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Abstract—Fuzzy extractors (Dodis et al., SIAM J. Computing
2008) convert repeated noisy readings of a high-entropy secret
into the same uniformly distributed key. A minimum condition
for the security of the key is the hardness of guessing a value that
is similar to the secret, because the fuzzy extractor converts such
a guess to the key. We quantify this property in a new notion
called fuzzy min-entropy. We ask: is fuzzy min-entropy sufficient
to build fuzzy extractors? We provide two answers for different
settings.

1) If the construction is provided a description of the prob-
ability distribution W that defines the noisy source then
fuzzy min-entropy is a sufficient condition for information-
theoretic key extraction from W.

2) A more ambitious goal is to design a single extractor that
works for all possible sources. This more ambitious goal
is impossible: there is a family of sources with high fuzzy
min-entropy for which no single fuzzy extractor is secure.
This is true in three settings:

a) for standard fuzzy extractors,

b) for fuzzy extractors that are allowed to sometimes be
wrong,

¢) and for secure sketches, which are the main ingredient
of most fuzzy extractor constructions.

Keywords-Fuzzy extractors, secure sketches, authentication,
error-tolerance, key derivation, error-correcting codes, entropy

I. INTRODUCTION

Sources of reproducible secret random bits enable crypto-
graphic applications. Often, these bits are implicit, they are
obtained by repeating the same process (such as reading a
biometric or a physically unclonable function [2]) that gener-
ated them the first time. However, bits obtained this way are
noisy [3], [4], [S], [6], [7], [8], [9], [2], [10], [11], [12]. When
a secret is read multiple times readings are close (according
to some metric) but not identical. To utilize such sources, it is
often necessary to remove noise, in order to derive the same
value in subsequent readings.

The same problem occurs in the interactive setting, in which
the secret channel used for transmitting the bits between
two users is noisy and/or leaky [13]. Bennett, Brassard, and
Robert [3] identify two fundamental tasks:

1) Information reconciliation removes the noise with mini-
mal leakage to an eavesdropping adversary.

2) Privacy amplification converts the high entropy secret to
a uniform random value.

This work is based in part on a paper by the same title and authors presented
at Asiacrypt 2016 [1].

In this work, we consider the noninteractive version of these
problems, in which these tasks are performed together with a
single message.

The noninteractive setting is modeled by a primitive called
a fuzzy extractor [14], which consists of two algorithms.
The generate algorithm (Gen) takes an initial reading w and
produces an output key along with a nonsecret helper value p.
The reproduce (Rep) algorithm takes the subsequent reading
w’ along with the helper value p to reproduce key. The
correctness guarantee is that the key is reproduced precisely
when the distance between w and w’ is at most ¢.

The security requirement for fuzzy extractors is that key
is uniform even to a (computationally unbounded) adversary
who has observed p. This requirement is harder to satisfy as
the allowed error tolerance ¢ increases, because it becomes
easier for the adversary to guess key by guessing a w’ within
distance ¢t of w and running Rep(w’, p). This attack is enabled
by the functionality of the fuzzy extractor.

Fuzzy Min-Entropy We introduce a new entropy notion that
precisely measures how hard it is for the adversary to execute
this attack. It measures the probability of guessing a value
within distance ¢ of the original reading w. Suppose w is
sampled from a distribution . To have the maximum chance
that w’ is within distance ¢ of w, the adversary would choose
the point w’ that maximizes the total probability mass of W
within the ball B;(w’) of radius ¢ around w’. We therefore
define fuzzy min-entropy

HZ(W) L log max Pr[W € B,(w')].
A fuzzy extractor’s key cannot be longer than the fuzzy min-
entropy (Proposition 3.2).

However, existing constructions do not measure their secu-
rity in terms of fuzzy min-entropy; instead, their security is
shown to be the min-entropy of W, denoted Hoo (W), minus
some loss for error-tolerance. This loss is due to an error-
correction component that writes down enough information
to determine which point within distance ¢ was the original
point. Since there are as many as | B;| points within radius ¢ it
takes log | By| bits to specify which one.! This value of log | B|
is assumed to be the security loss so the residual security is
Hoo (W) —log | By|. It is easy to show that Hoo (W) —log | By| <
H}*2#(W), so it is natural to ask whether a loss of log|By| is

'We omit w in the notation | B¢| since we study metrics where the volume
of the ball B¢(w) does not depend on the center w.



necessary. This question is particularly relevant when the gap
between the two sides of the inequality is high.?

As an example, in the biometric regime, entropy is esti-
mated by comparing the distribution of distances between two
different biometrics with a distribution with well understood
statistical properties. For example, Daugman [5] shows that
the distance between two irises is distributed similarly to
a binomial distribution with 249 bits of entropy. The iris
is then assumed to have the same entropy as the binomial
distribution. The parameter ¢ is determined by the experimental
conditions. Daugman recommends setting ¢ > 205. In the
Hamming metric for strings of length 2048, |Bogs| ~ 21924
(see Lemma 2.2). Thus, iris scans have

Hoo (W) — log | B,| & 249 — 1024 < 0,

(see discussion in [15, Section 5]). However, iris scans for dif-
ferent people appear to be well-spread in the metric space [16],
the closest observed distance between two different irises is
548. This indicates the distribution of W has Hf%*(W).

The current state of fuzzy extractors is unsettling. For
many distributions W with min-entropy, we have no known
construction and no known impossibility result. We hope the
more precise notion of fuzzy min-entropy can rectify this
situation. Ideally, one could show a fuzzy extractor exists for
every distribution with enough fuzzy min-entropy and that they
are impossible with less fuzzy min-entropy. That is, we ask:
is fuzzy min-entropy sufficient for fuzzy extraction? There is
evidence that it may be sufficient when the security require-
ment is computational rather than information-theoretic—see
Section I-B. We provide an answer for the case of information-
theoretic security in two settings.

Contribution 1: Sufficiency of Hf2*(1W) for a Precisely
Known W  We first consider the case when the fuzzy
extractor designer has precise knowledge of the probability
distribution function of W. In this setting, it is possible
to construct a fuzzy extractor that extracts a key almost as
long as Hf'Z#(W) (Theorem 4.3).% Our construction crucially
utilizes the probability distribution function of W and, in
particular, cannot necessarily be realized in polynomial time
(this is similar, for example, to the interactive information-
reconciliation feasibility result of [18]). This result shows that
HIu22(W) is a necessary and sufficient condition for building
a fuzzy extractor for a given distribution W.

A number of previous works in the precise knowledge
setting described tight bounds for specific distributions (for
example, [19], [20], [21], [22], [23], [24]). These works are
summarized in Table I. Our characterization unifies previous
work, and justifies using H{%*(W) as the measure of the
quality of a noisy distribution, rather than cruder measures
such as Hoo (W) — log | B;|. Our construction can be viewed
as a reference to evaluate the quality of efficient constructions
in the precise knowledge setting by seeing how close they get
to extracting all of H7*2*(W).

