Computational Fuzzy Extractors™**

Benjamin Fuller®*, Xianrui Meng®, Leonid Reyzin®

% University of Connecticut, 371 Fairfield Way, Storrs, CT 06269, United States.
b Amazon Web Services, Inc. 2021 7th Avenue, Seattle, WA 98121, United States.
¢Boston University, 111 Cummington Mall, Boston, MA 02215, United States.

Abstract

Fuzzy extractors derive strong keys from noisy sources. Their security is usually
defined information-theoretically, with gaps between known negative results,
existential constructions, and polynomial-time constructions. We ask whether
using computational security can close these gaps. We show the following;:

e Negative Result: Noise tolerance in fuzzy extractors is usually achieved
using an information reconciliation component called a secure sketch. We
show that secure sketches are subject to upper bounds from coding the-
ory even when the information-theoretic security requirement is relaxed.
Specifically, we define computational secure sketches using conditional
HILL pseudoentropy (Hastad et al., STAM J. Computing 1999). We show
that a computational secure sketch implies an error-correcting code. Thus,
HILL pseudoentropy is bounded by the size of the best error-correcting
code. Similar bounds apply to information-theoretic secure sketches.

e Positive Result: We show that our negative result can be avoided by
constructing and analyzing a computational fuzzy extractor directly. We
modify the code-offset construction (Juels and Wattenberg, CCS 1999) to
use random linear codes. Security is based on the Learning with Errors
(LWE) problem and holds when the noisy source is uniform or symbol-
fixing (that is, each dimension is either uniform or fixed). As part of the
proof, we reduce symbol-fixing security to uniform error security.

Keywords: Fuzzy extractors, secure sketches, key derivation, learning with
errors, error-correcting codes, computational entropy.

*A preliminary version of this work appeared in Asiacrypt 2013 [1]. The differences are
described in Section 1.3.

**Declarations of Interest: In addition to affiliations with UConn, Amazon and Boston
University, the authors have previously been affiliated with MIT Lincoln Laboratory, Apple,
MIT, IST Austria, and Algorand. Other than potential organizational conflicts of interest,
the authors foresee no potential conflicts.

*Corresponding author
Email addresses: benjamin.fuller@uconn.edu (Benjamin Fuller), xianru@amazon.com
(Xianrui Meng), reyzin@cs.bu.edu (Leonid Reyzin)

Preprint submitted to Elsevier June 23, 2020

1. Introduction

Authentication requires a secret drawn from some high-entropy source. One
of the primary building blocks for authentication is reliable key derivation. Un-
fortunately, many sources that contain sufficient entropy to derive a key are
noisy and provide similar but not identical secret values at each reading. Ex-
amples of such sources include biometrics [2], measurements of capacitance [3],
timing [4], motion [5], and quantum information [6].

Fuzzy extractors [7] derive reliable keys from noisy sources (see [8, 9, 10, 11]
for applications of fuzzy extractors). The primitive consists of two algorithms:
Generate (used once) and Reproduce (used subsequently). The Generate (Gen)
algorithm takes an input w and produces a key r and a public value p. The
Reproduce (Rep) algorithm is able to reproduce r given p and some value w’ that
is close to w (according to some predefined metric, such as Hamming distance).
Crucially for security, knowledge of p should not reveal r; that is, r should be
uniformly distributed conditioned on p. This feature is needed because p is not
secret: for example, in a single-user setting (where the user wants to reproduce
the key r from a subsequent reading w’), it would be stored in the clear; and in a
key agreement application [8] (where two parties have w and w’, respectively),
the natural solution is to send p between the parties. (More techniques are
possible when interactive communication is permitted; see Dupont et al.for a
recent example [12].)

Fuzzy extractors use ideas from information-reconciliation and privacy am-
plification [6] and are defined (traditionally) as information-theoretic objects.
Privacy amplification is usually performed with a randomness extractor [13].
Randomness extractors are well-understood [14]. Polynomial-time construc-
tions of randomness extractors can extract randomness from all distributions
with min-entropy with the help a short uniform nonsecret seed. A single ran-
domness extractor simultaneously works for all probability distributions with
sufficient entropy. Furthermore, for randomness extractors, the parameter gap
between negative results, nonconstructive positive results, and polynomial-time
constructions is relatively small.

Unfortunately, the state of fuzzy extractors is murkier. There is no crisp
characterization of when key derivation is possible. Fuller, Reyzin, and Smith [15,
16] present one possible notion called fuzzy min-entropy. They show a non-
polynomial-time algorithm that derives a key from each distribution with fuzzy
min-entropy. Woodage et al. [17] subsequently improved the parameters. As a
negative result, Fuller, Reyzin, and Smith [15, 16] and Fuller and Peng [18] show
families of distributions where no fuzzy extractor can simultaneously work for
the whole family, despite the fact that a fuzzy extractor exists for each element
of the family. Thus, two main open areas of research for information-theoretic
fuzzy extractors are providing polynomial-time constructions and providing con-
structions that simultaneously secure many distributions. This work asks:

Can computational security close these gaps?

1.1. Our Contribution

We consider the sketch-then-extract paradigm used in most fuzzy extractor
constructions. This paradigm combines a secure sketch and a randomness ex-
tractor. A secure sketch is a one-round information-reconciliation protocol. It
allows recovery of the original value w from any nearby value w’. A random-
ness extractor is then run on w to produce uniform bits. One could replace
the usual, information-theoretic, randomness extractor with a computational
one [19, 20, 21] (constructed, for example, by applying a pseudorandom gener-
ator to the output of an information-theoretic extractor), but a computational
extractor helps only if the conditional min-entropy of w conditioned on the
sketch is high enough (else, the computational extractor has no security). Since
the security losses due to secure sketches are usually much higher than due to
randomness extraction, the secure sketch becomes the bottleneck.

We ask if a computational secure sketch can overcome information-theoretic
lower bounds. The most natural relaxation of the min-entropy requirement of
the secure sketch is to require HILL entropy [22] (namely, that the distribution
of w conditioned on the sketch be indistinguishable from a high-min-entropy
distribution). Under this definition, one could use a randomness extractor to
obtain r from w, resulting in a pseudorandom key.

Negative Result. We prove in Theorem 3.6 that the entropy loss of such com-
putational HILL secure sketches is subject to coding bounds that are similar to
the ones that constrain information-theoretic secure sketches. More precisely,
for every secure sketch that retains m bits of computational entropy, there is
an error-correcting code with 2™~2 codewords. This error-correcting code can
then be used to instantiate an information-theoretic secure sketch.

The idea is that, by definition of HILL entropy, an adversary should not be
able to distinguish a pair w,p from z,p where x is drawn from a distribution
with actual entropy conditioned on p. For most points w’ close to w, the output
of Rec(w’, p) = w. Thus, the same must be true for points drawn conditioned
on a given p (or else we could build a distinguishing adversary), forcing the
distribution of x conditioned on p to function as an error-correcting code.

Alternative Computational Definitions for Secure Sketches. We define compu-
tational secure sketches via HILL entropy. A natural question is whether a
weaker definition of security for secure sketches could avoid the negative result.
A minimum condition is computational unpredictability of w given p [23]. If
such a definition is used, one can instantiate sketch-and-extract with a recon-
structive extractor [24, 23] (one way to build such an extractor is via repeated,
independent applications of the Goldreich-Levin hardcore function [25]). Con-
structing secure sketches with computational unpredictability of w given p, or
proving negative results about them, is a fascinating open problem.

Let us briefly discuss two other alternative definitions of pseudoentropy,
called inaccessible entropy [26, 27] and next-block pseudorandomness [28, 29].
Inaccessible entropy measures the difference between the entropy of w condi-
tioned on p and the ability of an adversary to find other values w* that are

consistent with p. Since inaccessible entropy is bounded above by actual en-
tropy it is not clear how to adapt this tool.

Next-block pseudorandomness asks that the distribution of each symbol w; of
w is indistinguishable, conditioned on wy, ..., w;_1, p, from some distribution X;
such that the sum of the conditional entropies of X; is high enough. Next-block
pseudorandomness is used in building pseudorandom generators from one-way
functions. It may be possible to build a good fuzzy extractor from this defi-
nition by modifying the subsequent extraction procedure, perhaps using tech-
niques from [28, 29]. However, it may be that secure sketches based on this
indistinguishability-style definition are subject coding-theory bounds similar to
those for secure sketches based on HILL entropy, and this definition will not
lead to improved constructions. Resolving these questions is another fascinat-
ing open problem.

For now, to avoid our negative result, we focus on directly constructing a
computational fuzzy extractor. That is, in our construction, we will show that
the output key r is indistinguishable from uniform (conditioned on p). To avoid
the negative result for secure sketches, the pair (r,p) must be one-way in the
value w.

Positive Result. We construct the first fuzzy extractor whose security relies on
computational security arguments (Juels and Sudan suggested using computa-
tional security in [30]). The construction can derive a key r whose length is
at least the entropy of the source w. Our construction is for the Hamming
metric and uses the code-offset construction [31],[7, Section 5] used in prior
work, but with two crucial differences. First, the key r is not extracted from
w like in the sketch-and-extract approach; rather w “encrypts” r in a way that
is decryptable with the knowledge of some close w’ (this idea is similar to the
way the code-offset construction is presented in [31] as a “fuzzy commitment”).
Our construction uses private randomness within Gen, which is allowed in the
fuzzy extractor setting but not for noiseless randomness extraction. Second, the
code used is a random linear code, which allows us to use the Learning with
Errors (LWE) assumption due to Regev [32, 33, 34] and derive a longer key r.

For security, we rely on the result of Déttling and Miiller-Quade [35], which
shows the hardness of decoding random linear codes when the error vector comes
from the uniform distribution, with each coordinate ranging over a small inter-
val. This allows us to use w as the error vector, assuming it is uniform. There
have been subsequent works on uniform error LWE [36, 37]; however as we dis-
cuss in Section 4.2, these changes do not substantively effect our parameters.
We also use a result of Akavia, Goldwasser, and Vaikuntanathan [38], which
says that LWE has many hardcore bits, to hide r.

Because we use a random linear code, our decoding is limited to guessing a
subset of locations and checking if it contained errors. Unfortunately, we cannot
utilize the results that improve the decoding radius through the use of trapdoors
(such as [32, 34]), because in a fuzzy extractor, there is no secret storage place
for the trapdoor (in particular, Gen cannot pass a secret to Rep). If improved
decoding algorithms are obtained for random linear codes, they will improve the

error-tolerance of our construction. However, the problem of generally decoding
random linear codes is NP-hard [39].

The construction is secure whenever w is drawn from an error distribu-
tion that makes the decisional version of the LWE problem hard. Toward
this end, we show the hardness of LWE when some dimensions of the error
vector are fixed (and adversarially known), which may be of independent in-
terest (Theorem 5.2). This allows w to come from a symbol-fixing source [40]
(each dimension is either uniform or fixed).

