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Abstract. A point obfuscator is an obfuscated program that indicates
if a user enters a previously stored password. A digital locker is stronger:
outputting a key if a user enters a previously stored password. The real-
or-random transform allows one to build a digital locker from a compos-
able point obfuscator (Canetti and Dakdouk, Eurocrypt 2008).

Ideally, both objects would be nonmalleable, detecting adversarial tam-
pering. Appending a non-interactive zero knowledge proof of knowledge
adds nonmalleability in the common random string (CRS) model.
Komargodski and Yogev (Eurocrypt, 2018) built a nonmalleable point
obfuscator without a CRS. We show a lemma in their proof is false, leav-
ing security of their construction unclear. Bartusek, Ma, and Zhandry
(Crypto, 2019) used similar techniques and introduced another nonmal-
leable point function; their obfuscator is not secure if the same point
is obfuscated twice. Thus, there was no composable and nonmalleable
point function to instantiate the real-or-random construction.

Our primary contribution is a nonmalleable point obfuscator that can be
composed any polynomial number of times with the same point (which
must be known ahead of time). Security relies on the assumption used
in Bartusek, Ma, and Zhandry. This construction enables a digital locker
that is nonmalleable with respect to the input password.

As a secondary contribution, we introduce a key encoding step to de-
tect tampering on the key. This step combines nonmalleable codes and
seed-dependent condensers. The seed for the condenser must be public
and not tampered, so this can be achieved in the CRS model. The pass-
word distribution may depend on the condenser’s seed as long as it is
efficiently sampleable. This construction is black box in the underlying
point obfuscation.

Nonmalleability for the password is ensured for functions that can be
represented as low degree polynomials. Key nonmalleability is inherited
from the class of functions prevented by the nonmalleable code.
Keywords: Digital lockers; Point obfuscation; Virtual black-box obfus-
cation; Nonmalleable codes; Seed-dependent condensers; Nonmalleability

1 Introduction

Obfuscation hides the implementation of a program from all users of the pro-
gram. This work is concerned with wvirtual black-box obfuscation, where an ob-
fuscator creates a program that reveals nothing about the program other than
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its input and output behavior [BGIT01,BGI*12]. Barak et al. showed that a vir-
tual black-box obfuscator cannot exist for all polynomial time circuits [BGIT01].
However, this leaves open the possibility of virtual black-box obfuscators for in-
teresting classes of programs [CD08,BC10,CRV10,WZ17,BR17].!

We focus on obfuscated point functions [Can97] and digital lockers [CDOS]
[BC10]. A point function obfuscator is an algorithm lockP(val) which outputs a
circuit ulockPy, (+). The circuit ulockPyq () stores val and indicates when val is
inputted to it. An obfuscated point function needs to hide all partial information
about val [Can97].

A digital locker obfuscator inputs a value, val, and key, key. The output is a
program ulockyaj key () which outputs key if and only if the input is val. Soundness
says ulockyal key should reveal nothing about val or key if the adversary cannot
guess val. Digital lockers have applications in password [Can97] and biometric
authentication [CFP1T16,ABC™18].

The real-or-random construction composes point functions to build a digital
locker [CDO08]. It works as so: sample a random point 7. For each bit of the key,
either r (corresponding to a 0 in key) or val (corresponding to a 1) is obfuscated.
An obfuscation of val is prepended as a check value. When running the program,
if the check obfuscation opens, the user runs the other programs: failures to open
correspond to a key bit 0 and successes correspond to a key bit of 1. The point
function must retain security when val is obfuscated multiple times.

Nonmalleability A desirable property of an obfuscated program is nonmal-
leability. A nonmalleable obfuscator detects if an adversary attempts to tamper
the obfuscation into a related program [CV09], where being related is defined
by some family of functions F. For example, it is desirable to prevent ulockyaj key
from being mauled to ulockyyal), f(key) for f, f € F.

In the random oracle model, designing nonmalleable digital lockers and point
functions is easy: For a random oracle RO one outputs the program RO(val) ®
(key||RO’(key)), where RO and RO’ are two independent random oracles of differ-
ent output length. Similarly, using general non-interactive zero-knowledge proofs
of knowledge (NIZKPoKs) in the common random string (CRS) model one can
achieve nonmalleability. For ulockyaikey(-), appending a NIZKPoK of key and
val would prevent the adversary from creating a valid obfuscation for any point
related to the inputs.?

Komargodski and Yogev constructed a nonmalleable point obfuscator with-
out resorting to these tools [KY18a]. Their construction follows. Let g be a fixed
group generator. To obfuscate the point val, the obfuscator computes a random
r and outputs

4 i
lockP(val) = <'r, o= > .

! We do not consider indistinguishability obfuscation in this
work [GGH'13,GGH'16,SW14,PST14,GLSW15,AJ15].

2 The adversary can always substitute an obfuscation on an unrelated point. Thus, it
is possible to create obfuscations for functions f where f(val) is easy to guess.
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We observe that nonmalleability of Komargodski and Yogev’s scheme relies on
an incorrect lemma in a way that is not apparently repairable. We discuss this
in detail below.

Bartusek, Ma, and Zhandry [BMZ19] using similar mathematical structure
showed a nonmalleable point function using random a, b, c:

a-val4(val)2+(val)®+(val)* 4 (val)® b b-val+(val)® c»val+(va|)7.

lockP(val) = a, g ,b, g ¢, g
The structure of the group element is similar to Komargodski and Yogev’s con-
struction, but with a random scalar in place of “double exponentiation.” The
terms involving b and ¢ ensure no incorrect point causes the obfuscation to un-
lock. In both constructions, g is assumed to be fixed; this means the distribution
of val may depend on generator g. Bartusek, Ma, and Zhandry [BMZ19] show
security based on new Diffie-Hellman variants and show these variants hold in
the generic group model, using tools from the auxiliary input generic group
model [CDG18].

