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Abstract—This paper proposes a low-latency FPGA implemen-
tation for Turbo equalization to combat very long multipath
fading channels where the Intersymbol-interference (ISI) channel
length is on the order of 100 taps. Turbo equalization is essential
for such severe multipath channels, but exhibits very large latency
and high computational complexity due to its sequential and
iterative data processing on large-scale matrix arithmetic. This
paper proposes an FPGA acceleration architecture to exploit
the Hermitian symmetric property of the channel Gram matrix
and convolutional nature of Sequential Interference Cancellation
(SIC), and successfully implements a linear Turbo equalizer
of 100 taps on a Xilinx Zynq UltraScale+ MPSoC ZCU102
Evaluation Kit. The architecture is able to support two turbo
iterations for a 1024-symbol block size and achieve 200 kilo-
symbols-per-second (ksps) transmission rate.

I. INTRODUCTION

Turbo equalization is essential for single-carrier modulation
(SCM) receivers in severe multipath wireless channels where
channel length L is often on the order of 100 taps or strong
intersymbol interference is spread over more than 50 symbols.
Such severe multipath channels are often encountered, for
example, in underwater acoustic (UWA) wireless communi-
cations [1], multi-drone base-station wireless networks [2]
and multiple base-station digital broadcast systems [3], etc.
The common approach to combat the severe ISI channels
is to avoid large-size equalizers in the receiver by either
shortening the effective channel with time reversal or utilising
transform-domain transmission schemes, such as the Orthogo-
nal Frequency-Division Multiplexing (OFDM) [4], Filter Bank
Multi-Carrier (FBMC), or Non-Orthogonal Multiple Access
(NOMA) [5] schemes. These approaches significantly reduce
the computational complexity, but suffer from performance
bottleneck in terms of high bit error floor, high peak-to-average
ratio, slow to track Doppler spread, etc.

Single-carrier modulation with Turbo equalization improves
robustness and reliability of UWA communications, especially
in severe Doppler and multipath channels. Many advanced
Turbo equalization algorithms are well proved by field ex-
periments with post-experiment data processing [1]. However,
real-time hardware implementation is rather difficult due to the
constraints in hardware resources and latency requirements.

Most of the turbo-equalization works have focused on the
MIMO-OFDM system, such as [6]–[10], where the related
matrix size is typically 4 × 4 only. The existing works in

SCM turbo equalization include [11]–[13] where the max-
imum channel length is less than 20 taps or frequency-
domain equalization is used to reduce the equalizer length.
For example, [11] implemented a single-carrier turbo equal-
ization on the TMS320C5509, but the achieved maximum
data rate is 207 Kbit/s per iteration for QPSK modulation
with only 16-taps channel. The work in [13] designed a
single carrier-Frequency Domain Equalization (FDE) system
on FPGA, which converted the equalization in FD with only
one channel tap. The work in [12] also implemented a single
carrier frequency domain turbo equalization for underwater
acoustic communication but on DSP, the effect data rate in
the experiments is only 770 bit/s.

The computational complexity mainly comes from matrix
arithmetic such as matrix inversion and multiplication in
calculating equalizer coefficients and sequential interference
cancellation (SIC). When the channel length is on the order
of a hundred symbols, the sizes of the equalizer matrices
would be as large as 200×200. However, most of the existing
implementations of matrix arithmetic only go to half of the
required sizes. Recently, high-level synthesis (HLS) has been
offered by Xilinx [14] or Intel [15] for large-scale matrix
inversion. Although the solutions based on entire column
vector access can reduce an O(N3) process to O(N2) steps
with N being the size of the matrix, the latency is too high
to meet the requirement of our application.

In this paper, we propose an FPGA acceleration architecture
to implement turbo equalization in severe multipath wireless
channels with low latency as well as relatively small area.
The main acceleration mechanism to achieve low latency is to
keep all the matrix arithmetic on the row-wise computation in
both SIC and adaptive equalizer design. In the SIC part, we
propose a low-latency computational algorithm by exploiting
the convolution of shifted data blocks. For a block length of
Nblk symbols, SIC is completed within around 2Nblk + L
clock cycles, which is much lower than the Nblk×L by direct
matrix multiplication. For the equalizer design, we leverage the
Hermitian symmetric property of the matrix to be inverted,
utilize the LDLH -decomposition similar to [16] but with
iterative manner [14] for matrix inversion. We propose a block
RAMs storage strategy for intermediate matrices to eliminate
the switching time between the column-wise access and row-
wise access needed in different inversion steps. Benefiting



from the proposed storage strategy, we also propose a row-
wise computation architecture based on Hadamard product for
the multiplication of an upper triangular matrix and a diagonal
matrix, which reduces the latency from O(N2) to O(N).

