic coefficient is 

calculated from the investigation of the variation of the crystal-melt interface velocity with the 

applied undercooling. For these, the values of the lattice parameter for various undercooling 

temperatures were needed. These were obtained from a set of separate MD simulations of the solid 

at the corresponding temperatures similar to those performed at the melting point but with a  

smaller box size of only 131313 unit cells (4394 atoms). Starting from an equilibrated crystal-

melt coexistence configuration, the velocities of all atoms are scaled down to obtain the desired 

temperature below the melting point. |The boundary conditions in the z-direction are changed from 

periodic to free boundaries, the barostat is turned off, and the box sizes and atom positions are 

scaled in the x- and y-directions (the interface plane) such that the solid regions have the lattice 
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parameter appropriate for the undercooled temperature. The solidification step is effectively run 

under conditions of constant normal stress due to the free boundaries (Pzz = 0) and constant 

temperature where the undercooled temperature is maintained by using the multiple thermostats 

approach in which the simulation system is divided along the z direction into a set of slab regions 

parallel to the interface and each slab is independently thermostatted. The free boundaries along 

the z-direction are required in order to be able to use multiple regional thermostats. Surface melting 

was observed at the free boundaries, especially for small undercoolings. To prevent surface 

melting, the atoms located in the two atomic planes adjacent to the free boundaries were restrained 

such that the average forces in the x and y directions on those groups of atoms were set to zero and 

the temperature in these regions was maintained to the desired undercooling by applying a 

Langevin thermostat with a damping parameter of 0.1 ps only in the z direction. The thickness of 

all of the other regional thermostats was set to 5.0 Å and velocity rescaling was used whenever the 

temperature deviated more than 1 K from the target temperature. Ten independent solidification 

simulations were run starting from different initial coexistence configurations to determine the 

uncertainty in interface velocity for each undercooling. 

 

Figure 3: Crystal-melt interface velocity as a function of thermostat bin thickness with 200 

K undercooling. Error bars represent 95% confidence intervals. 

The selection of the optimum thermostats bin thickness was based on the analysis of the 

variation of crystal-melt interfacial velocity with the bin thickness for a given temperature 
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undercooling.  Figure 3 shows that the decrease of bin thickness leads to an increase of interface 

velocity and for a 200K undercooling it reaches a plateau for bin thickness less than 5 Å.  

The velocity of the interface was calculated by using two methodologies. The so-called indirect 

method relies on the relationship between interface velocity and the average slope of the variation 

of the total potential energy with time during a steady state solidification simulation at a given 

undercooling temperature T and is given by  

𝑣௜௡௧ ൌ
ଵ

ଶ஺௅

ௗா

ௗ௧
 ,                                                            (2) 

where vint is the interface velocity,  𝐴 is the area of the interface, 𝐸 is the total interatomic potential 

energy of the system. 𝐿 is latent heat per volume of solid, 〈𝑉௦௢௟〉, and can be calculated as: 

𝐿 ൌ
〈ு೗೔೜〉ି〈ுೞ೚೗〉

〈௏ೞ೚೗〉
  ,                                                     (3) 

where  〈𝐻௦௢௟〉 and  〈𝐻௟௜௤〉 are the enthalpies of solid and liquid respectively at the simulation 

undercooling temperature. The interface velocity is also obtained by direct tracking of the interface 

position as function of time and using 

𝑣௜௡௧ ൌ
ଵ

ଶ
ቂௗ
ሺௗ಺ሻ

ௗ௧
െ

ௗ൫ௗೄ೤ೞ൯

ௗ௧
ቃ,                                             (4) 

𝑑ூ ൌ 𝑧ூ,௧ െ 𝑧ூ,௕ and 𝑑ௌ௬௦ ൌ 𝑧௧ െ 𝑧௕, where 𝑧ூ,௧ and 𝑧ூ,௕ are the positions of the top and bottom 

interfaces and 𝑧௧ and 𝑧௕ are the positions of the upper and lower solid layers, see Figure 4. Note 

that 𝑧௧ and 𝑧௕ change due to the volume change of solidification which must be accounted for 

when calculating the interface velocity. The time to reach steady state solidification is taken as the 

time to create solid with a 12 Å depth or about 3 layers at each interface which is sufficient so that 

the calculated velocity is no longer dependent on starting time. 

Obtaining 𝑧ூ,௧ and 𝑧ூ,௕ requires use of an order parameter whose average value is clearly 

different in the liquid and solid phases. For convenience we use the centrosymmetry parameter, 

𝐶𝑆, based on 12 nearest neighbors, which is calculated for each atom in the system [58]. Twelve 

nearest neighbors is close to the number in the liquid phase and gave a larger difference between 

liquid and solid than the 8 nearest neighbors typically used for the bcc crystal. Although the 

centrosymmetry parameter fluctuates, the mean values in the liquid and solid phases are clearly 
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different as shown in Figure 4. To obtain the interface positions, the fitting of error function to 𝐶𝑆 

is used: 

𝐶𝑆௙௜௧ ൌ ቐ
0.5 ቀ〈𝐶𝑆௦௢௟〉 ൅ 〈𝐶𝑆௟௜௤〉 ൅ ൫〈𝐶𝑆௦௢௟〉 െ 〈𝐶𝑆௟௜௤〉൯ 𝑒𝑟𝑓 ቂ

௭ି௭಺,೟

ఙ√ଶ
ቃቁ , 𝑧௖௘௡௧௘௥ ൏ 𝑧 ൏ 𝑧௨௣௣௘௥

 0.5 ቀ〈𝐶𝑆௦௢௟〉 ൅ 〈𝐶𝑆௟௜௤〉 െ ൫〈𝐶𝑆௦௢௟〉 െ 〈𝐶𝑆௟௜௤〉൯ 𝑒𝑟𝑓 ቂ
௭ି௭಺,್

ఙ√ଶ
ቃቁ , 𝑧௟௢௪௘௥ ൏ 𝑧 ൏ 𝑧௖௘௡௧௘௥

,   (5) 

