
TRANSACTIONS ON INFORMATION THEORY 1

When are Fuzzy Extractors Possible?
Benjamin Fuller∗, Leonid Reyzin†, and Adam Smith†

∗University of Connecticut, Email: benjamin.fuller@uconn.edu.

ORC ID: 0000-0001-6450-0088
†Boston University, Email: reyzin@cs.bu.edu, ads22@bu.edu.

ORC IDs: 0000-0002-2052-8203, 0000-0001-9393-1127

Abstract—Fuzzy extractors (Dodis et al., SIAM J. Computing
2008) convert repeated noisy readings of a high-entropy secret
into the same uniformly distributed key. A minimum condition
for the security of the key is the hardness of guessing a value that
is similar to the secret, because the fuzzy extractor converts such
a guess to the key. We quantify this property in a new notion
called fuzzy min-entropy. We ask: is fuzzy min-entropy sufficient
to build fuzzy extractors? We provide two answers for different
settings.

1) If the construction is provided a description of the prob-
ability distribution W that defines the noisy source then
fuzzy min-entropy is a sufficient condition for information-
theoretic key extraction from W .

2) A more ambitious goal is to design a single extractor that
works for all possible sources. This more ambitious goal
is impossible: there is a family of sources with high fuzzy
min-entropy for which no single fuzzy extractor is secure.
This is true in three settings:

a) for standard fuzzy extractors,
b) for fuzzy extractors that are allowed to sometimes be

wrong,
c) and for secure sketches, which are the main ingredient

of most fuzzy extractor constructions.

Keywords-Fuzzy extractors, secure sketches, authentication,
error-tolerance, key derivation, error-correcting codes, entropy

I. INTRODUCTION

Sources of reproducible secret random bits enable crypto-

graphic applications. Often, these bits are implicit, they are

obtained by repeating the same process (such as reading a

biometric or a physically unclonable function [2]) that gener-

ated them the first time. However, bits obtained this way are

noisy [3], [4], [5], [6], [7], [8], [9], [2], [10], [11], [12]. When

a secret is read multiple times readings are close (according

to some metric) but not identical. To utilize such sources, it is

often necessary to remove noise, in order to derive the same

value in subsequent readings.

The same problem occurs in the interactive setting, in which

the secret channel used for transmitting the bits between

two users is noisy and/or leaky [13]. Bennett, Brassard, and

Robert [3] identify two fundamental tasks:

1) Information reconciliation removes the noise with mini-

mal leakage to an eavesdropping adversary.

2) Privacy amplification converts the high entropy secret to

a uniform random value.

This work is based in part on a paper by the same title and authors presented
at Asiacrypt 2016 [1].

In this work, we consider the noninteractive version of these

problems, in which these tasks are performed together with a

single message.

The noninteractive setting is modeled by a primitive called

a fuzzy extractor [14], which consists of two algorithms.

The generate algorithm (Gen) takes an initial reading w and

produces an output key along with a nonsecret helper value p.

The reproduce (Rep) algorithm takes the subsequent reading

w′ along with the helper value p to reproduce key. The

correctness guarantee is that the key is reproduced precisely

when the distance between w and w′ is at most t.
The security requirement for fuzzy extractors is that key

is uniform even to a (computationally unbounded) adversary

who has observed p. This requirement is harder to satisfy as

the allowed error tolerance t increases, because it becomes

easier for the adversary to guess key by guessing a w′ within

distance t of w and running Rep(w′, p). This attack is enabled

by the functionality of the fuzzy extractor.

Fuzzy Min-Entropy We introduce a new entropy notion that

precisely measures how hard it is for the adversary to execute

this attack. It measures the probability of guessing a value

within distance t of the original reading w. Suppose w is

sampled from a distribution W . To have the maximum chance

that w′ is within distance t of w, the adversary would choose

the point w′ that maximizes the total probability mass of W
within the ball Bt(w

′) of radius t around w′. We therefore

define fuzzy min-entropy

Hfuzz

t,∞ (W )
def
= − logmax

w′
Pr[W ∈ Bt(w

′)].

A fuzzy extractor’s key cannot be longer than the fuzzy min-

entropy (Proposition 3.2).

However, existing constructions do not measure their secu-

rity in terms of fuzzy min-entropy; instead, their security is

shown to be the min-entropy of W , denoted H∞(W ), minus

some loss for error-tolerance. This loss is due to an error-

correction component that writes down enough information

to determine which point within distance t was the original

point. Since there are as many as |Bt| points within radius t it

takes log |Bt| bits to specify which one.1 This value of log |Bt|
is assumed to be the security loss so the residual security is

H∞(W )−log |Bt|. It is easy to show that H∞(W )−log |Bt| ≤
Hfuzz

t,∞ (W ), so it is natural to ask whether a loss of log |Bt| is

1We omit w in the notation |Bt| since we study metrics where the volume
of the ball Bt(w) does not depend on the center w.
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necessary. This question is particularly relevant when the gap

between the two sides of the inequality is high.2

As an example, in the biometric regime, entropy is esti-

mated by comparing the distribution of distances between two

different biometrics with a distribution with well understood

statistical properties. For example, Daugman [5] shows that

the distance between two irises is distributed similarly to

a binomial distribution with 249 bits of entropy. The iris

is then assumed to have the same entropy as the binomial

distribution. The parameter t is determined by the experimental

conditions. Daugman recommends setting t > 205. In the

Hamming metric for strings of length 2048, |B205| ≈ 21024

(see Lemma 2.2). Thus, iris scans have

H∞(W )− log |Bt| ≈ 249− 1024 < 0,

(see discussion in [15, Section 5]). However, iris scans for dif-

ferent people appear to be well-spread in the metric space [16],

the closest observed distance between two different irises is

548. This indicates the distribution of W has Hfuzz

t,∞ (W ).
The current state of fuzzy extractors is unsettling. For

many distributions W with min-entropy, we have no known

construction and no known impossibility result. We hope the

more precise notion of fuzzy min-entropy can rectify this

situation. Ideally, one could show a fuzzy extractor exists for

every distribution with enough fuzzy min-entropy and that they

are impossible with less fuzzy min-entropy. That is, we ask:

is fuzzy min-entropy sufficient for fuzzy extraction? There is

evidence that it may be sufficient when the security require-

ment is computational rather than information-theoretic—see

Section I-B. We provide an answer for the case of information-

theoretic security in two settings.

Contribution 1: Sufficiency of Hfuzz

t,∞ (W ) for a Precisely

Known W We first consider the case when the fuzzy

extractor designer has precise knowledge of the probability

distribution function of W . In this setting, it is possible

to construct a fuzzy extractor that extracts a key almost as

long as Hfuzz

t,∞ (W ) (Theorem 4.3).3 Our construction crucially

utilizes the probability distribution function of W and, in

particular, cannot necessarily be realized in polynomial time

(this is similar, for example, to the interactive information-

reconciliation feasibility result of [18]). This result shows that

Hfuzz

t,∞ (W ) is a necessary and sufficient condition for building

a fuzzy extractor for a given distribution W .

A number of previous works in the precise knowledge

setting described tight bounds for specific distributions (for

example, [19], [20], [21], [22], [23], [24]). These works are

summarized in Table I. Our characterization unifies previous

work, and justifies using Hfuzz

t,∞ (W ) as the measure of the

quality of a noisy distribution, rather than cruder measures

such as H∞(W ) − log |Bt|. Our construction can be viewed

as a reference to evaluate the quality of efficient constructions

in the precise knowledge setting by seeing how close they get

to extracting all of Hfuzz

t,∞ (W ).

2For nearly uniform distributions, Hfuzz

t,∞(W ) ≈ H∞(W ) − log |Bt|. In
this setting, standard coding based constructions of fuzzy extractors (using
almost optimal codes) yield keys of size approximately Hfuzz

t,∞(W ).
3Woodage et al. present an improved version of this theorem [17]. We

discuss their work below.

Many works consider i.i.d sources, for example [21]. These

works are able to derive a key qualitatively longer than fuzzy

min-entropy. This is because one can characterize i.i.d sources

in terms of Shannon entropy, denoted H1(·), instead of min-

entropy. Each symbol of W is a separate “draw” from the

distribution enabling average case analysis as the dimension

n of the metric space increases. Key length for i.i.d. sources

asymptotically approaches H1(W ) − H1(W |W ′) where W ′

is the distribution of noisy readings around W [21, Theorem

2]. It is difficult to directly compare with these works as they

do not specify concrete losses for a fixed source length and

they consider Shannon entropy. Qualitatively, Shannon entropy

can be arbitrarily higher than min-entropy. Unfortunately,

many biometrics and hardware sources are not i.i.d. (see for

example [5]), so this analysis should be used judiciously.

Contribution 2: The Cost of Distributional Uncertainty

Assuming precise knowledge of a distribution W is often

unrealistic for high-entropy distributions; they can never be

fully observed directly and must therefore be modeled. It is

unrealistic to assume that the designer’s model of a distribution

is as accurate as the adversary’s model. The adversary may

have more resources including time to build a model when the

construction is deployed. Existing fuzzy extractors are shown

secure for a family of sources (for example, all sources of

min-entropy at least m with at most t errors). The attacker

may know more about the distribution than the designer. We

call this the distributional uncertainty setting.

Our second contribution is a set of negative results for the

distributional uncertainty setting. We provide two impossibility

results for fuzzy extractors. Both demonstrate families W of

distributions over {0, 1}n such that each distribution in the

family has Hfuzz

t,∞ linear in n, but no fuzzy extractor can be

secure for most distributions inW . A fuzzy extractor designer

who knows only that the distribution comes from W cannot

secure the family, despite the fact that fuzzy extractors can be

designed for each distribution in the family individually.

The first impossibility result (Theorem 5.1) assumes that

Rep is perfectly correct and rules our fuzzy extractors for

entropy rates, defined as µ = Hfuzz

t,∞ (W )/n, as high as

µ ≈ 0.18. The second impossibility result (Theorem 6.1),

relying on the work of Holenstein and Renner [25], also

rules out fuzzy extractors in which Rep is allowed to make

a mistake, but applies only to distributions with entropy rates

up to µ ≈ 0.07.