The natural nonmalleability definition is that, given ulockP,,, an adversary
can only output the same obfuscation or obfuscations of independent points.
The above constructions use a weaker definition. Given an obfuscation lockP,,,
the adversary is required to output a function f and an obfuscation lockP f(yap-
That is, the definition requires the adversary to know what tampering function
they are applying. Both constructions consider f as a polynomial of bounded
degree related to the assumed hardness in the DDH assumptions. The definition
considers the tampering functions prevented, not what operations are performed
by the adversary.

The goal of this work is to construct nonmalleable digital lockers. The real-
or-random construction instantiated with nonmalleable point functions would
provide nonmalleability over val. Crucially, this construction requires security to
hold when the nonmalleable point functions are composed though only with the
same val. Both previous constructions have issues that prevent incorporation.
The proof of nonmalleability for [KY18a] relies on an untrue lemma and the
proof does not seem easily repairable, and the construction of [BMZ19] cannot
be composed twice or more. We discuss these issues and then introduce our
contribution.

[KY18b, Lemma 4.6] is not true Let g be a fixed generator of a group. The
version of Komargodski and Yogev published in Eurocrypt 2018 [KY18a] relied
on a fixed generator power DDH assumption which says for any distribution
x with super logarithmic entropy (here the distribution of = can depend on
generator g) that

Ul U2 Ut

2 t
g?.gx’gx 7""gx %Cg’g 7g 7""7.9 /’

for a truly random set of elements w1, ..., u;. This assumption is used in the proof
by assuming that the adversary sees Z?:l u; and arguing they can’t predict
any linear combinations other than CZ?:I u; for some constant c¢. However,
Bartusek, Ma, and Zhandry [BMZ19] showed that for a fixed generator this
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assumption cannot be true: x can be drawn from points where most bits of g*
are fixed. As a result, a revised version [KY18b] proposes a revised assumption
called entropic power where
990 8" R 9,97 07 g

Where z; are independent and have some super logarithmic min-entropy. This
assumption does not appear to suffice. In particular, [KY18b, Lemma 4.6] is
incorrect as stated. The lemma states it is hard to predict linear combinations
of z; other than CZ?:I z; for any constant ¢, even knowing E?Zl z;- However,
even if each z; has entropy, the value 2?21 z; may uniquely determine each z;:
let z; vary in the ¢th quarter of bits and fix the rest of bits to be 0. The attack
of [BMZ19] prevents arguing that z; has any greater amount of entropy.

This does not seem to be an issue of just the proof technique. The point of
the entropic power assumption is to switch to an information-theoretic setting
where the adversary cannot predict new powers from a linear combination, but
bounding the entropy of each z; may cause all powers to be predictable. Repairing
this scheme seems to require a new Diffie-Hellman assumption or a major change
in analysis.

[BMZ19] is not composable One might try to compose the construction
of Bartusek et al. [BMZ19]. However, this scheme is not secure even when used
twice for the same val. The hardness of finding ¢ is the underlying assumption
used to show nonmalleability [BMZ19, Assumption 4]. Since the distribution of x
may depend on g, one can construct distributions  where ¢g* is distinguishable
from a random group element ¢”. If one can find g*, the scheme can not be
secure. If one tries to obfuscate the same point = twice, all the higher order
terms can be removed by dividing two instances. That is, given

(11791 — ga1m+12+x3+z4+x5

asz x+w2+m3+w4+x5

a2,942 = ¢

—1
one can easily compute g{®1792)% = g /g, and recover g* = (gl/gg)(ara?) .

1.1 Owur Contribution

The primary contribution of this work is the first same-point composable nonmal-
leable point function. The composable, nonmalleable point function can instanti-
ate the real-or-random construction providing a nonmalleable digital locker that
prevents tampering over val only. This construction is in the standard model.
As a secondary contribution, we introduce a key encoding step to detect tam-
pering on key. The key encoding step allows us to achieve a digital locker that
is nonmalleable over both val and key. However, our key encoding step requires
a public value that all distributions can depend on. This can be achieved in the
common random string (CRS) model. In our construction the distribution of val
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can depend on the public value. In the CRS model, one can achieve nonmal-
leability in a non-black box way using non-interactive zero knowledge proofs of
knowledge [CV09].

Composable Same Point Nonmalleable Point Function Obfuscation
We introduce a new nonmalleable point function that can be safely composed
T times as long as the same point is obfuscated each time. The construction
builds on the one-time scheme of Bartusek et al. [BMZ19]. We include additional
randomized powers to prevent the above attack. The construction needs to know
the desired composition parameter 7 ahead of time. The value 7 would be known
in the case when a point function is being used to construct a digital locker. Let
a, b, ¢ be uniform vectors of length 7. The construction is as follows:

; +5 i

a gEle aiw7+22::+1 9317
def T4 2745

lockP(z;a,b,¢) = |b, gbhrotiimpbie™ 42T
¢ gclx+zz—:2 cigi 2T BT

, .