The architecture is successfully implemented for a 151-
tap linear equalizer on a Xilinx Zynq UltraScale+ MPSoC
ZCU102 Evaluation Kit, and is able to support two Turbo
iterations for a 1024-symbol block size and achieve 200 kilo-
symbols-per-second (ksps) transmission rate.

II. PRELIMINARY

Consider a single carrier modulation (SCM) communication
system as shown in Fig. 1. At the transmitter side, the
information bits bi are first encoded and interleaved. The
interleaved coded bits ck,q are grouped into Q bits per set and
are mapped into M-ary symbols xk, where Q = log2 M . The
complex symbols are then up-sampled and passed through the
pulsing shaping filter. The signal is directly modulated to the
single carrier frequency and then transmitted to the multipath
channel.

Fig. 1. A Communication System Employing Turbo Equalization.

Assuming that the channel impulse response (CIR) coef-
ficients hl and the channel length L are known by channel
estimation, the received symbol at time instant k after carrier
demodulation and symbol synchronization is written as

yk =
L−1∑
l=0

hlxk−l + wk (1)

where xk−l is the transmitted symbol at time instant k− l, and
wk is the sampled noise at time instant k, which is modeled as
adaptive white Gaussian noise (AWGN) with zero mean and
variance σ2

w.
The structure of the linear minimum mean square error

(LMMSE) turbo equalizer is depicted in Figure 2. It consists of
a soft-input soft-output (SISO) LMMSE equalizer, a SIC, soft
symbol demapper and mapper, de-interleaver and iterleaver,
and a maximum a posteriori probability (MAP) decoder. The
covariance estimator is used to design the adaptive equalizer
coefficients g. For low-complexity implementation, we assume
the covariance keeps the same for every symbol in a block, g
is updated once at the start of each iteration of a block.

The equalizer output x̂k is mapped to the bit extrinsic
LLRs Le(ckq ) which is considered as the a priori LLR for
the MAP decoder after deinterleaver, denoted as Ld

a(ck′ ,q′ ).
The MAP decoder computes the a posteriori LLR and outputs
the extrinsic LLR Ld

e(ck′ ,q′ ). Its interleaved version becomes
the a priori LLR of the equalizer for the next iteration. To
close the loop, the SIC unit consists of a mask function that
zeroes out the kth symbol from the soft symbol vector x̄k and
the resulting symbol vector x̃k passes through the channel to

Fig. 2. Block diagram of the LMMSE turbo receiver.

reconstruct the Inter-Symbol Interference (ISI). The received
signal removes the reconstructed ISIs before being fed to the
adaptive equalizer.

Let the linear equalizer have K1 post-cursor taps and
precursor K2 taps. Stacking N = K1 + K2 + 1 received
symbols into vectors, equation (1) can be rewritten in the
matrix form

rk = Hxk +wk (2)

where

rk = [yk−K2
, yk−K2+1, · · · , yk+K1

]T

xk = [xk−K2−L+1, xk−K2−L+2, · · · , xk+K1 ]
T

wk = [wk−K2
, wk−K2+1, · · · , wk+K1

]T

H =




hL−1 · · · h0 · · · 0
...

. . .
. . .

. . .
...

0 · · · hL−1 · · · h0


 (3)

and H ∈ C(K1+K2+1)×(K1+K2+L).
The LMMSE equalizer estimates the transmitted symbols

one by one via

x̂k = gH(rk −Hx̃k) (4)

with

x̃k = [x̄k−K2−L+1, . . . , x̄k−1, 0, x̄k+1, . . . , x̄k+K1
]

g = (σ2
wIN +HVHH)−1s

s � H[01×(K2+L−1), 1,01×K1 ]

(5)

where x̄k is the soft mapper output, V ∈
C(K1+K2+L)×(K1+K2+L) is a diagonal matrix of the mean
of the variance of soft mapper x̄k except the (K2 + L)th
diagonal element is 1 [17].