1.2. Subsequent Work

Subsequent to the introduction of computational fuzzy extractors in the con-
ference version of this work [1], other works built computational fuzzy extrac-
tors for noisy sources for which no efficient information-theoretic construction
is known (e.g., [41]). Under strong cryptographic assumptions (semantically se-
cure graded encodings), a polynomial-time computational fuzzy extractor exists
for every source where the distance metric is computable in the complexity class
NC* [42].

A desirable property for fuzzy extractors is reusability [43], which guarantees
that a user can securely enroll the value w with multiple independent providers
to get values r1,p1,....,7,,D,. Even with noise between different enrollments,
each key r; should be private conditioned on the rest of the values. Boyen showed
strong negative results on information-theoretically secure reuseable fuzzy ex-
tractors [43].

Apon et al. [44] showed that the construction presented in this paper achieves
a weak form of reusability if it is modified so that the random code is a global
parameter (instead of being created as part of Gen). They also show how to
augment the reusability using either a random oracle or LWE-based symmet-
ric encryption techniques. Other subsequent work used different cryptographic
techniques to construct reusable computational fuzzy extractors [41, 45, 46, 47].

Our security arguments are based on the learning-with-errors assumption
with ¢ > 2. Herder et al. [48] present a similar construction when ¢ = 2 that
reduces to a form of learning parity with noise [49]. Herder et al.’s construction
is secure when the bits of w are independent Bernoulli trials. They also show
security when w comes from a class of affine transformations [48, Section 7].
Lastly, Huth et al. [50, 51, 52] implemented our construction on multiple devices,
including a constrained 8-bit microcontroller.

1.3. Differences between [1] and this work

The same authors published a conference version of this work in Asiacrypt
2013 [1]. That work did not include proofs or a detailed discussion of parameters.
The theorem statement and the underlying proof in Section 3 had a minor error
(pointed out by Yasunaga and Yuzawa [53]). This version corrects the theorem
statement and proof. There was also a second negative result for secure sketches
that is superseded by a more recent result in [15]; this is discussed in Section 3.
Additionally, the conference version focused on extracted key length for high-
entropy inputs as the sole reason to move to computational security. Since the

conference version, it became evident that there are other important reasons. In
particular, there is a large gap between known negative results for information-
theoretic fuzzy extractors and positive constructions. There are many sources of
practical importance, such as the iris [54] and physical unclonable functions [55],
for which the best known information-theoretic fuzzy extractors provide little
or no security. Since the publication of the conference version of this paper,
computational constructions [55, 54] have been able to provide meaningful, al-
beit modest, security for such sources, while adding additional properties such
as reusability. Lastly, this version discusses more recent results on uniform-error
LWE and their applicability to our setting (in Section 4.2).

2. Preliminaries

For a random variable X = X,||...||X,, where each X is over some alphabet Z,
we denote by X7 ., = X1]|...||Xk. The min-entropy of X is

Hoo(X) = — log(max Pr[X = z]),
and the average (conditional) min-entropy [7, Section 2.4] of X given Y is
I:IOO(X|Y) = —log (E maxPr[X =z|Y = y]))
yey =«

The statistical distance between random variables X and Y with the same do-
main is A(X,Y) = 1> |Pr[X = z] — Pr[Y = z]|. For a distinguisher D (or
a class of distinguishers D) we write the computational distance between X
and Y as 6P(X,Y) = |[E[D(X)] — E[D(Y)]|. We denote by D;_.. the class of
randomized circuits which output a single bit and have size at most sge.. For
a metric space (M, dis), the (closed) ball of radius t around x is the set of all
points within radius ¢, that is, By(z) = {y|dis(z,y) < t}. If the size of a ball in
a metric space does not depend on x, we denote by |By(+)| the size of a ball of
radius ¢. For the Hamming metric over Z", |B:(-)| = ZZ:O (M2 - 1) Uy
denotes the uniformly distributed random variable on {0,1}". Usually, we use
bold letters for vectors or matrices, capitalized letters for random variables, and
lowercase letters for elements in a vector or samples from a random variable.
We use poly(n) to denote some polynomial function of n and ngl(n) to denote
some negligible function of n.

2.1. Fuzzy Extractors and Secure Sketches

We now recall definitions and lemmas from the work of Dodis et al. adapted to
allow for a small probability of error [7, Sections 8]. Let M be a metric space
with distance function dis.

Definition 2.1. An (M,m,¢,t,¢)-fuzzy extractor with error 0 is a pair of ran-
domized procedures, “generate” (Gen) and “reproduce” (Rep), with the following
properties:

1. The generate procedure Gen on input w € M outputs an extracted string
r € {0,1}¢ and a helper string p € {0,1}*.

2. The reproduction procedure Rep takes an element w' € M and a bit string
p € {0,1}* as inputs.

3. Correctness: for every pair w,w’ such that dis(w,w’) < ¢, for (R, P) +
Gen(w), then Rep(w’, P) = R with probability (over the coins of Gen, Rep)
at least 1 — §. If dis(w,w’) > t, then no guarantee is provided about the
output of Rep.

4. Security: for any distribution W on M of min-entropy m, the string R is
nearly uniform even for those who observe P: if (R, P) <+ Gen(W), then
SD((R, P), (U, P)) <e.

A fuzzy extractor is efficient if Gen and Rep run in expected polynomial-time.

We ask whether better parameters can be achieved by considering a fuzzy
extractor with a computational security requirement. We therefore relax the
security requirement of Definition 2.1 to require a pseudorandom output instead
of a truly random output. We also modify the definition so that we can specify
a general class of sources for which the fuzzy extractor is designed to work,
rather than limiting ourselves to the class of sources with a given min-entropy
m, as in definitions above. This modification can also be applied to definitions
of information-theoretic secure sketches and fuzzy extractors.

Definition 2.2 (Computational Fuzzy Extractor). Let W be a family of prob-
ability distributions over M. A pair of randomized procedures “generate” (Gen)
and “reproduce” (Rep) is a (M, W, £, t)-computational fuzzy extractor that is
(€, Ssec)-hard with error § if Gen and Rep are a fuzzy extractor with the security
property replaced with the following:

4. Security: for any W € W, the string R is pseudorandom conditioned on
P, that is §Pssec ((R, P), (Uy, P)) < e.

Each efficient fuzzy extractor is a computational fuzzy extractor.

Remark. Fuzzy extractor definitions make no guarantee about Rep behavior
when the distance between w and w’ is larger than ¢. In the information-
theoretic setting this seemed inherent as the “correct” R should be information-
theoretically unknown conditioned on P. However, in the computationally set-
ting this is not true. Looking ahead, in our construction R is information-
theoretically determined conditioned on P (with high probability over the coins
of Gen). Our Rep algorithm will never output an incorrect key (with high proba-
bility over the coins of Gen) but may not terminate. However, it is not clear this
is the desired behavior. For this reason, we leave the behavior of Rep ambiguous
when dis(w, w’) > ¢.

2.2. Secure sketches

Secure sketches are the main ingredient in the construction of most fuzzy ex-
tractors. Secure sketches produce a string s that does not decrease the entropy
of w too much, while allowing recovery of w from a close w’:

Definition 2.3. An (M, m,m, t)-secure sketch with error § is a pair of random-
ized procedures, “sketch” (SS) and “recover” (Rec), with the following properties:

1. The sketching procedure SS on input w € M returns a bit string s €

{0, 1}".

2. The recovery procedure Rec takes an element w' € M and a bit string
s € {0,1}*.

3. Correctness: if dis(w,w’) < t, then Pr[Rec(w’,SS(w)) = w] > 1—46 (prob-
ability over the coins of SS and Rec).

4. Security: for any distribution W over M with min-entropy m, the value of
W can be recovered by the adversary who observes SS(W) with probability
no greater than 2=™. That is, Hoo (W|SS(W)) > 1.

A secure sketch is efficient if SS and Rec run in expected polynomial-time.

In the above definition, the errors are chosen before the algorithms are run.
Correctness is not guaranteed if the error pattern between w and w’ depends on
the output of the algorithms. A fuzzy extractor can be produced from a secure
sketch and an average-case randomness extractor. An average-case extractor is a
generalization of a strong randomness extractor [13, Definition 2]) (Vadhan [56,
Problem 6.8] showed that all strong extractors are average-case extractors with
a slight loss of parameters):

Definition 2.4. Let x1, x2 be finite sets. A function ext : x1 x{0,1}¢ — {0,1}*
is an (m, e)—average—case extractor if for all pairs of random variables X,Y over
X1, X2 such that Hoo(X|Y) > m, then A((ext(X,Uq),Uq,Y), (Up,Ug,Y)) < e.

Lemma 2.5. Assume (SS,Rec) is an (M, m,m,t)-secure sketch with error §,
and let ext : M x {0,1}¢ — {0,1}* be a (1n, €)-average-case extractor. Then
the following (Gen, Rep) is an (M, m, ¢, t,€)-fuzzy extractor with error d:

e Gen(w) : generate z + {0,1}¢, set p = (SS(w),x),r = ext(w;z), and
output (r,p).

e Rep(w', (s,2)) : recover w = Rec(w’, s) and output r = ext(w;x).

3. Impossibility of Computational Secure Sketches

In this section, we show that a sketch that retains HILL entropy implies a large
error-correcting code. For inputs that have full entropy this immediately implies
a sketch that retains nearly the same amount of min-entropy. HILL entropy is

a commonly used computational notion of entropy [22]. It was extended to the
conditional case by Hsiao, Lu, Reyzin [23]. Here we recall a weaker definition
due to Gentry and Wichs [57] (the term relaxed HILL entropy was introduced
in [58]); since we show impossibility even for this weaker definition, impossibility
for the stronger definition follows immediately.

Definition 3.1. Let (W, S) be a pair of random variables. W has relaxed HILL
entropy at least k conditioned on S, denoted HEF-™*(W|S) > k if there exists a

joint distribution (X,Y), such that Hoo(X|Y) > k and 6Psse (W, S), (X,Y)) <

€.

Intuitively, HILL entropy acts like as average min-entropy for all computa-
tionally bounded observers. Thus, redefining secure sketches using HILL en-
tropy is a natural relaxation of the original information-theoretic definition; in
particular, the sketch-and-extract construction in Lemma 2.5 would yield pseu-
dorandom outputs if the secure sketch ensured high HILL entropy. We will
consider secure sketches that retain relaxed HILL entropy: that is, we say that
(SS, Rec) is a HILL-entropy (M, m,m,t) secure sketch that is (€, Sgec)-hard with
error § if it satisfies Definition 2.3, with the security requirement replaced by
HEE‘SE‘:"IX(W\SS(W)) > m.

Unfortunately, we will show below that such a secure sketch implies an er-
ror correcting code with approximately 2™ points that can correct ¢ random
errors (see [7, Lemma C.1] for a similar bound on information-theoretic secure
sketches). For the Hamming metric, our result essentially matches the bound
on information-theoretic secure sketches of [7, Proposition 8.2]. In fact, for
the Hamming metric on the uniform distribution, HILL-entropy secure sketches
imply information-theoretic ones with similar parameters, and, therefore, the
HILL relaxation gives no advantage.