The intuition for the formation of the first group element is that we need to
randomize more powers to prevent the adversary from removing the higher order
powers and being able to linear solve for g®. Since the adversary can create
7 — 1 linearly independent pairs, 7 randomized powers are necessary. We add a
fifth non-randomized power in the a term to deal with the additional flexibility
created by 7. The crucial step in the proof is showing that some linear system has
no interesting solutions, the extra power is to counteract the degree of freedom
introduced by 7 (see Theorem 2).

The intuition for the b and ¢ terms is similar. Due to our proof technique, we
need to randomize different powers for the a term, the b term, and the ¢ term,
resulting in the above construction. All terms have a randomized 2! coefficient
so we can reduce to [BMZ19, Assumption 4].

We can instantiate the real-or-random construction with this construction to
yield a nonmalleable digital locker that only provides nonmalleability over the
locked val. As mentioned above, one could prove knowledge (using a NIZKPoK)
of just key to prevent modification of this value. Such a method would inherently
depend on the underlying point function. Our goal is to avoid general NIZKPoKs.

Detecting Key Tampering Our strategy is to use nonmalleable codes [DPW10].
We use nonmalleable codes in a nonstandard way: the adversary sees obfusca-
tions that are correlated to the codeword before choosing how to tamper. This
seems okay at first glance, correlated obfuscations shouldn’t be distinguishable
from random obfuscations. If a tampering adversary performs differently in the
presence of correlated obfuscations or random obfuscations, if one can check
success probability it be turned into a distinguisher.

However, nonmalleable codes don’t yield such a check because nonmalleable
codes allow the adversary to tamper to an independent value. When using non-
malleable codes in the reduction, one needs to know if the value is independent.
Rather than just encoding key we include the output of a seed-dependent con-
dense [DRV12] applied to val, cond(val), as part of the encoded value. This allows



6 Peter Fenteany and Benjamin Fuller

us to argue that an adversary that succeeds in mauling the nonmalleable code
more frequently when presented with correlated obfuscations breaks soundness
of the obfuscation. However, this change necessitates that the seed of the con-
denser is public and not tampered. This can be achieved in the CRS model.
Our construction does not assume independence of distributions from the
random object. The CRS is only necessary for preventing tampering of key, the
real-or-random construction prevents tampering of val in the standard model.
We discuss alternative tools in Section 4.
Organization In Section 2, we present definitions. In Section 3, we introduce
the composable nonmalleable point function. In Section 4, we present the real-
or-random digital locker construction and add checks for key tampering.

2 Preliminaries

For random variables X; over some alphabet Z we denote by X = X1,..., X,
the tuple (Xi,...,X,). For a set of indices J, X is the restriction of X to
the indices in J. The minentropy of X is Hoo(X) = —log(max, Pr[X = z]),
and the average (conditional) minentropy [DORS08, Section 2.4] of X given Y
is Hoo (X|Y) = —log (Eyey max, Pr[X = z|Y = y]). For a distinguisher D, the
computational distance between X and Y is d°(X,Y) = |[E[D(X)] — E[D(Y)]]
(we extend it to a class of distinguishers D by taking the maximum over all
distinguishers D € D). We denote by D, the class of randomized circuits which
output a single bit and have size at most s. Logarithms are base 2. In general,
capitalized letters are used for random variables and the corresponding lowercase
letters for their samples. We say that two circuits, C' and C’, with inputs in
{0,1}* are equivalent if Va € {0,1}*,C(z) = C’(x). We denote this as C' = C".
For a matrix A let A; ; denote the entry in the ith row and the jth column. Let
A (. ;) represent the jth column and A(; .y represent the ith row.

Definition 1. An ensemble of distributions X = {X)}xen, where Xy is over
{0,1}*, is well-spread if

1. It is efficiently and uniformly samplable. That is, there exists a PPT algo-
rithm given 1* as input whose output is identically distributed as X .

2. For all large enough A € N, it has super-logarithmic minentropy. Namely,
Hoo(X)\) = OJ(IOg )‘)

Obfuscation Definitions All obfuscation definitions include a requirement of
polynomial slowdown, which says the running time should be at most a polyno-
mial factor larger than the original program. Running time of our constructions
can be easily verified. For all definitions, we include a tampering function F.
The traditional definition can be achieved by taking F = (). We adapt nonmal-
leability definitions from Komargodski and Yogev [KY18a]. See Komargodski
and Yogev for definitional considerations [K'Y18a].

Our constructions require that the challenger can recognize a legitimate ob-
fuscation. We call this object a value verifier or V,,. It was called a verifier
(without the word value) in [KY18a].
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Definition 2 (Value Verifier). Let A € N be a security parameter. Let O be a
program that takes inputs x € {0,1}* and outputs a program P. A PPT algorithm
Vial is called a value verifier if for all x € {0,1}?, it holds that Pr[V,.(P) =
1|P + O(x)] = 1, (prob. over the randomness of Vya and O).

Our constructions consist of tuples of group elements and strings. The obvious
value verifier suffices as long as group elements are recognizable. A point function
is a function I,,: {0,1}™ +— {0,1} that outputs 1 on input val and 0 elsewhere.
An obfuscator preserves functionality while hiding the point val if val is not
provided as input to the program. In this work we consider a version that allows
for the same point to be obfuscated multiple times while retaining security.

Definition 3 (7-Same Point Nonmalleable Point Function). For security
parameter A € N, let F : {0,1}* — {0,1}* be a family of functions, let X be
a family of distributions over {0,1}*. A (F,X)-non malleable point function
obfuscation lockP is a PPT algorithm that inputs a point val € {0,1}*, and
outputs a circuit ulockP. Let V., be a value verifier for lockP as defined in
Definition 2. The following properties must hold:

1. Completeness: For all val € {0,1}*, it holds that
PrulockP () = I, (-)|ulockP < lockP(val)] > 1 — ngl()),

where the probability is over the randomness of lockP.