We also provide a third impossibility result (Theorem 7.2),

this time for an important building block called “se-

cure sketch.” A secure sketch is a one-round information-

reconciliation component (that recovers the original w from

the input w′). Secure sketches are used in most fuzzy extractor

constructions. The result rules out secure sketches for a family

of distributions with entropy rate up to µ = 0.5, even if

the secure sketches are allowed to make mistakes. We define

secure sketches formally in Section VII. Most fuzzy extractor

constructions are analyzed for all families with a certain

amount of entropy. Thus, showing impossibility for higher

entropy rates raises the lower bound on how much fuzzy

min-entropy must be present in the physical distribution for
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Work Metric Distribution Residual Entropy

This Work/[17] Any discrete Generic Hfuzz

t,∞(W ) −2 log 1/ε− log 1/δ + 1
[19] Hamming Uniform Hfuzz

t,∞(W ) −2 log 1/ε− 2
[20]/[21] Any with almost perfect codes i.i.d ≈ H1(W )−H1(W |W ′) −o(n)
[14] Hamming/Set Difference/Edit Generic H∞(W )− log |Bt| −2 log 1/ε− 2

TABLE I
COMPARISON OF FUZZY EXTRACTOR CONSTRUCTIONS. HERE, ε IS THE STATISTICAL DISTANCE FROM THE UNIFORM DISTRIBUTION, δ IS THE

ALLOWED ERROR, AND t IS THE DESIRED ERROR TOLERANCE. NOTE THAT Hfuzz

t,∞(W ) ≥ H∞(W )− log |Bt|. HERE n IS THE DIMENSION OF THE

METRIC SPACE. H1 REPRESENTS SHANNON ENTROPY AND W ′ IS THE DISTRIBUTION THAT ADDS NOISE TO THE ENROLLMENT VALUE W .

security to be based on just fuzzy min-entropy. As discussed

in Section VIII, another alternative is to assume additional

structure about the physical source.

A. Our Techniques

Techniques for Positive Results for a Precisely Known

Distribution We now provide intuition for our positive result

for a precisely known distribution W with fuzzy min-entropy.

We begin with distributions in which all points in the support

have the same probability (so-called “flat” distributions). Gen

extracts a key from the input w using a randomness extrac-

tor [26]. Consider some subsequent reading w′. To achieve

correctness, the string p must permit Rep to disambiguate

which point w ∈ W within distance t of w′ was given to

Gen. Disambiguating multiple points can be accomplished by

universal hashing, as long as the size of hash output space is

slightly greater than the number of possible points. Thus, Rep

includes into the public value p a “sketch” of w computed

via a universal hash of w. To determine the length of that

sketch, consider the heaviest (according to W ) ball B∗ of

radius t. Because the distribution is flat, B∗ is also the ball

with the most points of nonzero probability. Thus, the length

of the sketch needs to be slightly greater than the logarithm

of the number of non-zero probability points in B∗. Since

Hfuzz

t,∞ (W ) is determined by the weight of B∗, the number

of points cannot be too high and there will be entropy left

after the sketch is published. This remaining entropy suffices

to extract a key.

For an arbitrary distribution, we cannot afford to disam-

biguate points in the ball with the greatest number of points,

because there could be too many low-probability points in a

single ball despite a high Hfuzz

t,∞ (W ). We solve this problem

by splitting the arbitrary distribution into a number of nearly

flat distributions we call “levels.” We then write down, as part

of the sketch, the level of the original reading w and apply

the above construction considering only points in that level.

We call this construction leveled hashing (Construction 4.2).

Techniques for Negative Results for Distributional Uncer-

tainty We construct a family of distributions W and prove

impossibility for a uniformly random W ← W . We start by

observing the following asymmetry: Gen sees only the sample

w (obtained via W ← W and w ← W ), while the adversary

knows W .

To exploit the asymmetry, in our first impossibility result

(Theorem 5.1), we construct W so that conditioning on the

knowledge of W reduces the distribution to a small subspace

(namely, all points on which a given universal hash function

produces a given output), but conditioning on only w leaves

the rest of the distribution uniform on a large fraction of the

entire space. An adversary can exploit the knowledge of the

hash value to reduce the uncertainty about key, as follows.

The nonsecret value p partitions the metric space into

regions that produce a consistent value under Rep (preimages

of each key under Rep(·, p)). For each of these regions, the

adversary knows that possible w lie at distance at least t from

the boundary of the region (else, the fuzzy extractor would

have a nonzero probability of error). However, in the Hamming

space, the vast majority of points lie near the boundary (this

result follows by combining the isoperimetric inequality [27],

which shows that the ball has the smallest boundary, with

bounds on the volume of the interior of a ball, which show

that this boundary is large). This allows the adversary to rule

out so many possible w that, combined with the adversarial

knowledge of the hash value, many regions become empty,

leaving key far from uniform.

For the second impossibility result (Theorem 6.1, which

rules out even fuzzy extractors that are allowed a possibility

of error), we let the adversary know some fraction of the bits

of w. Holenstein and Renner [25] showed that if the adversary

knows each bit of w with sufficient probability, and bits of w′

differ from bits of w with sufficient probability, then so-called

information-theoretic key agreement is impossible. Converting

the impossibility of information-theoretic key agreement to

impossibility of fuzzy extractors takes a bit of technical work.

B. Related Settings

Other settings with close readings: Hfuzz

t,∞ is sufficient The

security definition of fuzzy extractors can be weakened to

protect only against computationally bounded adversaries [28].

In this computational setting, under the assumption of seman-

tically secure graded encoding, for most distance metrics a

single fuzzy extractor can simultaneously secure all possible

distributions [29], [30]. This construction is secure when the

adversary can rarely learn key with oracle access to the

program functionality. The set of distributions with fuzzy min-

entropy are exactly those where an adversary learns key with

oracle access to the functionality with negligible probability.

Bitansky et al.’s [30] construction requires heavy weight and

disputed cryptographic tools similar to those used to construct

indistinguishability obfuscation [31], [32]. Their result implies

that extending our negative result to the computational setting

would have negative implications on the existence of certain

types of obfuscation.

Furthermore, the functional definition of fuzzy extractors

can be weakened to permit interaction between the party
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having w and the party having w′. Such a weakening is useful

for secure remote authentication [33]. When both interaction

and computational assumptions are allowed, secure two-party

computation can produce a good key whenever the distribution

W has fuzzy min-entropy. The two-party computation protocol

needs to be secure without assuming authenticated channels; it

can be built under the assumptions of collision-resistant hash

functions and enhanced trapdoor permutations [34] or oblivi-

ous transfer and a variant of the random oracle model [35].

Correlated rather than close readings A different model

for the problem of key derivation from noisy sources does not

explicitly consider the distance between w and w′, but rather

views w and w′ as realizations of a correlated pair of random

variables (W,W ′). This model is considered in multiple

works, including [13], [36], [37], [38]; recent characterizations

of when key derivation is possible in this model include [39]

and [40].

Much of the work on correlated pairs considers interactive

protocols (as opposed to the noninteractive agreement needed

for fuzzy extractors). However, the impossibility results for

that setting are directly relevant to our work, because rul-

ing out interactive protocols also rules out noninteractive

ones. Recall that our starting point is the observation that

the fuzzy extractor’s output length (Proposition 3.2) is at

most the fuzzy min-entropy of W . Prior work of Tyagi and

Watanabe [40], and concurrent (with ours) work of those

authors with Viswanath [41], developed general upper bounds

on the achievable secret key length for correlated readings

(via “conditional independence testing”). We can apply these

in our setting by taking W ′ to be a random string within

distance t of W to obtain impossiblity results analogous to

Proposition 3.2. Our technique is less general, since it is

tailored to the constraint on the distance between w and w′;
however, this specificity allows us to give a simple, direct

proof.

The conditional independence testing framework also ap-

plies to what we call the “unknown distribution” case (dubbed

“correlated information at the eavesdropper” in the correlated

readings literature). Given a joint distribution on W,W ′, Z,

where Z is held by the eavesdropping adversary, the con-

ditional testing framework gives an upper bound on the

achievable key length (and hence an impossibility result when

that bound is small). The framework does not show how

one can construct distributions for which this bound is small.

In particular, it is an open question whether one can derive

versions of our impossibility results for unknown distributions

(Theorems 5.1 and 6.1) using the framework. Even using the

specific constructions of W,W ′, Z that arise in our proofs, it

is open whether the conditional testing framework provides a

good bound on the key length.

C. Concurrent and subsequent work

A construction that is very similar to our positive result

in the known distribution setting (Construction 4.2) was used

independently in a concurrent work of Hayashi, Tyagi, and

Watanabe [42], who used the term “spectrum slicing” to

describe it. They also extended this technique to the case of

distributional uncertainty, using it in an interactive protocol,

with one side telling the other to keep increasing the length of

the sketch until Rep could succeed. This interactive approach

was used in subsequent works, as well (e.g., [43], [41], [44]).

Li and Anantharam [44] consider correlated readings in

the known distribution setting. They show that maximum

expected key length for interactive protocols that are allowed

to output variable-lengths keys is closely related to the mutual

information between W and W ′.
Woodage et al. [17] showed a clever extension to our leveled

hashing construction (Construction 4.2). They observed the

level information does not have to be explicitly included as

part of the sketch. The construction uses leveled hashing but

with two important changes:

1) The level is not written. Denote by h` the hash with

the greatest number of output bits. If the used hash, hi,

has |hi| < h` then the output is extended with random

bits to length |h`|. Instead of looking for an exact match

the Rep algorithm finds the close point that matches the

stored string at the longest prefix. This can be seen as

considering all possible levels of the original hash.

2) In the our construction, the hash output is determined

by how many points are in the neighborhood of points

with that probability. This may lead to some levels with

short hash outputs. This is a problem for Woodage et al.’s

construction, if there are multiple short levels, the longest

prefix may be the wrong level with noticeable probability.

To address this problem, Woodage et al. use the (negative

log of the) probability of a point to compute the length of

the hash output. This ensures that all levels have length

of at least the min-entropy of the distribution making

collisions unlikely. Importantly, this change requires a

change in the security argument, essentially arguing that

all sketches are equally likely regardless of the starting

level. This change requires an augmentation to the hash

function called strong universality [45].

Fuller and Peng [46] extended our negative results to

sources that are drawn from continuous metric spaces

equipped with the Euclidean metric. There are two main

differences between the Euclidean space and our setting:

1) Fewer points lie near the boundary of a ball in Euclidean

space.

2) The use of continuous spaces requires volume techniques.

So rather than showing that the hash value leaves few

possibilities for w, they show that the “volume” of

distributions is larger than the interior of parts. Thus, any

choice for the interior of parts must not contain a fraction

of distributions.

These changes necessitate the use of a different family that

is derived from all cosets of random lattices with sufficient

minimum distance (known as construction A).

II. PRELIMINARIES

Random Variables We use uppercase letters for random vari-

ables and corresponding lowercase letters for their samples. A

repeated occurrence of the same random variable signifies the

same value of the random variable: for example (W, SS(W )) is
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a pair of random variables obtained by sampling w according

to W and applying the algorithm SS to w. The statistical

distance between random variables A and B with the same

domain is

SD(A,B) =
1

2

∑

a

|Pr[A = a]− Pr[B = b]|

= max
S

Pr[A ∈ S]− Pr[B ∈ S].