𝑧௖௘௡௧௘௥ ൌ 0.5ሺ𝑧௧ െ 𝑧௕ሻ ൅ 𝑧௕,                                                  (6) 

𝑧௨௣௣௘௥ ൌ 0.95ሺ𝑧௧ െ 𝑧௕ሻ ൅ 𝑧௕,                                                (7) 

𝑧௟௢௪௘௥ ൌ 0.05ሺ𝑧௧ െ 𝑧௕ሻ ൅ 𝑧௕.                                                 (8) 

Although 〈𝐶𝑆௦௢௟〉 and 〈𝐶𝑆௟௜௤〉 can be obtained from averages by separate bulk solid and liquid 

simulations, we consider them to be adjustable parameters along with 𝑧ூ,௧, 𝑧ூ,௕, and 𝜎. The fitting 

is performed using the lmfit python package [59] during the simulation at 0.375 ps intervals by 

utilizing the ability of LAMMPS [55] to use python functions. This feature also allows the 

simulations to be terminated when the distance between interfaces is less than 50 Å. 

  

Figure 4: Variation of the centrosymmetry parameter along the z direction (the 

solidification direction) at a given time during a MD simulation of the solidification in a 

crystal- melt coexisting system. The solid green and red lines depict the error function fit 

of the order parameter around the lower and upper interface respectively. The dashed 

green and vertical lines indicate the current location of the two crystal melt interfaces.   
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2.3 Calculation of interfacial free energy and stiffness 

There are various MD methods used to calculate the crystal-melt interfacial free energy such 

as the cleavage method [60], the critical nucleus method [61], metadynamics [62], transition 

interface sampling [63], the mold integration method [64], the interface pinning method [65], and 

the capillary fluctuation method [66]. Here, we use the capillary fluctuation method which was 

chosen due to its relative simplicity, ability to obtain anisotropy coefficients, and applicability to 

alloys for future use.  

In the capillary fluctuation method, the MD simulation is performed at the melting temperature 

with crystal-melt coexistence. The system is quasi-two dimensional; the interface length (W) in 

the 𝑥 direction is much larger than its width (b) in the 𝑦 direction. The system is very long (𝐿) in 

the interface normal direction to avoid any interactions between interfaces. The simulation system 

is shown in Figure 5.  

Let ℎሺ𝑥ሻ be the position along the 𝑧 direction of an interface separating solid and liquid phases. 

Its deviation from the mean value, 〈ℎ〉, can be written as a summation of Fourier modes: ℎሺ𝑥ሻ െ

〈ℎ〉 ൌ ∑ 𝐴ሺ𝑘ሻ௞ 𝑒௜௞௫. Based on the equipartition of energy on the degrees of freedom applied to 

individual capillary fluctuation modes, the interface stiffness can be calculated using: 

 𝛾 ൅ 𝑑ଶ 𝛾 𝑑⁄ 𝜃ଶ ൌ ௞ಳ்

௕ௐ⟨|஺ሺ௞ሻ|మ⟩௞మ
 ,                                            (9) 

where, 𝑘஻𝑇 is the thermal energy, 〈|𝐴ሺ𝑘ሻ|ଶ〉 is the mean squared amplitude of the Fourier modes 

and k is the mode wave number. The crystal-melt interface can also be considered two dimensional 

so instead of one stiffness, two different stiffness values must be considered in equation (9) [67]. 

Plotting 𝑘஻𝑇/ሺ𝑏𝑊〈|𝐴ሺ𝑘ሻ|ଶ〉ሻ versus 𝑘ଶ  and fitting for small values of 𝑘 gives a slope which is 

the interface stiffness. The same procedure is repeated for different crystallographic orientations 

to obtain interface stiffness anisotropy coefficients. 

The MD simulation starting configuration consists of a periodic system with dimensions of 

80×4×220 bcc unit cells. The central half of the system is melted in the NVT ensemble at 2,600 

K, while the remaining half of the atoms are fixed. The resulting crystal-melt coexistence system 

is equilibrated at the melting point for 1 ns in the NPzzT ensemble, using an extended system 

thermostat and barostat. Assuming the melting point is accurate, one can infer that the system is 

now close to equilibrium. The positions of the two crystal-melt interfaces are then obtained from 
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an NPH simulation lasting for 240 ps. During this step, the system configuration is saved every 

0.2 ps for later analysis of the interface fluctuations.  

 

  

Figure 5: A snapshot from the MD simulation of pure titanium depicting the thermal 

fluctuations of the crystal-melt interface. The phase of each atom is based on the value of 

the atomic order parameter 𝜓 defined in Equation (11). The gray atoms represent the solid 

and the red atoms represent the liquid phase. The green atoms are those located at the 

crystal-melt interface and the solid line represents the interface location where the order 

parameter has a value halfway between that of bulk solid and bulk liquid.  