2. Soundness: For every PPT A and any polynomial function p, there exists
a simulator S and a polynomial q(\) such that, for all large enough A € N,
all val € {0,1}* and for any predicate P : {0,1}* > {0,1},

| Pr[A({ulockP;}7_,) = P(val)|{ulockP;}]_; < lockP(val)]

pylgha() (1M — L
Pr{S™O(1%) = Plval)]| € .
where S is allowed q(\) oracle queries to I, and the probabilities are over
the internal randomness of A and lockP, and of S, respectively. Here I (")
s an oracle that returns 1 when provided input val and 0 otherwise.
3. Nonmalleability For any X € X, for any PPT A, there exists e = ngl(\),
such that:

p Via(C)=1,f e F,(I =0) {ulockP;}7_; < lockP(val) _
val<—rX val =4 s \Lf(val) = (O, f) (*.A({U'OCkPi}Zzl) < €.

In the above ulockP; are 7 outputs of lockP on the same input point val and
independent randomness. Note that the simulator is still only provided with a
single oracle. In usual composition definitions the simulator has 7 oracles. Since
we consider the same point being obfuscated multiple times, all of these oracles
would have the same functionality and can be reduced to a single oracle.

In addition to the above traditional definition of soundness, in the full ver-
sion [FF18, Section 2.1] we introduce two auxiliary definitions of privacy for
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nonmalleable point functions. These are known as distributional indistinguisha-
bility and oracle indistinguishability (both first defined in [Can97]). We show
those definitions are equivalent to soundness. We use these two auxiliary defini-
tions in the proof of Theorem 1. We now present our definition of a nonmalleable
digital locker. Our notation for digital lockers adds a key verifier which checks if
the key should be accepted. This is analogous to the value verifier in the previous
subsection:

Definition 4 (Key Verifier). Let A € N be a security parameter and let n =
n(\) be a parameter. Let O be a program that takes inputs x € {0,1}*,y € {0,1}*
and outputs a program P. A PPT algorithm Ve, (with inputs in {0, 13" and
outputs in {0,1}*U L) for program class O is called a key verifier if it holds that
PriViey(z, 2) #L |P + O(x,y), z < P(x)] = 1, where the probability is over the
randomness of Viey and O).

Note the three different values x,y, z. The value x is the input value, y is the
input key, and z as an encoded version of the key. The output of the locker is
z which is then checked. There must be an independent algorithm that checks
z otherwise no manipulation detection is possible. A definition for traditional
digital lockers is found in Canetti and Dakdouk [CDO08]. Our definition considers
tampering on both key and val.

Definition 5 (Nonmalleable Digital Locker). For security parameter X €
N, Let F : {0,1}* — {0,1}*,G : {0, 1} — {0,1}" be families of functions and X
be a family of distributions over {0,1}*. A (F, G, X)-nonmalleable digital locker
lock is a PPT algorithm that inputs a point val € {0,1}* and string key € {0, 1}™.
Let Vya be a value verifier for lock and let Viey be a key verifier for lock. The
following conditions must be met:

1. Completeness: For a circuit ulock define the circuit ulock(z) = Ve (2,
ulock(z)). For all val € {0,1}* key € {0,1}" it holds that

Prlulock’(+) = Lyaikey(+)|ulock < lock(val, key)] > 1 — ngl(}\),

where the probability is over the randomness of lock.

2. Soundness: For every PPT A and any polynomial function p, there exists
a simulator S and a polynomial q(N\) such that, for all large enough A € N,
all val € {0,1}*, all key € {0,1}*, and for any P : {0,1} % s {0, 1},

1
p(\)’

where S is allowed q(\) oracle queries to I ey and the probabilities are over
the internal randomness of A and lock, and of S, respectively. Here Iy, key 5
an oracle that returns key when provided input val, otherwise Iyaikey Teturns
1.

|Pr[A(lock(val, key)) = P(val, key)] — Pr[Se (1*) = P(val, key)]| <
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8. Nonmalleability For any distribution X € X, for any PPT A, for any
key € {0,1}", there exists € = ngl(A) such that:
Vval(c) = 1af S -Fag € gv

=C ),
Y (f(val)) ulockyal key < lock(val, key)
Pr y = g(ulockyal key(val)), k <e.
vale-X : (C, f,9) < A(ulockyal key)
Vkey(f(val)a y) #J—a

Ja s.t. If(val),a =C

where at most one of f and g may be the identity function.

If nonmalleability is not a requirement a traditional digital locker can be
obtained by outputting ulock’(x) = Viey(w, ulock(z)) instead of ulock(x).

3 A composable nonmalleable point function

In this section, we introduce a new construction of a nonmalleable point function
that can be composed as long as the same point is used each time. Our construc-
tion draws on ideas from [BMZ19] and is secure under the same assumptions.
Their construction is as follows for randomly sampled a, b, c:

a-val+(val)24(val)®+(val)* +(val)® b gb~va|+(va|)6 c-val+(val)” )

lockP(val) = a,g ,Cy g

The first group element is the key to nonmalleability, the second two group
elements are there to provide correctness. Security of their construction and
ours relies on two assumptions (they showed security of these assumptions in
the generic group model even if the distribution of val depends on the chosen
generator of the group).