Entropy Let log denote the base 2 logarithm. Let (X,Y )
be a pair of random variables. Define min-entropy of X
as H∞(X) = − log(maxx Pr[X = x]), and the average

(conditional) min-entropy [14, Section 2.4] of X given Y as

H̃∞(X|Y ) = − log

(

E
y←Y

max
x

Pr[X = x|Y = y]

)

.

Define Hartley entropy H0(X) to be the logarithm of the

size of the support of X , that is H0(X) = log |{x|Pr[X =
x] > 0}|. Define average-case Hartley entropy by averaging

the support size:

H̃0(X|Y ) = log( E
y←Y

|{y|Pr[X = x|Y = y] > 0}|).

For 0 < a < 1, the binary entropy is h2(p) = −p log p− (1−
p) log(1 − p), which corresponds to the Shannon entropy of

any random variable that is 0 with probability p and 1 with

probability 1− p.

Randomness Extractors We use randomness extractors [26],

as defined for the average case in [14, Section 2.5].

Definition 2.1: Let M, χ be finite sets. A function ext :
M × {0, 1}d → {0, 1}κ a (m̃, ε)-average case extractor if

for all pairs of random variables X,Y over M, χ such that

H̃∞(X|Y ) ≥ m̃, we have

SD((ext(X,Ud), Ud, Y ), Uκ × Ud × Y ) ≤ ε.

Metric Spaces and Balls Let M be some finite space and

let the function dis :M×M→ R
+∪{0} be a distance metric

(identity of indiscernibles, symmetric, and triangle inequality).

For a metric space (M, dis), the (closed) ball of radius t
around w is the set of all points within radius t, that is,

Bt(w) = {w′|dis(w,w′) ≤ t}. We consider the Hamming

metric over vectors in Zn for some finite alphabet Z , defined

via dis(w,w′) = |{i|wi 6= w′i}|. In this space, the size of a

ball in a metric space does not depend on w, so we denote

by |Bt| the size of a ball (centered arbitrarily) of radius t. Uκ

denotes the uniformly distributed random variable on {0, 1}κ.

We use the bounds on |Bt| in {0, 1}n, see [47, Lemma 4.7.2,

equation 4.7.5, p. 115] for proofs.

Lemma 2.2: Let τ = t/n. The volume |Bt| of the ball of

radius in t in the Hamming space {0, 1}n satisfies

1
√

8nτ(1− τ)
· 2nh2(τ) ≤ |Bt| ≤ 2nh2(τ) .

We modify the definition of fuzzy extractors slightly from

the work of Dodis et al. [14, Sections 3.2]. First, we allow for

error as discussed in [14, Section 8]. Second, in the distribu-

tional uncertainty setting we consider a general family W of

distributions instead of families containing all distributions of

a given min-entropy. Let M be a metric space with distance

function dis.

Definition 2.3: An (M,W, κ, t, ε)-fuzzy extractor with er-

ror δ is a pair of randomized procedures, “generate” (Gen)
and “reproduce” (Rep). Gen on input w ∈ M outputs an

extracted string key ∈ {0, 1}κ and a helper string p ∈ {0, 1}∗.
Rep takes w′ ∈M and p ∈ {0, 1}∗ as inputs. (Gen,Rep) have

the following properties:

1) Correctness: if dis(w,w′) ≤ t and (key, p) ← Gen(w),
then Pr[Rep(w′, p) = key] ≥ 1− δ.

2) Security: for any distribution W ∈ W , if (Key, P ) ←
Gen(W ), then SD((Key, P ), (Uκ, P )) ≤ ε.

In the above definition, the value of w′ must be chosen

before p is known in order for the correctness guarantee to

hold (alternatively, w′ can be sampled from a probability

distribution that is independent of p).

The Case of a Precisely Known Distribution If in the above

definition we take W to be a one-element set containing a

single distribution W , then the fuzzy extractor is said to be

for a precisely known distribution. In this case, we need to

require correctness only for w that have nonzero probability.

We specify no requirement that the algorithms are compact or

efficient, and so the distribution can be fully known to them.

III. NEW NOTION: FUZZY MIN-ENTROPY

The fuzzy extractor helper string p allows everyone, in-

cluding the adversary, to find the output of Rep(·, p) on any

input w′. Ideally, p should not provide any useful information

beyond this ability, and the outputs of Rep on inputs that

are too distant from w should provide no useful information,

either. In this ideal scenario, the adversary is limited to trying

to guess a w′ that is t-close to w. We measure the quality

of a source by (the negative logarithm of) the success of this

attack.

Definition 3.1: The t-fuzzy min-entropy of a distribution W
in a metric space (M, dis) is:

Hfuzz

t,∞ (W ) = − log



max
w′

∑

w∈M|dis(w,w′)≤t
Pr[W = w]





Fuzzy min-entropy measures the functionality provided to the

adversary by Rep (since p is public), and thus is a necessary

condition for security. We formalize this statement in the

following proposition.

Proposition 3.2: Let W be a distribution over (M, dis)
with Hfuzz

t,∞ (W ) = m. Let (Gen,Rep) be a (M, {W}, κ, t, ε)-
fuzzy extractor with error δ. Then

2−κ ≥ 2−m − δ − ε.

If δ = ε = 2−κ, then κ cannot exceed m+ 2.

Proof: Let W be a distribution where Hfuzz

t,∞ (W ) = m.

This means that there exists a point w′ ∈ M such that
∑

w∈M|dis(w,w′)≤t Pr[W = w] = 2−m. Consider the follow-

ing function Dw′ :

• Input (key, p).
• If Rep(w′, p) = key, output 1.

• Else output 0.
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Clearly, Pr[Dw′(Key, P ) = 1] ≥ 2−m − δ, while

Pr[Dw′(Uκ, P ) = 1] = 1/2κ. Thus,

SD((Key, P ), (Uκ, P ))

≥ Pr[Dw′(Key, P ) = 1]− Pr[Dw′(Uκ, P ) = 1]

≥ 2−m − δ − 2−κ.

Proposition 3.2 extends to the settings of computational se-

curity and interactive protocols if the definition gives the

adversary access to the true Key. We explore properties of

fuzzy min-entropy below. These properties are included to

demonstrate the utility of fuzzy min-entropy and are not

necessary to complete the proofs in this work. Conditioning

on an event p of probability Pr[P = p] decreases fuzzy min-

entropy by a factor of at most log 1/Pr[P = p].

Lemma 3.3: Hfuzz

t,∞ (W |P = p) ≥ Hfuzz

t,∞ (W ) + log Pr[P =
p].

Proof:

Hfuzz

t,∞ (W |P = p)

= − log



max
w′

∑

w|dis(w,w′)≤t
Pr[W = w|P = p]





= − log



max
w′

∑

w|dis(w,w′)≤t

Pr[W = w ∧ P = p]

Pr[P = p]





≥ − log



max
w′

∑

w|dis(w,w′)≤t

Pr[W = w]

Pr[P = p]





= Hfuzz

t,∞ (W ) + log Pr[P = p].

The second line follows from the first using Bayes rule,

the third follows from the second using the monotonicity of

probability. The last line follows by factoring 1/Pr[P = p]
from the sum, and noting the sum then represents Hfuzz

t,∞ (W ).

Conditional fuzzy min-entropy Properly defined, fuzzy min-

entropy obeys a chain rule. We start by defining a conditional

notion of fuzzy min-entropy for a random variable P .

Definition 3.4: For distributions W,P , the t-conditional

fuzzy min-entropy of W |P in a metric space (M, dis) is:

H̃fuzz

t,∞ (W |P )

= − log



 E
p←P

max
w′

∑

w|dis(w,w′)≤t
Pr[W = w|P = p]



 .

Then a chain rule analogous to average min-entropy [14,

Lemma 2.2b] applies:

Lemma 3.5: H̃fuzz

t,∞ (W |P ) ≥ Hfuzz

t,∞ (W )−H0(P ).

Proof:

H̃fuzz

t,∞ (W |P )

= − log



 E
p←P

max
w′

∑

w|dis(w,w′)≤t
Pr[W = w|P = p]





= − log





∑

p

max
w′

∑

w|dis(w,w′)≤t
Pr[W = w|P = p] Pr[P = p]





= − log





∑

p

max
w′

∑

w|dis(w,w′)≤t
Pr[W = w ∧ P = p]





≥ − log





∑

p

max
w′

∑

w|dis(w,w′)≤t
Pr[W = w]





≥ − log



2H0(P )



max
w′

∑

w|dis(w,w′)≤t
Pr[W = w]









≥ Hfuzz

t,∞ (W )−H0(P ).

Here the second line follows from the first using the definition

of expectation. The third follows using Bayes rule. The fourth

follows using monotonicity of expectation. By definition, there

are at 2H0(P ) possibilities for p, yielding the fifth line. The

last line results by recognizing Hfuzz

t,∞ (W ) and converting to

entropy.

IV. Hfuzz

t,∞ (W ) IS SUFFICIENT IN THE PRECISE

KNOWLEDGE SETTING

In this section, we build fuzzy extractors that extract almost

all of Hfuzz

t,∞ (W ) for any distribution W . These constructions

assume precise knowledge of W and are not efficient. We

begin with flat distributions and then turn to arbitrary distri-

butions.

Let supp(W ) = {w|Pr[W = w] > 0} denote the support

of a distribution W . A distribution W is flat if all elements

of supp(W ) have the same probability. Our construction for

this case is quite simple: to produce p, Gen outputs a hash

of its input point w and an extractor seed; to produce key,

Gen applies the extractor to w. Given w′, Rep looks for w ∈
supp(W ) that is near w′ and has the correct hash value, and

applies the extractor to this w to get key.

The specific hash function we use is universal. (We note that

universal hashing has a long history of use for information rec-

onciliation, for example [3], [18], and [48]. This construction

is not novel; rather, we present it as a stepping stone for the

case of general distributions.)

Definition 4.1 ([45]): Let F : K ×M → R be a function.

We say that F is universal if for all distinct x1, x2 ∈M:

Pr
K←K

[F (K,x1) = F (K,x2)] =
1

|R| .

In our case, the hash output length needs to be sufficient

to disambiguate elements of supp(W ) ∩ Bt(w
′) with high

probability. Observe that there are at most 2H∞(W )−Hfuzz

t,∞(W )

such elements when W is flat, so output length slightly greater

(by log 1/δ) than H∞(W )−Hfuzz

t,∞ (W ) will suffice. Thus, the
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output key length will be Hfuzz

t,∞ (W )− log 1/δ− 2 log 1/ε+ 2
(by using average-case leftover hash lemma, per [14, Lemma

2.2b, Lemma 2.4]). As this construction is only a warm-up, so

we do not state it formally and proceed to general distributions.

