PROFILING NVIDIA JETSON EMBEDDED
GPU DEVICES FOR AUTONOMOUS MACHINES

Yazhou Li' and Yahong Rosa Zheng?

!School of Computer Science and Engineering, Beihang University, Beijing,
China
’Department of Electrical and Computer Engineering, Lehigh University,
Bethlehem, PA, 18015, USA

ABSTRACT

This paper presents two methods, tegrastats GUI version jtop and Nsight Systems, to profile
NVIDIA Jetson embedded GPU devices on a model race car which is a great platform for
prototyping and field testing autonomous driving algorithms. The two profilers analyze the
power consumption, CPU/GPU utilization, and the run time of CUDA C threads of Jetson TX2
in five different working modes. The performance differences among the five modes are
demonstrated using three example programs: vector add in C and CUDA C, a simple ROS
(Robot Operating System) package of the wall follow algorithm in Python, and a complex ROS
package of the particle filter algorithm for SLAM (Simultaneous Localization and Mapping).
The results show that the tools are effective means for selecting operating mode of the embedded
GPU devices.

KEYWORDS

Nvidia Jetson, embedded GPU, CUDA, Automous Driving. Robotic Operating Systems (ROS).

1. INTRODUCTION

NVIDIA Jetson is a complete embedded system-on-module (SoM) device that integrates the
CPU, GPU, PMIC, DRAM, and flash storage on a small-form-factor platform. The current Jetson
series include Jetson Nano, Jetson TX2, and Jetson Xavier (NX and AGX), which are commonly
used for edge computing, autonomous machines, machine learning, and artificial intelligence. An
example application is the toy race car F1/10 which is of 1/10 of a real car size
(https://f1tenth.org) and uses a Jetson TX2 as its computing hardware, as shown in Fig. 1, where
the Connect Tech Obitty Carrier board is on top of the Jetson TX2 module, the power distribution
board is on top of the VESC motor controller, and the Lidar is in the front of the car. All
electronics are mounted on a plate above the brushless motor and battery compartment, making it
a compact and powerful platform for testing autonomous driving algorithms. The Jetson device
can connect to host computer via WiFi antennas and a dedicated WiFi router with static IP
address assignment is recommended.

David C. Wyld et al. (Eds): CSEA, DMDBS, NSEC, NETWORKS, Fuzzy, NATL, SIGEM - 2020
pp- 133-144,2020. CS & IT - CSCP 2020 DOI: 10.5121/¢sit.2020.101811

http://airccse.org/cscp.html
http://airccse.org/csit/V10N18.html
https://doi.org/10.5121/csit.2020.101811

134 Computer Science & Information Technology (CS & IT)

Power Obitty

Figure 1. The F1/10 race car with Nvidia Jetson TX2, Connect Tech Obitty Carrier board, Hokuyo UMT-
30 Lidar, and VESC 6 MK-III motor controller.

With the embedded GPUs, the NVIDIA Jetson systems provide the performance and power
efficiency to run autonomous machines software faster and with less power than CPU-only
embedded systems. However, how do we profile the performance of the Jetson devices? How do
we use the profiling results to help improve programs written for Jetson devices? Answering
these questions requires some serious effort because Jetson embedded devices require special
versions of profilers than the commonly used nvidia-smi utility and Nsight Systems for desktop
or workstations.

In this paper, we explore two methods for profiling the performance of Jetson TX2 8GB: one is
the tegrastats utility and its graphical APIs which can be used directly on the Jetson device; one is
Nsight Systems for Tegra target systems which is used on a host computer to remote access the
Jetson device.

Several coding examples are used to bench mark the performance of Jetson TX2 under different
working modes: a vector-add program in C or CUDA C, a wall-follow python program for f1/10
race cars [1], and a particle filter algorithm for Simultaneous Localization and Mapping (SLAM)
[2]. The profilers measure the power consumption, the run time of the CUDA C threads, and the
CPU/GPU utilization under five operating modes of the Jetson TX2. The program files used in
this paper can be found at https://github.com/1i630925405/jetson-profile.