Assumption 1 [BMZ19, Assumption 3] Let G = {Gx}aen be a group ensemble
with efficient representation and operations where each Gy is a group of prime
order p € (22,2 1), We assume that for every X € N there is a canonical group
(and efficiently computable) and canonical and efficient mapping between the
elements of {0,1}* to Gy. Let {X\} be a family of well-spread distributions over
{0,1}*. Then for any £ = poly(\) for any PPT A:

PrlA({ki """ Viefa....q) = 1] = PrlA({ki, 6" Yicpa....q| = ngl().
where x < Xy, r + Zp()\)7 ki < Zp(A)'

The second assumption can be proved from Assumption 1, see [BMZ19,
Lemma 8], and is useful for arguing nonmalleability:

Assumption 2 [BMZ19, Assumption 4] Let G and Xy be defined as in As-
sumption 1. Then for any ¢ = poly(A) for any PPT A:

Prlg® < A({ki, ¢""* }icia, o = ngl(N).

where x <— Xy and k; <= Zy(y)-
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We now introduce our main construction. The intuition behind the construction
is to increase the number of randomized powers to deal with the additional
constraints on val that the adversary gains by seeing multiple copies; it will be
proved secure under Assumptions 1 and 2.

Construction 1 Let A € N be a security parameter. Let G = {Gy}ren be a
group ensemble with efficient representation and operations where each Gy is a
group of prime order p € (2*,2**1). We assume that for every A\ € N there is a
canonical and efficient mapping between the elements of {0,1}* to Gy. Let g be

a generator of the group Gy. For some parameter T € Z™, let a, b, c & Gy be
input randomness and define the algorithm lockP as:

a, gSlaad S0,
def

|ockP(Va|; a,b, c) = |b, gb1w+ZZ:2 byt g2 D

b
c 1o+, cigi 2Ty BT
) 9 .

Given a program ulockP consisting of three vectors a,b,c and group elements
g1, 92,93 and input val compute:
gZZ:1 aivaliJrZ;rerl val? ;91

bival+3 7_, bival' T T pval?T e 7

g

cival+3°7_, civa

g2

[i+27+4 37 +5 7

g =93-

If all of these checks pass, output 1. Otherwise, output 0.

In order to add same point composability, we extend from three scalars to
37 scalars (while keeping 3 group elements). We note that this scheme is that of
[BMZ19] if we let 7 = 1.

Lemma 1. For any 7 = poly(A) Construction 1 satisfies completeness.

Proof. This argument is analogous to the functionality preservation argument
in [BMZ19]. The only difference is that polynomials are higher degree due to
composition. Fix some point x € Z, (). It suffices to argue that over the ran-
domness of ulockP <+ lockP(z) that the probability that there exists some y such
that ulockP(y) =1 is ngl(\).

Recall that the randomness used to construct ulockP is the vectors a,b, c.

3 : def T ] T+5 ;
Fix some = € Zy(y). Fix some value a and define o« = >/ " + > /"7 2"

For some other value y, since G is prime order the only way for the first element
to match is for a = >, y' + ZZJ:H y'. Since this is a polynomial of degree
T 4 5 there are at most 7 + 4 such values y (excluding the original value z).
Consider one such value y. Then, consider the polynomial P(b) def bi(z —y) +
S by (@t — g T 4 (2775 — 27 F5) | Fix some values of b; for i = 2, ..., 7.
Then this is a linear polynomial in b; that is zero with probability at most 1/p(\).
A similar argument holds for the second check value. Thus, a candidate y is a
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solution to both equations with probability 1/p(\)?. Thus means for a fixed
the probability of one of the y’s working is at most (7+5)/p(\)? by union bound.
With a second application of union bound, the probability across all x of some
y existing is at most (7 + 5)/p(A\) = ngl(A) as desired.

Theorem 1. Suppose that Assumption 1 holds. Then for any T = poly(A),
Construction 1 satisfies virtual black box security (when composed up to T times).

Proof. We show that Construction 1 satisfies distributional indistinguishabil-
ity [FF18, Definition 2.4]. Virtual black box security then follows by [FF18,
Theorem 2.1].

Suppose for the aim of arriving at a contradiction that there exists some
well-spread distribution X\ such that there exists a PPT adversary A and a
polynomial ¢(-) such that

|Pr[A({lockP(x)}_;) = 1] = Pr[A({lockP(r)}_1) = 1]| > ——

where z <= X\ and r < Z,(). We then show how to build an adversary B that
breaks Assumption 1 (with respect to distribution family X)) receiving ¢ = 37+4
elements (corresponding to a maximum power of 37 4 5). That is, B will receive
37 + 4 pairs of the form

kiz+2"
{kmg e }ie{?,...,3r+5}a

where 2 is either distributed according to X or uniformly in Z,,). Denote by
{ki, g™ }iza.. 3r45 the received values, defining h; = k;z + 2. Then, B samples
three matrices A, B, C uniformly in Z;(X /\()T_l)

Our goal is to produce 7 obfuscations (either of x or r). B compute the
matrices A’,B’,C’ € Z7 X7 as follows:

p(N)
A Tet Aok + 20 barr j=1
“J A otherwise.

1 .
r_ Yo iBiakayris thorys j=1
“J Bio_1 otherwise.

1 .
;o Yor_1Cickatoris +ksrqs j=1
I Cij1 otherwise.