 

To obtain the interface positions, ℎሺ𝑥ሻ (see Figure 5), an order parameter is needed to allow us 

to distinguish the solid from the liquid. In the case of the kinetic coefficient calculations, only the 

average interface position was needed and therefore the choice of order parameter was not so 

critical. However, for the calculation of the interfacial free energy in addition to the average 

interface position one also needs to know the local interface position and, as such, the order 

parameter must be chosen more carefully. In this study we used the order parameter introduced  by 

Sun et al. [30]. To start, for each atom, j, the order parameter, 𝛽௝, is calculated from the difference 

of the vectors to the 1NN and 2NN atoms, 𝑟పሬሬ⃗ , to those same vectors in a perfect bcc crystal, 𝑟௕௖௖ሬሬሬሬሬሬሬ⃗ , 

and normalized by the number of 1NN and 2NN neighbors and the lattice parameter squared, 𝑎ଶ. 
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𝛽௝ ൌ
ଵ

ଵସ௔మ
∑ |𝑟పሬሬ⃗ െ 𝑟௕௖௖ሬሬሬሬሬሬሬ⃗ |ଶ௜ .                                                     (10) 

 

Figure 6:  The local order parameter, ψ, as a function of z for the ሺ001ሻ oriented interface 

for one value of x and β for atoms within 0.25a of that value of x. 

 

The values of this order parameter still exhibit large fluctuations which makes the determination 

of interface position difficult. To solve this issue, the smoothed order parameter, introduced by 

Asadi et al. [37],  was used in this work: 

𝜓ሺ𝑥, 𝑧ሻ ൌ
∑ ௪೏௥೔ఉ೔೔

∑ ௪೏௥೔೔
,                                                       (11) 

where 𝑤ௗ ൌ ሾ1 െ ሺ𝑟௜ 𝑑⁄ ሻଶሿଶ, 𝑟௜ ൌ ඥሺ𝑥௜ െ 𝑥ሻଶ ൅ ሺ𝑧௜ െ 𝑧ሻଶ and 𝑑 is a smoothing distance. Large 

smoothing distances lead to inaccurate results and small smoothing distances do not sufficiently 

dampen the fluctuations. Note that 𝜓 is obtained from a smoothing over cylinders perpendicular 

to the y direction, so it does not need to be calculated for each atom, only on a grid in the 𝑥 െ 𝑧 

plane. We use a grid spacing of 0.5𝑎 and a smoothing distance of 𝑑 ൌ 2.5𝑎, where 𝑎 is the lattice 

parameter. Figure 6 shows 𝜓 for one value of 𝑥 and 𝛽 for atoms within 0.25𝑎 of the same value of 

𝑥 along the 𝑧 direction. The average values of 𝜓 in the solid and liquid phases are estimated to be 

0.038 and 0.135 respectively. The interface location is taken to be where 𝜓 is halfway between 

those values, 0.086. Figure 6 shows that the interface positions can be easily determined using the 

𝜓 order parameter. 
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Once h(x) for each interface was calculated, the Fourier transform was applied and amplitude 

of each Fourier mode was determined. The amplitudes of the Fourier modes for all times were then 

squared and averaged to obtain 〈|𝐴ሺ𝑘ሻ|ଶ〉. The slope of 𝑘஻𝑇/ሺ𝑏𝑊〈|𝐴ሺ𝑘ሻ|ଶ〉ሻ versus 𝑘ଶ for small 

𝑘 yields the stiffness value.  

2.4 Phase-field model 

2.4.1 Governing equations 

The specific of the implementation of the phase-field model and the governing equations for 

solidification of pure materials are found in the book of Provatas and Elder [68]. In the following, 

only the important equations are provided and discussed.  

The solidification of a pure material can be described by considering two field variables. One 

is the phase-field order parameter, 𝜙 (𝜙 = 0 for liquid and 𝜙 = 1 for solid), and the other is the 

temperature, T. The evolution of the solidifying system is driven by the decrease of total free 

energy of the system which can be written in the form of the Ginzburg-Landau type free energy:  

𝐹 ൌ ׬ ቂ
ఌሺ௡ොሻమ

ଶ
|𝛻𝜙|ଶ ൅ 𝑓ௗ௪ሺ𝜙,𝑇ሻቃ 𝑑𝑉  .                                           (12) 

The first term is the excess free energy due to the interface and the second term is the bulk free 

energy density. Phase-field simulation methodologies allow for significant freedom when 

choosing the functional form for bulk free energy term. In this study, we consider the form of  

𝑓ௗ௪ሺ𝜙,𝑇ሻ as follows: 

𝑓ௗ௪ሺ𝜙,𝑇ሻ ൌ 𝑤𝑔ሺ𝜙ሻ ൅ ℎሺ𝜙ሻ ௅బ
೘்
ሺ𝑇 െ 𝑇௠ሻ ,                                    (13) 

where 𝑔ሺ𝜙ሻ ൌ 𝜙ଶሺ1 െ 𝜙ሻଶ represents the double-well Ginzburg-Landau free energy function, 

𝑤𝑔ሺ𝜙ሻ is the free energy distribution, and ℎሺ𝜙ሻ ൌ 𝜙ଷሺ10 െ 15𝜙 ൅ 6𝜙ଶሻ is the so-called 

smoothing function with 0 and 1 values in the liquid and solid phases, respectively [45]. The time 

evolution of the order parameter is described by the phase-field equation: 

డథ

డ௧
ൌ െ𝑀 ఋி

ఋథ
  ,                                                           (14) 

where M is the mobility related to the kinetic coefficient as described below. After taking the 

functional derivative in (14) and by considering the time evolution of the thermal diffusion field 

subject to the crystal-melt interface conditions, the final time-evolution equations [69] for the two 

field variables, T and 𝜙,  are: 
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డ்

డ௧
ൌ 𝐷𝛻ଶ𝑇 ൅ ௅బ

௖೛
ℎᇱሺ𝜙ሻ డథ

డ௧
 ,                                           (15) 