2For nearly uniform distributions, Hf%22(W) &~ Hoo (W) — log |B¢|. In
this setting, standard coding based constructions of fuzzy extractors (using
almost optimal codes) yield keys of size approximately Hg‘jj(W)

3Woodage et al. present an improved version of this theorem [17]. We
discuss their work below.
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Many works consider i.i.d sources, for example [21]. These
works are able to derive a key qualitatively longer than fuzzy
min-entropy. This is because one can characterize i.i.d sources
in terms of Shannon entropy, denoted H;(-), instead of min-
entropy. Each symbol of W is a separate “draw” from the
distribution enabling average case analysis as the dimension
n of the metric space increases. Key length for i.i.d. sources
asymptotically approaches Hi (W) — Hy(W|W') where W’
is the distribution of noisy readings around W [21, Theorem
2]. It is difficult to directly compare with these works as they
do not specify concrete losses for a fixed source length and
they consider Shannon entropy. Qualitatively, Shannon entropy
can be arbitrarily higher than min-entropy. Unfortunately,
many biometrics and hardware sources are not i.i.d. (see for
example [5]), so this analysis should be used judiciously.

Contribution 2: The Cost of Distributional Uncertainty
Assuming precise knowledge of a distribution W is often
unrealistic for high-entropy distributions; they can never be
fully observed directly and must therefore be modeled. It is
unrealistic to assume that the designer’s model of a distribution
is as accurate as the adversary’s model. The adversary may
have more resources including time to build a model when the
construction is deployed. Existing fuzzy extractors are shown
secure for a family of sources (for example, all sources of
min-entropy at least m with at most ¢ errors). The attacker
may know more about the distribution than the designer. We
call this the distributional uncertainty setting.

Our second contribution is a set of negative results for the
distributional uncertainty setting. We provide two impossibility
results for fuzzy extractors. Both demonstrate families WV of
distributions over {0,1}" such that each distribution in the
family has HI%2Z linear in m, but no fuzzy extractor can be
secure for most distributions in W. A fuzzy extractor designer
who knows only that the distribution comes from VY cannot
secure the family, despite the fact that fuzzy extractors can be
designed for each distribution in the family individually.

The first impossibility result (Theorem 5.1) assumes that
Rep is perfectly correct and rules our fuzzy extractors for
entropy rates, defined as p = H{%*(W)/n, as high as
u ~ 0.18. The second impossibility result (Theorem 6.1),
relying on the work of Holenstein and Renner [25], also
rules out fuzzy extractors in which Rep is allowed to make
a mistake, but applies only to distributions with entropy rates
up to p ~ 0.07.

We also provide a third impossibility result (Theorem 7.2),
this time for an important building block called “se-
cure sketch.” A secure sketch is a one-round information-
reconciliation component (that recovers the original w from
the input w’). Secure sketches are used in most fuzzy extractor
constructions. The result rules out secure sketches for a family
of distributions with entropy rate up to x4 = 0.5, even if
the secure sketches are allowed to make mistakes. We define
secure sketches formally in Section VII. Most fuzzy extractor
constructions are analyzed for all families with a certain
amount of entropy. Thus, showing impossibility for higher
entropy rates raises the lower bound on how much fuzzy
min-entropy must be present in the physical distribution for
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Work | Metric | Distribution | Residual Entropy
This Work/[17] | Any discrete Generic Hi"Zz (W) —2logl/e—logl/o+1
[19] Hamming Uniform H{'22(W) —2log1/e —2
[20)/[21] Any with almost perfect codes | i.i.d ~Hi(W)—-H(W|W’') —o(n)
[14] Hamming/Set Difference/Edit Generic Hoo (W) — log | Bt| —2logl/e—2
TABLE I

COMPARISON OF FUzZY EXTRACTOR CONSTRUCTIONS. HERE, € IS THE STATISTICAL DISTANCE FROM THE UNIFORM DISTRIBUTION, § IS THE
ALLOWED ERROR, AND ¢ IS THE DESIRED ERROR TOLERANCE. NOTE THAT Hf"22(W) > Hoo (W) — log | B¢|. HERE n IS THE DIMENSION OF THE

500

METRIC SPACE. H1 REPRESENTS SHANNON ENTROPY AND W' IS THE DISTRIBUTION THAT ADDS NOISE TO THE ENROLLMENT VALUE W.

security to be based on just fuzzy min-entropy. As discussed
in Section VIII, another alternative is to assume additional
structure about the physical source.

A. Our Techniques

Techniques for Positive Results for a Precisely Known
Distribution We now provide intuition for our positive result
for a precisely known distribution W with fuzzy min-entropy.
We begin with distributions in which all points in the support
have the same probability (so-called “flat” distributions). Gen
extracts a key from the input w using a randomness extrac-
tor [26]. Consider some subsequent reading w’. To achieve
correctness, the string p must permit Rep to disambiguate
which point w € W within distance ¢ of w’ was given to
Gen. Disambiguating multiple points can be accomplished by
universal hashing, as long as the size of hash output space is
slightly greater than the number of possible points. Thus, Rep
includes into the public value p a “sketch” of w computed
via a universal hash of w. To determine the length of that
sketch, consider the heaviest (according to W) ball B* of
radius ¢. Because the distribution is flat, B* is also the ball
with the most points of nonzero probability. Thus, the length
of the sketch needs to be slightly greater than the logarithm
of the number of non-zero probability points in B*. Since
Hi22(W) is determined by the weight of B*, the number
of points cannot be too high and there will be entropy left
after the sketch is published. This remaining entropy suffices
to extract a key.

For an arbitrary distribution, we cannot afford to disam-
biguate points in the ball with the greatest number of points,
because there could be too many low-probability points in a
single ball despite a high Hf“2*(1W). We solve this problem
by splitting the arbitrary distribution into a number of nearly
flat distributions we call “levels.” We then write down, as part
of the sketch, the level of the original reading w and apply
the above construction considering only points in that level.
We call this construction leveled hashing (Construction 4.2).

Techniques for Negative Results for Distributional Uncer-
tainty We construct a family of distributions W and prove
impossibility for a uniformly random W <« W. We start by
observing the following asymmetry: Gen sees only the sample
w (obtained via W < W and w < W), while the adversary
knows W.

To exploit the asymmetry, in our first impossibility result
(Theorem 5.1), we construct W so that conditioning on the
knowledge of W reduces the distribution to a small subspace
(namely, all points on which a given universal hash function

produces a given output), but conditioning on only w leaves
the rest of the distribution uniform on a large fraction of the
entire space. An adversary can exploit the knowledge of the
hash value to reduce the uncertainty about key, as follows.

The nonsecret value p partitions the metric space into
regions that produce a consistent value under Rep (preimages
of each key under Rep(-,p)). For each of these regions, the
adversary knows that possible w lie at distance at least ¢ from
the boundary of the region (else, the fuzzy extractor would
have a nonzero probability of error). However, in the Hamming
space, the vast majority of points lie near the boundary (this
result follows by combining the isoperimetric inequality [27],
which shows that the ball has the smallest boundary, with
bounds on the volume of the interior of a ball, which show
that this boundary is large). This allows the adversary to rule
out so many possible w that, combined with the adversarial
knowledge of the hash value, many regions become empty,
leaving key far from uniform.

For the second impossibility result (Theorem 6.1, which
rules out even fuzzy extractors that are allowed a possibility
of error), we let the adversary know some fraction of the bits
of w. Holenstein and Renner [25] showed that if the adversary
knows each bit of w with sufficient probability, and bits of w’
differ from bits of w with sufficient probability, then so-called
information-theoretic key agreement is impossible. Converting
the impossibility of information-theoretic key agreement to
impossibility of fuzzy extractors takes a bit of technical work.