1.1. Jetson TX2 Working Modes

The Jetson TX2 consists of a 256-core Pascal GPU along with a CPU cluster. The CPU cluster
consists of a dual-core NVIDIA 64-bit Denver-2 CPU and a quad-core ARM Cortex-A57. By
configuring the 6 CPU cores and the GPU, a Jetson TX2 typically runs in five different modes, as
shown in Table 1, where the GPU is enabled in all five modes, but at different clock speeds. The
two types of CPUs are enabled or disabled in different configurations. Different modes show
different speed-power performance trade-offs. It is clear that the Max-N mode is the fastest and
consumes the most power as all CPUs and GPU are enabled and they run at their maximum
speeds.

Computer Science & Information Technology (CS & IT) 135

Table 1. Working modes of typical Jetson devices configurable by the NVPmodel utility [3].

Denvor 2 CPU Core ARM A57 Core GPU
Mode Mode Name

of Cores | Frequency | # of Cores | Frequency Frequency
0 Max-N 2 2.0 GHz 4 2.0 GHz 1.30 GHz
1 Max-Q 0 4 1.2 GHz 0.85 GHz
2 Max-P Core-All 2 1.4 GHz 4 1.4 GHz 1.12 GHz
3 Max-P ARM 0 4 2.0 GHz 1.12 GHz
4 Max-P Denver 1 2.0 GHz 1 2.0 GHz 1.12 GHz

The Jetson operation modes are enabled by the Dynamic Voltage and Frequency Scaling (DVFS)
technology and can be configured at run time by a command-line tool NVPModel [3]. For
example, we use ‘sudo nvpmodel -m 2’ to change the working mode of a Jetson to Mode 2 Max-
P Core-All mode. The configuration of the five modes are saved in the file /etc/nvpmodel. conf
which can also be customized to produce user flexible modes. The current mode of the Jetson is
queried by 'sudo nvpmodel -q —verbose'.

1.2. NVIDIA Profiling Tools

NVIDIA profiling tools help the developers to optimize their programs and applications. The
newly announced NVidia Nsight Systems [4], [S] supersedes the command-line nvprof and visual
profiler NVVP tools and combine them into one unified tool. To apply it to profile Jetson
devices, NSight Systems for Tegra target system package has to be used on the host computer
which remote accesses the jetson device profilee. The package is part of the JetPack 4.3
installation [6] and is installed on the host computer. Alternatively, a command-line utility
'tegrastats' and its graphical APIs [7], [8] are available to profile Jetson devices directly. In
addition, user-defined functions or python wrappers may utilize the system APIs such as timer to
profile the performance.

:~$ tegrastats
RAM 2268/7861MB (1fb 49x4MB) SWAP ©/3930MB (cached OMB) CPU [6%@345,0ff,off,2%@345,6%@345,5%@345] EMC_FREQ 0% GR3D_FREQ 0%
PLL@39C MCPU@39C PMIC@1e@C Thoard@36C GPU@38C BCPU@3SC thermal@38.6C Tdiode@36.25C VDD_SYS_GPU 143/143 VDD_SYS_SOC 286/286
VDD_4ve_WIFI 305/305 VDD_IN 1909/19@9 VDD_SYS_CPU 95/95 VDD_SYS_DDR 229/229

Figure 2. profile jetson GPU status using tegrastats

The tegrastats utility reports memory usage and processor usage for Jetson-based devices [7]
similar to the Nvidia-smi utility which is not supported on Jetson. An example of tegrastats is
shown in Figure 2, which means CPU2 and CPU3 are off, CPU1, CPUS5 and CPUG6 are using 6%
of their loads, CPU4 is using 2% of its load and their current running frequency is 345 MHz. The
details of the tegrastats output is explained in [7], but it is rather user unfriendly. The tegrastats
output can be visualized by a tool called jetson_stats [8], a package that combines both tegrastas
and NVPmodel into a GUI to profile and control Jetson. It contains five different tools, among
which the jtop tool is the most useful for profiling.

Nsight Systems for Tegra targets is a part of the JetPack SDK [9] for Jetson devices and is
installed on a host computer to remotely profile the Jetson target device. Nsight Systems is a low-
overhead sampling, tracing and debugging tool for C or CUDA C programs and may not be
effective to profile a python program.

136 Computer Science & Information Technology (CS & IT)

Therefore, we rely on the system APIs such as high resolution clock in the C++ library and
time.time() in the python library and write custom functions and evaluate the performance of
python code on Jetson devices.