Then B computes the ith value to be fed into A as:

A?' ) 92;11 Aijhj+3527 hj+1’

i,

lockP; = { B, |, gTimt Bushssrsatharss,
’ g ;;fci,jhj+2q—+4+h31—+5

(7:7')’
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The above group elements can be formed linearly from the received values
{ki,ghi}ie[27.._,37+5] and A, B, C. For the ith obfuscation, the values produced
in the exponent are (omitting the exponential notation):

T+5 T+4 T+5
ZAwhﬁﬁL e ZAZJkJ+1+ZkJ+1 Z+ZAUZJ+1+ > 4
j=7+1 J=r+1
T—1 T—1 T—1
ifT45 | 2745
Z B jhjyri5+ hargs = Z B jkitris T karis | 2+ Z B, ;27T 4 2T
= i=1 =1
t—1 T—1 T—1
i+2r45 | 3745
> Cijhjsarss +hsrys = | Y Cijkiparys +ksrps | 24 Y Ci /P70 4 55745,
=1 i=1 =

From the above equations, it is apparent that the matrices A’, B/, C’ are con-
sistent with the group elements. Furthermore it is clear for ;7 > 1 that the
coefficients for 2/ are appropriately formed. It remains to show that the 37 co-
efficients of z are uniformly random. Denote by (; for i = 1, ..., 37 coeflicients of
z respectively. Let 1%J represent an all 1 matrix of dimension i x j and define
0%%J similarly. Define the matrix of coefficients:

. A(»71) A(-,Q,,,.,tfl) 1T><5 0T><7'—5 07'><1 0T><T—1 O‘r><1
D éf B(-,l) 0™xX7T—1 [g7Xx5 B(-,Q,...,t—l) 17X ogrx7-1 [g7x1
C(-,l) 0T><7'71 07'><5 0T><7'75 07'><1 C(~72,...7t71) 17'><1

The set of values received by the adversary can be described by:

ko G
Dl k2 | _|¢
k3t+5 (st |

The matrix D has dimension 37 x 37 + 5. For each coefficient (; to be random
it suffices for the matrix D to have row rank of 37. For D to have rank 37 it
suffices for each A||1,B|1,C|[1 to have rank of 7. Since each matrix is random
this occurs with probability at most 7/p = ngl()\). If one these matrices is not
full rank, B aborts and outputs a random value. Conditioning on these matrices
being full rank the obfuscation are properly prepared for A. Denote by

DlstlngA = \Pr[ ({lockP(z)}7_1) = 1] — Pr[A({lockP(r)}_;) = 1]|.
Then one has that

Pr[B({ki, g kiota! biel,... 3r4+4) = 1] —PF[B({kmgk”‘ﬂﬂ}iep ..... 3r44]| =
Pr[A v BV C not full rank] + Pr[A A B A C full rank] - Disting 4, =

ngl(A\) + (1 — ngl(/\)ﬁ = q,(l)\)
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for some polynomial function ¢’(\). This completes the proof of Theorem 1.

Theorem 2. Let A be a security parameter Let {X\} be a well-spread distribu-
tion ensemble and let m, T € Z* be parameters that are both poly(\). Let Fpory
be the ensemble of functions fx where fy is the set of non-constant, non-identity
polynomials in Zy(x|x] with degree at most m. Suppose that Assumption 1 holds
for & = m(37+5). Then, the above obfuscator is non-malleable for T-compositions
for Fpoly and distribution ensemble {X\}.

Proof. We look to contradict Assumption 2, which follows from Assumption 1.
Consider a mauling adversary A that, given 7 obfuscations of a point z, can
output a new obfuscation of f(x) for f € Fpoy. Consider m to be the degree of
f. We build an adversary B which given the ensemble {k;, gkim+xl}i:2_ih7m(37+5)
and access to A recovers g* with noticeable probability.

First, we consider the case when m > 1. We set up the reduction as so: upon
receiving the ensemble {k;, gk“’:+rt}i:2m7m(37+5), we create T obfuscations of x
as detailed in Theorem 1. We send these to A, which returns (f, a, b, ¢, ja, jb, jc)
where a, b, c € Z;(A) and jq, jv, je € Gy. Define the vector I as the coefficients
of:

T m(37+5)
e (F(@) + S alf @) 4 (F@)PH = Y L,
=2 =0

In order for the adversary to succeed, this value must equal the exponent of j.
with noticeable probability. B computes and returns

m(37+5)
1\ Y= X kil)
m(37+5 i=2

)
Je glo, H hil
=2

Since B has properly prepared the set of obfuscations to A, A returns a
valid obfuscation of f(x) with probability at least 1/poly()). In this case then
m(31+5)

jo = glothat tlm@ris® with the same probability. In this case, we see

that the value in parenthesis is
m(37+5)
g =2 .
m(37+5)

Since all l;, k; are known, this can be computed unless Iy — >, k;l; = 0.
i=2

Since f(x) is of degree m, I, (3,45 must be nonzero. A’s view is independent of
Em(3r+5)- So, the probability that the sum is equal to [; is 1/(p(\) — 1). So, B
returns the correct value with probability 1/poly(A) —1/(p(A) —1) = 1/poly(A)
contradicting Assumption 2.