B. Related Settings

Other settings with close readings: H{"2* is sufficient The
security definition of fuzzy extractors can be weakened to
protect only against computationally bounded adversaries [28].
In this computational setting, under the assumption of seman-
tically secure graded encoding, for most distance metrics a
single fuzzy extractor can simultaneously secure all possible
distributions [29], [30]. This construction is secure when the
adversary can rarely learn key with oracle access to the
program functionality. The set of distributions with fuzzy min-
entropy are exactly those where an adversary learns key with
oracle access to the functionality with negligible probability.
Bitansky et al.’s [30] construction requires heavy weight and
disputed cryptographic tools similar to those used to construct
indistinguishability obfuscation [31], [32]. Their result implies
that extending our negative result to the computational setting
would have negative implications on the existence of certain
types of obfuscation.

Furthermore, the functional definition of fuzzy extractors
can be weakened to permit interaction between the party



having w and the party having w’. Such a weakening is useful
for secure remote authentication [33]. When both interaction
and computational assumptions are allowed, secure two-party
computation can produce a good key whenever the distribution
W has fuzzy min-entropy. The two-party computation protocol
needs to be secure without assuming authenticated channels; it
can be built under the assumptions of collision-resistant hash
functions and enhanced trapdoor permutations [34] or oblivi-
ous transfer and a variant of the random oracle model [35].

Correlated rather than close readings A different model
for the problem of key derivation from noisy sources does not
explicitly consider the distance between w and w’, but rather
views w and w’ as realizations of a correlated pair of random
variables (W, W’). This model is considered in multiple
works, including [13], [36], [37], [38]; recent characterizations
of when key derivation is possible in this model include [39]
and [40].

Much of the work on correlated pairs considers interactive
protocols (as opposed to the noninteractive agreement needed
for fuzzy extractors). However, the impossibility results for
that setting are directly relevant to our work, because rul-
ing out interactive protocols also rules out noninteractive
ones. Recall that our starting point is the observation that
the fuzzy extractor’s output length (Proposition 3.2) is at
most the fuzzy min-entropy of W. Prior work of Tyagi and
Watanabe [40], and concurrent (with ours) work of those
authors with Viswanath [41], developed general upper bounds
on the achievable secret key length for correlated readings
(via “conditional independence testing”). We can apply these
in our setting by taking W’ to be a random string within
distance ¢ of W to obtain impossiblity results analogous to
Proposition 3.2. Our technique is less general, since it is
tailored to the constraint on the distance between w and w’;
however, this specificity allows us to give a simple, direct
proof.

The conditional independence testing framework also ap-
plies to what we call the “unknown distribution” case (dubbed
“correlated information at the eavesdropper” in the correlated
readings literature). Given a joint distribution on W, W', Z,
where Z is held by the eavesdropping adversary, the con-
ditional testing framework gives an upper bound on the
achievable key length (and hence an impossibility result when
that bound is small). The framework does not show how
one can construct distributions for which this bound is small.
In particular, it is an open question whether one can derive
versions of our impossibility results for unknown distributions
(Theorems 5.1 and 6.1) using the framework. Even using the
specific constructions of W, W’ Z that arise in our proofs, it
is open whether the conditional testing framework provides a
good bound on the key length.

C. Concurrent and subsequent work

A construction that is very similar to our positive result
in the known distribution setting (Construction 4.2) was used
independently in a concurrent work of Hayashi, Tyagi, and
Watanabe [42], who used the term “spectrum slicing” to
describe it. They also extended this technique to the case of
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distributional uncertainty, using it in an interactive protocol,
with one side telling the other to keep increasing the length of
the sketch until Rep could succeed. This interactive approach
was used in subsequent works, as well (e.g., [43], [41], [44]).

Li and Anantharam [44] consider correlated readings in
the known distribution setting. They show that maximum
expected key length for interactive protocols that are allowed
to output variable-lengths keys is closely related to the mutual
information between W and W'.

Woodage et al. [17] showed a clever extension to our leveled
hashing construction (Construction 4.2). They observed the
level information does not have to be explicitly included as
part of the sketch. The construction uses leveled hashing but
with two important changes:

1) The level is not written. Denote by hy the hash with
the greatest number of output bits. If the used hash, h;,
has |h;| < hg then the output is extended with random
bits to length |hy|. Instead of looking for an exact match
the Rep algorithm finds the close point that matches the
stored string at the longest prefix. This can be seen as
considering all possible levels of the original hash.

2) In the our construction, the hash output is determined
by how many points are in the neighborhood of points
with that probability. This may lead to some levels with
short hash outputs. This is a problem for Woodage et al.’s
construction, if there are multiple short levels, the longest
prefix may be the wrong level with noticeable probability.
To address this problem, Woodage et al. use the (negative
log of the) probability of a point to compute the length of
the hash output. This ensures that all levels have length
of at least the min-entropy of the distribution making
collisions unlikely. Importantly, this change requires a
change in the security argument, essentially arguing that
all sketches are equally likely regardless of the starting
level. This change requires an augmentation to the hash
function called strong universality [45].

Fuller and Peng [46] extended our negative results to
sources that are drawn from continuous metric spaces
equipped with the Euclidean metric. There are two main
differences between the Euclidean space and our setting:

1) Fewer points lie near the boundary of a ball in Euclidean

space.

2) The use of continuous spaces requires volume techniques.
So rather than showing that the hash value leaves few
possibilities for w, they show that the “volume” of
distributions is larger than the interior of parts. Thus, any
choice for the interior of parts must not contain a fraction
of distributions.

These changes necessitate the use of a different family that
is derived from all cosets of random lattices with sufficient
minimum distance (known as construction A).

II. PRELIMINARIES

Random Variables We use uppercase letters for random vari-
ables and corresponding lowercase letters for their samples. A
repeated occurrence of the same random variable signifies the
same value of the random variable: for example (W, SS(W)) is
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a pair of random variables obtained by sampling w according
to W and applying the algorithm SS to w. The statistical
distance between random variables A and B with the same
domain is

SD(A, B) — % S [Pr{A = a] — Pr[B = b]
= mgxPr[A € S]—-Pr[B eS|

Entropy Let log denote the base 2 logarithm. Let (X,Y)
be a pair of random variables. Define min-entropy of X
as Hoo(X) = —log(max, Pr[X = z]), and the average
(conditional) min-entropy [14, Section 2.4] of X given Y as

I:IOO(X\Y) = —log( E maxPr[X =z|Y = y]) )
y«<Y =z

Define Hartley entropy Hy(X) to be the logarithm of the
size of the support of X, that is Hyo(X) = log [{z|Pr[X =
x] > 0}|. Define average-case Hartley entropy by averaging
the support size:
Ho(X|Y) =log( E_[{y|Pr[X = z|Y = y] > 0}]).
Y=Y

For 0 < a < 1, the binary entropy is ho(p) = —plogp — (1 —
p) log(1 — p), which corresponds to the Shannon entropy of
any random variable that is 0 with probability p and 1 with
probability 1 — p.
Randomness Extractors We use randomness extractors [26],
as defined for the average case in [14, Section 2.5].

Definition 2.1: Let M, x be finite sets. A function ext :
M x {0,1}¢ — {0,1}" a (1, €)-average case extractor if
for all pairs of random variables X,Y over M, x such that

Ho(X|Y) > m, we have
SD((ext(X,Uq),Uq,Y),U. x Ug x Y) <e.