2. HARDWARE PLATFORM AND SAMPLE PROGRAMS

The Jetson TX2 device in the F1/10 race car platform [1] is used to profile the example programs.
The Jetson TX2 is flushed with the Ubuntu 18.04.4, ROS Melodic, and Jetpack 4.3 L4T 33.3.1
packages. The F1/10 race car ROS simulator is also installed. We profile three examples on the
f1/10 race car platform: Example 1 is the vector-add program in two versions [10]:
vector_add.cpp and vector _add.cu. The cpp version uses the CPU cores only, while the cu
version explicitly utilizes the GPU parallel programming APIs and memory management via
CUDA C/C++.

Example 2 is a wall follow python program [11] running on the f1/10 simulator platform [1]. As
shown in Fig. 3, the simulator takes the map and drive information to generate the Lidar sensing
data. It also interfaces the joy pad or keyboard inputs for control and runs the autonomous
algorithms via the New Planners module and the /nav and /brake topics. The RViz package is
used to visualize the race track, the car motion, and the Lidar sensing data.

. H SEensors
) fioy | Behavior —
Joystick Controller
Ik
Keyboard =Y P

sensors| Random
———
Walk |/random_drive

sensors

Simulator /=5

(simulator.cpp)

S5€ensors New Ibrake

Planners

/nav

Figure 3. Block diagram of the F1/10 race car ROS simulator.

The wall follow python program subscribes to the LidarScan data and computes the distance of
the race car to the left or right wall, then determines the PID control parameters according to a
pre-set distance, and publishes the Ackermann steering parameters to the /drive topic to control
the race car. When the car receives data from the lidar, the function lidar callback will be called
to calculate the control signal and send it to control the car. So the speed of wall follow program
can be represented by time consumed by lidar callback.

Example 3 is a particle filter algorithm for SLAM and is available at github [2]. The python code
implements a fast particle filter localization algorithm and uses the RangeLibc library for
accelerated ray casting. By specifying the range method "rmgpu", the program explicitly use the
GPU to achieve fast ray casting, while other range methods, such as "bl", "rm", and "glt", etc., use
the CPUs only. The bench mark performed in C++ is reprinted in Table. 2. The range method
options can be specified in localize.launch of the particle filter package.

Computer Science & Information Technology (CS & IT) 137

Table 2. Different ray casting algorithms in the particle filter example [2].

Method Init time Random queries Grid queries Memory
(sec) Thousand/ sec Thousand/ sec (MB)
BL 0.02 297 360 1.37
RM 0.59 1,170 1,600 5.49
RMGPU 0.68 18,000 28,000 5.49
CDDT 0.25 2,090 4,250 6.34
PCDDT 7.96 2,260 4,470 4.07
LUT 64.5 2,160 4,850 296.6

3. TEGRASTATS PROFILING PROCEDURES AND RESULTS

The performance of Example 1 is profiled by three methods: the average time to run the program
is extracted by the clock() function in cpp and cu versions of the vector add programs; the jetson-
stats is used to extract the tegrastats results on CPU/GPU utilization and power consumption and
graph them; and Nsight Systems is used to trace the APIs of GPU synchronization and memory
management in details.

The performance of Example 2 is evaluated by two methods: the first is to utilize a python
wrapper with python library function time.time() to calculate time spent for each function in the
python program; the second is to use jetson-stats to graph the CPU usage and power
consumption. The wall-follow program runs for minutes and the python wrapper outputs more
than 60,000 calls of each function and the time of each function run is averaged over the total
numbers of the calls. The python wrapper is disabled when using jetson-stats to profile Example
2.

Example 3 has a built-in performance calculator and it outputs the average number of iterations
of ray casting in the particle filter algorithms. The jetson-stats is used to profile its power
consumption and CPU/GPU utilization.

3.1. Example 1: Vector Add

The two versions of vector-add programs are run on Jetson TX2 in modes 0 -- 4, respectively.
Although all modes have the GPU enabled, only the vector add.cu makes use of the GPU, while
vector_add.cpp utilizes the CPU cores only. The results of the execution time is shown in Table
2, where the time is measured by high resolution clock from the C++ library "chrono". Without
utilizing the GPU, Modes 0, 2 and 4 run in similar speeds which are faster than Modes 1 and 3.
This is because Modes 0, 2 and 4 use the Denver-2 and Modes 1 and 3 use ARM cores only. The
example code is a single-threaded kernel and Denver 2 CPU has better single-threaded
performance than the ARM core.