A. Fuzzy Extractor for Arbitrary Distributions

The above hashing approach does not work for arbitrary

sources. Consider a distribution W consisting of the following

balls: B1
t is a ball with 2H∞(W ) points with total probability

Pr[W ∈ B1
t ] = 2−H∞(W ), B2

t , ..., B
2−H∞(W )

t are balls with

one point each with probability Pr[W ∈ Bi
t] = 2−H∞(W ). The

above hashing algorithm writes down H∞(W ) bits to achieve

correctness on B1
t . However, with probability 1 − 2−H∞(W )

the initial reading is outside of B1
t , and the hash completely

reveals the point.

Instead, we use a layered approach: we separate the input

distribution W into nearly-flat layers, write down the layer

from which the input w came (i.e., the approximate probability

of w) as part of p, and rely on the construction from the

previous part for each layer. In other words, the hash function

output is now variable-length, longer if probability of w is

lower. Thus, p now reveals a bit more about w. To limit this

information and the resulting security loss, we limit number

of layers. As a result, we lose only 1 + logH0(W ) more bits

of security compared to the previous section.

The main idea is that providing the level information makes

the distribution look nearly flat (the probability of points

differs by at most a factor of two, which increases the entropy

loss as compared to the flat case by only one bit). The level

information itself increases the entropy loss by logH0(W )
bits, because there are only H0(W ) levels that contain enough

weight to matter. In subsequent work, Woodage et al. show that

level information does not have to be leaked [17, Theorem 3].

We now present a formal description of our construction.

Construction 4.2: Let W be a distribution over a metric

space M with H∞(W ) = m.

• Let δ ≤ 1
2 be the error parameter.

• Let ` = m+H0(W )− 1; round ` down so that `−m is

an integer (i.e., set ` = m+ b(`−m)c).
• For each i = m,m+1, . . . , `−1, let Li = (2−(i+1), 2−i]

and let Fi : Ki×M→ Ri be a family of universal hash

functions with log |Ri| = i + 1 − Hfuzz

t,∞ (W ) + log 1/δ.

Let L` = (0, 2−`].
• Let ext be an (m̃, ε)-average-case extractor for m̃ =

Hfuzz

t,∞ (W )− logH0(W )− log 1/δ− 1 with output length

κ.

Define GenW ,RepW as in Figure 1.

We instantiate this construction with the extractor parame-

ters given by a universal hash (namely, κ = m̃−2 log 1/ε+2):

Theorem 4.3: For any metric spaceM, distribution W over

M, distance t, error δ > 0, and security ε > 0, there exists

a (M, {W}, κ, t, ε)-known distribution fuzzy extractor with

error δ for κ = Hfuzz

t,∞ (W )−logH0(W )−log 1/δ−2 log 1/ε+
1.

Proof of Theorem 4.3: We first argue correctness. Fix

some w,w′ within distance t. When Pr[W = w] ∈ L`, then

Rep is always correct, so let’s consider only the case when

Pr[W = w] 6∈ L`. The algorithm Rep will never output ⊥
since at least the correct w will match the hash. Thus, an

error happens when another element w∗ ∈ W ∗ has the same

hash value F (Ki, w
∗) as F (Ki, w). Observe that the total

probability mass of W ∗ is greater than |W ∗| ·2−(i+1) but less

than or equal to the maximum probability mass in a ball of

radius t, 2−H
fuzz

t,∞(W ). Therefore, |W ∗| ≤ 2i+1−Hfuzz

t,∞(W ). Each

element of W ∗ has the same hash as F (K,w) with probability

at most 1/|Ri|, and thus correctness with error |W ∗|/|R| ≤ δ
follows by the union bound.

Security: We now argue security of the construction. Let

Wi = {w|Pr[W = w] ∈ Li}. For ease of notation, let us

make the special case of i = ` as part of the general case,

as follows: define K` = {0}, F`(0, w) = w, and R` = W`.

Also, denote by SS the randomized function that maps w to

ss. First, we set up the analysis by levels:

2−H̃∞(W |SS(W )) = E
ss
max
w

Pr[W = w | SS(W ) = ss]

=
∑

ss

max
w

Pr[W = w ∧ SS(W ) = ss]

=
∑̀

i=m

∑

K∈Ki

∑

y∈Ri

max
w

Pr[W = w ∧ SS(W ) = (i, y,K)]

≤
∑̀

i=m

∑

K∈Ki

∑

y∈Ri

max
w∈Wi

Pr

[

W = w ∧ Fi(K,w) = y
∧ K output by Gen

]

.

We now pay the penalty of |Ri| for the presence of y (observe

that removing the condition that Fi(K,w) = y from the

conjunction cannot reduce the probability):

2−H̃∞(W |SS(W ))

≤
∑̀

i=m

∑

K∈Ki

∑

y∈Ri

max
w∈Wi

Pr[W = w ∧K is chosen by SS]

=
∑̀

i=m

∑

K∈Ki

|Ri| · max
w∈Wi

Pr [W = w ∧K is chosen by SS] .

We now get rid of the key, because it is independent:

2−H̃∞(W |SS(W )) ≤
∑̀

i=m

∑

K∈Ki

|Ri| · max
w∈Wi

Pr[W = w] · 1

|Ki|

=
∑̀

i=m

|Ri| · max
w∈Wi

Pr[W = w]

≤ |R`| · 2−` +
`−1
∑

i=m

|Ri| · 2−i .

Finally, we add everything up, recalling that |Ri| for i < ` is

2i+1−Hfuzz

t,∞(W )+log 1/δ .
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GenW

1) Input: w.

2) Find i such that

Pr[W = w] ∈ Li.

3) If i = ` then set ss = (i, w, 0).
4) Else sample K ← Ki

and set ss = (i, Fi(K,w),K)
5) Sample a uniform extractor

seed seed

6) Output key = ext(w, seed),
p = (ss, seed).

RepW

1) Input: (w′, p = (ss, seed))
2) Parse ss as (i, y,K)
3) If i = ` then set w∗ = y.

4) Else

a) Let W ∗ = {w∗|dis(w∗, w′) ≤ t
∧ Pr[W = w∗] ∈ Li}.

b) Find any w∗ ∈W ∗ such that

Fi(K,w∗) = y;

if none exists, set w∗ =⊥.

5) Output ext(w∗, seed).

Fig. 1. Fuzzy extractor construction for known distribution W .

2−H̃∞(W |SS(W )) ≤ 2H0(W ) · 2−`

+(`−m) · 21−Hfuzz

t,∞(W )+log 1/δ

(next line uses ` > m+H0(W )− 2)

< 22−m + (`−m) · 21−Hfuzz

t,∞(W )+log 1/δ

(next line uses m ≥ Hfuzz

t,∞ (W ) and log 1/δ ≥ 1)

≤ (`−m+ 1) · 21−Hfuzz

t,∞(W )+log 1/δ

(next line uses ` ≤ m+H0(W )− 1)

≤ H0(W ) · 21−Hfuzz

t,∞(W )+log 1/δ .

Taking the negative logarithm of both sides, we obtain m̃
def
=

H̃∞(W |SS(W )) = Hfuzz

t,∞ (W ) − logH0(W ) − log 1/δ − 1.

Applying the (m̃, ε) randomness extractor gives us the desired

result.

V. IMPOSSIBILITY OF FUZZY EXTRACTORS FOR A FAMILY

WITH Hfuzz

t,∞
In the previous section, we showed the sufficiency of

Hfuzz

t,∞ (W ) for building fuzzy extractors when the distribution

W is precisely known. However, it is usually infeasible to

characterize a high-entropy distribution W . Traditionally, al-

gorithms deal with this distributional uncertainty by providing

security for a family of distributions W . In this section, we

show that distributional uncertainty comes at a real cost.

We demonstrate an example over the binary Hamming

metric in which every W ∈ W has linear Hfuzz

t,∞ (W ) (which is

in fact equal to H∞(W )), and yet there is some W ∈ W where

even for 3-bit keys, the key distribution is far from uniform,

ε = 1
4 . In fact, we show that the adversary need not work

hard: even a uniformly random choice of distribution W from

W will thwart the security of any (Gen,Rep). The one caveat

is that, for this result, we require Rep to be always correct

(i.e., δ = 0). As mentioned in the introduction, this perfect

correctness requirement is removed in Sections VI and VII at a

cost of lower entropy rate and stronger primitive, respectively.

The result is based on the following reasoning: Gen sees

only a random sample w from a random W ∈ W , but

not W . The adversary knows the distribution W but not

which particular value w was sampled. Because Gen does not

know which W the input w came from, Gen must produce

p that works for many distributions W that contain w in

their support. Such p necessarily reveals a lot of information.

The adversary can combine information gleaned from p with

information about W to narrow down the possible choices for

w and thus distinguish key from uniform.

Theorem 5.1: There exists a family of distributionsW over

{0, 1}n equipped with the Hamming metric such that for each

element W ∈ W , Hfuzz

t,∞ (W ) = H∞(W ) ≥ m, and yet any

({0, 1}n,W, κ, t, ε)-fuzzy extractor with error δ = 0 has ε >
1/4.

This holds as long as κ ≥ 3 and under the following

conditions on the entropy rate µ = m/n, noise rate τ = t/n,

and n:

• any 0 ≤ τ < 1
2 ,

• any µ > 0 such that µ < 1 − h2(τ) and µ < 1 −
h2

(

1
2 − τ

)

, and

• any n ≥ max

(

2
1−h2(τ)−µ ,

5

1−h2( 1
2−τ)−µ

)

.

The conditions on µ and τ imply the result applies to any

entropy rate µ ≤ .18 as long as τ is set appropriately and n is

sufficiently large (for example, the result applies to n ≥ 1275
and τ = .6

√
µ when 0.08 ≤ µ ≤ .18). The τ vs. µ tradeoff is

depicted in Figure 2.

Here we first provide short intuition, followed by the proof.

The overall goal of the proof is show a lower bound on the

value of ε which is the quality of the output key.

• One can partition the input metric space according to

what value of key is output by Rep(w, p).
• The value of p reduces the set of possible w because, by

correctness of Rep, every candidate input w to Gen must

be such that all of its neighbors w′ of distance at most t
produce the same output of Rep(w′, p).

• The isoperimetric inequality then shows for most parts,

almost all points are not in the interior (Lemma 5.2).

• The above gives a bound on the residual entropy of w
conditioned on p for most values of key. The second part

of the proof incorporates the adversary’s knowledge of

the distribution W ∈ W .