Metric Spaces and Balls Let M be some finite space and
let the function dis : M x M — RTU{0} be a distance metric
(identity of indiscernibles, symmetric, and triangle inequality).
For a metric space (M,dis), the (closed) ball of radius t
around w is the set of all points within radius ¢, that is,
Bi(w) = {w'|dis(w,w’) < t}. We consider the Hamming
metric over vectors in Z" for some finite alphabet Z, defined
via dis(w,w’) = |[{ilw; # w.}|. In this space, the size of a
ball in a metric space does not depend on w, so we denote
by |By| the size of a ball (centered arbitrarily) of radius ¢. U,
denotes the uniformly distributed random variable on {0, 1}*.
We use the bounds on |B;| in {0,1}", see [47, Lemma 4.7.2,
equation 4.7.5, p. 115] for proofs.

Lemma 2.2: Let T = t/n. The volume |B,| of the ball of
radius in ¢ in the Hamming space {0, 1}" satisfies

1

. 2nh2(T) < |Bt| < 2nh2(7') .
8nT(l—171) N N

We modify the definition of fuzzy extractors slightly from
the work of Dodis et al. [14, Sections 3.2]. First, we allow for
error as discussed in [14, Section 8]. Second, in the distribu-
tional uncertainty setting we consider a general family W of
distributions instead of families containing all distributions of

a given min-entropy. Let M be a metric space with distance
function dis.

Definition 2.3: An (M, W, k,t, €)-fuzzy extractor with er-
ror § is a pair of randomized procedures, “generate” (Gen)
and “reproduce” (Rep). Gen on input w € M outputs an
extracted string key € {0,1}" and a helper string p € {0,1}*.
Rep takes w’ € M and p € {0, 1}* as inputs. (Gen, Rep) have
the following properties:

1) Correctness: if dis(w,w’) < ¢ and (key,p) < Gen(w),

then Pr[Rep(w’,p) = key] > 1 — 4.
2) Security: for any distribution W € W, if (Key, P) <«
Gen(W), then SD((Key, P), (U, P)) <e.
In the above definition, the value of w’ must be chosen
before p is known in order for the correctness guarantee to
hold (alternatively, w’ can be sampled from a probability
distribution that is independent of p).

The Case of a Precisely Known Distribution If in the above
definition we take WV to be a one-element set containing a
single distribution W, then the fuzzy extractor is said to be
for a precisely known distribution. In this case, we need to
require correctness only for w that have nonzero probability.
We specify no requirement that the algorithms are compact or
efficient, and so the distribution can be fully known to them.

III. NEw NOTION: FuzZzZzYy MIN-ENTROPY

The fuzzy extractor helper string p allows everyone, in-
cluding the adversary, to find the output of Rep(:,p) on any
input w’. Ideally, p should not provide any useful information
beyond this ability, and the outputs of Rep on inputs that
are too distant from w should provide no useful information,
either. In this ideal scenario, the adversary is limited to trying
to guess a w’ that is t-close to w. We measure the quality
of a source by (the negative logarithm of) the success of this
attack.

Definition 3.1: The t-fuzzy min-entropy of a distribution W
in a metric space (M, dis) is:

HEZE (W) = —log | max

D

weM|dis(w,w’) <t

Fuzzy min-entropy measures the functionality provided to the
adversary by Rep (since p is public), and thus is a necessary
condition for security. We formalize this statement in the
following proposition.

Proposition 3.2: Let W be a distribution over (M, dis)
with Hf%2#(W) = m. Let (Gen,Rep) be a (M, {W},x,t,¢€)-
fuzzy extractor with error §. Then

27 >2TM —§ —e

If § = e =2"", then s cannot exceed m + 2.

Proof: Let W be a distribution where H{"2*(W) = m.
This means that there exists a point w’ € M such that
2 we Mdis(w,w)<¢ PTIW = w] = 27", Consider the follow-
ing function D,,:

o Input (key, p).
o If Rep(w’, p) = key, output 1.
« Else output 0.



Clearly, Pr[D, (Key,P) = 1] >
Pr[Dy (Us, P) = 1] = 1/2%. Thus,

2™ — §, while

SD((Key, P), (Ux, P))
> Pr[Dy (Key, P) = 1] — Pr[Dy: (U, P) = 1]
>27™M —§—27"F,

Proposition 3.2 extends to the settings of computational se-
curity and interactive protocols if the definition gives the
adversary access to the true Key. We explore properties of
fuzzy min-entropy below. These properties are included to
demonstrate the utility of fuzzy min-entropy and are not
necessary to complete the proofs in this work. Conditioning
on an event p of probability Pr[P = p] decreases fuzzy min-
entropy by a factor of at most log 1/ Pr[P = p].

Lemma 3.3: H{¥22(W|P = p) > H{%Z(W) + log Pr[P =
pl-
Proof:

H S (WP = p)

= —log | max Z Pr[W = w|P = p]
wldis(w,w’)<t
Pr[W =w A P = p)
=-1
og (max D Pr[P = ]
wldis(w,w’)<t
Pr[W = w]
> —1 il SAS'}
oloslma 2. hip=y)

wldis(w,w’) <t

= H{"Z*(W) + log Pr[P = p|.

The second line follows from the first using Bayes rule,
the third follows from the second using the monotonicity of
probability. The last line follows by factoring 1/ Pr[P = p]
from the sum, and noting the sum then represents Hf“;z(W)

|

Conditional fuzzy min-entropy Properly defined, fuzzy min-
entropy obeys a chain rule. We start by defining a conditional
notion of fuzzy min-entropy for a random variable P.

Definition 3.4: For distributions W, P, the t-conditional
fuzzy min-entropy of W|P in a metric space (M, dis) is:

HiS2(WP)

ZPr[W = w|P = p]

wldis(w,w’) <t

Then a chain rule analogous to average min-entropy [14,
Lemma 2.2b] applies:

Lemma 3.5: HI“22(W|P) > Hf%22(W) — Ho(P).
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Proof:
Hi*2(W|P)

= —log pEPH}U@x ZPr[W = w|P = p]
w|dis(w,w’)<t

= —log max ZPr[W = w|P = p] Pr[P = p]
p v wldis(w,w’)<t

= —log Zma}x ZPr[W:w/\P:p]
P v wldis(w,w’)<t

> —log Z max ZPr[W = w]
P v wldis(w,w’)<t

> —log [ 2Ho® max ZPr[W = w]

wldis(w,w’) <t

> HiZ2 (W) — Ho(P).

Here the second line follows from the first using the definition
of expectation. The third follows using Bayes rule. The fourth
follows using monotonicity of expectation. By definition, there
are at 270(P) possibilities for p, yielding the fifth line. The
last line results by recognizing Hf“;z(W) and converting to

entropy. |

IV. H{“2#(W) IS SUFFICIENT IN THE PRECISE
KNOWLEDGE SETTING

In this section, we build fuzzy extractors that extract almost
all of H{%2*(W) for any distribution T. These constructions
assume precise knowledge of W and are not efficient. We
begin with flat distributions and then turn to arbitrary distri-
butions.