The intuition for building error-correcting codes from HILL-entropy secure
sketches is as follows. In order to have H2ILL-T1X(T1/|SS(WW)) > s, there must

€,8sec

be a distribution X,Y such that Hoo (X|Y) > 7 and (X,Y) is computationally
indistinguishable from (W,SS(W)). Sample a sketch s < SS(W). We know
that SS followed by Rec likely succeeds on W s (i.e., Rec(w’, s) = w with high
probability for w <— W|s and w’ <— By(w)). Consider the following experiment:
1) sample y < Y, 2) draw x + X|y and 3) 2/ + B;(x). By indistinguishability,
Rec(z’,y) = x with high probability. This means we can construct a large set
C from the support of X|y. C will be an error correcting code and Rec an
efficient decoder. We can then use standard arguments to turn this code into
an information theoretic sketch.

To make this intuition precise, we need an additional technical condition:
sampling a random neighbor of a point is efficient.

Definition 3.2. We say a metric space (M,dis) is (Speigh,t)-neighborhood
samplable if there exists a randomized circuit Neigh of size speign that for all
t' <t, Neigh(w,t") outputs a random point at distance t' of w.

We review the definition of a Shannon code [59]:

Definition 3.3. Let C be a set over space M. We say that C is a (t, €)-Shannon
code if there exists an efficient procedure Rec such that for all t' <t and for all
¢ € C, Pr[Rec(Neigh(c,t')) #] < e. To distinguish it from the average-error
Shannon code defined below, we will sometimes call it a maximal-error Shannon
code.

This is a slightly stronger formulation than usual, in that for every size ' < ¢
we require the code to correct # random errors.! Shannon codes work for all
codewords. We can also consider a formulation that works for an “average”
codeword.

Definition 3.4. Let C be a distribution over space M. We say that C is an
(t, €)-average error Shannon code if there exists an efficient procedure Rec such
that for all t’ <t Pr..c|[Rec(Neigh(c,t)) # ¢] <e.

An average error Shannon code is one whose average probability of error is
bounded by e. See [60, Pages 192-194] for definitions of average and maximal
error probability. An average-error Shannon code is convertible to a maximal-
error Shannon code with a small loss. We use the following pruning argument
from [60, Pages 202-204]:

Lemma 3.5. Let C be a (t,€)-average error Shannon code with recovery pro-
cedure Rec such that Hoo(C) > k. There is a set C' with |C'| > 2%~ that is a
(t, 2te)-(mazximal error) Shannon code with recovery procedure Rec.

Proof. Let C be the (¢, €)-average error Shannon code with recovery procedure
Rec such that Ho (C) > k. Then for all ¢/ <t

> Pr[C = | Pr[c/ + Neigh(c, ') ARec(c') # c] < e.
ceC

For ¢ denote by €. = Pr[c¢’ « Neigh(c,t') A Rec(c’) # ¢|. Then by Markov’s
inequality:

1
r < | = < >1—- —
Pe[oww <2 Eleer] = Brlew s29 215

Let CY, denote the of set all ¢ € C' where €.+ < 2te. Note that Pr..c[c € C},] >
1 — ;. Define the set

YN a.

1<t/ <t

Tn the standard formulation, the code must correct a random error of size up to ¢, which
may not imply that it can correct a random error of a much smaller size ¢, because the volume
of the ball of size t' may be negligible compared to the volume of the ball of size t. For codes
that are monotone (if decoding succeeds on a set of errors, it succeeds on all subsets), these
formulations are equivalent. However, we work with an arbitrary recover functionality that is
not necessarily monotone.

10

Since V¢',Proeclce Cl] > 1 — % then Pro. clc € C'] > % Since Hoo(C) > k,
we know |C’| > 27! (otherwise Pro.cc € C'] = 3 . Pr[C = ¢] would be
less than 281 - = 1/2). This completes the proof of Lemma 3.5. O

We can now formalize the intuition above and show that a sketch that retains
m-bits of relaxed HILL entropy implies a good error correcting code with nearly
2™ points.

Theorem 3.6. Let (M,dis) be a metric space that is (Sneigh,t)-neighborhood
samplable. Let (SS,Rec) be an HILL-entropy (M, m,m,t)-secure sketch that is
(€, Ssec)-secure with error §. Let spec denote the size of the circuit that computes

Rec. If Ssec > t(Sneigh + Srec), then there exists a value s and a set C with
|C| > 2™=2 that is a (t, 4t(e+td))-Shannon code with recovery procedure Rec(-, s).

Proof. Let W be an arbitrary distribution of min-entropy m. Let (X,Y) be a
joint distribution such that He (X|Y) > m and

§Pesee ((Wa SS(W))v (Xv Y)) <e,

where Sgec > t(Sneigh + Srec). One such (X,Y) must exist by the definition of

conditional HILL entropy. Define D as:
1. Input w € M,z € {0,1}*,¢.
2. Forall1 <t <t:
w’ < Neigh(w,).
If Rec(w’, z) # w output 0.
3. Output 1.
By correctness of the sketch Pr[D(W,SS(W)) = 1] > 1 — 4. Since
FP((W,SS(W)), (X,Y)) <,

we know Pr[D(X,Y) = 1] > 1 — (e +td). Let X, denote the random variable
X|Y =y. By Markov’s inequality, there exists a set Sy such that Pr[Y € Sy| >
1/2 and for all y € Sy, Pr[D(X,,y) = 1] > 1 —2(e + tJ).

Because I:IOO(X|Y) > m, we know that E, .y max, Pr[X, = 2] < 2™, Ap-
plying Markov’s inequality to the random variable max, Pr[X, = z|, there exists
a set Sy such that Prly € S{] > 1/2, and for all y € S§, Hoo(X,) > m — 1
(we can use the strict version of Markov’s inequality here, because the random
variable max, Pr[X, = z] is positive). Fix one value y € Sy NS} (which exists
because the sum of probabilities of Sy and S% is greater than 1). Thus, for all
such that ¢/,1 < ¢’ <,

P

T [#" < Neigh(z,t') ARec(z’,y) = x] > 1 — 2(e + t6).
T—Xy

Thus, X, is a (t,2(e + td))-average error Shannon code with recovery Rec(-,y)
and 277! points. The statement of the theorem follows by application of
Lemma 3.5. U

11

For the Hamming metric, any Shannon code (as defined in Definition 3.3)
can be converted into an information-theoretic secure sketch (as described in [7,
Section 8.2] and references therein). The idea is to use the code offset construc-
tion, and convert worst-case errors to random errors by randomizing the order
of the symbols of w first, via a randomly chosen permutation 7 (which becomes
part of the sketch and is applied to w’ during Rec). The formal statement of
this result can be expressed in the following Lemma (which is implicit in [7,
Section 8.2]).

Lemma 3.7. For an alphabet Z, let C over Z™ be a (t,d)-mazimal error Shan-
non code. Then there exists a (2™, m,m — (nlog|Z| —log|C|),t) secure sketch
with error § for the Hamming metric over Z™.

Putting together Theorem 3.6 and Lemma 3.7 means that for the Hamming
metric a HILL-entropy secure sketch implies an information-theoretic one:

Corollary 3.8. Let Z be an alphabet. Let (SS, Rec) be an (e, Sse.)-HILL-entropy
(Z™, m,m,t)-secure sketch with error o for the Hamming metric over Z", with
Rec’ of circuit size Spec. If Ssec > t(Spee+nlog|Z|), then for any m’ there exists
a (2™, m',m' — (nlog|Z| —m)—2,t) (information-theoretic) secure sketch with
error 4t(e 4 t9).

In Corollary 3.8 we make no claim about the efficiency of the resulting
(SS, Rec), because the proof of Theorem 3.6 is not constructive.

The conference version of this work contained an upper bound on the unpre-
dictability of a computational secure sketch [1, Theorem 2]. Roughly, the result
said that the sketch had unpredictability at most nlog|Z| — log|B:(-)|. This
bound was based on a simple adversary that guesses a random point. Fuller,
Reyzin, and Smith [15, Definition 3] introduced fuzzy min-entropy which mea-
sures an adversaries success when provided with the functionality of a secure
sketch. Fuzzy min-entropy is formally defined as

HizE (W) < —log (max Pr{IV € Bi(w)]).

Fuzzy min-entropy is maximized for the uniform distribution where H{'%*(U,,)
nlog |Z| —log | B:(-)|. This matches the bound of [1, Theorem 2] for the uniform
distribution but provides tighter bounds for other distributions. Thus, the prior

unpredictability bound has been strictly improved and is omitted.

Avoiding the Bound. The bound arises because Rec must function as decoder
for any indistinguishable distribution. The lower bound is strongest for high
entropy sources. If a source contains only codewords (of an error correcting
code), no sketch is necessary. This same situation occurs when considering lower
bounds for information-theoretic sketches [7, Appendix C]. In the Introduction,
we discuss whether one could construct secure sketches that retains other forms
of pseudoentropy.

Fuzzy extractors are not required to output the same point; they can instead
output a consistent r. If some efficient algorithm can take the output of the

12

reproduce algorithm Rep and efficiently transform it back to w, the lower bound
applies. This means that we need to consider constructions that are hard to
invert (either information-theoretically or computationally). This intuition was
formalized by Yasunaga and Yuzawa [53] who show a similar result if Rep is
invertible to some potential w*.

A natural way to avoid this result is if Rec outputs a fresh random variable.
Such an algorithm is called a computational fuzzy conductor. See Kanukurthi
and Reyzin [61] for the definition of a fuzzy conductor and Canetti et al. [41]
for the computational version. The definition replaces the pseudorandomness
condition in Definition 2.2 with a HILL entropy requirement.

Our construction (in Section 4) has pseudorandom output and immediately
satisfies definition of a computational fuzzy extractor (Definition 2.2). Canetti

et al. first use a conductor and then a computational extractor [41, Construction
2].

4. A Computational Fuzzy Extractor based on LWE

As stated in the introduction, our construction of a computational fuzzy
extractor treats the input w (drawn from the source W) as the noise term added
to a codeword of a random linear code. Thus, the security of our construction
depends on the distribution given by W. In this section we consider a uniform
source W; we consider other distributions in Section 5. Our construction uses
the code-offset construction [31], [7, Section 5] instantiated with a random linear
code over a finite field Z,. Let Decode; be an algorithm that decodes a random
linear code with at most ¢ errors. We present such an algorithm in Section 4.3.