138 Computer Science & Information Technology (CS & IT)

Table 3. Power consumption of Example | in different Jetson modes.

Mode | GPU CPU power GPU power IN power
0 No 1983 95 7151
0 Yes 567 2315 8229
1 No 524 95 2527
1 Yes 190 1045 5155
2 No 1426 95 4660
2 Yes 379 1706 6568
3 No 1237 95 4187
3 Yes 331 1707 6663
4 No 1900 95 5108
4 Yes 521 1706 6682

Utilizing the GPU, all five modes run at the similar speed as most of the processing is offloaded
to the GPU running at similar speeds in all modes. Comparing the performance between the
CPU+GPU and the CPU only modes, performances vary significantly in different GPU execution
configurations, as shown in Table 3. Note that the streaming multiprocessors in Jetson TX2 is 2
and the maximum number of thread per block is 1024. Also note that the size of the vectors to be
added is 224. With a small number of thread per block and a small number of blocks per grid, the
performance of the GPU version is worse than the CPU only version, as the potential of the GPU
is under utilized and the overhead of memory management is relatively large. Let the number of
threads per block and the number of block per grid be N; and N, respectively. If we increase Ny
or Nj such that NN, > 211, then the GPU performs faster than the CPU only version, as shown in
Table 4. Therefore, the try and error method is used to find out the best combination of the
numbers of threads and blocks.

Table 4. Time needed to run Example 1 with different CUDA execution configurations

threads / block | # blocks /grid run time (s)
32 2 240
128 2 71
1024 2 15
32 64 15

The two versions of vector_add programs are also profiled by tegrastats via jtop and the results
for Mode 1 (Max-Q) are shown in Fig. 4 and 5. Mode 1 uses all four ARM cores at 1.2 GHz
clock rate while the GPU can run at 0.85 GHz speed. The CPU version of the program utilizes all
four ARM cores and its GPU utilization is 0%, as shown in Fig. 4a. CPU 2 and 3 are off as they
are the Denver 2 cores which are disabled in Mode 1. The average power consumption of the
program in Mode 1 is 2405 miliwatts. It is interesting to note that the GPU still consumes 100
mW power on average even though the program does not utilize the GPU. This is because the
GPU is used by Jetson to support graphics in the operating system.

The CPU utilization is further detailed by going to menu 3CPU at the bottom of the jtop window,
as shown in Fig. 4b, where the time snap shots of the CPU utilization is captured. All four ARM
cores run at the 1.3 GHz clock rate and CPU 1 is utilized fully at 100% at the time of the capture,
while other three ARM cores are used occasionally. Observing the CPU graphs over time reveals
that the four ARM cores are utilized uniformly by the "schedutil".

Computer Science & Information Technology (CS & IT)

- Jetpack 4.3 [LaT 32.3.1]

OFF
OFF

[info]
UpT: @ c 0:16:

Jetson clocks:
NV Power[1]: M 2
[HW engines]
NVENC: [OFF] NVDEC: [OFF]

2GPU _ 3CPU 4MEM SCTRL 6INFO Quit

SUDO SUGGESTED

] 1.3GHz

L
L
L

[Sensor] — [Temp]
B

[Power /mi] [Avr]
WIFI 7 114

U
PLL
Thoard
Tdi =
thermal

Raffaello Bongh

(a) Overall performance of vector add.cpp w/o using the GPU

- Jetpack 4.3 [L4T 32.3.1]
Platform CPU 1

C1ALL 26PU EleL(il 4MEM SCTRL

SUDO SUGGESTED

6INFO Quit Raffaello Bonghi

(b) CPU utilization of vector_add.cpp w/o using the GPU

139

Figure 4. Results profiled by jtopfor vector add.cpp program which uses the CPU only. Jetson mode 1 was

used to run the program.

In comparison, vector add.cu utilizes the GPU almost fully at 99%, as shown in Fig. 5a. The
CPU1 ARM core is also fully utilized, while other ARM cores are used by 10% -- 13%. The
power consumption of the CPU+GPU mode is 2523 milliwatts which is slightly higher than the
CPU only version. Note, jtop menu SCTRL also provides a user-friendly interface for the
NVPmodel utility so the user can change the Jetson operation mode and CPU/GPU clock rates

easily.