Let supp(W) = {w|Pr[W = w] > 0} denote the support
of a distribution W. A distribution W is flat if all elements
of supp(W) have the same probability. Our construction for
this case is quite simple: to produce p, Gen outputs a hash
of its input point w and an extractor seed; to produce key,
Gen applies the extractor to w. Given w’, Rep looks for w €
supp(W) that is near w’ and has the correct hash value, and
applies the extractor to this w to get key.

The specific hash function we use is universal. (We note that
universal hashing has a long history of use for information rec-
onciliation, for example [3], [18], and [48]. This construction
is not novel; rather, we present it as a stepping stone for the
case of general distributions.)

Definition 4.1 ([45]): Let F': K x M — R be a function.
We say that F' is universal if for all distinct 1,22 € M:

1
KP:_I"C[F(K,J}l) = F(K, LL’Q)] = @ .

In our case, the hash output length needs to be sufficient
to disambiguate elements of supp(W) N B(w’) with high
probability. Observe that there are at most 9Hoo (W) —H{Z (W)
such elements when W is flat, so output length slightly greater
(by log 1/0) than Hoo (W) — H{%2#(W) will suffice. Thus, the



FULLER, REYZIN, AND SMITH. WHEN ARE FUZZY EXTRACTORS POSSIBLE?

output key length will be H{*2*(W) —log1/6 — 2log 1/e + 2
(by using average-case leftover hash lemma, per [14, Lemma
2.2b, Lemma 2.4]). As this construction is only a warm-up, so
we do not state it formally and proceed to general distributions.

A. Fuzzy Extractor for Arbitrary Distributions

The above hashing approach does not work for arbitrary
sources. Consider a distribution W consisting of the following
balls: B} is a ball with 2Hec (W) points with total probability
Pr[W € B} = 27 H=W) B2 B27"*™ 4pe balls with
one point each with probability Pr[IW € Bj] = 27 H~(W) The
above hashing algorithm writes down H, (W) bits to achieve
correctness on B}. However, with probability 1 — 2~ Hee (W)
the initial reading is outside of B}, and the hash completely
reveals the point.

Instead, we use a layered approach: we separate the input
distribution W into nearly-flat layers, write down the layer
from which the input w came (i.e., the approximate probability
of w) as part of p, and rely on the construction from the
previous part for each layer. In other words, the hash function
output is now variable-length, longer if probability of w is
lower. Thus, p now reveals a bit more about w. To limit this
information and the resulting security loss, we limit number
of layers. As a result, we lose only 1 + log Hyo(W') more bits
of security compared to the previous section.

The main idea is that providing the level information makes
the distribution look nearly flat (the probability of points
differs by at most a factor of two, which increases the entropy
loss as compared to the flat case by only one bit). The level
information itself increases the entropy loss by log Ho (W)
bits, because there are only Hy(W) levels that contain enough
weight to matter. In subsequent work, Woodage et al. show that
level information does not have to be leaked [17, Theorem 3].
We now present a formal description of our construction.

Construction 4.2: Let W be a distribution over a metric
space M with Hoo (W) = m.

o Letd < % be the error parameter.

e Let { =m+ Ho(W) — 1; round ¢ down so that £ —m is

an integer (i.e., set { = m+ [(£ —m)]).

e Foreachi=m,m+1,...,0—1,let L; = (2=0+1) 277
and let F; : K; x M — R; be a family of universal hash
functions with log [R;| = i + 1 — H{*%2*(W) + log 1/0.
Let Ly, = (0,277).

o Let ext be an (1, €)-average-case extractor for m =
H}%22(W) —log Ho(W) —log 1/6 — 1 with output length
K.

Define Genyy, Repy;, as in Figure 1.

We instantiate this construction with the extractor parame-
ters given by a universal hash (namely, kK = m—2log 1/e+2):
Theorem 4.3: For any metric space M, distribution W over
M, distance ¢, error § > 0, and security € > 0, there exists
a (M,{W}, k,t, e)-known distribution fuzzy extractor with
error 0 for k = Hf'%* (W) —log Ho(W) —log 1/6 —2log 1/e+
1.
Proof of Theorem 4.3: We first argue correctness. Fix
some w,w’ within distance t. When Pr[WW = w] € Ly, then

Rep is always correct, so let’s consider only the case when
Pr[W = w] € Ly. The algorithm Rep will never output |
since at least the correct w will match the hash. Thus, an
error happens when another element w* € W* has the same
hash value F(K;, w*) as F(K;, w). Observe that the total
probability mass of W* is greater than |[TW*|-2~(+1) but less
than or equal to the maximum probability mass in a ball of
radius ¢, 2~ 5% (W) Therefore, W < 9i+1-HZ (W) Each
element of W* has the same hash as F'(K,w) with probability
W*I/|R| <5

follows by the union bound.

Security: We now argue security of the construction. Let

= {w|Pr[W = w] € L;}. For ease of notation, let us
make the special case of ¢ = ¢ as part of the general case,
as follows: define K, = {0}, F;(0,w) = w, and Ry = W,.
Also, denote by SS the randomized function that maps w to
ss. First, we set up the analysis by levels:

9~ Hee(WISS(W)) — | max Pr[W = w|SS(W) = ss]
= ZmaxPr[W =wASS(W) = ss]
P
= Z Z Z max Pr[W = w A SS(W) = (i,y, K)]

i=m KeK; yeR;

<zzzmﬂ

i=m KeK; yeR;

=wAF(K,w)=y
A K output by Gen

We now pay the penalty of |R;| for the presence of y (observe
that removing the condition that F;(K,w) = y from the
conjunction cannot reduce the probability):

o~ (W[SS(W))

=w A K is chosen by SS]

=Y Z [Rif - max Pr[W =w A K is chosen by SS] .

We now get rid of the key, because it is independent:

9~ Hoe (WISS(W)) < Z > IR max Pr[W = w] -
i=m Kek;

|KCil

¢
= Z |R;| - max Pr[W = w]
iz weW;

-1
SIRe 27+ ) IRy 27"

i=m

Finally, we add everything up, recalling that |R;| for ¢ < £ is
git+1— Hfuzz (W)+log 1/6.



GenW

1) Input: w.

2) Find ¢ such that
PI‘[W = w] e L;.

3) If i = ¢ then set ss = (i, w,0).

4) Else sample K + K;
and set ss = (¢, F;(K,w), K)

5) Sample a uniform extractor
seed seed

6) Output key = ext(w, seed),
p = (ss,seed).

Fig. 1. Fuzzy extractor construction for known distribution W'.

2_I:Ioo(W|SS(W)) < oHo(W)  o9—¢
+ (f _ m) . 21—H§?§(W)+log 1/68

(next line uses ¢ > m + Hy(W) — 2)
< 92-m + (é - m) . 21—Hf‘fzozo(W)+log 1/8
(next line uses m > H{'%*(W) and log1/6 > 1)
< (f —m+ 1) . 21—Hf‘jf>zc(W)+log 1/8
(next line uses £ < m + Ho(W) — 1)
< Ho(W) . 21—H§‘3§(W)+10g 1/8 )

Taking the negative logarithm of both sides, we obtain m et
Hoo (W|SS(W)) = H{*%2*(W) — log Ho(W) — log1/6 — 1.
Applying the (7, €) randomness extractor gives us the desired
result. ]

V. IMPOSSIBILITY OF FUZZY EXTRACTORS FOR A FAMILY
WITH Hf%?

In the previous section, we showed the sufficiency of
H{%Z2(W) for building fuzzy extractors when the distribution
W is precisely known. However, it is usually infeasible to
characterize a high-entropy distribution W. Traditionally, al-
gorithms deal with this distributional uncertainty by providing
security for a family of distributions WW. In this section, we
show that distributional uncertainty comes at a real cost.