Based on (5), the computation of g for a block of symbols
in each iteration involves large-scale matrix multiplication
and matrix inversion, as K1 + K2 + L is often on the
order of 200. The equalization (4) for each symbol in the
block needs the calculation of a matrix and a vector. These
causes high computational complexity and latency in the real-
time implementation of the turbo equalization. Moreover, the
latency will increase linearly with the times of turbo iteration,
as in one turbo iteration, one part can only start when the
previous part is complete.



III. FPGA IMPLEMENTATION

In contrast to software-programmable solutions by CPUs
and GPUs where the latency is limited by the data transfer
paths of a load-store architecture, FPGA is a hardware-
programmable solution with high degree of parallelism as well
as flexible and configurable data movements, thus is promising
to support high-performance matrix arithmetic. In this paper,
we employ the row-wise parallelism, which means that all the
elements in a row of the matrix are involved in the computation
at the same time.

The proposed accelerated turbo equalization architecture
is depicted in Figure 3. Received vector r is stored in a
RAM block. CIR h is got from channel estimation. Vector
Processing (VP) unit consists of a group of N complex
multiplier units followed by a log2(N)-stage adder tree. Row-
wise operation (vector path, bold lines in the figure) is in the
matrix inversion, SIC, and the computing to generate matrix
A = σ2

wIK +HVHH . A is stored in a group of RAM blocks.
Each pair of RAM block stores a column of A including the
real part and the imaginary part. The estimated symbols are
de-interleaved through a RAM block whose write and read
address are pre-stored in a ROM. The same case is valid for
interleaving the output of the MAP decoder. After bits2symbol
block which is implemented by storing the tanh function in
a ROM, the extrinsic information of received symbols got in
one turbo iteration are fed back into SIC part for the next
iteration.

A. SIC

SIC is used to avoid the instability caused by positive
feedback during the iterative operation, which means, the a
priori information of symbol xk should not be used during
the iterative detection of xk itself.

Since H is a matrix, the calculation of Hx̃k in (4) for each
symbol needs K1 + K2 + 1 times even if we parallel the
computation in row-wise. For a block of Nblk symbols, the
needed clock cycles would be Nblk×(K1+K2+1+NAstage),
where NAstage = dlog2(L)e as only L non-zero elements are
in a row.

However, as x̃k+1 is left shifted from x̃k like in (6), they
only have four different elements and the resulted interference
are like in (7). Based on this, we make two simplifications and
propose a low-latency computing algorithm.

x̃k = [x̄k−K2−L+1, . . . , x̄k−1, 0, x̄k+1, . . . , x̄k+K1 ]

x̃k+1 = [x̄k−K2−L+2, . . . , x̄k, 0, x̄k+2, . . . , x̄k+K1+1]
(6)

Hx̃k = [a0,k, . . . , aK2−1,k, aK2,k, aK2+1,k, . . . , aK2+K1,k]

Hx̃k+1 = [a1,k, . . . , aK2,k, aK2,k+1, aK2+1,k+1, . . . , aK2+K1,k+1]
(7)

1) Simplification 1: The first K2 elements of Hx̃k+1 have
been already calculated in Hx̃k. Therefore, only K1 +1 terms
need to be recalculated for the (k+ 1)th symbol. One term is
because the new element shifted in x̃k+1. The other K1 terms

are due to the different term that set to be zero in x̃k+1. The
needed clock cycles are reduced to Nblk×(K1+1+NAstage).

2) Simplification 2: Modify (5) as

x̃k

′
= [x̄k−K2−L+1 . . . x̄k−1 x̄k x̄k+1 . . . x̄k+K1

] (8)

so that Hx̃k is obtained by

Hx̃k = Hx̃k

′
− hx̄k. (9)

The resulted vectors Hx̃k

′
for all the symbols in the block

will be first calculated at the start of SIC by the convolution
of h~ x̄, which needs about Nblk +L+NAstage clock cycles.
The multiplication of hx̄k only needs one clock cycle in row-
wise parallel. By fully taking the advantage of parallel and
pipelining, the clock cycles needed for the SIC of Nblk-symbol
block are reduced to Nblk + L+NAstage +Nblk.