• We show the theorem holds for an average member of

W . Let Z denote a uniform choice of W from W and

denote by Wz the choice specified by a particular value

of z.
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Fig. 2. The region of τ (x-axis) and µ (y-axis) pairs for which the three
negative results apply (Theorems 5.1, 6.1 and 7.2). The Section 5 and Section
7 curves overlap starting at τ = .25.

• Let {Hashk}k∈K be a family of hash functions with

domain M = {0, 1}n that is universal (small collision

probability for any two points across the hash key),

regular (large preimage size for any output value), and has

preimage sets with high minimum distance. Then define

z = (k, h) and define W(k,h) as the uniform distribution

over the set {w|Hash(w, k) = h}(k,h).
• The hash function we use is the output of a parity check

matrix for a random code with high distance. Thus, each

distribution Wz is a coset of some randomly chosen

code C with good distance (that is not known by the

construction). This family has the required properties (see

Lemma 5.4).

• Since z is regular and preimage sets have minimum

distance each Wz has high fuzzy min-entropy.

• The hash is universal, so learning the value of z reduces

the set of possible values by another factor (Lemma 5.3).

• With this additional loss, for the average Wz , the interior

of many parts contain no points from Wz . One can now

build a distinguisher for a key derived from Wz from a

random key. If a key comes from a part whose interior

is empty the distinguisher outputs random, otherwise it

outputs real.

We now proceed with the full proof.

Proof of Theorem 5.1: We show the impossibility for

an average member of W . We defer describing the family W
until after a new bound on the preimage set size of most keys

for a fuzzy extractor. The following lemma shows that the

knowledge of p and key reduces the entropy of w.

Lemma 5.2: LetM = {0, 1}n equipped with the Hamming

metric, κ ≥ 2, 0 ≤ t ≤ n/2, and ε ≥ 0. Suppose (Gen,Rep)
is a (M,W, κ, t, ε)-fuzzy extractor with error δ = 0, for some

distribution family W over M. Let τ = t/n. For any fixed

p that is a possible output of Gen, there is a set GdKeyp ⊆

{0, 1}κ of size at least 2κ−1 such that for every key ∈ GdKeyp,

log |{v ∈M|(key, p)}| ≤ n · h2

(

1

2
− τ

)

≤ n ·
(

1− 2

ln 2
· τ2
)

,

and, therefore, for any distribution DM on M,

H0(DM|Gen(DM) = (key, p)) ≤ n · h2

(

1

2
− τ

)

≤ n ·
(

1− 2

ln 2
· τ2
)

.

Proof: The set GdKeyp consists of all keys for which

H0(M|Rep(M, p) = key) ≤ 2n−κ+1. The intuition is as

follows. By perfect correctness of Rep, the input w to Gen

has the following property: for all w′ within distance t of w,

Rep(w′, p) = Rep(w, p). Thus, if we partition M according

to the output of Rep, the true w is t away from the interior of

a part. Interior sets are small, which means the set of possible

w values is small. (We note that by perfect correctness, Rep

has a deterministic output even if the algorithm is randomized,

so this partition is well-defined.)

To formalize this intuition, fix p and partitionM according

to the output of Rep(·, p) as follows: let Qp,key = {w′ ∈
M|Rep(w′, p) = key}. Note that there are 2κ keys and thus

2κ parts Qp,key. Let GdKeyp by the set of keys for which

these parts are not too large: key ∈ GdKeyp ⇔ |Qp,key| ≤
2 · M/2κ = 2n−κ+1. Observe that GdKeyp contains at least

half the keys: |GdKeyp| ≥ 2κ−1 (if not, then ∪key|Qp,key| >
|M|). For the remainder of the proof we focus on elements in

GdKeyp.

As explained above, if w is the input to Gen, then every

point w′ within distance t of w must be in the same part

Qp,key as w, by correctness of Rep. Thus, w must come from

the interior of some Qp,key, where interior is defined as

Inter(Qp,key) =

{

w ∈ Qp,key

∣

∣

∣

∣

∀w′ s.t. dis(w,w′) ≤ t,
w′ ∈ Qp,key

}

.

We now use the isoperimetric inequality to bound the size of

Inter(Qp,key). Define a near-ball4 centered at x to be any set

S that is contained in a ball of some radius η and contains the

ball of radius η− 1 around x. The inequality of [49, Theorem

1] (the original result is due to Harper [27]) says that for any

sets A,B ⊂ {0, 1}n, there are near-balls X and Y centered at

0n and 1n, respectively, such that |A| = |X|, |B| = |Y |, and

mina∈A,b∈B dis(a, b) ≤ minx∈X,y∈Y dis(x, y).
Letting A be the Inter(Qp,key) and B be the complement

of Qp,key and applying this inequality, we get a near-ball

Sp,key centered at 0n and a near-ball D centered at 1n,

such that |Sp,key| = |Inter(Qp,key)|, |D| = 2n − |Qp,key|,
and ∀s ∈ Sp,key, d ∈ D, dis(s, d) > t. Note that since

key ∈ GdKeyp and κ ≥ 2, we have |Qp,key| ≤ 2n−κ+1, and

therefore |D| ≥ 2n−1.

Thus, D includes all the strings of Hamming weight dn/2e
(because it is centered at 1n and takes up at least half the

4In most statements of the isoperimetric inequality, this type of set is simply
called a ball. We use the term near-ball for emphasis.
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space), which means that the maximum Hamming weight of

an element of Sp,key is dn/2e − t − 1 ≤ n/2 − t (because

each element of Sp,key is at distance more than t from D).

We can now use binary entropy to bound the size of Sp,key by

Lemma 2.2:

|Inter(Qp,key)| = |Sp,key|
≤ |{x|dis(x, 0) ≤ n/2− t}|
≤ 2n·h2( 1

2− t
n ) .

The theorem statement follows by taking the logarithm of

both sides and by observing (using Taylor series expansion

at τ = 0 and noting that the third derivative is negative) that

h2

(

1
2 − τ

)

≤ 1− 2
ln 2 · τ2.

We now introduce the family W . Let {Hashk}k∈K be a

family of hash function with domain M and the following

properties:

• 2−a-universality: for all v1 6= v2 ∈ M,

Prk←K[Hashk(v1) = Hashk(v2)] ≤ 2−a, where

a = n · h2

(

1
2 − τ

)

+ 3.

• 2m-regularity: for each k ∈ K and h in the range of

Hashk, |Hash−1k (h)| = 2m, where m ≥ µn.

• preimage sets have minimum distance t + 1: for all

k ∈ K, if v1 6= v2 but Hashk(v1) = Hashk(v2), then

dis(v1, v2) > t.

We demonstrate the existence of such a hash family in

Lemma 5.4. Let Z be the random variable consisting of

pairs (k, h), where k is uniform in K and h is uniform in

the range of Hashk. Let Wz for z = (k, h) be the uniform

distribution on Hash−1k (h). By the 2m-regularity and minimum

distance properties of Hash, H∞(Wz) = Hfuzz

t,∞ (Wz) = m. Let

W = {Wz}.
We now want to show that for a random z ← Z, if (key, p)

is the output of Gen(Wz), then key can be easily distinguished

from uniform in the presence of p and z.

First, view the sequence of events that we are trying to

analyze as a game. The adversary chooses a uniform k ∈ K
and uniform h in the range of Hashk. A uniform w from M
s.t. Hashk(w) = h then gets chosen, (key, p) = Gen(w) gets

computed, and the adversary receives p. The output of this

game is (k, h, w, p, key).
Consider now an alternative game. A uniform w gets chosen

from M and uniform key k gets chosen from K. (key, p) =
Gen(w) gets computed. The adversary receives (k, h =
Hashk(w), p). The output of the game is (k, h, w, p, key).

The distributions of the adversary’s views and the outputs

in the two games are identical: indeed, in both games, three

random variable are uniform and independent (i.e., w is

uniform in M, k is uniform in K, and the random coins of

Gen are uniform in their domain), and the rest are determined

fully by these three. However, the second game is easier to

analyze, which is what we now do.

In this game, the value w is uniform on M (in the absence

of knowledge about w). Knowledge of p reduced the set of

possible w from 2n to 2n·h2( 1
2−τ), (Lemma 5.2). We know

show that knowledge of z reduces the set of possible w by

another factor of 2a. Let K denote the uniform distribution on

K.

Lemma 5.3: Let L be a distribution. Let {Hashk}k∈K be a

family of 2−a-universal hash functions on the support of L.

Assume k is uniform in K and independent of L. Then

H̃0(L|K,HashK(L)) < log(1 + | supp(L)| · 2−a)
≤ max(1, 1 +H0(L)− a) .

Proof: Let UL denote the uniform distribution on the

support of L.

2H̃0(L|K,HashK(L))

= E
k←K,h

|{v ∈ L|Hashk(v) = h}|

= E
k←K

∑

h

Pr[Hashk(L) = h] · |{v ∈ L|Hashk(v) = h}|

= E
k←K

∑

h

|L| · Pr[Hashk(L) = h] · Pr[Hashk(UL) = h]

= | supp(L)| · E
k←K

Pr
v1←L,v2←UL

Pr[Hashk(v1) = Hashk(v2)]

= | supp(L)| · Pr
v1←L,v2←UL,k←K

Pr[Hashk(v1) = Hashk(v2)]

≤ | supp(L)| ·
(

Prv1←L,v2←UL
[v1 = v2]+

Prv1←L,v2←UL
[v1 6= v2] · 2−a

)

< 1 + | supp(L)| · 2−a .

This completes the proof of Lemma 5.3.

Let M denote the uniform distribution on M. By

Lemma 5.2, for any p, H0(M|Gen(M) = (key, p) such that

key ∈ GdKeyp) ≤ n · h2

(

1
2 − t

n

)

+ κ (because there are most

2κ keys in GdKeyp). Applying Lemma 5.3 (and recalling that

κ ≥ 3), we get that for any p,

H̃0(M|Gen(M)

= (key, p) s.t. key ∈ GdKeyp,K,HashK(M))

< max

(

1, 1 + n · h2

(

1

2
− t

n

)

+ κ− a

)

≤ κ− 2 .

(Note carefully the somewhat confusing conditioning notation

above, because we are conditioning on both events and vari-

ables. The event is key ∈ GdKeyp and the variables are k and

Hashk(M).)
By correctness, for a fixed p, Rep(w, p) can produce only

one key—the same one that was produces during Gen(w).
Since applying a deterministic function (in this case, Rep)

cannot increase H0, we get that for each p,

H̃0(key|Gen(M) = (key, p) s.t. key ∈ GdKeyp,K,HashK(M))

< κ− 2 .