We demonstrate an example over the binary Hamming
metric in which every W € W has linear H{“2%(W) (which is
in fact equal to Ho, (7)), and yet there is some W € W where
even for 3-bit keys, the key distribution is far from uniform,
%. In fact, we show that the adversary need not work
hard: even a uniformly random choice of distribution W from
W will thwart the security of any (Gen, Rep). The one caveat
is that, for this result, we require Rep to be always correct
(i.e., § = 0). As mentioned in the introduction, this perfect
correctness requirement is removed in Sections VI and VII at a
cost of lower entropy rate and stronger primitive, respectively.

The result is based on the following reasoning: Gen sees
only a random sample w from a random W € W, but
not WW. The adversary knows the distribution W but not
which particular value w was sampled. Because Gen does not
know which W the input w came from, Gen must produce

€E =
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Repy
1) Input: (w’,p = (ss,seed))
2) Parse ss as (i,y, K)
3) If ¢ = ¢ then set w* = y.
4) Else
a) Let W™ = {w*|dis(w*,w’) <t
APr[W =w*| € L;}.
b) Find any w* € W* such that
Fi(K,w*) = y;
if none exists, set w* =_1.
5) Output ext(w*, seed).

p that works for many distributions W that contain w in
their support. Such p necessarily reveals a lot of information.
The adversary can combine information gleaned from p with
information about W to narrow down the possible choices for
w and thus distinguish key from uniform.

Theorem 5.1: There exists a family of distributions WV over
{0, 1}" equipped with the Hamming metric such that for each
element W € W, H{%2?(W) = Hoo(W) > m, and yet any
({0, 1}, W, K, t, €)-fuzzy extractor with error 6 = 0 has € >
1/4.

This holds as long as x > 3 and under the following
conditions on the entropy rate ;1 = m/n, noise rate 7 = t/n,
and n:

. any0§7'<l,
eany 4 > 0 such that p < 1 — ho(r)and p < 1 —
hg(%fT),and

> 5 )
1—ha(T)—p’ 17h2(%7‘r)7p, :

The conditions on g and 7 imply the result applies to any
entropy rate ;1 < .18 as long as 7 is set appropriately and n is
sufficiently large (for example, the result applies to n > 1275
and 7 = .6,/ when 0.08 < 1 < .18). The 7 vs. pu tradeoff is
depicted in Figure 2.

Here we first provide short intuition, followed by the proof.
The overall goal of the proof is show a lower bound on the
value of € which is the quality of the output key.

e any n > max

¢ One can partition the input metric space according to
what value of key is output by Rep(w, p).

o The value of p reduces the set of possible w because, by
correctness of Rep, every candidate input w to Gen must
be such that all of its neighbors w’ of distance at most ¢
produce the same output of Rep(w’,p).

o The isoperimetric inequality then shows for most parts,
almost all points are not in the interior (Lemma 5.2).

o The above gives a bound on the residual entropy of w
conditioned on p for most values of key. The second part
of the proof incorporates the adversary’s knowledge of
the distribution W € W.

e We show the theorem holds for an average member of
W. Let Z denote a uniform choice of W from VW and
denote by W, the choice specified by a particular value
of z.
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Noise vs Entropy Rate Tradeoffs for Negative Results
T T T T T

—— Fuzzy Ext with Perfect Correctness (Section 5)
0.45 - Fuzzy Ext with some Error (Section 6) 4
Secure Sketch (Section 7)

()

Entropy Rate

0.45 - -

= | | .
o 0.05 0.1 0.15 02 0.25 03 0.35 0.4 0.45 05
Noise Rate ()

Fig. 2. The region of 7 (x-axis) and p (y-axis) pairs for which the three
negative results apply (Theorems 5.1, 6.1 and 7.2). The Section 5 and Section
7 curves overlap starting at 7 = .25.

o Let {Hashy}kex be a family of hash functions with
domain M = {0,1}" that is universal (small collision
probability for any two points across the hash key),
regular (large preimage size for any output value), and has
preimage sets with high minimum distance. Then define
z = (k,h) and define W, ) as the uniform distribution
over the set {w[Hash(w,k) = h} ¢ ).

o The hash function we use is the output of a parity check
matrix for a random code with high distance. Thus, each
distribution W, is a coset of some randomly chosen
code C' with good distance (that is not known by the
construction). This family has the required properties (see
Lemma 5.4).

e Since z is regular and preimage sets have minimum
distance each W, has high fuzzy min-entropy.

o The hash is universal, so learning the value of z reduces
the set of possible values by another factor (Lemma 5.3).

o With this additional loss, for the average W, the interior
of many parts contain no points from W,. One can now
build a distinguisher for a key derived from W, from a
random key. If a key comes from a part whose interior
is empty the distinguisher outputs random, otherwise it
outputs real.

We now proceed with the full proof.

Proof of Theorem 5.1: ~ We show the impossibility for
an average member of WW. We defer describing the family W
until after a new bound on the preimage set size of most keys
for a fuzzy extractor. The following lemma shows that the
knowledge of p and key reduces the entropy of w.

Lemma 5.2: Let M = {0, 1}"™ equipped with the Hamming
metric, k > 2, 0 < ¢ < n/2, and € > 0. Suppose (Gen, Rep)
isa (M, W, k, t, €)-fuzzy extractor with error 6 = 0, for some
distribution family W over M. Let 7 = t/n. For any fixed
p that is a possible output of Gen, there is a set GdKey, C

{0,1}* of size at least 25! such that for every key € GdKey,,

log [{v € M|(key,p)}| < n - hs (; _ T)

< 1 i 2
=" m2 )

and, therefore, for any distribution D4 on M,

Ho(D|Gen(Daq) = (key.p)) < n- hy (; _ )

2
<n-(1--—272) .
_n( In2 T)

Proof: The set GdKey, consists of all keys for which
Ho(M|Rep(M,p) = key) < 2"*F1 The intuition is as
follows. By perfect correctness of Rep, the input w to Gen
has the following property: for all w’ within distance ¢ of w,
Rep(w’,p) = Rep(w, p). Thus, if we partition M according
to the output of Rep, the true w is ¢t away from the interior of
a part. Interior sets are small, which means the set of possible
w values is small. (We note that by perfect correctness, Rep
has a deterministic output even if the algorithm is randomized,
so this partition is well-defined.)

To formalize this intuition, fix p and partition M according
to the output of Rep(-,p) as follows: let Qpey = {W' €
M|Rep(w', p) = key}. Note that there are 2* keys and thus
2" parts Qpkey- Let GdKey, by the set of keys for which
these parts are not too large: key € GdKey, & |Qpkey| <
2- M/2% = 2"~ F1 Observe that GdKey, contains at least
half the keys: |GdKey,| > 277! (if not, then Ukey|Qp key| >
| M]). For the remainder of the proof we focus on elements in
GdKeyy.