Construction 4.1. Let n be a security parameter and let m > n. Let q be a
prime. Define Gen, Rep as follows:

Gen Rep

1. Input: w<+ W 1. Input: (w',p)
(W is distributed over zy). (where d(w,w') < t).

2. Sample A € Zg?™" and x € Ly 2. Parsep as (A,c); letb=c—w'.
uniformly.

3. Let x = Decode;(A,b).
3. Compute p = (A, Ax + w)

and 1= X1, n/2- 4. Output r =1, nso-

4. Output (r,p).

We know that decoding a random linear code is NP-hard [39]. For this
construction to be secure, it should be computationally hard to decode a random
linear code with errors distributed according to W. In fact, we need more: we
actually need to show that X,/ are hardcore bits. That is, we need

5175,;“(()(1)“””/2,]3), (Un/glogmp)) <e

13

Furthermore, this construction is only useful if Decode; can be efficiently imple-
mented.

The rest of this section is devoted to making these statements precise. We
first review some properties of random linear codes in Section 4.1. We then
describe the LWE problem and the security of our construction in Section 4.2.
We describe one possible polynomial-time Decode; (which corrects more errors
than is possible by exhaustive search) in Section 4.3. In Section 4.4, we describe
parameter settings that allow us to extract as many bits as the input entropy,
resulting in a lossless construction. In Section 4.5, we compare Construction 4.1
to using a sketch-and-extract approach (Lemma 2.5) instantiated with a com-
putational extractor.

4.1. Properties of Random Linear Codes

For correctness of our construction, we need a random linear code to have
high distance with overwhelming probability. We will use the g-ary entropy
function, denoted H,(x) and defined as H,(z) = zlog,(¢ — 1) — wvlog, z — (1 —
z)log, (1 —x). Note that Hy(z) = —zlogy z — (1 — z)logy(1 — x). In the region
[0, 1] for any value ¢’ > ¢, Hy (z) < Hy(x). The following theorem is standard
in coding theory:

Theorem 4.2. [62, Theorem 8] For prime ¢,6 € [0,1—1/¢),0 < e < 1—Hy(6)
and sufficiently large m, the following holds for n = [(1 — Hgy(0) — e)m]. If
A € ZJ*" is drawn uniformly at random, then the linear code with A as a
generator matriz has rate at least (1 — Hy(0) — €) and relative distance at least
8 with probability at least 1 — e~ M),

Our setting is the case where m = poly(n) > 2n and § = O(k’%). This
setting of parameters satisfies Theorem 4.2:

Corollary 4.3. Let n be a parameter and let m = poly(n) > 2n. Let q be a
prime and 7 = O(%*logn). For large enough values of n, when A € Zyj*™*" is
drawn uniformly, the code generated by A has distance at least T (and relative
distance T/m = § = O(logn/n)) with probability at least 1—e= ™) > 1—e=n),

Proof. Let ¢ be some constant. Let § = 7/m = Ck’%. We show the corollary

for the case when m = 2n (increasing the size of m only increases the relative
distance). It suffices to show that for sufficiently large n, there exists ¢ > 0
where 1 — Hq(do%) — € = 1/2 or equivalently that Hq(%) < 1/2, as then
setting e = 1/2 — Hq(wi%) satisfies Theorem 4.2. For sufficiently large n:

clogn
n

o Ck’% < .1 < 1/2 and thus Hq(%) < Hy(.1).

) < 1/2, so we can work with the binary entropy function Hs.

Putting these statements together, for large enough n, H,(<2%5%) < H,(.1) <

n

Hy(.1) < 1/2 as desired. This completes the proof. O

14

We also need that random matrices are full rank with high probability. We use
the following claim (techniques from Cooper [63]):

Lemma 4.4. Let ¢ > 2 be a prime. Let o, € ZT and let S & ZZX(OH'ﬁ) be
uniform. Then Pr[rank(S) =a] > 1 —q7%.

Proof. Let p; be the probability that the ¢th row is linearly dependent on the
previous i— 1 rows. By the union bound, the probability that « rows are linearly
dependent is bounded by Ziazl p;. Since i — 1 rows can span a space of size at
most ¢° 1, the probability p; that a randomly chosen ith row is in that space is
at most ¢'~1/¢*+8. So

o qifl qa -1 1 s

Pr[rank(S) < a] = e <q

i=1

4.2. Security of Construction 4.1

The LWE problem was introduced by Regev [32, 33, 34] as a generalization
of “learning parity with noise.” For a thorough discussion of the LWE problem
and related lattice problems (which we do not define here) see [32, 34]. We now
recall the decisional version of the problem.

Definition 4.5 (Decisional LWE). Let n be a security parameter. Let m =
m(n) = poly(n) be an integer and q = q(n) = poly(n) be a prime*. Let
A be the uniform distribution over Z;**", X be the uniform distribution over
Zq, and x be an arbitrary distribution on Zy'. The decisional version of the
LWE problem, denoted dist-LWE,, 1, q., 5 to distinguish the LWE distribution
(A,AX +x) from the uniform distribution over (Zy**",Zy").

We say that dist-LWE,, 1, . @5 (€, Ssec)-secure if any (probabilistic) distin-
guisher of size Ssee can distinguish the LWE instances from uniform with advan-
tage no more than €.

Regev [32, 34] shows that dist-LWE,, ,, 4,x can be reduced to approximately
solving lattice problems known as GAPSVP and SIVP when the distribution
x of errors is Gaussian. Let \I/p be the discretized Gaussian distribution with
variance (pq)?/2m, where p € (0,1) with pg > 2v/n. If GAPSVP and SIVP
are hard to approximate (on lattices of dimension n) within polynomial factors
for quantum algorithms, then dist-LWE,, ,, ; g is secure. (Later, Peikert [64]
together with Brakerski et al. [65] showed security of LWE based on hardness of
approximating lattice problems for classical, rather than quantum, algorithms.)

The above formulation of LWE requires the error term to come from the
discretized Gaussian distribution. For our purposes, we use a different formula-
tion, due to Déttling and Miller-Quade [35], which shows security of LWE when

2Unlike in common formulations of LWE, where ¢ can be any integer, we need ¢ to be
prime for decoding.

15

errors come from the uniform distribution over a small interval, under the same
assumptions.? This allows us to directly encode w as the error term in an LWE
problem by splitting it into m blocks. The size of these blocks is dictated by
the following result of Déttling and Miiller-Quade.

Theorem 4.6. [35, Theorem 6] Let n be a security parameter. Let ¢ = q(n) =
poly(n) be a prime and m = m(n) = poly(n) be an integer with m > 3n. Let
o € (0,1) be an arbitrarily small constant and let p = p(n) € (0,1/10) be
such that pg > 2n'/?>*m. Define the value o = p/(mn®). Then define x as
the uniform distribution over [—pq, pg)™. If dist-LWE(n,myqu,gz) s secure then
dist-LWE (5, 1n.4,x) S secure.

To extract pseudorandom bits, we use a result of Akavia, Goldwasser, and
Vaikuntanathan [38] to show that X has many simultaneously hardcore bits.
The result says that if dist-LWE(,,_j m,q,y) is secure then any k coordinates of
X in a dist-LWE(,, 1, q,y) instance are hardcore. We state their result for a
general error distribution (noting that their proof does not depend on the error
distribution).

Lemma 4.7. [38, Lemma 2] Let x be a distribution over Z'. Suppose that
dist-LWE (5, k. m,q,x) 5 (€, 5sec) secure, then

6P cee (X1, 3y A, AX 4+ %), (U, A, AX +x)) <,

where U denotes the uniform distribution over Z’;, A denotes the uniform distri-
bution over Z;"X”, X denotes the uniform distribution over Zf;, X1,k denote
the first k coordinates of x, and s.,. = Ssec — 3.

The security of Construction 4.1 follows from Theorem 4.6 and Lemma 4.7
when parameters are set appropriately (see Theorem 4.11), because we use the
hardcore bits of X as our key.

Improved Uniform LWE reductions. Subsequent to the conference version of
this work [1], Bogdanov et al. [36] and Bai et al. [37] presented additional
reductions from uniform LWE to standard LWE with a discretized Gaussian
error distribution. For the purposes of this work, the most important change is
that they require a smaller uniform interval. Bogdanov et al.’s result requires
p = Q(ma/+/logn) and a multiplicative dimensionality loss of logn (in the un-
derlying Gaussian LWE). Bai et al. has a slighly worse p = Q(ma/logn) but
with no dimensionality loss. Bai et al’s main theorem is the following:

Theorem 4.8. [37, Theorem 5.1] Let n be a security parameter and let m be
a positive integer. Let v, p > 0 be real numbers with p = Q(ma/logn). Let q be
some prime positive integer. Furthermore, suppose that

3Micciancio and Peikert provide a similar formulation in [66]. The result of D&ttling and
Miiller-Quade provides better parameters for our setting.

16

e m > (nlogq)/(log(a+ p)~1) and
e ¢ =poly(m,n).

Let x be the uniform distribution over [—0q,0q]™ where § = %Lqu. Then if
dist-LWE ,, ¢, 5m) s secure then dist-LWE,, 1, ¢ v is secure.

The main differences between the result of Bai et al. [37] and Déttling and
Miiller-Quade [35] are two fold (ignoring the difference between p and).

1. The noise magnitude required in Déttling and Miiller-Quade is p > n®Mma
while in Bai et al. it is p > (ma«)/logn.

2. The required number of samples in Bai et al.is m > Q(nloggq/log(a +
p)~ 1) while in Déttling and Miiller-Quade it is m > 3n.

In this work, our goal is to extract a key that is as long as the input source.
In standard formulations (with a = 24/n/q), substituting parameters, one has
that:

_ q q
1 =1 =1
og(cv+p) o8 qo+ qp o8 (2\/ﬁ+m\/ﬁ/10gn)
=log q — log(2v/n +m+/n/logn).

Thus, the term

log ¢ _ log ¢
log(a+p)™" 1ogg —log (2v/n + 22)

logn

Suppose that ¢ = Q(n¢) for some ¢ > 3/2. Then it is possible for above equation
to be bounded by some constant and thus m = Q(n). Verifying this is slightly
complex as there is a circular relationship: m is lower bounded by a quantity
including p which is lower bounded by a quantity including m. As long as
g = Q(n°) for some ¢ > 3/2, this system is satisfiable for m = Q(n). This means
for large enough ¢, one can reduce the required noise from size pg = Q(n3/2+°(1)
to pg = n®/?/logn. Appendix A and Appendix B present parameters using
Theorem 4.6 due to Déttling and Miiller-Quade. This parameterization can be
slightly improved using Bai et al.’s result. However, this improvement is small
compared to how parameters depend on the number of errors to be corrected
and the desired running time.

4.3. Efficiency of Construction 4.1

Construction 4.1 is useful only if Decode; can be efficiently implemented.
We need a decoding algorithm for a random linear code with ¢ errors that runs
in polynomial-time. We present a simple Decode; that runs in polynomial-time
and can correct ¢ errors. Note that correcting ¢ = O(logn) errors corresponds
to correcting at least (7)(q — 1) error patterns which is superpolynomial.

17

Construction 4.9. We consider a setting of (n,m,q,x) where m > 3n. We
describe Decode; :

Input A,b=Ax+w —w'
Randomly select rows without replacement iy, ..., i, < [1,m].
b

that are linearly independent. If no such rows

Restrict A,b to rows iy, ...,12,,; denote these A, . iy Dir, s, -

e v o~

Find n rows of A, ... i,
exist, output L and stop.