1
𝑀ሺ𝜃ሻ

𝜕𝜙
𝜕𝑡

ൌ 𝛻. ሺ𝜀ሺ𝜃ሻଶ𝛻𝜙ሻ ൅
𝜕 ൬𝜀ሺ𝜃ሻ𝜀ᇱሺ𝜃ሻ

𝜕𝜙
𝜕𝑥൰

𝜕𝑦
െ
𝜕 ൬𝜀ሺ𝜃ሻ𝜀ᇱሺ𝜃ሻ

𝜕𝜙
𝜕𝑦൰

𝜕𝑥
െ 𝑤𝑔ᇱሺ𝜙ሻ 

െℎᇱሺ𝜙ሻ ௅బ
೘்
ሺ𝑇 െ 𝑇௠ሻ ൅ 𝑁𝑜𝑖𝑠𝑒ሺ𝜙ሻ.                                   (16) 

Both 𝜙 and T are functions of position, r, and time, t. For most crystalline materials, especially 

metals, both the crystal-melt interfacial free energy and the kinetic coefficient depend on the 

orientation of the crystal-melt interface. Typically, in a phase-field model the anisotropy effect is 

accounted for by considering the dependence of the 𝜀 and 𝑀 parameters on the angle, 𝜃, between 

the direction normal to the interface and a specified direction in crystal. 

The side branching of dendrites arises from thermal fluctuations. To mimic the thermal 

fluctuations in a phase-field model, a continuous source of noise is added to the right hand side of 

Eq. (16): 

𝑁𝑜𝑖𝑠𝑒ሺ𝜙ሻ ൌ 16𝑅𝜙ଶሺ1 െ 𝜙ሻଶ,                                         (17) 

where R is a randomly generated number that takes values between -1 and +1.  

The system of governing equations (Eqs. (15), and (16)) for the evolution of the phase-field 

order parameter and temperature are solved numerically using a finite difference algorithm. All 

terms on the right-hand side of Eq. (16), except the Laplacian term, are discretized using a second 

order scheme, and for the Laplacian term we used the fourth order skewed 9-point scheme. The 

simulations are carried out on a 400 × 400 grid with Δ𝑥 ൌ Δ𝑦 ൌ 0.5𝜁௣ and Δ𝑡 ൌ 10 ps where 𝜁௣ 

is the interface thickness which was set to be larger than the microscopic capillary length. 

2.4.2 Relationship between phase-field and thin-interface models 

The present work focuses on a two-dimensional (2D) implementation of a phase-field model 

for investigation of solidification in undercooled titanium. Thin interface analysis was used to map 

the phase-field equations to the classical sharp-interface moving boundary equations for 

solidification; the mapping is applicable in the limit where the interface thickness is small 

compared to the characteristics length-scales of the microstructure which is the case for metals.    

Using this method, the 𝜀଴, 𝑤, and  𝑀 parameters present in the phase-field equations are calculated 
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by using the MD calculated crystal-melt interfacial free energy and its kinetic coefficient by using 

the following equations: 

𝜁௣ ൌ
ఌబ
√௪

2√2 𝑙𝑛3,                                                         (18) 

𝛾 ൌ ఌ√௪

ଷ√ଶ
,                                                                    (19) 

ଵ

ఓ
ൌ

ଵ

ଷ√ଶ
೘்√௪

ఌ௅బெ
െ

௅బ
஽௖೛

ఌ

√ଶ௪
׬

ℎሺ𝜙ሻሺ1െℎሺ𝜙ሻሻ

√𝑔ሺ𝜙ሻ
 𝑑𝜙

1

0
                           (20) 

The asymptotic analysis to construct the mapping of the parameters as given in Eqs. (18), (19), 

and (20) is rather complicated and can be found in [24]. All of the other thermophysical properties 

and phase-field parameters for titanium are listed in Table 4 in Section 3.3.  

3 Results and Discussion 

3.1 Kinetic coefficient 

Figure 7 shows the MD simulation results for interface velocity versus undercooling 

temperature for different interface orientations where the interface velocity was obtained using 

both direct (Eq. 4) and indirect (Eq. 2) methods. Due to the periodic boundary conditions, the 

interface is planar on average. Therefore, based on the Gibbs-Thomson equation, we expect a 

linear relationship between interface velocity and undercooling temperature. The kinetic 

coefficient is given by the slope of the velocity-undercooling curve.  

For a crystal with cubic symmetry, the kinetic coefficient as a function of interface orientation 

is given by: 

 
ଵ

ఓሺ௡ොሻ
ൌ ଵ

ఓబ
ሺ1 ൅ 3𝜀௞ െ 4𝜀௞ ∑ 𝑛௜

ସଷ
௜ୀଵ ሻ   ,                                       (21) 

where 𝑛௜ are the components of the unit vector, 𝑛ො, normal to the interface plane, 𝜇଴ is the average 

kinetic coefficient, and 𝜀௞ is the anisotropy parameter [66].  

Table 2 summarizes the information about the orientations, the kinetic coefficient expressions 

as given by Eq. (21), and the calculated values from MD simulations. ൏ ൐ denotes the interface 

in-plane crystallographic orientation in the x direction and ሼ ሽ denotes the orientation characterized 

by the normal to the crystallographic plane parallel to the interface. For crystals with cubic 

symmetry, only the crystal orientation in the interface normal direction should affect the kinetic 

coefficient. The MD results proved that this is indeed true as evident from the results obtained for 
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〈11ത0〉 ሼ110ሽ and 〈001〉 ሼ110ሽ orientations for which the kinetic coefficient differ by only about 

1%. Direct and indirect calculation of interface velocity gives approximately the same results, but 

the indirect method gives consistently lower kinetic coefficients. 