Algorithm 1 Proposed SIC algorithm
1: Function SIC (r,h, x̄,g);

Input: Received symbols vector r, CIR h, soft mapper
output vector x̄, equalizer coefficients g
Output: Estimated soft symbols x̂

2: Initialize vectors a,b, c,d
3: for i = 0 : Nblk + L− 1 do /*Stage 0*/
4: ai = h · x̄i /*via the vector processing unit*/
5: x̄i+1 ←− x̄i

6: end for
7: Initialize vectors aj , zj
8: for j = 0 : Nblk − 1 do /*Stage 1*/
9: bj = x̄j × h

10: cj = aj − bj /*via the adders*/
11: dj = rj − cj
12: x̂j = g · dj /*Equalization*/
13: aj+1 ←− aj ;
14: rj+1 ←− rj ;
15: x̄j+1 ←− x̄j
16: end for

3) Proposed SIC Algorithm: The proposed algorithm has
two stages. The first stage (lines 2-6) calculates the convo-
lutional products vector a of CIR h and the soft mapper
output vector x̄. In each loop iteration, x̄i shifts in a new
x̄, and shifts out the oldest one. The second stage (lines 7-
15) calculates SIC results for all the symbols in a block. The
product vector bj of soft mapper output x̄j and CIR h is
first calculated. It is removed from the convolutional products
vector aj corresponding to jth symbol that was calculated in
the first stage. Subsequently, the reconstructed interference is
removed from the received symbols vector zj (line 11). At last,
the aj+1, rj+1, x̄j+1 for the next loop iteration are updated by
shifting one new element in and shifting out the oldest element,
respectively.

4) Architecture: Figure 4 shows the architecture of the
proposed SIC algorithm. Vectors x̄ and r are stored in two
RAM blocks separately. CIR h is always latched as one input
of the complex multipliers. In Stage 0, the other inputs of the
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Fig. 3. Proposed accelerated turbo equalization architecture.

complex multipliers are the vector x̃
′

shifted by one x̄ every
clock cycle. The products feed into the multi-stages adder tree
to calculate the convolutional results a, which are then written
into a RAM block. This process is pipelined until the last soft
mapper output goes through all the CIR taps.

At the start of Stage 1, RAM block storing x̄ is reread from
the beginning address and one element is latched at the other
sides of the complex multipliers. The products are directly sent
to a group of adders whose one side is a vector shifted by one
element read from RAM block storing a every clock cycle.
The difference vector is latched as the inputs of another group
of adders whose one side is a vector shifted by one element
read from RAM block storing z every clock cycle. The final
results are latched as the input of complex multipliers for the
following equalization to calculate x̂.

5) Performance Analysis: By exploiting the convolution of
shifted data blocks in the SIC operation, the clock cycles
needed for a Nblk-symbol block are reduced to the order of
2Nblk+L+NAstage compared with directly matrix arithmetic.
For a typical case in underwater acoustic communication
where L = K1 = 100,K2 = 50, Nblk = 1024, NAstate = 8,
the clock cycles are reduced from more than 100000 to around
2100 without considering additional clock cycles needed in the
implementation.

B. Matrix Inversion

From equation (3), we found that matrix A is an N × N
Hermitian symmetric matrix, and the diagonal elements would
be never zero. Therefore, there is possible a group of a
lower-triangle matrix L and a diagonal matrix D such that
A = LDLH . The inversion of A is obtained by A−1 =
(L−1)HD−1L−1 or U−1D−1(U−1)H when we use an upper-
triangle matrix U.  
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Fig. 4. Proposed SIC Algorithm Architecture



Normally, to guarantee numerical stability, a row permuta-
tion matrix P is introduced (pivoting) to avoid overflow in
the reciprocal operation. However, as the diagonal elements
in A are real numbers and much larger than other elements
in the same column, displacement matrix P is not needed in
this implementation.