5. Denote by A’,b’ the restriction of Ay, . iy, ,Diy,. i, (TeSpectively) to
these rows. Compute x' = (A’)~'b/.

6. If b — AX' has more than t nonzero coordinates, go to step (2).

7. Output x'.

The algorithm is an information set decoding algorithm. Lee and Brickel [67],
Berman and Karpinski [68] and Peters [69] optimize the above algorithm by 1)
selecting rows in a a structured way to improve probability of linear indepen-
dence, 2) swapping out rows rather than starting from scratch, and 3) saving
partial Gaussian elimination results (for computing the inverse). These tech-
niques improve concrete efficiency but do not asymptotically improve the num-
ber of errors that can be corrected in polynomial time. As noted by [70, 71],
when m = ©(n), any algorithm that operates generically on the elements of
AX + (w—w') can be efficient only when ¢t = O(logn), establishing a hurdle to
asymptotic improvement.

Each step is computable in time O(n?®). For Decode; to be efficient, we need
t to be small enough so that with probability at least poli;lr(n)’ none of the 2n rows
selected in step 2 have errors (i.e., so that w and w’ agree on those rows). If this
happens, and A;, .. ;,, hasrank n (which is highly likely), then x’ = x, and the
algorithm terminates. However, we also need to ensure correctness: we need to
make sure that if X’ # x, we detect it in step 6. This detection will happen if
b— Ax’' = A(x—x') 4+ (w—w’) has more than ¢ nonzero coordinates. It suffices
to ensure that A(x — x’) has at least 2t + 1 nonzero coordinates (because at
most ¢ of those can be zeroed out by w —w’), which happens whenever the code
generated by A has distance 2t + 1.

Setting ¢ = O(’} log n) is sufficient to ensure efficiency. Random linear codes
have sufficient distance with probability 1 — e () (the exact statement is in
Corollary 4.3), so this also ensures correctness. The formal statement is below:

Lemma 4.10. Let d be a positive constant and assume that dis(W,W') < t
where t < d(™ — 2)logn. Then Decode; runs in expected time O(n***3) op-
erations in Zq (this expectation is over the choice of random coins of Decode,
regardless of the input, as long as dis(w,w’) < t). It outputs X with probabil-
ity 1 — e (this probability is over the choice of the random matriz A and
random choices made by Decode;).

18

Proof. Note that Decode; will stop if w and w’ agree on all the rows selected
in Step 2 (it may also stop for other reasons—mnamely, in step 4; but we do
not use this fact to bound the expected running time). The probability of each
selected row having an error is at most ﬁ where ¢ is the number of rows

already selected. That is,

Prfir,ian b]>2ﬁ1 - >2ﬁ1 - 4G —2)logn
r[éy, ..., t2, have no errors] > m—i)~ 1 m—i

i=0
2n—1 2n—1
dlogn (m —2n dlogn

> 1-— > —
H(n (m—i))H(l n>

=0 =0

n 2dlogn
:<1_dlogn)2n: ((l_dlogn)dlog"> ¢
n n
1 1

> o = .
— 42dlogn nid

(The second-to-last step holds as long as n > 2dlogn.) Because at each it-
eration, we select 2n rows independently at random, the expected number of
iterations is at most n??; each iteration takes O(n?®) operations in Z,, which gives
us the expected running time bound. The probability that Decode; outputs L
is bounded by

Pr[Decode; — L]

oo
< ZPr[Decodet —L in jth iteration of step 4]
j=1

Pr[Decode; continues to j iters. A rank(A;, . ;,.) < 7]

o

<.
Il
—

Pr[i1, ..., 92, had errors j — 1 times A rank(A;,, . 4,,) < 7]

M

<.
Il
Ja

Pr[i1, ..., 92, had errors j — 1 times] - Prirank(A;, . 4,,) < 7]

1)“
1—— g "
4d
l(n

n4d679(")

M

<.
Il
-

<.
|

)

= M)

The fourth line from the bottom follows from the fact that the locations of the
errors are assumed to be independent of the sketch, and therefore independent
of the matrix A. The third line from the bottom follows from Claim 4.4 when
B = n; note that, because we use the union bound and evaluate the probability

19

separately for each value of j, we can treat A;, . ;, asarandomly chosen 2nxn
matrix, ignoring the fact that these matrices are correlated.

We claim that if the code generated by A has distance at least 2¢ 4+ 1, then
Decode; will output L or the correct x’ = x. Indeed, suppose x’ # x. Since
A(x — x') has at least 2t + 1 nonzero coordinates by the minimum distance
of the code generated by A, and at most ¢ of those can be zeroed out by the
addition of w — w’, such an x’ will not pass Step 6.

The probability that the code generated by A has distance lower than 2¢ + 1
is at most e =™ (see Corollary 4.3), and the probability of outputting L is also
e~ (computed above). This gives the correctness bound for Decode;. 0

4.4. Lossless Computational Fuzzy Extractor

We now state a setting of parameters that yields a lossless construction. We
split W into m blocks each of size log pg (from Theorem 4.6) with

(W[=He (W) =mlog pg.

Our key consists of hardcore bits of X (namely, coordinates X) and is of
size klogq (from Lemma 4.7). Thus, to get |W| = | X1, x| we need klogq =
mlog pg. While the vector w is of higher dimension than the vector X, each
coordinate of w is sampled using fewer bits than each coordinate of X. Thus,
by increasing the size of ¢ (while keeping pq fixed) we can set klog g = mlog pg,
yielding a key of the same size as our source. The formal statement is below.

Theorem 4.11. Let n be a security parameter and let the number of errors
t = clogn for some positive constant c. Let d be a positive constant (giving us a
tradeoff between running time of Rep and |w|). Consider the Hamming metric
over the alphabet Z = [—2°=1 21 where b = log2(c/d + 2)n? = O(logn).
Let W be uniform over M = Z™, where m = (¢/d + 2)n = O(n). There is a
setting of ¢ = poly(n,m) such that if dist-LWE,, 1,4, 2m) 15 (€, Ssec)-secure, then
Construction 4.1 is a (M, W, mlog|Z|,t)-computational fuzzy extractor that is
(€, 8sec)-hard with error § = e=*(™) . The generate procedure Gen takes O(n?) op-
erations over Zg, and the reproduce procedure Rep takes expected time O(n4d+3)
operations over Zg.

Proof. Security follows by combining Theorem 4.6 and Lemma 4.7; efficiency
follows by Lemma 4.10. For a more detailed explanation of the various param-
eters and constraints see Appendix A. O

4.5. Comparison with computational-extractor-based constructions

As mentioned in the Introduction, an alternative approach to building a com-
putational fuzzy extractor is to use a computational extractor (e.g., [19, 20, 21])
in place of the information-theoretic extractor in the sketch-and-extract con-
struction. We will call this approach sketch-and-comp-extract. (A simple exam-
ple of a computational extractor is a pseudorandom generator applied to the
output of an information-theoretic extractor; note that LWE-based pseudoran-
dom generators exist [72, 73].)

20

This approach (specifically, its analysis via Lemma 2.5) works as long as the
amount of entropy m of w conditioned on the sketch s remains high enough to
run a computational extractor. However, as discussed in Section 3, m decreases
with the error parameter ¢ due to coding bounds. There are practical sources,
such as the iris [74, Section 5], where after sketch losses there is too little entropy
left to run a computational extractor once s is known.

In contrast, our approach does not require the entropy of w conditioned on
p = (A, AX 4+ w) to be high enough for a computational extractor. The key
difference in our approach is that instead of extracting from w, we hide secret
randomness using w. Computational extractors are not allowed to have secret
randomness [19, Definition 3].

Additionally, our construction has a unique feature: security need not de-
pend on the error-tolerance ¢. Instead the time to recover is determined by
t.

Unfortunately, LWE parameter sizes require relatively long w and our con-
struction demonstrates a low error tolerance. However, we believe the concep-
tual framework can lead to better constructions. As an example, Herder et
al. [48] achieve practical error correction using a random linear code. Their
decode algorithm uses extra information in the source to pinpoint dimensions
unlikely to have an error (called confidence information).

5. Extending to Nonuniform Sources

We note that Construction 4.1 is secure whenever the source W is an LWE
admissible distribution, meaning that using W as the error vector in LWE makes
decoding/distinguishing computationally hard. (The instance has to be suffi-
ciently hard for there to be a large number of hardcore bits.) Towards this end,
we show hardness of LWE when a small number of dimensions of the error vector
are fixed. We recall the notion of a symbol fixing source (from [40, Definition
2.3)):

Definition 5.1. Let W = (W1, ..., Witq) be a distribution where each W; takes
values over an alphabet Z. We say that it is a (m + a,m,|Z|) symbol fixing
source if for o indices i1,...,%, the symbols W;_ are fized, and the remaining
m symbols are chosen uniformly at random. Note that Hoo (W) = mlog|Z|.

Symbol-fixing sources are a very structured class of distributions. However,
extending Construction 4.1 to such a class is not obvious. Although symbol-
fixing sources are deterministically extractable [40], we cannot first run a de-
terministic extractor before using Construction 4.1. This is because we need to
preserve distance between w and w’ and an extractor must not preserve dis-
tance between input points. Instead, we directly show the security of LWE with
symbol-fixing sources. The following theorem states that dist-LWE with symbol-
fixing sources is implied by the standard dist-LWE (but for n and m reduced by
the amount of fixed symbols).

21

Theorem 5.2. Let n be a security parameter, m, o, and q be polynomial in n,
where q is a prime, and f € ZT be such that ¢~P is negligible in n. Let U denote
the uniform distribution over Z™ for an alphabet Z C Zq, and let W denote an
(m + a,m,|Z|) symbol fizing source over Z™+*. If dist-LWE,, ,,, , v is secure,
then dist-LWE,, 4 a4 8,m+a,q,w 18 also secure.

Theorem 5.2 also holds for an arbitrary error distribution (not just uniform
errors) in the following sense. Let x’ be an arbitrary error distribution. Define
X as the distribution where m dimensions are sampled according to x’ and the
remaining dimensions have some fixed error. Then, security of dist-LWE,, ,,, 4.,
implies security of dist-LWE,, { o+ 8,m+a.,q,x- We show this stronger version of the
theorem below.

The intuition for this result is as follows. Providing a single sample with
no error “fixes” at most a single variable. Thus, if there are significantly more
variables than samples with no error, search LWE should still be hard. We are
able to show a stronger result that dist-LWE is still hard. The nontrivial part of
the reduction is using the additional a+ 3 variables to “explain” a random value
for the last a samples, without knowing the other variables. The § parameter
is the slack needed to ensure that the “free” variables have the influence on the
last o samples.