 

Figure 7: The interface velocity versus undercooling temperature from MD simulations of 

titanium obtained using two different methods. Four different interface orientations were 

considered. Uncertainties are comparable to the symbol sizes, so error bars are not shown. 

Uncertainties ranges from 3 to 13 % with lower velocities having larger percent 

uncertainty. 

 

Table 2:  The crystal melt interface kinetic coefficient for various interface orientations 

as given by Eq. (21) and MD simulations. 

Interface 

orientation 

Kinetic coefficient [m/(s-K)] 

Expression (Eq. 21) Direct method Indirect method 

〈001〉 ሼ100ሽ 𝜇଴଴ଵ ൌ 𝜇଴ ሺ1 െ 𝜀௞ሻ⁄  0.740 ± 0.030 0.729 ± 0.031 

〈11ത0〉 ሼ110ሽ 𝜇ଵଵ଴ ൌ 𝜇଴ ሺ1 ൅ 𝜀௞ሻ⁄  0.684 ± 0.038 0.668 ± 0.039 

〈001〉 ሼ110ሽ 𝜇ଵଵ଴ ൌ 𝜇଴ ሺ1 ൅ 𝜀௞ሻ⁄   0.691 ± 0.030 0.677 ± 0.033 

〈11ത0〉 ሼ111ሽ 𝜇ଵଵଵ ൌ 𝜇଴ ሺ1 ൅ 1.667𝜀௞ሻ⁄  0.654 ± 0.034 0.647 ± 0.034 
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Using the results from MD calculations and Eq. (21) one can calculate the mean kinetic 

coefficient and anisotropy. The direct method for obtaining interface velocities gives εk = 0.037 

and μ0 = 0.71 m/(s-K) and the indirect method gives εk = 0.04 and μ0 = 0.7 m/(s-K). The values 

for the parameters μ0 and εk were obtained without using the data for 〈11ത0〉 ሼ111ሽ orientation and 

therefore this can instead be used as a check. Specifically, the values of μଵଵଵ, obtained by using μ0 

and εk, are 0.669 m/(s-K) and 0.656 m/(s-K) for the direct and indirect methods, respectively. 

These values are reasonably close to the simulation values.  

 

3.2 Interfacial free energy and stiffness 

Figure 8 shows the variation of k୆T/bW൏ |Aሺkሻ|ଶ ൐ versus kଶ for three different crystal-melt 

interface orientations in the x direction as obtained from MD simulations. The slope of the solid 

line is the stiffness value for that orientation. The data shows deviation from linearity for large 

values of kଶ, and therefore there is a question of how much data at large k2 value one should use 

for fitting. There is no precise way to decide on this issue, therefore in our procedure we keep 

adding points with higher k until the R2 for the fit falls below 0.95 which is similar to [37] where 

the criterion used was the norm of the residuals being greater than 3. Eq. (22) suggests that the 

stiffness value is only a function of interface normal orientation. In MD simulations, two systems 

with  ሼ111ሽ orientations in interface normal direction are studied. In one of the systems the x 

direction was chosen to be 〈11ത0〉 and in the other it was 〈112ത〉. In spite of choosing a quasi-2D 

system geometry with different crystallographic orientations for the x direction, the stiffness values 

are approximately equal. The same is true for the two simulation systems with ሼ110ሽ orientations. 

Similar to kinetic coefficient, for a crystal with cubic symmetry, the interfacial free energy as 

a function of orientation can be represented by the following equation: 

𝛾 ൌ 𝛾଴ ሾ1 ൅ 𝛿ଵ ቀ∑ 𝑛௜
ସଷ

௜ୀଵ െ ଷ

ହ
ቁ ൅ 𝛿ଶሺ3 ∑ 𝑛௜

ସଷ
௜ୀଵ ൅ 66𝑛ଵ

ଶ𝑛ଶ
ଶ𝑛ଷ

ଶ െ 17 7ሻሿ⁄            (22) 

where 𝛾଴ is the average interfacial free energy, δ1 and δ2 are the anisotropy parameters, and 𝑛௜ is 

defined as in Eq. (21) [37]. Table 3 contains the calculated interface stiffness using the capillary 

fluctuation method. The parameters from Eq. (22) were obtained by a best fit to the MD data are 
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γ0=176 mJ/m2, δ1=0.018, and δ2=-0.0001. The MD calculated interface free energy is consistent 

with the reported experimental values ranging between 147 and 207 mJ/m2 [42]. 

 

Table 3: The crystal melt interface stiffness for various interface orientations as given by 

Eq. (22) and obtained from MD simulations. 

Interface 

orientation 

Interface stiffness [mJ/m2]  

Expression (Eq. 22) MD simulations 

〈100〉 ሼ001ሽ γ0 ሾ1- ሺ18/5ሻ δ1 - ሺ80/7ሻ δ2ሿ 156 

〈11ത0〉 ሼ110ሽ γ0 ሾ1൅ ሺ39/10ሻ δ1 ൅ ሺ155/14ሻ δ2ሿ 179 

〈001〉 ሼ110ሽ γ0 ሾ1- ሺ21/10ሻ δ1 ൅ ሺ365/14ሻ δ2ሿ 177 

〈11ത0〉 ሼ111ሽ γ0 ሾ1൅ ሺ12/5ሻ δ1 - ሺ1280/63ሻ δ2ሿ 193 

〈112ത〉 ሼ111ሽ γ0 ሾ1൅ ሺ12/5ሻ δ1 - ሺ1280/63ሻ δ2ሿ 186 

 

 