140 Computer Science & Information Technology (CS & IT)

SUDO SUGGESTED

- Jetpack 4.3 [L4T 32.3.1]
[] 1.3GHz
[OFF]
OFF]

[Sensor] [Temp] [Power fmW]
UpT: 0O c =13 u 4\ WIFI
L
Jetson cloc
NV Power[1]
[HW 1
NVENC: [OFF] NVDEC: [OFF] = 5583 2523

2GPU 3CPU 4MEM SCTRL 6INFO Quit Raffaello Bongh

(a) Overall performace of vectoradd.cu utilizing the GPU

SUDO SUGGESTED
- Jetpack 4.3 [L4T 32.3.1]
GPU 95%

Jetson Clocks: SUDO SUG
Jetson Clocks Service
NV Power[3]: MAXP CORE

1ALL rdagSl 3CPU 4MEM S5CTRL 6INFO Quit Raffaello Bonahi

(b) GPU utilization of vector_add.cu using the GPU

Figure 5. Results profiled by jtop for vector add.cpp program which uses the CPU only. Jetson mode 1 was
used to run the program.

The profiling results of vector add.cu using Nsight Systems is shown in Fig. 6. The host
computer runs the Nsight Systems while the Jetson TX2 is running the vector _add.cu. The host
computer remote accesses the Jetson via SSH to profile the performance of each CPU core and
GPU thread. It is clear that the utilization of CPU is decreased when the GPU kernel function is
being executed.

3.2. Example 2: Wall Follow Python Code

The wall-follow python code is run on the f110 simulator with time.time() to calculate the time
consumed in each function. The car is placed at the right bottom corner of the track when the
wall-follow program starts. In all Jetson modes except Mode 4, the car completes the whole track
without collision. The time spent on function lidar callback is shown in Table 5. It is clear that
Mode 4 runs the slowest because it only uses 2 CPUs, thus the car reacts slowly and collides to
the wall easily; No differences are observed in car behaviors in other modes, although the times
spent by modes 0 - 3 are slightly different and Mode 1 is notably slower than Mode 0, 2 and 3.

Computer Science & Information Technology (CS & IT) 141

* CPU(6)

u CPU 0 (Cortex AST)
8 CPU 2 (NVIDIA Denver)
u CPU 3 (Cortex AST)
8 CPU 4 (Cortex AST)
1
-]

u CPUS (Cortex A57)

* Threads (5)

= | [22275] add_once_nopi

CUDA API

¥ [22283] cuda-EvtHandl ~

~ CUDA (NVIDIA Tegra X2, 0000

n cudaDeviceSynchronize

* 100.0% addVectorsinto
100.0% addVectorsinto(f

Figure 6. Nishgt System profiling timeline results for Example 1

Table 5. Time spent by the lidar_callback function of Example 2 in five working modes of Jetson TX2

Function Mode 0 Mode 1 Mode 2 Mode 3 Mode 4
lidar_callback 626us 967us S511us 541us 1010us

The jtop profiler results are shown in Fig. 7 with Mode 4 as an example. Since only one Denver2
core and one ARM core are enabled in Mode 4, both of the CPU cores are utilized at 100% and
the GPU is utilized at 10% mainly to support Rviz graphical display.

SUDD SUGGESTED
- Jetpack 4.3 [L4T 32.3.1]
] 345MHz [OFF
[OFF
OFF [OFF

CPU

[Sensor] — [Temp] 7 [PowerfmW] [Cur] [Avr]
BC WIFI 9 i

19

Jetson clocks:
NV Power[4]: MA
[HH engines]
NVENC: [OFF] NVDEC: [OFF]

sOINEY 2CPU 3CPU _ 4MEM SCTRL i Raffaello Bonghi

Figure 7. Performance of Example 2: Wall follow python program run in Mode 4

142 Computer Science & Information Technology (CS & IT)
3.3. Example 3: Particle Filters

The particle filter algorithm is run in the f110 simulator on the Jetson TX2 device first, and then
run in ROS directly with the hardware. The operating Mode 0 is used for both cases. In the f110
simulator, the car runs the wall-following algorithm through one lap of the track while the
particle filter runs simultaneously with a way-point logger, so that the localized waypoints are
logged in to a file as the car running through the track. When the range method is set to "rm" (ray
marching), the points in the logged file are sparse, as shown in Fig. 8b, because the algorithm
runs slow with CPU cores only. When the range method is set to "rmgpu" (ray marching using
GPU), the particle filter performance is faster than the "rm" option, and the number of way points
logged in the track is much higher, as shown in Fig. 8a.