Proof of Theorem 5.2. We assume that all of the fixed blocks are located at the
end and their fixed value is 0. If the blocks are fixed to some other value, the
reduction is essentially the same. In the reduction, the distinguisher is allowed
to depend on the source and can know the positions of the fixed blocks and
their values. For a matrix A we will denote the i-th row by a;. For a set T of
column indices, we denote by At the restriction of the matrix A to the columns
contained in T'. Similarly, for a vector x we denote by xp the restriction of x
to the variables contained in 7. We use similar notations for the complement
of T', denoted T°. For a matrix or vector we use T to denote the transpose. We
use ¢ as an index into matrix rows and the error vector and j as an index into
matrix columns and the solution vector.

Let n be a security parameter, and m, q,« be polynomial in n. Let 8 be
such that ¢=# is negligible in n. All operations are computed modulo ¢, and
we omit “mod ¢” notation. Let x’ be some error distribution over Z;* and let
X over ZZ”” be defined by sampling X’ to obtain values on dimensions 1,...,m
and then appending « 0s.

Let D be a distinguisher that breaks dist-LWE (,;, { o), (n4-a+8),q,x With advan-

tage € > 1/poly(n). Let A denote the uniform distribution over ng'M) X(ntath)

(nta+p)
q

X denote the uniform distribution over Z , and U denote the uniform

distribution over Z"** . Then
|Pr[D(A, AX +) = 1] — Pr[D(A,U) = 1]| > e.

We build a distinguisher that breaks dist-LWE,, ,, 4. Let A’ denote the
uniform distribution over Zy™*", X " denote the uniform distribution over Ly,

22

and U’ denote the uniform distribution over Zy" . We will build a distinguisher
D’ of polynomial size for which

| Pr[D' (A", A’X" +X') =1] = Pr[D'(A’,U’) = 1]| > (¢ — ngl(n))(1 — ngl(n))
> e —ngl(n).

(1)

D’ will make a single call to D, so we focus on how to prepare a random block-
fixing instance for D from the instance that D’ is given. The code for D’ is
given in Figure 1.

The distinguisher D’ has an advantage when S is of rank «. This occurs
with overwhelming probability:

Lemma 5.3. Let S & ng(aﬂﬁ be randomly generated. Then Pr[rank(S) =
a] > 1—ngl(n).

Proof. Direct result of Claim 4.4 because ¢~ is negligible in n. O

The probability that a random S is not full rank is negligible in n, so the
distinguisher D must still have an advantage when the matrix S is full rank.
That is,

|Pr[D(A, AX+x) = 1l|rank(S) = a]-Pr[D(A,U) = 1|rank(S) = a]| > e—ngl(n).

It suffices to show that D’ prepares a good instance for D conditioned on S
being full rank. We show this in the following three claims:

1. If A’ is a random matrix then A is a random matrix subject to the con-
dition that rank(S) = «.

2. If b’ = A’x’ + € for uniform A’ and x’, then Ix (uniformly distributed
and independent of A and €’) such that b = Ax + e, where e; = € for
1 <i<m and e; = 0 otherwise.

3. If the conditional distribution b’| A’ is uniform, then the conditional dis-
tribution b | A is also uniform.

Claim 5.4. The matriz A is distributed as a uniformly random choice from
the set of all matrices whose bottom-right o X (a + B) submatriz S satisfies
rank(S) = a.

Proof. The bottom « rows of A (namely, R|S) are randomly generated (con-
ditioned on rank(S) = «). The top left m x n quadrant of A is also random
because it is produced as a sum of a uniformly random A’ with some values that
are uncorrelated with A’. The submatrix of the top-right m X (a+) quadrant
corresponding to Qre (recall this is the restriction of Q to the columns that are
not in 7T') is also random because it is initialized with random values to which
some uncorrelated values are then added. It is important to note that all these
values are independent of ; values.

23

1. Input A’,b’, where A’ & Zy*™ and b’ is either uniform over Z" or
b’ = A'x + e for ¢ & x' and uniform x’ & Zy-

2. Choose R & Zg*™ uniformly at random. Initialize Q € Zan(OH'ﬁ) to

be the zero matrix.

3. Let b* = (b', b5 s 50 te), for uniformly chosen

* * $ a
(bm+17 N '7bm+a) &~ Zq .

4. Choose S & ZS‘X(M—m uniformly at random.

If rank(S) < a, stop and output a random bit.

5. Find a set of « linearly independent columns in S. Let T be the set
of indices of these columns.

6. Forall1<j<a+p3,j¢T:
Choose T4 & Z4 uniformly at random.
Fori=1,...,m:
Choose Q; ; & Z4 uniformly at random.
Set bF = b + Qi jTn+j-

!
7. Initialize A* = (%‘&).

8. Fori=1,...m:
Choose a row vector v; < Zéxo‘ uniformly at random.
Set a; < a; + 7;(R[|S)
Set b; < b7 4 i (b i1, s D)
9. Fori=m+1,... m+a
Set a; < af

Set b; = by.
10. Output D(A,b).

Figure 1: A distinguisher D’ for LWE using a distinguisher D for LWE with a block fixing
source

24

Thus, we restrict attention to the m x « submatrix of A that corresponds to
Qr in A* (note that these values are 0 in A*). Consider a particular row i. That
row is computed as ;Sp. Since St is a full rank square matrix and y; is uni-
formly and independently generated, that row is also uniform and independent
of other entries in A. O

Lemma 5.5. If D’ is provided with input distributed as A’',b’ = A’x' +¢€’ then
b = Ax + e, where

e ¢, =c¢) forl1 <i<m,

e ¢, =0form<i<m+a,

o x;=2a for1 <j<n,

e and x; is uniform and independent of A and €' forn < j<n+a+p,

Proof. Partially define x as z; = x; if 1 <j <n and z; as the value generated
in step 6 for j > n and j ¢ T. Define the remaining variables xp as the solution
to the following system of equations.

et
Srxr = : — Rx’ — Spexrpe. (2)
b:;z-i—a
A solution x7 exists as Sy is full rank. Moreover, it is uniform and independent
of A and e, because b}, ,¢,...,b;, ,, are uniform and independent of A and e.
We now show that b* = A*x + e. All entries in matrix Q corresponding
to variables in T are set to zero. Thus, the values of xT do not affect b} for
1 <4 < m. The values of xp. are manually set, and Q; ;x; is added to the
corresponding bf. Thus, for 1 <i < m, we have b* = A*x +e. For m < 4, this
constraint is also satisfied by the values of x7 set in Equation 2.
Thus, it remains to show that step 8 preserves this solution. We now show
that for all rows 1 < i <m, if b} = ajx+ ¢, then b; = a;x +¢;. Recall the other
rows are not modified. We have the following for 1 < i < m:

a;x +e; = (aj +7(R|[S))x+ e
=a’x+e; +7(R||S)x
= b +7(RJ[S)x

Recall that b; = bf + vi(b}, 41, -, 0y, 4s)- We consider the product (R|[S)x. It

25

suffices to show that (R[|S)x = (b},41, - b}ta),

X1
(RHS)X =R + StexXpe + STXT
Xn
X1 by, i1 X1
= R + STcXTc + — R — STcXTc

Xn b;kn+a Xn

byt

b:n+a

This completes the proof of the claim. O

Lemma 5.6. If the conditional distribution b’ | A’ is uniform, then b| A is also
uniform.

Proof. Since R, S, and Q are chosen independently of b’, the distribution b’ | A*
is uniform. Let b* be the vector generated after step 6. Its first m coordinates
are computed by adding the uniform vector b’ to values that are independent
of b*, and its remaining « coordinates b}, ,4,...,by, ., are chosen uniformly.
Thus b* | A* is uniform.

Let T' represent the matrix formed by 7;. It is independent of b* and

A*, so b*|(A*,T) is uniform. Let I' = < 18’ IF > Note that b = I'"b*.

Since b* | (A*,T') is uniform, and I' is invertible, b| (A*,T') must also be uni-
form. Since A is a deterministic function of A* and I' (assuming Step 5 is
deterministic—if not, we can fix the coins used), the distribution b| A is the
same as b | (A*,T') and is thus also uniform. O

To sum up, the reduction D’ runs in polynomial-time and Claims 5.4, 5.5,
and 5.6 show that when rank(S) = «, then D’ properly prepares the instance
for D. Thus,

[Pr[D'(A,AX + x) = 1] — Pr[D'(A,U) = 1]

= |Pr[D'(A’,u’) = l|rank(S) = a] — Pr[D'(A’, A’x + e) = 1|rank(S) = af|
- Pr[rank(S) = o]

= |Pr[D(A,AX + x) = 1l|rank(S) = o] — Pr[D(A,U) = 1|rank(S) = ¢]|

- Pr[rank(S) = o]

> (e —ngl(n))(1 —ngl(n)) = € — ngl(n)

(where the second line follows because D’ outputs a random bit when rank(S) <
a). Thus, Equation (1) is satisfied, which completes the proof. O

26

Theorem 5.2 allows us to construct a lossless computational fuzzy extractor
from block-fixing sources, as shown in the following theorem:

Theorem 5.7. Letn be a security parameter and let t = clogn for some positive
constant c. Let d < ¢ be a positive constant and consider the Hamming metric
over the alphabet Z = [—2°~1 25~ where b ~ log 2(c/d + 2)n? = O(logn). Let
M = ZmTe where m = (¢/d + 2)n = O(n) and o < n/3. Let W be the class
of all (m + o, m,|Z|)-symbol fixing sources. There is a setting of ¢ = poly(n)
such that if dist-LWE,, 1,.q,2m) 5 (€, Ssec)-secure, then Construction 4.1 is an
(M, W, mlog|Z|,t)-computational fuzzy extractor that is (€, Ssec)-hard with er-
ror § = e~ (™). The generate procedure Gen takes O(n?) operations over Z,,
and the reproduce procedure Rep takes expected time O(n*¥+3logn) operations
over Zg.

Proof. Security follows by Lemmas 4.6 and 4.7 and Theorem 5.2 . Efficiency
follows by Lemma 4.10. For a more detailed explanation of parameters see
Appendix B. O

Note: A similar theorem for the case of a single fixed dimension was shown in
the concurrent work by Brakerski et al. [65, Lemma 4.3]. The proof techniques
of Brakerski et al. can be extended to multiple fixed dimensions, improving the
parameters of Theorem 5.2. Roughly, the idea is to randomly generate R||S
as before. Instead of just appending these rows to A’, the matrix A is formed
by multiplying A’ by an invertible matrix U € Z;*™. Then R|[S is appended.
This approach creates more flexibility in finding a vector x that explains the
matrix. The advantage of this approach is that only R||S has to be full rank
instead of the submatrix S. This removes the need for the 3 extra dimensions
in the theorem statement. The original formulation is formalized above.

Acknowledgements

The authors are grateful to Jacob Alperin-Sheriff, Ran Canetti, Yevgeniy
Dodis, Nico Déttling, Daniele Micciancio, Jorn Miiller-Quade, Chris Peikert,
Oded Regev, Adam Smith, and Daniel Wichs for helpful discussions, creative
ideas, and important references. In particular, the authors thank Nico Dottling
for describing his result on LWE with uniform errors.