As explained above, if w is the input to Gen, then every
point w’ within distance ¢ of w must be in the same part
Qp key as w, by correctness of Rep. Thus, w must come from
the interior of some ()} wey, Where interior is defined as

V' s.t. dis(w,w’) < ¢,
"LU/ S Qp,key '

We now use the isoperimetric inequality to bound the size of
Inter(Qp.key) Define a near-ball* centered at  to be any set
S that is contained in a ball of some radius 7 and contains the
ball of radius 17 — 1 around z. The inequality of [49, Theorem
1] (the original result is due to Harper [27]) says that for any
sets A, B C {0,1}", there are near-balls X and Y centered at
0™ and 1™, respectively, such that |A| = |X]|, |B|] = |Y], and
minge 4 pep dis(a, b) < mingex yey dis(z, y).

Letting A be the Inter(Qp key) and B be the complement
of Qpkey and applying this inequality, we get a near-ball
Spkey centered at 0" and a near-ball D centered at 17,
such that |Spey| = |Inter(@piey)|s |D| = 2" — |Qp key
and Vs € Spiey,d € D, dis(s,d) > t. Note that since
key € GdKey, and £ > 2, we have |Qp key| < 27", and
therefore |D| > 271,

Thus, D includes all the strings of Hamming weight [n/2]
(because it is centered at 1™ and takes up at least half the

Inter(Qp7key) = {w € Qp key

bl ]

4In most statements of the isoperimetric inequality, this type of set is simply
called a ball. We use the term near-ball for emphasis.



space), which means that the maximum Hamming weight of
an element of Sp ey is [n/2] —t —1 < n/2 — ¢ (because
each element of S) ey is at distance more than ¢ from D).
We can now use binary entropy to bound the size of S key by
Lemma 2.2:

|Inter(Qpkey)| = [Sp eyl
< {aldis(z,0) < n/2 — )]
< omha(3-%)

The theorem statement follows by taking the logarithm of
both sides and by observing (using Taylor series expansion
at 7 = 0 and noting that the third derivative is negative) that
hg(%—T)gl—%wz. [ |

We now introduce the family W. Let {Hashy}kex be a
family of hash function with domain M and the following
properties:

e 27 %-universality:
PrkeK[Hashk(vl) =
a=n-hy (%—T>+3.

o 2™-regularity: for each k € K and h in the range of
Hashy, |Hash, ' (h)| = 2", where m > un.

e preimage sets have minimum distance ¢ + 1: for all
k € K, if v; # vy but Hashi(v1) = Hashk(vsa), then
diS(’Ul,Ug) > t.

We demonstrate the existence of such a hash family in
Lemma 5.4. Let Z be the random variable consisting of
pairs (k, h), where k is uniform in XC and h is uniform in
the range of Hashy. Let W, for z = (k,h) be the uniform
distribution on Hash, ' (h). By the 2"-regularity and minimum
distance properties of Hash, Hoo (W) = Hf%2*(W.) = m. Let
w={W.,}.

We now want to show that for a random z < Z, if (key, p)
is the output of Gen(W,,), then key can be easily distinguished
from uniform in the presence of p and z.

First, view the sequence of events that we are trying to
analyze as a game. The adversary chooses a uniform k € C
and uniform h in the range of Hashy. A uniform w from M
s.t. Hashy(w) = h then gets chosen, (key,p) = Gen(w) gets
computed, and the adversary receives p. The output of this
game is (k, h, w, p, key).

Consider now an alternative game. A uniform w gets chosen
from M and uniform key k gets chosen from . (key,p) =
Gen(w) gets computed. The adversary receives (k,h =
Hashy (w), p). The output of the game is (k, h, w, p, key).

The distributions of the adversary’s views and the outputs
in the two games are identical: indeed, in both games, three
random variable are uniform and independent (i.e., w is
uniform in M, k is uniform in K, and the random coins of
Gen are uniform in their domain), and the rest are determined
fully by these three. However, the second game is easier to
analyze, which is what we now do.

In this game, the value w is uniform on M (in the absence
of knowledge about w). Knowledge of p reduced the set of
possible w from 2" to gnha(3-7), (Lemma 5.2). We know
show that knowledge of z reduces the set of possible w by
another factor of 2¢. Let K denote the uniform distribution on
K.

Ms

< 27% where

for all v # vy €
Hashy (v2)]
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Lemma 5.3: Let L be a distribution. Let {Hashy }xeic be a
family of 27 “-universal hash functions on the support of L.
Assume k is uniform in K and independent of L. Then

Ho(L|K,Hashk (L)) < log(1 + |supp(L)|-27%)
<max(1,1+ Ho(L) —a).
Proof: Let Uy, denote the uniform distribution on the
support of L.

2HO(L|K7H35hK(L))

= E |{ve L|Hashg(v) = h}|

k+K,h
= E > PrlHash(L) = h] - [{v € L|Hashy(v) = h}|
“—
h

- k}—EK; |L| - Pr[Hashy (L) = h] - Pr[Hashy(Ur) = h]

= |supp(L)|- E Pr Pr[Hashy(v1) = Hashy(v2)]
k<K ’U1<—L,’UQFUL
= | supp(L)| - Pr Pr[Hashy(v1) = Hashy(v2)]

’Ul(fL,’Ug%UL,k(fK

Pr L U [’Ul = ’Uz}‘"
< ) - vi$—Lyve<=UpL
> |Supp( )| ( Prv1<—L,v2<—UL [Ul 7& ,02} .9—a
<1+ |supp(L)|-27%.
This completes the proof of Lemma 5.3. [ ]
Let M denote the uniform distribution on M. By

Lemma 5.2, for any p, Hyo(M|Gen(M) = (key, p) such that
key € GdKey,) < n-hs (3 — L) + k (because there are most
2" keys in GdKey,). Applying Lemma 5.3 (and recalling that
Kk > 3), we get that for any p,

Hy(M|Gen(M)
= (key, p) s.t. key € GdKey,, K, Hashk(M))

1 ¢
<max<1,1+n'h2 <2>+/<;a> <kKk-—2.
n

(Note carefully the somewhat confusing conditioning notation
above, because we are conditioning on both events and vari-
ables. The event is key € GdKey, and the variables are k and
Hashy (M).)

By correctness, for a fixed p, Rep(w, p) can produce only
one key—the same one that was produces during Gen(w).
Since applying a deterministic function (in this case, Rep)
cannot increase H, we get that for each p,

Ho(key|Gen(M) = (key, p) s.t. key € GdKey,, K, Hashk (M))
<KkK—2.

Thus, on average over z = (k,h), over half the keys in
GdKey, (i.e., over a quarter of all possible 2 keys) cannot
be produced. Let Implaus be the set of triples (key,p,z =
(k,h)) such that Pr[Gen(W,) = (key,p)] = 0. Triples drawn
by sampling w from W, and computing (p, key) = Gen(w)
never come from this set. On other hand, random triples come
Implaus at over quarter of the time. Thus, by definition of
statistical distance, ¢ > i. It remains to show that the hash
family with the desired properties exists.

Lemma 5.4: For any 0 < 7 < L u > 0, a, and n such that
p<1—ho(r)—2 and p < 1—a— 2, there exists a family of



FULLER, REYZIN, AND SMITH. WHEN ARE FUZZY EXTRACTORS POSSIBLE?

hash functions {Hashy}kex on {0,1}™ that is 2~ *-universal
for a = an, 2™ regular for m > pun, and whose preimage
sets have minimum distance ¢ + 1 for ¢ = 7n.