b. rm

Figure 8. Way points generated by ray casting methods: ray marching with or without GPU. The number of
way points is proportional to the processing speed of the algorithm.

The speed and power efficiency of Example 3 in different modes are shown in Fig. 9. Utilizing
the GPU, the rmgpu method gains about 2x to 4x speedup over the CDDT and rm methods in all
Jetson modes, as shown in Fig. 9a. Meanwhile, the power consumption of the rmgpu method is
slightly more than the rm and CDDT methods running in the same operation mode, as shown in
Fig. 9b. This demonstrates that it is beneficial to utilize the GPU when ever is possible.

4. CONCLUSION

This paper has investigated two profiling tools for Jetson devices using three examples that
involve CUDA C, python or ROS packages. The two profiling tools are tegrastats and Nsight
Systems. While tegrastats and its GUI version jtop can run directly on the Jetson devices, the
Jetson version of Nsight Systems has to run on a host computer to remotely profile a Jetson
devices. Jtop provides summary of the Jetson CPU and GPU utilization, power consumption and
dynamic flow in coarse time scale, while Nsight Systems can provide detailed CPU/GPU and
memory activities of individual threads in fine time scale. Therefore, Nsight Systems is a better
tool for performance optimization. Performance of five working modes of Jetson TX2 has been
compared to illustrate the capabilities of the two profiling tools.

Computer Science & Information Technology (CS & IT) 143

35

iters per second

Jktson Mode

(a) iters per second

7000 A

6000 -

5000 A

4000 -

3000 -

total power (mW)

2000 A

1000 A

JLtson Mode

(b) power consumption

Figure 9. Example 3 Performance in different modes: RM and CDDT run w/o GPU, rmgpu runs with GPU

fully utilized.

REFERENCES

[1] University of Pennsylvania. F1/10 race car. [Online]. Available: https://fltenth.org

[2] MIT-racecar. Particle filter localization. Retrieved Feb. 2020. [Online].
Available:https://github.com/mit-racecar/particle_filter/blob/master/README.md

[3] J. Benson. NVPModel - NVIDIA Jetson TX2 DevelopmentKit. [Online]. Available:
https://www.jetsonhacks.com/2017/03/25/nvpmodel-nvidia-jetson-tx2-development-kit/

[4] NVIDIA. (2020, Feb.) Nvidia releases nsight systems 2020.2. [Online]. Available:
https://news.developer.nvidia.com/nvidia-announces-nsight-systems-2020-2/

[5] S. McMillan. (2019, Aug.) Transitioning to nsight systems from nvidia visual profiler/nvprof.

[Online]. Available: https://devblogs.nvidia.com/transitioning-nsight-systems-nvidia-visual-profiler-
nvprof/

144
[6]

(7]

(8]
(9]

[10]

[11]

Computer Science & Information Technology (CS & IT)

NVidia. Profiler user’s guide. [Online]. Available: https://docs.nvidia.com/cuda/profiler-users-
guide/index.html

NVIDIA. Tegrastats utility. [Online]. Available: https:/docs.nvidia.com/jetson/archives/14t-
archived/14t-
231/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/Appendix
TegraStats.html

R. Bonghi. Jetson stats. [Online]. Available: https://github.com/rbonghi/jetsonstats

NVidia. Jetpack SDK: Jetpack 4.3. [Online]. Available:
https://developer.nvidia.com/embedded/jetpack

M.Harris. (2017, Jul) Unified memory for CUDA beginners. [Online]. Available:
https://devblogs.nvidia.com/unified-memory-cuda-beginners/

fltenth team. fltenth racecar wall follow. [Online]. Available:
https://github.com/fltenth/f110 ros/tree/master/wall follow

© 2020 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

http://airccse.org/

	Keywords