For the conjugate multiplication, we construct a complex
multiplier unit similar as [18], that consists of four multipliers
and two adders. The add/sub function of both adders is
enabled. Figure 5 shows how this unit calculates the multi-
plication with a complex number or its conjugate.
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Fig. 5. Complex multiplier unit.

LDLH -based inversion algorithm has three steps: decom-
position, inversion, and multiplication. This paper adopts the
iterative computation manner and pipeline architecture [14] in
all these three steps.

Since in the original inversion process, data access needs to
be switched between row-wise and column-wire in different
inversion steps, we propose a block RAMs storage strategy
to solve this problem so that all data accesses are row-
wise, by which the data copy time is eliminated. Besides,
we propose a row-wise computation architecture based on
Hadamard product for the multiplication of an upper triangular
matrix and a diagonal matrix, which reduces the latency from
O(N2) to O(N).

1) Proposed Matrices storage strategy: Figure 6 shows the
proposed storage strategy for D−1, upper triangular matrix U
and its inversion matrix U−1. All the diagonal elements of
D−1 are stored at the address zero of all the RAM blocks. U
is stored as its transpose UT . Therefore, in the decomposition
step, the elements are stored from RAM block 0 to block
N − 1, in each block the address is started from n + 1 (n is
the row number) like what the black arrow is shown in the
Figure 6(a).
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Fig. 6. Proposed matrix storage strategy for (a) D−1 and U. (b) Inversion
matrix U−1.

In this way, we keep the row-wise operation in the following
inversion step where the matrix needs to be read in column-

wise. As the orange arrow is shown in Figure 6(a), the same
address of all RAM blocks is read simultaneously to fetch
one column of U, from bottom to top. The resulted inversion
elements are stored in the reverse way, which is from RAM
block N−1 to block 0, in each block, the address is decreased
from N−1 to 0, as what the black arrow is shown in the Figure
6(b).

Algorithm 2 Proposed algorithm for U−1D−1

1: Function Matrix Inversion (A);
Input: Matrix A (conjugate symmetric)
Output: Inversion Matrix W

2: LU decomposition to get matrix U and vector dinv
3: Inverse U based on proposed storage strategy to get matrix

U−1

4: Initialize matrix M
5: Initialize row vector i ∈ U−1,m ∈M
6: for j=0:N-1 do
7: mj = dinv ◦ ij /*Hadamard product*/
8: ij+1 ←− ij ;
9: end for

10: W = M× IH /*Iterative manner*/

2) Proposed multiplication algorithm for upper-triangle
matrix and diagonal matrix: The proposed algorithm for the
multiplication of U−1D−1 is shown in Algorithm 2. As we
store all the diagonal elements of D−1 at the same address 0
of all the RAM blocks, we fetch them as a vector dinv at the
same clock and feed them into the complex multipliers. The
loop (line 6-9) calculates the Hadamard product of each row
of U−1 and dinv until the last row as what the orange arrow
is shown in Figure 6(b). The architecture of the proposed row-
wise computation of U−1D−1 is depicted in Figure 7.

The last matrix multiplication is based on iterative update
approach, and L−1 needs to be read in column-wise. As we
discussed, L−1 = (U−1)H. We read the same address of all
the RAM blocks to fetch a row of U−1 to multiply with rows
of U−1D−1 as the column of L−1. Conjugate operation is
completed by controlling the addition or subtraction function
of the complex multipliers in Figure 5.
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Fig. 7. Proposed row-wise computation of U−1D−1.



3) Performance Analysis: Beyond the reduction from
O(N3) process to O(N2) steps, we eliminate the row and
column alternating accesses time and reduce O(N2) to O(N)
steps in the multiplication of the upper triangular matrix and
a diagonal matrix. Though we benefit from the Hermitian
symmetric characteristic in this implementation, the proposed
matrices storage strategy and row-wise computation architec-
ture for U−1D−1 can be used in the general matrix inversion
based on LU decomposition.

C. MAP decoder and other components

1) Interleaver and De-interleaver: In this implementation,
we use MATLAB code to generate the random interleave and
de-interleave sequences and store them in the ROM. One entry
of the ROM consists of two parts. The high part is the address
for interleaving, the low part is the address for de-interleaving.
Normally, the interleaver size in UAC is like one thousand, the
ROM resource needed is limited.