Figure 8: The varition of  𝑘஻𝑇/𝑏𝑊൏ |𝐴ሺ𝑘ሻ|ଶ ൐ versus k2 for different orientations as 

obtained from MD simulation of titanium. The solid lines are linear fits where the color of 

the line is the same as the symbols for the data it was fit to. 
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3.3 Phase-field simulation 

The set of parameters entering the phase-field equations (Eqs. (15), and (16)) are summarized 

in Table 4. These parameters were obtained by either MD simulations combined with thin-

interface to phase-field mapping, as explained previously, or were taken from existing 

experimental data [50].  In 2D, the anisotropic 𝜀 and 𝑀 parameters can be obtained from Eqs. (23), 

and (24) in which θ is given by Eq. (25) where 𝜙௫ and 𝜙௬ are the derivatives of ϕ with respect to 

x and y respectively:   

𝜀 ൌ 𝜀଴ሺ1 ൅ 𝛿ఌ 𝑐𝑜𝑠ሺ4𝜃ሻሻ                                                   (23) 

ଵ

ெ
ൌ ଵ

ெబ
ሺ1 െ 𝛿ெ 𝑐𝑜𝑠ሺ4𝜃ሻሻ                                                  (24) 

𝜃 ൌ 𝑡𝑎𝑛ିଵ ቀ
థ೤
థೣ
ቁ  .                                                          (25) 

Although the mobility anisotropy parameter, 𝛿ெ, depends on both 𝜇 and 𝜖 anisotropy parameters 

as shown in Eq. (20), it will be referred to as the kinetic anisotropy and 𝛿ఢ will be referred to as 

the capillary anisotropy.  

 

Table 4: Thermophysical properties and phase-field parameters for titanium. The 

parameters were obtained by either MD simulations or by combined MD with thin-

interface to phase-field mapping or, for those properties indicated by *, were taken from 

existing experimental data [50].   

L0 [kJ/mol] 14.3 * D [m2/s] 9.5× 10-5 * 

Cp [kJ/mol K] 45.5 * Tm [K] 1943 * 

ρ [kg/m3] 4130 * γ0 [mJ/m2] 176 

w [J/m3] 2.9 × 107 ζp [m] 8 × 10-8 

ε0 [ඥ𝐽/𝑚] 0.000138 M0 [m3/sJ] 6.76 

δε 0.00455 δM 0.021 
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Figure 9 shows the comparison of the steady-state solidification rate obtained from our phase-

field simulations, two sets of experimental data [43, 44], and from the analytical Lipton-Kurz-

Trivedi (LKT) model [70] parameterized for titanium. The results from the phase-field 

simulations, based on the model described by Equations (15), and (16), are in reasonable 

agreement with the results from both experiments and LKT model for undercooling, ΔT, below 

200 K. When ΔT is larger than 200 K, the phase-field and experimental results start to deviate 

from each other and the deviation increases with increasing undercooling. The question is, what is 

the source of this discrepancy? Is it caused by the inaccuracies of experimental investigations, by 

the limitations and inaccuracies of the phase-field model or by both simulations and experiment? 

In the experiments, the solidification investigations at large undercoolings were done under 

electromagnetic levitation conditions. The nucleation of the solid phase was initiated by using a 

needle and establishing a contact with the levitating titanium droplet; the subsequent solidification 

time was estimated by tracking the evolution of the temperature at the top and bottom edge of the 

solidifying droplet. The solidification was considered to be completed when the temperature of the 

droplet top surface started to increase with respect to the undercooling temperature. As predicted 

by homogeneous nucleation theory, for undercooling in titanium smaller than 400 K, the 

probability of homogeneous nucleation in the liquid phase is very low, and therefore the nucleation 

process is unlikely to play any major role in determining the high solidification velocities obtained 

experimentally for large undercooling. It is therefore important to focus on possible sources of 

inaccuracies associated with model formulation, parameterization, and code implementation of 

phase-field simulation methodology. 
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Figure 9: Interface velocity versus undercooling in titanium as obtained from phase-field 

simulations, two sets of experiments (Walder and Ryder 1995, R. Algoso, S. Altgilbers et 

al. 2003), and from the LKT analytical model. 

 
As evident from Figure 9, the phase-field simulations indicate that the variation of the interface 

velocity with undercooling exhibits a crossover from linear to an approximately square root 

dependence when the undercooling is about 150 K. To gain additional insight into the role of the 

phase-field simulation model on the existence of such a crossover we performed additional phase-

field simulations based on slightly modified models. First, we investigate the solidification in a 

system with one-dimensional (1D) symmetry. Specifically, the equivalent of equation (16) for the 

order parameter in one dimension and in a reference frame that is translating with velocity Vn 

along the +x direction can be written in the following form: 

െ௏೙
ெ

డఝ

డ௫
ൌ 𝜀ଶ డ

మఝ

డ௫మ
െ 𝑤𝑔′ሺ𝜙ሻ െ ℎᇱሺ𝜙ሻ ௅బ

೘்
𝛥𝑇.                                (26) 

This can be rewritten in dimensionless form by normalizing the spatial and temperature variables 

𝑥ᇱ ൌ ௫

௑ത
 , 𝑢 ൌ ்

௅బ ௖೛⁄
, where 𝑋ത ൌ 10ି଺ 𝑚. The dimensionless form of Eq. (26) in terms the new 

variables is: 
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In the phase-field method, the order parameter increases monotonically from zero to one as a 

function of position in the interfacial region and remains constant far from the interface. For each 

undercooling, there is only one specific value of 𝑉௡, which results in a physically valid solution of 

Eq. (27); it complies with the desired order parameter shape explained above [45].  Solving this 

boundary value problem with one unknown parameter was done by using bvp4c solver in 

MATLAB [71]. The solution of this second order boundary value problem with one unknown 

parameter requires the knowledge of three boundary conditions. The order parameter values are 

zero and one at -∞ and ∞ respectively and the derivative of the order parameter far from the 

interface is zero in both liquid and solid phases.  