We now consider the case where m = 1, or for linear functions f. In this case,
we are given the ensemble {ki,gkiz+z1}i:27,,,737+5. This time, upon receiving
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(f,a,b,¢,ja,jv, jc) from A, B instead computes the coefficients I of

T+5 T+5

daif@) + Y fla) =) L'
=1 1=T 1=0

as in the nonlinear case. In this case, B computes and outputs:

T+5
Because A outputs the value g>=i—1 @/ @)+ @)+ +(f@)™ with noticeable
T+5
probability, B’s computation evaluates to g” unless Iy — > k;l; = 0. Let R be a
i=2
random ZTX;_l and let 17%° be a 7 x 5 matrix of all 1s. To see that this hap-
pens with negligible probability, for the first group element of each obfuscation
received the coefficient of z! are as follows: a; = [R|1TX5} . (kg ks ... k7+5)T
As shown in the proof of Theorem 1 the values of R are uniformly random
conditioned on the other values seen by the adversary. We note that, as all k;
are uniformly chosen, the only information A learns about k;41,..., k45 is in
the vector a; Furthermore R is independent of these values. Thus, we can see
that A receives items of the form

s
_i\ V= X ki)

T+5

Zk:R”—s— > ki

1=7+1

Without loss of generality, we assume that an adversary knows the values ko, ..., k..
To change the obfuscated point they will also need to change the higher order
powers 711 .. 295 The only value they have seen that involves the values

kri1,y ..., kr45 are terms of the form ¢ + (Z?:I kT+i) x for some value c¢. Since

the function is linear, we can represent f(x) = ax + 3. So, the adversary must
find «, B3, such that

4 4

Z(ax_’_ﬂ)i-i-‘r-i-l _ '7in+7+1~

i=0 =0

Define § = 7 + 1. We can write the desired linear combination as follows:

'a4+6 9T

) <6J{4)ﬁ+ (6463)) kgws 0 0 0 O katys
246 (514 g2 4 (543 5+2 0 kst O 0 0 k3t
a?H (75082 + () )ﬁ+(o)) 0 0 kors 0 0| =n |kors

ol +o Z? . ((5+4 1)53 z)) 0 0 0 kius0 kits
St e 0 0 0 0 k ks

o (i ((35957))

Substituting, one has that
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lock(val, key) : ulock({z; }7, val):
1. Sample 7 <= Zyp(»)- 1. If ulockPq(val) =L output L.
2. Compute z1 = lockP(val). 2. Initialize key = 0.
3. Fori =1 ton: 3. Fori =1 to n:
(a) If key, =1, (a) If ulockP;q1(val) #L
set ulockP;41 = lockP(val). set key, = 1.
(b) Else, set z;4+1 = lockP(r). 4. Output key.
4. Output z.

Fig. 1: Nonmalleable digital locker preventing tampering over only val

1. If # = 0 then this implies a?t* = a®*+3 = a®+2 = a9*! = o which only has
solutions if &« = 0 or @ = 1. These are both considered trivial solutions.

0+4 (using first equation),

. Otherwise, vy = «

. (6 +4)8+ 1=« (using second equation),

. (04+4)B+2=0o0r d =-5 (using third equation, relying on /5 # 0).

. Assume that § # —5, then a = —1 (substitution of third constraint into
second equation)

T = W N

6. v = (—1)° (substitution of « in first equation). Note that v = 1 corresponds

to no tampering. Thus, we consider v = —1.
7. § = =5 or § = —6 (solving fourth equation using prior constraints) and thus
T=—-6o0rT=-"7.

We note that since 7 = poly(A) for large enough A one can be sure that 7 #
{=6,—7} mod |G,|. So, the only functions that A can maul to are the constant
and identity functions, neither of which are in 4. This means that A returns

T+5

a solution where Iy — > k;l; = 0. with negligible probability. So, with non-
i=2

negligible probability, B can break Assumption 2.

4 Nonmalleable digital lockers

We now use the nonmalleable point function from Construction 1 to construct a
nonmalleable digital locker that does not prevent any tampering over the stored
key. We use the well known real-or-random construction of digital-lockers [CDO0S].
The basic real or random construction is in Figure 1. We do not argue security of
this basic construction, as long as lockP is n+1 same point composable then this
construction provides a digital locker that provides nonmalleability over val. The
argument is the same as in [CDO08] with the worst case for nonmalleability being
when all of key is 1 since this provides the adversary with n + 1 obfuscations of
val.
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4.1 Detecting tampering over key

With the ability to instantiate the real or random construction with nonmal-
leable point functions, we turn to detecting tampering over the encoded key. As
mentioned in the introduction, this construction requires a public object that
all parties can depend on (as long as the distribution is efficiently sampleable)
which can be achieved in the CRS model. However, the construction is black
box in the underlying digital locker (unlike a construction from NIZKs).

We combine nonmalleable codes and seed-dependent condensers to check if
the adversary tampers over the key value. We use the locked point val as input
to a seed-dependent condenser as part of the value encoded in the nonmalleable
code. If the adversary tampers to an independent value, they are unlikely to
match the output of the condenser on the real val. We introduce these tools
and then our construction. We first present the notion of nonmalleable codes,
introduced by Dziembowski, Pietrzak, and Wichs [DPW10].

Definition 6. A pair of algorithms (Enc, Dec) is called a coding scheme if Enc :
{0,1}* — {0,1}" is randomized and Dec : {0,1}" — {0,1}*U L is deterministic
and for each s € {0,1}* it holds that Pr[Dec(Enc(s)) = s] = 1.

Definition 7. A coding scheme (Enc, Dec) is called (€nme, Snme, F )-nonmalleable
if for each f € F and each s € {0,1}*, there exists a distribution D() over
{{0,1}* same} that is efficiently samplable given oracle access to f such that
the following holds:

§°mme({c + Enc(s); ¢ < f(c),s = Dec(c) : Output s},
{8 < Dy, Output s if 5 = same else §}) < €nme-

Seed-dependent condensers were introduced by Dodis, Ristenpart, and Vad-
han [DRV12]. Their goal is similar to a traditional randomness extractor, except
the output only has to be statistically close to a distribution with minentropy.
Importantly, it is possible to construct condensers where the adversary is allowed
to output the chosen distribution after seeing the seed.