Thus, on average over z = (k, h), over half the keys in

GdKeyp (i.e., over a quarter of all possible 2κ keys) cannot

be produced. Let Implaus be the set of triples (key, p, z =
(k, h)) such that Pr[Gen(Wz) = (key, p)] = 0. Triples drawn

by sampling w from Wz and computing (p, key) = Gen(w)
never come from this set. On other hand, random triples come

Implaus at over quarter of the time. Thus, by definition of

statistical distance, ε > 1
4 . It remains to show that the hash

family with the desired properties exists.

Lemma 5.4: For any 0 ≤ τ < 1
2 , µ > 0, α, and n such that

µ ≤ 1−h2(τ)− 2
n and µ ≤ 1−α− 2

n , there exists a family of
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hash functions {Hashk}k∈K on {0, 1}n that is 2−a-universal

for a = αn, 2m regular for m ≥ µn, and whose preimage

sets have minimum distance t+ 1 for t = τn.

Proof: Let C be the the set of all binary linear codes of

rate µ (to be precise, dimension m = dµne), length n, and

minimum distance t+ 1:

C =
{

C

∣

∣

∣

∣

C is a linear subspace of {0, 1}n,
dim(C) = m,minc∈C−{0n} dis(c, 0

n) > t

}

.

For each C ∈ C, fix HC , an (n−m)×n parity check matrix for

C, such that C = kerHC . For v ∈ {0, 1}n, let the syndrome

synC(v) = HC · v. Let {Hashk}k∈K = {synC}C∈C .

2m regularity follows from the fact that for each h ∈
{0, 1}n−µn, Hash−1k (h) is a coset of C, which has size 2m.

The minimum distance property is also easy: if v1 6= v2
but synC(v1) = synC(v2), then HC(v1 − v2) = 0n, hence

v1−v2 ∈ C−{0n} and hence dis(v1, v2) = dis(v1−v2, 0) > t.
We show 2−a-universality by first considering a slightly

larger hash family. Let K′ be the set of all m-dimensional

subspaces of {0, 1}n; for each C ′ ∈ K′, choose a parity check

matrix HC′ such that C ′ = kerHC′ , and let synC′(v) =
HC′ · v. Let {Hash′k′}k′∈K′ = {synC′}C′∈K′ . This family is

2m−n-universal: for v1 6= v2, PrC′∈K′ [HC′ · v1 = HC′ · v2] =
PrC′∈K′ [v1 − v2 ∈ kerHC′ = C ′] = 2m

2n , because C ′ is

a random m-dimensional subspace. Note that this family is

not much bigger than our family {Hashk}k∈K, because, as

long as µ < 1 − h2(τ), almost every subspace of {0, 1}n of

dimension m has minimum distance t + 1 for a sufficiently

large n. Formally,

Pr
C′∈K′

[C ′ /∈ C]

= Pr
C′∈K′

[∃v1 6= v2 ∈ C ′ s. t. dis(v1, v2) ≤ t]

= Pr
C′∈K′

[∃v1 6= v2 ∈ C ′ s. t. dis(v1 − v2, 0
n) ≤ t]

= Pr
C′∈K′

[∃v ∈ C ′ − {0n} s. t. dis(v, 0n) ≤ t]

≤
∑

v∈Bt(0n)−{0n}
Pr

C′∈K′
[v ∈ C ′] ≤ 2nh2(τ) · 2

m

2n
≤ 1

2

(the penultimate inequality follows by Lemma 2.2 and the last

one from m ≤ µn+ 1 and µ ≤ 1− h2(τ)− 2
n ).

Since this larger family is universal and at most factor of

two bigger than our family, our family is also universal:

Pr
C∈C

[synC(v1) = synC(v2)]

=
|{C ∈ C|synC(v1) = synC(v2)}|

|C|

≤ |{C ∈ K
′|synC(v1) = synC(v2)}|

|K′| · |K
′|
|C| ≤ 2m−n+1

Thus, we obtain the desired result as long as m−n+1 ≤ −a,

which is implied by the condition µ ≤ 1−α− 2
n and the fact

that m ≤ µn+1. This completes the proof of Lemma 5.4.

Applying Lemma 5.4 with α = h2

(

1
2 − τ

)

+ 3
n , we see that

the largest possible µ is

max
τ

min

(

1− h2(τ), 1− h2

(

1

2
− τ

))

≈ 0.1887.

Using the quadratic approximation to h2

(

1
2 − τ

)

(see

Lemma 5.2), we can let µ be a free variable and set τ = .6
√
µ,

in which case both constraints will be satisfied for all 0 < µ ≤
.18 and sufficiently large n, as in the theorem statement. This

concludes the proof of Theorem 5.1.

VI. IMPOSSIBILITY IN THE CASE OF IMPERFECT

CORRECTNESS

The impossibility result in the previous section applies only

to fuzzy extractors with perfect correctness. In this section, we

build on the work of Holenstein and Renner [25] to show the

impossibility of fuzzy extractors even when they are allowed

to make mistakes a constant fraction δ (as much as 4%) of

the time. However, the drawback of this result, as compared

to the previous section, is that we can show impossibility

only for a relatively low entropy rate of at most 7%. In

Section VII, we rule out stronger primitives called secure

sketches with nonzero error (which are used in most fuzzy

extractor constructions), even for entropy rate as high as 50%.

Theorem 6.1: Let M denote the Hamming space {0, 1}n.

There exists a family of distributions W over M such that

for each element W ∈ W , Hfuzz

t,∞ (W ) = H∞(W ) ≥ m, and

yet any (M,W, κ, t, ε)-fuzzy extractor with error δ ≤ 1
25 has

ε > 1
25 .

This holds for any κ > 0 under the following conditions on

the entropy rate µ = m/n, noise rate τ = t/n, and n:

• any 0 ≤ τ ≤ 1
2 and µ such that

µ < 4τ(1− τ)

(

1− h2

(

1

4− 4τ

))

• any sufficiently large n (as a function of τ and µ)

Note that the conditions on µ and τ imply that the result

applies to any entropy rate µ ≤ 1
15 as long as τ is set

appropriately and n is sufficiently large. The τ vs. µ tradeoff

is depicted in Figure 2.

The core structure of the proof is the same as Theorem 5.1.

We construct a familyW where knowing the element z (speci-

fying Wz ∈ W) reveals substantial information. However, this

proof uses a different family and different techniques. The

outline proceeds as follows:

1) The Rep algorithm (with p specified) can be used as

a decoding algorithm for a binary symmetric channel

(BSC) with error probability (1−α)/2. To show this, we

just need to argue that for a BSC with error probability

(1−α)/2, the probability of more than t errors is small.

2) The adversary (in the auxiliary knowledge Z) will receive

{⊥, 0, 1} for each position in W . The value ⊥ indicates

an erasure, and 0 or 1 indicates the true bit of W . So the

family WZ fixes some bits of W . These bits are known to

the adversary but not the construction. Let 1− β denote

the probability of receiving a ⊥. The adversary’s view

corresponds to a classic erasure channel.

3) As long as β is not too large, one can show that WZ has

high fuzzy min-entropy as it corresponds to the uniform

distribution over a restricted set of bits. We need to cap

the number of bits received by the adversary for this to

be true for all elements of WZ . However, by standard
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tail bounds, this removes very few distributions from the

family.

4) We use a result of Holenstein and Renner [25, Theorem 4]

that says the Shannon capacity of a β-erasure channel is

greater than the capacity of a (1−α)/2-binary symmetric

channel.

5) From this theorem we can argue that the key has less

Shannon entropy to the adversary than to Rep with a

valid input.

6) The remainder of the proof is technical and converts this

gap in Shannon entropy to a deficiency of the resulting

key.

We now proceed with the full proof.

Proof: Similarly to the proof of Theorem 5.1, we will

prove that any fuzzy extractor fails for an average element of

W: letting Z denote a choice of W from W , we will show

that SD((Key, P, Z), (Uκ, P, Z)) > 1
25 .

We start by describing the family of distributions. In this

case, Z will not be uniform but rather binomial (with tails cut

off). Essentially, Z will contain each bit of w with (appropri-

ately chosen) probability β; given Z = z, the remaining bits

of w will be uniform and independent.

For a string z ∈ {0, 1,⊥}n, denote by info(z) the number

of entries in z that are not ⊥: info(z) = |{i s.t zi 6=⊥}|.
Let Wz be the uniform distribution over all strings in {0, 1}n
that agree with z in positions that are not ⊥ in z (i.e., all

strings w ∈ {0, 1}n such that for 1 ≤ i ≤ n, either zi =⊥ or

wi = zi).
Let 0 ≤ β′ ≤ 1 be a parameter (we will set it at the

end of the proof). Let Z ′ denote the distribution on strings

in {0, 1,⊥}n in which each symbol is, independently of other

symbols, ⊥ with probability 1 − β′, 0 with probability β′/2,

and 1 with probability β′/2. Let β = β′ + 1.4√
n

. Consider

two distribution families: W ′ = {Wz}z←Z′ and a smaller

family W = {Wz}z←Z , where Z = Z ′|info(Z ′) ≤ βn
(the second family is smaller because, although on average

info(Z ′) = β′n, there is a small chance that info(Z ′) is higher

than even βn).

We will use W to prove the theorem statement. First, we

will show that every distribution Wz ∈ W has sufficient Hfuzz

t,∞ .

Indeed, z constrains info(z) coordinates out of n and leaves

the rest uniform. Thus, Hfuzz

t,∞ (Wz) is the same as Hfuzz

t,∞ of

the uniform distribution on the space {0, 1}n−info(z). Let a =
n− info(z). By Lemma 2.2

Hfuzz

t,∞ (Wz) ≥ a

(

1− h2

(

t

a

))

≥ n(1− β)

(

1− h2

(

t

n(1− β)

))

= n(1− β)

(

1− h2

(

τ

1− β

))

.

and therefore

µ = (1− β)

(

1− h2

(

τ

1− β

))

. (1)

Note that smaller β gives a higher fuzzy entropy rate.

Second, we now want to show, similarly to the proof of

Theorem 5.1, that SD((Key, P, Z), (Uκ, P, Z)) > 1
25 . We will

do so by considering the family W . Observe that by triangle

inequality

SD((Key, P, Z), (Uκ, P, Z))

≥ SD((Key, P, Z ′), (Uκ, P, Z
′))

− SD((Key, P, Z ′), (Key, P, Z))

− SD((Uκ, P, Z), (Uκ, P, Z
′))

≥ SD((Key, P, Z ′), (Uκ, P, Z
′))− 2 · SD(Z ′, Z)

≥ SD((Key, P, Z ′), (Uκ, P, Z
′))− 1

25
.

The last line follows by Hoeffding’s inequality [50],

SD(Z ′, Z) = Pr[info(Z ′) > βn]

≤ exp

(

−2n
(

1.4√
n

)2
)

<
1

50
.