By solving the Equation (27) for different values of ΔT, one can compute the interface 

velocity 𝑉௡ሺ𝛥𝑇ሻ. Figure 10 shows the variation of the interface velocity with undercooling during 

solidification in a 1D system. Similar to the results obtained in phase simulations in the 2D system, 

discussed previously, for small undercoolings, up to ΔT  150 K,  𝑉௡ሺ∆𝑇ሻ varies approximately 

linearly with ΔT. At larger undercoolings, the interface velocity variation with undercooling 

follows a trend similar to 2D simulations at high undercoolings, and the undercooling temperature 

at which the deviation from linearity occurs is very close to undercooling temperature at which the 

2D phase-field simulation results start to deviate from the experimental results as seen from Figure 

9.  

 
Figure 10: Variation of the steady state velocity of a planar one-dimensional interface with 

undercooling. 
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Based on the phase-field simulation results in both 2D and 1D systems one can infer that the 

deviation from linearity of the interface velocity versus undercooling at large undercoolings might 

be related to the actual phase-field model as represented in Equations (15) and (16). Building on 

the methodology developed by Bragard et al. [45] we implemented and used a modified phase-

field model that seem to mitigate the shortcomings present at large undercooling in the regular 

phase-field model. The modification proposed by Bragard et al. consist of introduction of a new 

form of the driving force term in the bulk free energy density function (the second term in the 

right-hand side of Eq. 13) of the phase-field method. Specifically, in this method the relationship 

between thermodynamic driving force and undercooling is chosen to behave like 𝑉௡ିଵሺ∆𝑇ሻ, which 

is the inverse of the function Vn. The simulation results, based on the Bragard et al. modifications, 

hereby referred to as the BKLP phase-field model, are also shown in Figure 9 and are in good 

agreement with the experimental results. 

Another way that one can check the accuracy of phase-field simulation results is to compare 

the values of the interface temperature as obtained from simulation with those calculated by using 

the analytic Gibbs-Thomson (GT) relation in Equation (1). Based on the phase-field formulation, 

the crystal-melt interface is at local equilibrium and as such the interface temperature must follow 

the GT equation. According to GT relation, the deviation of the interface temperature from the 

melting point is due to both capillary and kinetic effects and can be calculated by knowing: the 

interface velocity, interface stiffness, dendrite tip curvature, and kinetic coefficient. Figure 11 

shows the variation with undercooling of the interface temperature as obtained directly from the 

phase-field simulations and from the GT relation. The results from both phase-field and BKLP 

phase-field are presented. The calculation of the interface temperature from the GT relation is 

based on the following data: the MD calculated kinetic coefficient and stiffness, the phase-field 

calculated interface velocities (depends on the actual phase-field model used), and tip curvatures.  
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Figure 11: The variation with undercooling of the interface temperature as obtained by 

direct temperature calculation from phase-field simulations and by use of Gibbs-Tompson 

equation.  

As evident from Figure 11, for small undercoolings, ΔT < 150 K, there is a good agreement 

between the interface temperatures obtained directly from the phase-field model and GT relation; 

this is true for both phase-field models used. As the undercooling increases above 150K the 

deviation between the interface temperature calculated directly from phase-field simulation and 

the value calculated from GT equation increases for both phase-field models. It is however evident 

that when the BKLP phase-field is used, the direct and GT interface temperatures are close to each 

other even at high undercoolings; the difference is less than 10 K at ΔT = 300 K. When the phase-

field model based on Eq. (15) and (16) is used the difference between the GT temperature and the 

direct temperature from phase-field is about 32 K at ΔT = 300 K. One can rationalize these 

differences by the following observations: For small undercooling, both the capillary and kinetic 

effects play a role in determining the interface temperature. Although the dendrite tip shape has a 

higher curvature for larger undercooling, the effect of the kinetic term is still more dominant than 

the capillary one due to the large solidification velocity. Therefore, underestimation of the velocity 

calculated from the phase-field method accounts for most of the deviation of the interface 

temperature from the GT equation.  

Numerous studies show the importance of crystalline anisotropy on dendrite shapes [25] and 

growth rate [26]. The capillary and kinetic anisotropy calculated using MD simulations for 

titanium are δε=0.0045 and δM=0.021respectively and, in comparison with those for FCC metals, 
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these are very small. Given that the spectrum of anisotropy present in various metals and metallic 

alloys of different crystal structures is pretty large it is important to investigate, in a more general 

framework, its effect on solidification characteristics such as: solidification morphology, dendrite 

tip velocity, and mean solidification velocity. Therefore, in this section in addition to the 

simulations parameterized for titanium we will also explore model systems with anisotropies 

varying over a large range. 