This work is supported in part by National Science Foundation grants 0831281,
1012910, 1012798, and 1849904. The work of Benjamin Fuller is sponsored in
part by the United States Air Force under Air Force Contract FA8721-05-C-
0002. Opinions, interpretations, conclusions and recommendations are those of
the authors and are not necessarily endorsed by the United States Government.

References

[1] Benjamin Fuller, Xianrui Meng, and Leonid Reyzin. Computational fuzzy
extractors. In Advances in Cryptology — ASIACRYPT, pages 174-193.
Springer, 2013.

27

2]

3]

[9]

John Daugman. How iris recognition works. Circuits and Systems for Video
Technology, IEEE Transactions on, 14(1):21 — 30, January 2004.

Pim Tuyls, Geert-Jan Schrijen, Boris Skoric, Jan Geloven, Nynke Verhaegh,
and Rob Wolters. Read-proof hardware from protective coatings. In Louis
Goubin and Mitsuru Matsui, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2006, volume 4249 of Lecture Notes in Computer
Science, pages 369-383. Springer Berlin Heidelberg, 2006.

G. Edward Suh and Srinivas Devadas. Physical unclonable functions for
device authentication and secret key generation. In Proceedings of the 44th
annual Design Automation Conference, pages 9-14. ACM, 2007.

Claude Castelluccia and Pars Mutaf. Shake them up!: A movement-based
pairing protocol for CPU-constrained devices. In Proceedings of the 3rd in-

ternational conference on Mobile systems, applications, and services, pages
51-64. ACM, 2005.

Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy ampli-
fication by public discussion. SIAM journal on Computing, 17(2):210-229,
1988.

Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy
extractors: How to generate strong keys from biometrics and other noisy
data. SIAM Journal on Computing, 38(1):97-139, 2008.

Xavier Boyen, Yevgeniy Dodis, Jonathan Katz, Rafail Ostrovsky, and
Adam Smith. Secure remote authentication using biometric data. In EU-
ROCRYPT, pages 147-163. Springer, 2005.

Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric
key cryptography from weak secrets. In Proceedings of the 41st annual ACM
Symposium on Theory of Computing, pages 601-610, New York, NY, USA,
2009. ACM.

Nishanth Chandran, Bhavana Kanukurthi, Rafail Ostrovsky, and Leonid
Reyzin. Privacy amplification with asymptotically optimal entropy loss. In
Proceedings of the 42nd ACM Symposium on Theory of Computing, pages
785—794, New York, NY, USA, 2010. ACM.

Nishanth Chandran, Bhavana Kanukurthi, Rafail Ostrovsky, and Leonid
Reyzin. Privacy amplification with asymptotically optimal entropy loss.
Journal of the ACM (JACM), 61(5):1-28, 2014.

Pierre-Alain Dupont, Julia Hesse, David Pointcheval, Leonid Reyzin, and
Sophia Yakoubov. Fuzzy password-authenticated key exchange. In Ad-
vances in Cryptology — FEUROCRYPT, pages 393-424. Springer, 2018.

Noam Nisan and David Zuckerman. Randomness is linear in space. Journal
of Computer and System Sciences, pages 43-52, 1993.

28

[14]

[15]

[18]

[19]

[20]

[22]

23]

[24]

[25]

[26]

Ronen Shaltiel. Recent developments in explicit constructions of extractors.
Bulletin of the EATCS, 77(67-95):10, 2002.

Benjamin Fuller, Leonid Reyzin, and Adam Smith. When are fuzzy extrac-
tors possible? In Advances in Cryptology — ASIACRYPT, pages 277-306.
Springer, 2016.

Benjamin Fuller, Leonid Reyzin, and Adam Smith. When are fuzzy extrac-
tors possible? IEEE Transactions on Information Theory, 2020.

Joanne Woodage, Rahul Chatterjee, Yevgeniy Dodis, Ari Juels, and
Thomas Ristenpart. A new distribution-sensitive secure sketch and
popularity-proportional hashing. In Advances in Cryptology-CRYPTO,
pages 682-710. Springer, 2017.

Benjamin Fuller and Lowen Peng. Continuous-source fuzzy extractors:
Source uncertainty and insecurity. In 2019 IEEE International Symposium
on Information Theory (ISIT), pages 2952-2956. IEEE, 2019.

Hugo Krawczyk. Cryptographic extraction and key derivation: The
HKDF scheme. In Advances in Cryptology-CRYPTO 2010, pages 631-648.
Springer, 2010.

Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira, Krzysztof
Pietrzak, Francois-Xavier Standaert, and Yu Yu. Leftover hash lemma,
revisited. In Advances in Cryptology—CRYPTO 2011, pages 1-20. Springer,
2011.

Dana Dachman-Soled, Rosario Gennaro, Hugo Krawczyk, and Tal Malkin.
Computational extractors and pseudorandomness. In Theory of Cryptog-
raphy, pages 383—403. Springer, 2012.

Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any one-way function. SIAM Journal on
Computing, 28(4):1364-1396, 1999.

Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. Conditional computa-
tional entropy, or toward separating pseudoentropy from compressibility.
In EUROCRYPT, pages 169-186, 2007.

Boaz Barak, Ronen Shaltiel, and Avi Wigderson. Computational analogues
of entropy. In 11th International Conference on Random Structures and
Algorithms, pages 200-215, 2003.

Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way
functions. In Proceedings of the 21st annual ACM Symposium on Theory
of Computing, pages 25-32, 1989.

Iftach Haitner, Omer Reingold, Salil Vadhan, and Hoeteck Wee. Inaccessi-
ble entropy. In Proceedings of the 41st annual ACM Symposium on Theory
of Computing, pages 611-620. ACM, 2009.

29

[27]

[28]

[29]

[30]

[31]

[32]

Iftach Haitner, Thomas Holenstein, Omer Reingold, Salil Vadhan, and
Hoeteck Wee. Universal one-way hash functions via inaccessible entropy. In
Advances in Cryptology — EUROCRYPT, pages 616-637. Springer, 2010.

Salil Vadhan and Colin Jia Zheng. Characterizing pseudoentropy and sim-
plifying pseudorandom generator constructions. In Proceedings of the 44th
annual ACM Symposium on Theory of Computing, pages 817-836. ACM,
2012.

Iftach Haitner, Omer Reingold, and Salil Vadhan. Efficiency improvements
in constructing pseudorandom generators from one-way functions. SIAM
Journal on Computing, 42(3):1405-1430, 2013.

Ari Juels and Madhu Sudan. A fuzzy vault scheme. Designs, Codes and
Cryptography, 38:237-257, 2006.

Ari Juels and Martin Wattenberg. A fuzzy commitment scheme. In Sizth
ACM Conference on Computer and Communication Security, pages 28-36.
ACM, November 1999.

Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Proceedings of the 37th annual ACM Symposium on The-
ory of Computing, pages 84-93, New York, NY, USA, 2005. ACM.

Oded Regev. The learning with errors problem (invited survey). Annual
IEEE Conference on Computational Complezity, 0:191-204, 2010.

Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM (JACM), 56(6):1-40, 2009.

Nico Déttling and Jorn Miiller-Quade. Lossy codes and a new variant of the
learning-with-errors problem. In Thomas Johansson and Phong Q. Nguyen,
editors, Advances in Cryptology — EUROCRYPT, volume 7881 of Lecture
Notes in Computer Science, pages 18-34. Springer, 2013.

Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon
Rosen. On the hardness of learning with rounding over small modulus. In
Theory of Cryptography Conference, pages 209-224. Springer, 2016.

Shi Bai, Tancrede Lepoint, Adeline Roux-Langlois, Amin Sakzad, Damien
Stehlé, and Ron Steinfeld. Improved security proofs in lattice-based cryp-
tography: using the Rényi divergence rather than the statistical distance.
Journal of Cryptology, 31(2):610-640, 2018.

Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous
hardcore bits and cryptography against memory attacks. In Omer Reingold,
editor, Theory of Cryptography, volume 5444 of Lecture Notes in Computer
Science, pages 474-495. Springer Berlin Heidelberg, 2009.

30

[39]

[40]

[41]

[42]

[43]

Elwyn Berlekamp, Robert McEliece, and Henk van Tilborg. On the in-
herent intractability of certain coding problems. IEEE Transactions on
Information Theory, 24(3):384 — 386, May 1978.

Jesse Kamp and David Zuckerman. Deterministic extractors for bit-fixing
sources and exposure-resilient cryptography. SIAM Journal on Computing,
36(5):1231-1247, 2007.

Ran Canetti, Benjamin Fuller, Omer Paneth, Leonid Reyzin, and Adam
Smith. Reusable fuzzy extractors for low-entropy distributions. In Advances
in Cryptology —-EUROCRYPT, pages 117-146. Springer, 2016.

Nir Bitansky, Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On
virtual grey box obfuscation for general circuits. Algorithmica, 79(4):1014—
1051, 2017.

Xavier Boyen. Reusable cryptographic fuzzy extractors. In Proceedings of
the 11th ACM conference on Computer and communications security, CCS
04, pages 82-91, New York, NY, USA, 2004. ACM.

Daniel Apon, Chongwon Cho, Karim Eldefrawy, and Jonathan Katz. Effi-
cient, reusable fuzzy extractors from LWE. In International Conference on
Cyber Security Cryptography and Machine Learning, pages 1-18. Springer,
2017.

Yunhua Wen, Shengli Liu, and Shuai Han. Reusable fuzzy extractor from
the decisional Diffie-Hellman assumption. Designs, Codes and Cryptogra-
phy, pages 1-18, 2018.

Quentin Alamélou, Paul-Edmond Berthier, Chloé Cachet, Stéphane
Cauchie, Benjamin Fuller, Philippe Gaborit, and Sailesh Simhadri. Pseu-
doentropic isometries: A new framework for fuzzy extractor reusability. In
AsiaCCS 2018, 2018.

Yunhua Wen and Shengli Liu. Reusable fuzzy extractor from LWE. In
Australasian Conference on Information Security and Privacy, pages 13—
27. Springer, 2018.

Charles Herder, Ling Ren, Marten van Dijk, Meng-Day Yu, and Srini-
vas Devadas. Trapdoor computational fuzzy extractors and stateless
cryptographically-secure physical unclonable functions. IEEE Transactions
on Dependable and Secure Computing, 14(1):65-82, 2017.

Avrim Blum, Merrick Furst, Michael Kearns, and Richard J Lipton. Cryp-
tographic primitives based on hard learning problems. In Advances in
Cryptology — CRYPTO, pages 278-291. Springer, 1993.

Christopher Huth, Daniela Becker, Jorge Guajardo, Paul Duplys, and Tim
Giineysu. LWE-based lossless computational fuzzy extractor for the in-
ternet of things. In Hardware Oriented Security and Trust (HOST), 2017
IEEE International Symposium on, pages 154-154. IEEE, 2017.