Denote SD((Key, P, Z ′), (Uκ, P, Z
′)) by ε′. To bound ε′,

we recall a result of Holenstein and Renner [25, Theorem 4]

(we will use the version presented in [51, Lemma 4.4]). For a

random variable W with a values in {0, 1}n, let W noisy denote

a noisy copy of W : namely, the random variable obtained by

passing W through a binary symmetric channel with error

rate 1−α
2 (that is, W noisy

i = Wi with probability 1+α
2 and

W noisy
i = 1 − Wi with probability 1−α

2 , independently for

each position i). Holenstein and Renner show that if α2 ≤ β,

then Shannon entropy of Key conditioned on P and W noisy

is greater than Shannon entropy of Key conditioned on Z and

W noisy . Intuitively, this means that the Rep, when given P
and W noisy , knows less about Key than the adversary (who

knows P and Z).

Recall the definitions of Shannon entropy H1(X)
def
=

Ex←X − log Pr[X = x] and conditional Shannon entropy

H1(X|Y )
def
= Ey←Y H1(X|Y = y).

Theorem 6.2 ([25, Theorem 4]; [51, Lemma 4.4]):

Suppose that (P,Key) is a pair of random variables derived

from W . If α2 ≤ β′, then

H1(Key|P,Z ′) ≤ H1(Key|P,W noisy)

where H1 denotes Shannon entropy, W noisy is W passed

through a binary symmetric channel with error rate 1−α
2 , and

Z ′ is W passed through a binary erasure channel with erasure

rate 1− β′.
(For a reader interested in how our statement of Lemma

6.2 follows from [51, Lemma 4.4], note that what we call

Key, P,W noisy , and Z ′ are called U, V, Y , and Z, respectively,

in [51]. Note also that we use only the part of the lemma that

says that secret key rate S→ = 0 when α2 ≤ β, and the

definition [51, Definition 3.1] of the notion S→ in terms of

Shannon entropy.)

We now need to translate this bound on Shannon entropy to

the language of statistical distance ε of the key from uniform,

reliability δ of the procedure Rep, and key length κ, as used

in the definition of fuzzy extractors. First, we will do this

translation for the case of noisy rather than worst-case input

to Rep.

Lemma 6.3: Let (W,W noisy , Z ′) be a triple of correlated

random variables such that
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• W and W noisy are uniform over {0, 1}n,

• W noisy is W passed through a binary symmetric channel

with error rate 1−α
2 (that is, each bit position of W

agrees with corresponding bit position of W noisy with

probability 1+α
2 ), and

• Z ′ is W passed through a binary erasure channel with

erasure rate 1−β′ (that is, each bit position of Z ′ agrees

with the corresponding bit position of W with probability

β′ and is equal to ⊥ otherwise).

Suppose Gen(W ) produces (Key, P ) with Key of length κ.

Suppose Pr[Rep(W noisy , P ) = Key] = 1 − δ′]. Suppose

further that SD((Key, P, Z ′), (Uκ, P, Z
′)) = ε′. If α2 ≤ β′,

then

κ ≤ h2(ε
′) + h2(δ

′)

1− ε′ − δ′
.

In other words, if α2 ≤ β′, ε′ ≤ 1
12 , and δ′ ≤ 1

12 , then even a

1-bit Key is impossible to obtain.

(We note that a similar result follows from [51, Theorem

3.17] if we set the variables S→, γ, and m in that theorem

to 0, δ, and κ, respectively. However, we could not verify

the correctness of that theorem due to its informal treatment

of what “ε-close to uniform” means; it seems that the small

correction term −h2(ε), just like in our result, is needed on

the right-hand side to make that theorem correct.)

Proof of Lemma 6.3: Reliability allows us to bound the

entropy of the key. By Fano’s inequality [52, Section 6.2, p.

187],

H1(Key|P,W noisy) ≤ κδ′ + h2(δ
′).

Hence, by Theorem 6.2 (and the assumption that α2 > β′),
we have

H1(Key|P,Z ′) ≤ κδ′ + h2(δ
′). (2)

We now need the following lemma, which shows that near-

uniformity implies high entropy.

Lemma 6.4: For a pair of random variables (A,B) such

that the statistical distance between (A,B) and Uκ × B is ε,
then H1(A|B) ≥ (1− ε)κ− h2(ε) .

Proof: Let E denote a binary random variable correlated

with (A,B) as follows: when A = a and B = b, then E = 0
with probability

max(Pr[(A,B) = (a, b)]− Pr[Uκ ×B = (a, b)], 0) .

Similarly, let F denote a binary random variable correlated

with Uκ × B as follows: when Uκ = a and B = b, then

F = 0 with probability

max(Pr[Uκ ×B = (a, b)]− Pr[(A,B) = (a, b)], 0) .

Note that Pr[E = 0] = Pr[F = 0] = ε, by definition of

statistical distance. Note also that (A,B|E = 1) is the same

distribution as (Uκ × B|F = 1). Since conditioning cannot

increase Shannon entropy (by a simple argument — see, e.g.,

[47, Theorem 1.4.4]), we get

H1(A|B) ≥ H1(A|B,E)

= Pr[E = 1]H1(A|B,E = 1)

+ Pr[E = 0]H1(A|B,E = 0)

≥ (1− ε)H1(A|B,E = 1)

= (1− ε)H1(Uκ|B,F = 1).

To bound this latter quantity, note that (the first line follows

from the chain rule H1(X) ≤ H1(X,Y ) = H1(X|Y ) +
H1(Y ) [47, Theorem 1.4.4])

κ = H1(Uκ|B)

≤ H1(Uκ|B,F ) +H1(F )

= (1− ε)H1(Uκ|B,F = 1) + ε ·H1(Uκ|B,F = 0) + h2(ε)

≤ (1− ε)H1(Uκ|B,F = 1) + ε · κ+ h2(ε)

Rearranging terms, we get

H1(Uκ|B,F = 1) ≥ κ− h2(ε)/(1− ε),

and thus

H1(A|B) ≥ (1− ε)κ− h2(ε) .

This concludes the proof of Lemma 6.4.

Combining (2) and Lemma 6.4 (applied to A = Key, B =
(P,Z ′), and ε = ε′), we get the claimed bound. This concludes

the proof of Lemma 6.3.

Next, we translate this result from the noisy-input-case

to the worst-case input case. Set α =
√
β′. Suppose t ≥

n
(

1−
√
β′

2 + 1.4√
n

)

. By Hoeffding’s inequality [50],

Pr[dis(W,W noisy) > t] ≤ exp

(

−2n
(

1.4√
n

)2
)

<
1

50
.

Thus, a fuzzy extractor that corrects t errors with reliability

δ implies that Pr[Rep(W noisy , P ) = Key] ≥ 1− δ′] for δ′ =
δ + 1

50 . Since δ ≤ 1/25, we have δ′ < 1/12 and Lemma 6.3

applies to gives us ε′ > 1/12 and ε > 1/12 − 1/25 > 1/25
as long as κ > 0.

Finally, we work out the relationship between µ and τ and

eliminate β, as follows. Recall that β = β′ + 1.4√
n

; therefore
√
β ≤

√
β′ + 1.2

n1/4 , and it suffices to take τ ≥ 1−
√
β

2 + 2
4
√
n

.

Thus, we can set any τ > 1−
√
β

2 as long as n is sufficiently

large. Solving for β (that is, taking any β > (1 − 2τ)2) and

substituting into Equation 1, we can get any µ < 4τ(1 −
τ)
(

1− h2

(

1
4−4τ

))

for a sufficiently large n.

VII. STRONGER IMPOSSIBILITY RESULT FOR SECURE

SKETCHES

Most fuzzy extractor constructions share the following fea-

ture with our Construction 4.2: p includes information that

is needed to recover w from w′; both Gen and Rep simply

apply an extractor to w. The recovery of w from w′, known

as information-reconciliation, forms the core of many fuzzy

extractor constructions. The primitive that performs this infor-

mation reconciliation is called secure sketch. In this section we

show stronger impossibility results for secure sketches. First,
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we recall their definition from [14, Section 3.1] (modified

slightly, in the same way as Definition 2.3).

Definition 7.1: An (M,W, m̃, t)-secure sketch with error

δ is a pair of randomized procedures, “sketch” (SS) and

“recover” (Rec). SS on input w ∈ M returns a bit string

ss ∈ {0, 1}∗. Rec takes an element w′ ∈M and ss ∈ {0, 1}∗.
(SS,Rec) have the following properties:

1) Correctness: ∀w,w′ ∈ M if dis(w,w′) ≤ t then

Pr[Rec(w′, SS(w)) = w] ≥ 1− δ.
2) Security: for any distribution W ∈ W ,

H̃∞(W |SS(W )) ≥ m̃.

Secure sketches are more demanding than fuzzy extractors

(secure sketches can be converted to fuzzy extractors by using

a randomness extractors like in our Construction 4.2 [14,

Lemma 4.1]). We prove a stronger impossibility result for

them. Specifically, in the case of secure sketches, we can

extend the results of Theorems 5.1 and 6.1 to cover imperfect

correctness (that is, δ > 0) and entropy rate µ up to 1
2 . We

stress that most fuzzy extractor constructions rely on secure

sketches.

Theorem 7.2: Let M denote the Hamming space {0, 1}n.

There exists a family of distributionsW overM such that for

each element W ∈ W , Hfuzz

t,∞ (W ) = H∞(W ) ≥ m, and yet

any (M,W, m̃, t)-secure sketch with error δ has m̃ ≤ 2.

This holds under the following conditions on δ, the entropy

rate µ = m/n, noise rate τ = t/n, and n:

• any 0 ≤ τ < 1
2 and µ > 0 such that µ < h2(τ) and µ <

1− h2(τ)

• any n ≥ max
(

.5 logn+4δn+4
h2(τ)−µ , 2

1−h2(τ)−µ

)

Note that the result holds for any µ < 0.5 as long as

δ < (h2(τ) − µ)/4 and n is sufficiently large. The τ vs. µ
tradeoff is depicted in Figure 2. Any fuzzy extractor that uses

secure sketch (part of its output is SS(w)) is subject to these

bounds. In addition, any fuzzy extractor where the true input

point w can be computed from key is subject to this bound as

well (called an almost injective invertible fuzzy extractor by

Yasanuga and Yuzawa [53]).

Before starting the formal proof we note that the overall

strategy is the same as Theorem 5.1. The only substan-

tive difference is that the functionality of secure sketches

allow us to prove a stronger upper bound on the num-

ber of possible w’s when SS(w) is known (Lemma 7.3).

The core of this proof is arguing that the set of possible

{v|Prv′|dis(v,v′)≤t[Rec(v
′, SS(v)) = v] ≥ 1/2} form a good

error correcting code.