Figure 12 shows the shape of solid-phase generated during solidification by considering 

titanium and four other model systems at undercoolings of ΔT=100 K and ΔT=250 K. Figures 12 

(a) and 12(d) are the morphologies of the simulated systems with anisotropy parameters 

corresponding to titanium. The other four morphologies correspond to model systems in which 

alternately one of the anisotropy terms was turned off.  The anisotropy parameters were changed 

separately to study the individual effect of each term on dendrite morphology. Figures 12(a), 12(b), 

and 12(c) illustrate the effect of the anisotropy parameters on the dendrite shapes for small 

undercooling of ΔT=100 K. Both the tip radius and the preferred growth direction are affected by 

the capillary and kinetic anisotropy parameters, δε and δM. For the larger undercooling of ΔT=250 

K shown in Figures 12 (d), 12(e), and 12(f), the effect of kinetic undercooling on the shape of the 

dendrites and preferred growth direction is much more pronounced and shows the emergence of 

side branches in the dendrites. Generation of secondary dendrite arms is related to the thermal 

diffusion layer thickness which in turn can be estimated as the ratio of thermal diffusivity over 

interface velocity (D/V). For large undercoolings, the small thermal layer thickness leads to large 

temperature gradients at the tips of protrusions. When the front of the protrusion faces an 

undercooled liquid, the heat is dissipated from solid into the liquid. In this case, the protrusion 

grows and generates side branching. At low undercoolings, the temperature gradient at the tips of 

protrusions is small, therefore those protrusions cannot survive, and no side branching is observed.  
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Figure 12:  The effect of capillary, δε, and kinetic, δM, anisotropy on dendrite morphology 

development during solidification in systems at two undercoolings   

 

Figure 13 shows variation of the tip and average solidification velocities with kinetic 

anisotropy at undercoolings of ΔT=100 K and ΔT=250 K. The capillary anisotropy was maintained 

constant at δε=0.0045 while the kinetic anisotropy was varied between δM=0 and δM=0.08. For 

both undercoolings, the simulation results show that the increase of δM leads to significant increase 

of the tip velocity while the average solidification velocity increased by only a small amount. 

Based on Eq. (21), higher kinetic anisotropy leads to a more preferred growth in directions parallel 

to the x and y-axis directions which in turn increases the tip velocity. When increasing δM from 0 

to 0.08, at larger undercooling, the tip velocity increases from 16.85 to 23.4 m/s and the average 

solidification velocity increases from 25.83 and 26.78 m/s. At smaller undercooling when varying 

δM, the tip velocity increases from 1.91 to 2.85 m/s and the average solidification rate increases 

from 3.28 to 3.62 m/s. These simulation results are in agreement with previous simulations [26] 

which also show that the effect of kinetic anisotropy is more dominant for large undercoolings.  
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Figure 13: Variation of the tip and average solidification velocities with kinetic anisotropy 

at two undercoolings. 

The same analysis is repeated by varying the capillary anisotropy and maintaining the kinetic 

anisotropy, δM=0.021. Figure 14 illustrates the variation of the tip and solidification velocities with 

capillary anisotropy for two undercoolings. At small undercooling, the increase of δε from 0 to 

0.03 increases the tip velocity from 2.1 to 2.76 m/s and increases the average solidification velocity 

from 3.3 to 3.7 m/s. For larger undercooling, the increase of δε from 0 to 0.03 increases the tip 

velocity from 18.21 to 20.86 m/s and increases the average solidification velocity from 25.58 and 

26.7 m/s. As with kinetic anisotropy, increasing the capillary anisotropy parameter affects the tip 

velocity more than the average solidification velocity, especially at larger undercoolings. 

 
Figure 14: Variation of the tip and average solidification velocities with capillary 

anisotropy at two undercoolings. 
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4 Conclusions 

 Solidification of highly undercooled titanium was investigated using a combined MD and 

phase-field simulation approach. Building on the ongoing developments and applications of 

atomistic simulation methods to the computation of important thermodynamic and kinetic 

properties of crystal-melt interfaces in metals, we performed detailed MD calculations of titanium 

crystal-melt interfacial free energy, kinetic coefficient, and their corresponding anisotropies. Using 

the MD capillary fluctuation method, the calculated crystal-melt interface free energy of 176 

mJ/m2 is in good agreement with the reported experimental data ranging between 149 and 207 

mJ/m2. By using the free solidification method, implemented based on a multiple layered 

thermostats approach, the kinetic coefficient calculated is 0.71 m/(s-K). The capillary and kinetic 

anisotropies obtained from MD simulations are 0.0045 and 0.021 respectively. These MD 

calculated crystal-melt interfacial properties when combined with the thin interface analysis 

method provided us with a path for obtaining a subset of the phase-field model parameters that 

are, in many cases, very difficult to obtain by experimental investigations alone. By adopting the 

rest of the parameters needed in the model from experiments allowed us to perform parameter-free 

phase-field simulations of solidification which in turn allowed us to make quantitative comparison 

between the simulation results and the existing experimental data. 

Two slightly different phase-field models were implemented and tested on their ability at 

predicting the solidification velocity at various undercoolings.  For undercoolings below 150K, 

when using the classical phase-field model, in which the driving force term in the bulk free energy 

function was considered to vary linearly with undercooling, the simulation and experiment data 

are in good agreement. However, at larger undercoolings the simulation results show significant 

deviations from experimental data.  By modifying the thermodynamic driving force term in the 

free energy definition based on the Bragard et al. model, the phase-field method not only predicts 

the solidification velocity consistent with the experiments over a large spectrum of undercoolings, 

but also provides good estimation of the crystal-melt interface temperature consistent with the 

Gibbs-Thomson equation. In addition to solidification kinetics, we have studied the effect of 

anisotropy parameters on the dendritic morphology and growth rate at small and large 

undercoolings. For both undercoolings, modifications of capillary and kinetic anisotropies affected 

the dendrite shapes and the tip velocity, while it did not change the solidification velocity 
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significantly. Moreover, the simulations showed that the effect of capillary anisotropy is larger for 

small undercoolings, while the kinetic effect becomes more dominant for larger undercoolings. 

The results of our study demonstrate that MD simulations combined with phase-field modeling 

has the potential to provide quantitative, parameter-free, predictions on multiple features 

characterizing solidification behavior in titanium.   
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