31

[51]

[52]

Christopher Huth, Daniela Becker, Jorge Guajardo, Paul Duplys, and Tim
Giineysu. Securing systems with scarce entropy: LWE-based lossless com-
putational fuzzy extractor for the IoT. TACR Cryptology ePrint Archive,
2016:982, 2016.

Christopher Huth, Daniela Becker, Jorge Guajardo Merchan, Paul Duplys,
and Tim Giineysu. Securing systems with indispensable entropy: LWE-
based lossless computational fuzzy extractor for the internet of things.
IEEE Access, 5:11909-11926, 2017.

Kenji Yasunaga and Kosuke Yuzawa. On the possibilities and limitations
of computational fuzzy extractors. Cryptology ePrint Archive, Report
2014/605, 2014. http://eprint.iacr.org/.

Sailesh Simhadri, James Steel, and Benjamin Fuller. Reusable authenti-
cation from the iris. In Information Security Conference, pages 465-485,
2019.

Chenglu Jin, Charles Herder, Ling Ren, Phuong Nguyen, Benjamin Fuller,
Srinivas Devadas, and Marten van Dijk. FPGA implementation of a
cryptographically-secure puf based on learning parity with noise. Cryp-
tography, 1(3):23, 2017.

Salil Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science. Now Publishers, 2012.

Craig Gentry and Daniel Wichs. Separating succinct non-interactive argu-
ments from all falsifiable assumptions. In Proceedings in the 43rd annual
ACM Symposium on the Theory of Computation, pages 99-108, 2011.

Leonid Reyzin. Some notions of entropy for cryptography. In Information
Theoretic Security, pages 138-142. Springer, 2011.

Claude E. Shannon, Warren Weaver, Richard E. Blahut, and Bruce Hajek.
The mathematical theory of communication, volume 117. University of
Illinois press Urbana, 1949.

Thomas M. Cover and Joy A. Thomas. Elements of information theory.
Wiley-InterScience, 2nd edition, 2006.

Bhavana Kanukurthi and Leonid Reyzin. Key agreement from close secrets
over unsecured channels. In Advances in Cryptology - EUROCRYPT, pages
206-223, 2009.

Venkatesan Guruswami. Introduction to coding theory - lecture 2: Gilbert-
Varshamov bound. University Lecture, 2010.

Colin Cooper. On the rank of random matrices. Random Structures &
Algorithms, 16(2):209-232, 2000.

32

[64]

[74]

Chris Peikert. Public-key cryptosystems from the worst-case shortest vec-
tor problem: extended abstract. In Proceedings of the 41st annual ACM
Symposium on Theory of Computing, pages 333-342, New York, NY, USA,
2009. ACM.

Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
Stehlé. Classical hardness of learning with errors. In Proceedings of the 45th
annual ACM symposium on Symposium on theory of computing, pages 575—
584. ACM, 2013.

Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with Small
Parameters. In Advances in Cryptology - CRYPTO 20183, Lecture Notes in
Computer Science. 2013.

Pil Joong Lee and Ernest F Brickell. An observation on the security of
mceliece’s public-key cryptosystem. In Workshop on the Theory and Ap-
plication of of Cryptographic Techniques, pages 275—280. Springer, 1988.

Piotr Berman and Marek Karpinski. Approximating minimum unsatisfi-
ability of linear equations. In Proceedings of the thirteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 514-516. Society for In-
dustrial and Applied Mathematics, 2002.

Christiane Peters. Information-set decoding for linear codes over Fq.
In International Workshop on Post-Quantum Cryptography, pages 81-94.
Springer, 2010.

Ran Canetti and Shafi Goldwasser. An efficient threshold public key cryp-
tosystem secure against adaptive chosen ciphertext attack. In Advances in
Cryptology — EUROCRYPT, pages 90-106. Springer, 1999.

Chris Peikert. On error correction in the exponent. In Theory of Cryptog-
raphy Conference, pages 167—183. Springer, 2006.

Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. On pseudorandom
generators with linear stretch in NC 0. Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, pages 260—
271, 2006.

Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. On pseudorandom
generators with linear stretch in nc 0. Computational Complexity, 17(1):38—
69, 2008.

Marina Blanton and William MP Hudelson. Biometric-based non-
transferable anonymous credentials. In International Conference on In-
formation and Communications Security, pages 165-180. Springer, 2009.

33

Appendix A. Parameter Settings for Construction 4.1

In this section, we explain the different parameters that go into our construction.
In Theorem 4.11 we give a parametrization that yieldslossless fuzzy extractor
from a security parameter n and an error ¢. In this section, we discuss constraints
imposed by 1) efficient decoding 2) maintaining security of the LWE instance
and 3) ensuring no entropy loss of the construction. We begin by reviewing the
parameters that make up our construction:

|[W|: The length of the source.
t: Number of errors that can be supported.

n: LWE security parameter (i.e., number of field elements in X), which
must be greater than some minimum value ng for security.

q: The size of the field.
p: The fraction of the field needed for error sampling.
m: The size of each number of samples in the LWE instance.

k: The number of hardcore elemebnts in X (from Lemma 4.7).

We will split the source |W| into m blocks each of size 2pq + 1 (that is, |W| =
mlog(2pq+1)). We focus on t, n, g, p, and m noting that |W| = mlog(2pq+1).
As stated above we have three constraints:

Maintain security of LWE. Theorem 4.6 says that we get security for all
n greater than some minimum ny and ¢ = poly(n) and pg > an®mg.
For convenience we consider ag = 24/n as needed in the original Regev
reduction [32, 34]. The only reason to increase pgq over this minimum
amount (other than security) is if the number of errors in W decreases
with a slightly larger block size. We ignore this effect and assume that
pq = 2nt/?tom,

Maintain efficient decoding of Construction 4.9. Using Lemma 4.10, this
means that ¢t < dlogn(m/n — 2).

Minimize entropy loss of the construction. We will output X; . j so the
entropy loss of the construction is |W|—|X7, . x|. We want the entropy loss
to be zero, that is, [W| = | X7, . | Substituting, one has mlog(2pq+1) =
kloggq.

Collecting constraints we can support any setting where t,n,q, p, m, k satisfy
the following constraints (for constants d, f):

ng<n-—=k
t <dlogn (T —2)
n
g=n'
pq:2n1/2+‘7m
mlog(2pq + 1) = kloggq

34

Substituting ¢ = n/ and pg = 2n!/2T7m yields the following system of equa-
tions:

ng<n-—=k
t < dlogn (E — 2)
n
mlog(4n'/?tm 4+ 1) = klogn'

This is the most general form of our construction, we can support any n,t,m
that satisfy these equations for constants d, f. However, the last equation may
have no solution for f constant. Putting the last equation in terms of f one
has:

ng<n-—=k
tgdlogn<mf2>
n

mlogdn'/?tom + 1

f= k logn

To ensure f is a constant, we set ¢ = clogn for some constant ¢ and that
k = n/g for some constant g > 1. Finally we assume that m is the minimum
value such that ¢t < dlogn(m/n—2) (that is, there are only as many dimensions
as necessary for decoding using Lemma 4.10):

ng<n-—=k
_ (¢/d+2)nlogn _ (C+2)n
logn d
mlogdnt/?+m +1 g(c+ 2d) log(X2Un3/2+0 4 1)
T=% = = o(1)
k logn d log n

Assuming n — k = n(1 — 1/g) > ng and letting ¢ = clogn we get the following
setting:

c
m= |-+ 2) n
(d
m log(anl/2+9 m 1)
g=nf =nF 7 T) = poly(n)

pq = 2n'/*0m = 2(2 + 2)n3/2+e

Note, that f > % > % > W > 3 aslong as d < ¢ (this also ensures that
m > 3n, as required for Lemma 4.10 to hold). Since pg = 2n'/?>t7m = O(n>/?)
in our setting p = O(n’l/ 2). Thus, for large enough settings of parameters p is
less than 1/10 as required by Theorem 4.6.

Furthermore, we get decoding using O(n44+3) Z4 operations. We can output
a k fraction of X and the bits will be pseudorandom (conditioned on A, AX +

W). The parameter g allows is a tradeoff between the number of dimensions

35

needed for security and the size of the field q. In Theorem 4.11, we set g = 2
and output the first half of X. Setting 1 < g < 2 achieves an increase in
output length (over the input length of W). We also (arbitrarily) set o = 1/2
to simplify the statement of Theorem 4.11, making pg = 2(c/d + 2)n?.

Appendix B. Parameter Settings for Theorem 5.7

We repeat parameter settings for block fixing sources. We now have m + « as
the number of samples, while n + « 4+ w(1) is the number of variables. We can
support any setting where t,n, q, p, m, k, a satisfy the following constraints (for
B = w(1) and constants d, f):

ng<n—k—a-—,
t < dlogn (T —2)
n
qg=n'
pq:2n1/2+"m
mlog(2pq+ 1) = klogq

Substituting ¢ = nf and pg = 2n'/?t7m yields the following system of equa-
tions:

ng<n—k—a—-p
t < dlogn (E —2)
n
mlog(4n'/* 7 m +1) = klogn'

As before we can support any setting any n, t, m, o that satisfy these equations
for § = w(1) and constants d, f. However, the last equation may have no
solution for f constant. Putting the last equation in terms of f one has:

np<n—k—a-—,
tgdlogn(@—Z)
n

m log(4n'/?Tom 4 1)

f= k logn

To ensure f is a constant, we set t = clogn for some constant ¢ and that
k,ao = n/3 and 8 = logn. Finally we assume that m is the minimum value
such that ¢ < dlogn(m/n — 2) (that is, there are only as many dimensions as
necessary for decoding using Lemma 4.10):

ng < n/3 —logn
(c/d+2)nlogn ¢

= — 2
logn (d)n
m log(4n'/>t7m 4 1) c log(4(§ +2)n®/2T7 +1)
f k logn (3(d +)) log n Oo(1)

36

Assuming n/3 — log(n) > no and letting t = clogn we get the following

setting:

(&
m = (E +2)n
m log(4nl/2+om 1)

g=nl =nn Tog = poly(n)
pq = 2n*/*om = 2(2 + 2)n3/2+e

c

As before we arbitrarily set o = 1/2, giving pg = 2(5 + 2)n?.

Also, if

¢ < d then we get efficient decoding and p = o(1) satisfying the conditions of

Theorem 4.6.

37

	Introduction
	Our Contribution
	Subsequent Work
	Differences between fuller2013computational and this work

	Preliminaries
	Fuzzy Extractors and Secure Sketches
	Secure sketches

	Impossibility of Computational Secure Sketches
	A Computational Fuzzy Extractor based on LWE
	Properties of Random Linear Codes
	Security of Construction 4.1
	Efficiency of Construction 4.1
	Lossless Computational Fuzzy Extractor
	Comparison with computational-extractor-based constructions

	Extending to Nonuniform Sources
	Parameter Settings for Construction 4.1
	Parameter Settings for Theorem 5.7