2) MAP decoder: The architecture for MAP decoder can
refer to [19]. However, in this paper, besides output the LLR
of original information bit, we modified the MAX log-MAP
decoder to generate the extrinsic information of each encoded
bit as the a priori information feedback to the equalizer after
bit-to-symbol LLR mapping.

3) Sym2bits blcok: Since the input of the MAP decoder
is the bit LLR value, Sym2bits block maps the soft symbols
output from equalizer to bit LLR values. The implementation
can refer to [20].

4) Hyperbolic Tangent Sigmoid Function: Bit-to-symbol
soft extrinsic information approximated mapping can refer to
[21].

The main challenge here is the implementation of the hyper-
bolic tangent function. Piece-wise linear (PWL) approximation
and lookup tables are two popular adopted solutions. Due to
the usage of multipliers in its design, PWL approximation
usually requires several clock cycles and larger areas. How-
ever, the lookup table solution offers high operation speed at
a little cost of ROM resources. In this implementation, we
approximate the hyperbolic tangent function with R points
that are uniformly distributed across the entire input range −4
to 4 where R = 2p, p is the number of bits to represent the
bit LLR value La. The read address t of the ROM is given by

t =





Tpos, if La ≥ 4
La + 2p−1, if − 4 < La < 4
Tneg, if La ≤ −4

(10)

where Tpos is the address storing 1 and Tneg is the address
storing −1.

IV. SYNTHESIS AND PERFORMANCE RESULTS

We implemented the proposed accelerator on Xilinx Zynq
UltraScale+ MPSoC ZCU102 Evaluation board which has an
Ultrascale+ FPGA (XCZU9EG-2FFVB1156, 274,080 LUTs,
548,160 FFs, 912 36Kb BRAMs, 2,520 DSP48Es). Table I
lists a detail of the resource utilization of each module in
turbo equalization. Different kinds of resource utilization of

this design reach a good balance. The maximum frequency
can be acheived is around 253 MHz.

TABLE I
RESOURCE UTILIZATION SUMMARY WHEN Nblk = 1024, N = 151

Size Clocks BRAM DSP48E LUT FF
Gram matrix 500 906 1216 142084 212336Matrix Inversion 184914

SIC 10360 8
MAP decoder 3084 18 0 4163 3077

others 1090 4 48 < 1% < 1%
Total 199948 52% 50% 54% 41%

This resource utilization is under the 32-bit data width
complex matrix arithmetic. Figure 8 plots the average error
[14] as a function of different matrix size.

Fig. 8. Error as function of matrix size for a word length of 32 bits.

From Table I, we can find that the latency of matrix
inversion dominates the whole process time. The latency of
each step in the matrix inversion is shown in Table II. The
reciprocal operation in the decomposition step has a latency
of about 41. If the number of rows in the iteration is greater
than 37 considering the additional pipeline depth, this latency
would be hidden in the processing time of the decomposition
iteration.

TABLE II
STEPS LATENCY OF MATRIX INVERSION

Steps Latency (clock cycles) N=151

U 19L2/2− 18L+ 54(N > 37) 93536
109L/2 + 41(N ≤ 37) NA

U−1 63L2/8 + 15/4L+ 6 79131
U−1D−1 3L/2 + 7 157

Multiplication 9L2/8 + 39/4L+ 8 + log2(3L/2) 12090

A latency comparison of this work with HLS results [14]
is depicted in 9.

The total processing time for a 1024-symbol block when
L = 100, N = 151 becomes 1.6 ms with the operational
frequency of 125 MHz. Therefore, this architecture is able to
support two turbo iterations and achieve 200 kilo-symbols-per-
second (ksps) transmission rate.



Fig. 9. Latency as function of matrix size.

V. CONCLUSION

In this paper, we propose an FPGA accelerator for turbo
equalization in severe multipath wireless channels. By ex-
ploiting the Hermitian symmetric property of the channel
Gram matrix and convolutional nature of the SIC, we reduce
the processing time needed for large-scale matrix arithmetic,
where the main latency of the turbo equalization comes from.
We implement the proposed accelerator architecture on a
Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit. It
is able to support Two turbo iterations for 1024-symbol block
size and achieve 200 ksps transmission rate.
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