The family used is the same as in Theorem 5.1 with more

parameter flexibility as more entropy is lost in Lemma 7.3.

Proof of Theorem 7.2: Similarly to the proof of

Theorem 5.1, we will prove that any secure sketch algo-

rithm fails for an average element of W: letting Z de-

note a uniform choice of W from W , we will show that

H̃∞(WZ |SS(WZ), Z) ≤ 2. The overall proof strategy is the

same as for Theorem 5.1. We highlight only the changes here.

Recall that |Bt| denotes the volume of the ball of radius t in

the space {0, 1}n. The parameters of the hash family are the

same, except for universality: we require 2−a-universality for

a = (n− log |Bt|+ h2(2δ))/(1− 2δ) .

We postpone the question of the existence of such a hash

family until the end of the proof. We can now state an analogue

of Lemma 5.2. This result is an extension of lower bounds

from [14, Appendix C], which handles only the case of perfect

correctness. It shows that the value of the sketch reduces the

entropy of a uniform point by approximately log |Bt|.
Lemma 7.3: LetM denote the Hamming space {0, 1}n and

|Bt| denote the volume of a Hamming ball of radius t in

{0, 1}n. Suppose (SS,Rec) is a (M,W, m̃, t) secure sketch

with error δ, for some distribution familyW overM. Then for

every v ∈ M there exists a set GdSSv such that Pr[SS(v) ∈
GdSSv] ≥ 1/2 and for any fixed ss,

log |{v ∈M|ss ∈ GdSSv}| ≤
n− log |Bt|+ h2(2δ)

1− 2δ
,

and, therefore, for any distribution DM over M,

H0(DM|ss ∈ GdSSDM
) ≤ n− log |Bt|+ h2(2δ)

1− 2δ
.

Proof: For any v ∈M , define Neight(v) be the uniform

distribution on the ball of radius t around v and let

GdSSv = {ss| Pr
v′←Neight(v)

[Rec(v′, ss) 6= v] ≤ 2δ]} .

We prove the lemma by showing two propositions.

Proposition 7.4: For all v ∈ M, Pr[SS(v) ∈ GdSSv] ≥
1/2.

Proof: Let the indicator variable 1v′,ss be 1 if

Rec(v′, ss) = v and 0 otherwise. Let qss be the quality of

the sketch on the ball Bt(v):

qss = Pr
v′

$←Neight(v)

[Rec(v′, ss) = v] = E

v′
$←Neight(v)

1v′,ss .

By the definition of correctness for (SS,Rec), for all v′ ∈
Bt(v),

Pr
ss←SS(v)

[Rec(v′, ss) = v] ≥ 1− δ .

Hence, Ess←Gen(v) 1v′,ss ≥ 1− δ. Therefore,

E
ss←Gen(v)

qss = E
ss
E
v′
1v′,ss = E

v′
E
ss
1v′,ss ≥ E

v′
(1− δ) = 1− δ .

Therefore, applying Markov’s inequality to 1 − qss, we get

Pr[qss ≥ 1− 2δ] = Pr[1− qss ≤ 2δ] ≤ 1/2.

To finish the proof of Lemma 7.3, we will show that the set

{v ∈ M|ss ∈ GdSSv} forms a kind of error-correcting code,

and then bound the size of the code.

Definition 7.5: We say that a set C is an (t, δ)-Shannon

code if there exists a (possibly randomized) function Decode

such that for all c ∈ C,

Pr
c′←Neight(c)

[Decode(c′) 6= c] ≤ δ.

The set {v ∈ M|ss ∈ GdSSv} forms (t, 2δ) Shannon code if

we set Decode(y) = Rec(y, ss). We now bound the size of

such a code.

Proposition 7.6: If C ⊆ {0, 1}n is a (t, δ)-Shannon code,

then

log |C| ≤ n− log |Bt|+ h2(δ)

1− δ
.
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Proof: Let the pair of random variables (X,Y ) be ob-

tained as follows: let X be a uniformly chosen element of C
and Y be a uniformly chosen element of the ball of radius t
around Y . By the existence of Decode and Fano’s inequality

[52, Section 6.2, p. 187], H1(X|Y ) ≤ h2(δ)+δ log |C|. At the

same time, H1(X|Y ) = H1(X)−H1(Y )+H1(Y |X) (because

H1(X,Y ) = H1(X)+H1(Y |X) = H1(Y )+H1(X|Y )), and

therefore H1(X|Y ) ≥ log |C|−n+log |Bt| (because H1(Y ) ≤
n). Therefore, log |C| − n+ log |Bt| ≤ h2(δ) + δ log |C|, and

the lemma follows by rearranging terms.

Lemma 7.3 follows from Proposition 7.6.

We now show that entropy drops further when the adversary

learns Hashk(w). Let M denote the uniform distribution on

M and K denote the uniform distribution on K. Applying

Lemma 5.3 to Lemma 7.3, we get that for any ss,

H̃0(M|ss ∈ GdSSM,K,HashK(M))

< max

(

1, 1 +
n− log |Bt|+ h2(2δ)

1− 2δ
− a

)

. (3)

To complete the proof, we will use this bound on H̃0 as a

bound on H̃∞, as justified by the following lemma:

Lemma 7.7: For any random variables X and Y ,

H̃∞(X|Y ) ≤ H̃0(X|Y ).

Proof: Starting with the definition of H̃∞, recall that

− log a = log 1/a, and apply Jensen’s inequality to get

log
1

Ey←Y maxx Pr[X = x|Y = y])

≤ log E
y←Y

1

maxx Pr[X = x|Y = y])

≤ log E
y←Y

|{x|Pr[X = x|Y = y] > 0}| .

We need just one more lemma before we can complete the

result, an analogue of [14, Lemma 2.2b] for conditioning on

a single value Z = z rather than with Z on average (we view

conditioning on a single value as equivalent to conditioning

on an event).

Lemma 7.8: For any pair of random variables (X,Y ) and

event η that is a (possibly randomized) function of (X,Y ),
H̃∞(X|η, Y ) ≥ H̃∞(X|Y )− log 1/Pr[η].

Proof: The intuition is that to guess X given Y , the

adversary can guess that η happened and fail if the guess is

wrong. Formally,

H̃∞(X|Y )

= − log E
y←Y

max
x

Pr[X = x|Y = y]

= − log E
y←Y

max
x

Pr[X = x ∧ Y = y]

Pr[Y = y]

≤ − log E
y←Y

max
x

Pr[X = x ∧ Y = y ∧ η]

Pr[Y = y]

= − log E
y←Y

max
x

Pr[X = x ∧ Y = y|η] Pr[η]
Pr[Y = y]

= log
1

Pr[η]
− log

∑

y←Y

max
x

Pr[X = x ∧ Y = y|η]

= log
1

Pr[η]
− log E

y←Y |η
max

x

Pr[X = x ∧ Y = y|η]
Pr[Y = y|η]

= log
1

Pr[η]
− log E

y←Y |η
max

x
Pr[X = x|η ∧ Y = y]

= log
1

Pr[η]
+ H̃∞(X|η, Y ) .

Combining Lemmas 7.8 and 7.7 with Equation 3, we get

H̃∞(WZ |Z, SS(WZ)) = H̃∞(M|SS(M),K,HashK(M))

≤ log
1

Pr[SS(M) ∈ GdSSM]
+

H̃∞(M|ss s.t. ss = SS(M) ∧ ss ∈ GdSSM,K,HashK(M))

≤ log
1

Pr[SS(M) ∈ GdSSM]
+

H̃0(M|ss s.t. ss = SS(M) ∧ ss ∈ GdSSM,K,HashK(M))

< log
1

Pr[SS(M) ∈ GdSSM]

+ max

(

1, 1 +
n− log |Bt|+ h2(2δ)

1− 2δ
− a

)

.

We can have shown that H̃∞(WZ |Z, SS(WZ)) ≤ 2, because

the first term of the above sum is at most 1 by Proposition 7.4

and the second term is 1 by our choice of a as a = (n −
log |Bt|+ h2(2δ))/(1− 2δ) .

It remains to show that the desired hash family exists. Note

in that (because δ < .25) setting any α ≥ 1 − h2(τ) +
.5 logn+4δn+2

n and choosing an αn-universal hash function will

be sufficient, because, by Lemma 2.2, log |Bt| ≥ nh2(τ) −
1
2 log n− 1, and so

a =
n− log |Bt|+ h2(2δ)

1− 2δ

≤ n · 1− h2(τ) + (.5 log n+ 1 + h2(2δ))/n

1− 2δ

< n · (1− h2(τ) +
.5 log n+ 1 + h2(2δ)

n
+ 4δ)

≤ n ·
(

1− h2(τ) +
.5 log n+ 4δn+ 2

n

)

≤ n · α
(the second inequality is true because for any x < 1 and

0 < y < .5, x/(1−y) < x+2y, because x < (x+2y)(1−y),
because 0 < y(2− x− 2y); the third inequality follows from
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h2(2δ) < 1). Such a hash family exists by Lemma 5.4 as long

as µ ≤ 1 − α − 2/n ≤ h2(τ) − (.5 log n + 4δn + 4)/n and

µ ≤ 1− h2(τ)− 2/n).

VIII. CONCLUSION

This work introduces fuzzy min-entropy as a new metric

for measuring the suitability of deriving keys from a noisy

probability distribution. This condition is sufficient for security

if the distribution is exactly known. This setting is comparable

to the traditional setting when Eve receives no auxiliary

information.

Our negative results show that providing security simultane-

ously for a family of sources is impossible for all distributions

with fuzzy min-entropy. The core of all of these proofs is

constructing a family of distributionsW where the description

of the element W ∈ W provides the adversary with informa-

tion independent of what is (necessarily) leaked by the fuzzy

extractor (or secure sketch). Our three results require a careful

tuning between the information leaked by the fuzzy extractor

and the independent information in the description. This state

of affairs seems somewhat bleak, however, there are several

ways to avoid these negative results:

1) Focus on providing security for high entropy distributions

only. However, many noisy distributions come from na-

ture and system designers cannot effectively adjust their

parameters,

2) Assume some additional structure from the distribution

such as independence between dimensions [21] or that

random subsets of dimensions have high entropy [54].

3) Restrict the adversary, for example, assuming the ad-

versary runs in polynomial time. Recently, constructions

have shown fuzzy extractors secure against bounded

adversaries relying on hardness of discrete log [55],

[56], decoding random codes [28], [57], security of

hash functions [54], [58], and general cryptographic

primitives [59]. Fuller, Meng, and Reyzin showed

that computationally-secure sketches imply information-

theoretic ones, so computationally-secure sketches are

subject to the negative results in this work [28, The-

orem 1]. A comparable theorem is not known for

computationally-secure fuzzy extractors.
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