Definition 8. Let cond : {0,1}* x {0,1}¢ — {0,1}* be a (k,K',s,¢€) seed-
dependent condenser if for all probabilistic adversaries of size at most s who
take a random seed seed < Uy and output a distribution Xeeed < A(seed) of en-
tropy Hoo (X |seed) > k, then for the joint distribution (X,Uy) over Xeeed arising
from a random seed < Uy, there exists a distributionY such that I:L,O(Y|Ud) >k
such that A((Y,Uy), (cond(X;Uy),Uy)) <e.

Dodis, Ristenpart, and Vadhan showed that seed-dependent condensers can be
constructed using collision resistant hash functions. Furthermore, this construc-
tion works for e = 0. That is, the output has entropy instead of being close to a
distribution with entropy. For our construction, we will require & = w(log \).
We now present the construction. Instead of directly locking the value key we
instead lock the value ¢ = Enc(key||cond(val;seed)), where Enc is the encoding
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lock’ (val, key), Viey(val’, ),
input in {0, 1}***: input in {0, 1}
1. Compute z = cond(val, seed). 1. Compute z = cond(val’, seed).
2. Compute y = Enc(key]|2). 2. Run decode key’ = Dec(y).
3. Output lock(val, y). 3. If key}, in 7 2 Output L.
Else output key,  ,_;.
ulock’ (val’) < ulock(val’) o

Fig. 2: Nonmalleable digital locker preventing tampering over both val and key. A seed
of a seed-dependent condenser must be public and global.

function for a nonmalleable code and cond is a seed dependent condenser. No-
tionally, the nonmalleable code prevents tampering to independent points and
the condenser detects if the adversary tampers to an independent point.

Construction 2 Let (lock’, ulock’) be defined as in Figure 1. Let (Enc, Dec) be
a coding scheme where Enc : {0,1}*** — {0,1}". Let cond : {0,1}* x {0,1} —
{0,1}* be a seed-dependent condenser. Define the algorithms (lock’, ulock’, Viey)
as in Figure 2.

However, security of this construction is not straightforward as we are using
nonmalleable codes in a nonstandard way. In a nonmalleable code, the adversary
specifies the tampering function before seeing any information about c. In our
setting, the adversary sees obfuscations that have ¢ embedded before deciding
how to tamper. The crucial part to our argument is that the set of obfuscations

is pseudorandom condition on ¢ and s def cond(val; seed). If an adversary is able
to tamper substantially better given obfuscations of val from some entropic dis-
tribution than with uniformly random val we can check whether they tampered
properly and use this to break distributional indistinguishability. The proof of
Theorem 3 is deferred to the full version [FF18, Section 4.2].

Theorem 3. Let A\ € N be a security parameter and let {0,1}* be the domain.
Let (lockP, ulockP) be a (n+1)-same point composable and Fyingie-nonmalleable.

1. Suppose for any s = poly(A) there exists u, = w(log\) such cond :
{0,1}* x {0, 1} — {0,1}* is a (u, B, 5,0)-seed-dependent condenser.

2. Let seed <+ {0,1}? be a public parameter.

9. x Y X (seed) be an s-samplable distribution so Hao (X |seed, cond(seed, X)) >
8.3

3 In the previous sections, we consider X that have worst case min-entropy. However,
if Hoo(X|seed, cond(seed, X)) > f for some 8 = w(log)) then there exists some
B = w(log ) such that with Preeed[Hoo (X |seed, cond(seed, X)) > 8] > 1 — ngl()).
Thus, this change does not effect the set of distributions assumed to be secure in
Assumption 1.
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4. Let a description of Gy, a generator g for Gy and seed < {0,1}% be system
parameters.

5. Let Fpme be a function class. Suppose for any Spme = poly(A\) there exists
€nme = ngLl(A) such that (Enc,Dec) is an (€nmes Snme, Frme) nonmalleable
code.

Then (lock’,ulock’) in Construction 2 and Figure 2 is point nonmalleable for
Fsingle and key nonmallable for Fyme. In particular, (lock’, ulock’) is a (Fsingle,
Frme, X)-nonmalleable digital locker.

We recommend using a nonmalleable code that detects at least permutations
and 1 — 0 bit tampers, such as [AGMT15a, AGM*15b], as these transforms are
otherwise computable in polynomial time.

Constructions using nonmalleable extractors [DW09,CRS14] or one-way hashes
[BCFW09,BFS11,CQZ"16] may be possible. However, they are not immediate,
we use the primitive of nonmalleable hashes to illustrate. A nonmalleable hash
function is a family of functions h € H such that an adversary given h(x) (sam-
pled h < H and z from some distribution) cannot find h(f(x)) for f in some
function class F. Several of these works claim to be “standard model” but all
require h is random and not tampered by the adversary. One could append a
nonmalleable hash, obfuscating key’ = key||h(key||val). However, this approach
assumes that the function instance h is assumed to be independently sampled
from key and val. In our approach, the public randomness required is for seed
of the condenser, and the distribution of val (and key) can depend on this value.
Furthermore, non malleable hashes are analyzed with the adversary only know-
ing the output value h(z). It is not clear that security would hold in the pres-
ence of multiple correlated obfuscations. Similar issues arise with nonmalleable
extractors [DW09,CRS14].
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