Proof: Let C be the the set of all binary linear codes of
rate u (to be precise, dimension m = [un]), length n, and
minimum distance ¢ + 1:

C— {C” C'is a linear subspace of {0,1}", }
dim(C) = m, min.cc_ony dis(c,0") > ¢

For each C' € C, fix H¢, an (n—m) Xn parity check matrix for
C, such that C' = ker H¢. For v € {0,1}", let the syndrome
syn~(v) = He - v. Let {Hashy bkex = {syn¢}eec.

2™ regularity follows from the fact that for each h €
{0,1}"=#", Hash, *(h) is a coset of C', which has size 2.
The minimum distance property is also easy: if vy # ws
but syn~(v1) = syns(v2), then Ho(vy — va) = 07, hence
vy —v9 € C'—{0™} and hence dis(vy,ve) = dis(vy —vg,0) > t.

We show 27 “-universality by first considering a slightly
larger hash family. Let K’ be the set of all m-dimensional
subspaces of {0, 1}"; for each C’ € K’, choose a parity check
matrix He: such that C' = ker Hev, and let syngo (v) =
Her - v. Let {Hashy, hoexr = {syno }orexr. This family is
2™~ "_universal: for vy # va, Provexy [Heor -v1 = Her - va] =
Prerexr[vy —ve € kerHor = C'] = 22—7:, because C' is
a random m-dimensional subspace. Note that this family is
not much bigger than our family {Hashy}kex, because, as
long as p < 1 — ho(7), almost every subspace of {0,1}™ of
dimension m has minimum distance ¢ + 1 for a sufficiently
large n. Formally,

!
e ¢

Jvq 75 Vg € C' st diS(’U],’UQ) < t]

Pr |
crek
[Fui # vy € C' s. t. dis(vy — ve,0") < 1]

= Pr

Cc’eK’

= Pr [4 "—{0™} s. t. di )<
C’GI;C’[UEC {0"} s. t. dis(v,0™) < t]

< / nha(7) |

< Z C/Pego[v eC'1<2
vEB(0™)—{0m}

2m 1
2 <z
2n = 2

(the penultimate inequality follows by Lemma 2.2 and the last
one from m < pn +1 and p < 1 — ha(7) — 2).

Since this larger family is universal and at most factor of
two bigger than our family, our family is also universal:

CPGYC[SynC(Ul) = syn¢(v2)]
_ HC eClsynp(v1) = syno(v2)}
C]
. HC%Equnc%ﬁ):symﬁvﬂ}|_%;|§2m—mu

Thus, we obtain the desired result as long as m—n+1 < —a,
which is implied by the condition p < 1 —a — % and the fact
that m < pn + 1. This completes the proof of Lemma 5.4. ®

Applying Lemma 5.4 with o = hg (% — 7') + % we see that
the largest possible p is

T 2

1
max min <1 — ha(7),1 — hg ( - T)> ~ 0.1887.

Using the quadratic approximation to ho (3 —7) (see
Lemma 5.2), we can let ;1 be a free variable and set 7 = .6/,
in which case both constraints will be satisfied for all 0 < p <
.18 and sufficiently large n, as in the theorem statement. This
concludes the proof of Theorem 5.1. [ ]

VI. IMPOSSIBILITY IN THE CASE OF IMPERFECT
CORRECTNESS

The impossibility result in the previous section applies only
to fuzzy extractors with perfect correctness. In this section, we
build on the work of Holenstein and Renner [25] to show the
impossibility of fuzzy extractors even when they are allowed
to make mistakes a constant fraction ¢ (as much as 4%) of
the time. However, the drawback of this result, as compared
to the previous section, is that we can show impossibility
only for a relatively low entropy rate of at most 7%. In
Section VII, we rule out stronger primitives called secure
sketches with nonzero error (which are used in most fuzzy
extractor constructions), even for entropy rate as high as 50%.

Theorem 6.1: Let M denote the Hamming space {0,1}".
There exists a family of distributions YW over M such that
for each element W € W, H{*%2*(W) = Hoo(W) > m, and
yet any (M, W, k, t, €)-fuzzy extractor with error § < % has
€> 5.

This holds for any « > 0 under the following conditions on
the entropy rate ;1 = m/n, noise rate 7 = t/n, and n:

e any 0 <7 < 1 and y such that

pcir o (1m0

« any sufficiently large n (as a function of 7 and p)

Note that the conditions on 4 and 7 imply that the result
applies to any entropy rate pu < % as long as 7 is set
appropriately and n is sufficiently large. The 7 vs. p tradeoff
is depicted in Figure 2.

The core structure of the proof is the same as Theorem 5.1.
We construct a family V¥V where knowing the element 2 (speci-
fying W, € W) reveals substantial information. However, this
proof uses a different family and different techniques. The
outline proceeds as follows:

1) The Rep algorithm (with p specified) can be used as
a decoding algorithm for a binary symmetric channel
(BSC) with error probability (1 —«)/2. To show this, we
just need to argue that for a BSC with error probability
(1 —«)/2, the probability of more than ¢ errors is small.

2) The adversary (in the auxiliary knowledge Z) will receive
{L,0,1} for each position in W. The value L indicates
an erasure, and O or 1 indicates the true bit of W. So the
family W fixes some bits of WW. These bits are known to
the adversary but not the construction. Let 1 — 3 denote
the probability of receiving a 1. The adversary’s view
corresponds to a classic erasure channel.

3) As long as [ is not too large, one can show that W, has
high fuzzy min-entropy as it corresponds to the uniform
distribution over a restricted set of bits. We need to cap
the number of bits received by the adversary for this to
be true for all elements of W,. However, by standard



tail bounds, this removes very few distributions from the

family.

4) We use a result of Holenstein and Renner [25, Theorem 4]
that says the Shannon capacity of a S-erasure channel is
greater than the capacity of a (1 —«)/2-binary symmetric
channel.

5) From this theorem we can argue that the key has less
Shannon entropy to the adversary than to Rep with a
valid input.

6) The remainder of the proof is technical and converts this
gap in Shannon entropy to a deficiency of the resulting
key.

We now proceed with the full proof.

Proof: Similarly to the proof of Theorem 5.1, we will
prove that any fuzzy extractor fails for an average element of
W: letting Z denote a choice of W from W, we will show
that SD((Key, P, 2), (Uy, P, Z)) > 3.

We start by describing the family of distributions. In this
case, Z will not be uniform but rather binomial (with tails cut
off). Essentially, Z will contain each bit of w with (appropri-
ately chosen) probability 3; given Z = z, the remaining bits
of w will be uniform and independent.

For a string z € {0,1, L}", denote by info(z) the number
of entries in z that are not L: info(z) = |{i s.t z; #L}|.
Let W, be the uniform distribution over all strings in {0,1}"
that agree with z in positions that are not L in z (i.e., all
strings w € {0, 1}" such that for 1 <4 < n, either z; =L or

Let 0 < 8/ < 1 be a parameter (we will set it at the
end of the proof). Let Z’ denote the distribution on strings
in {0,1, L}™ in which each symbol is, independently of other
symbols, | with probability 1 — ', 0 with probability 8’ /2,
and 1 with probability §'/2. Let 5 = 8’ + %. Consider
two distribution families: W = {W,}.. z» and a smaller
family W = {W,},—z, where Z = Z'|info(Z') < pn
(the second family is smaller because, although on average
info(Z'") = (B'n, there is a small chance that info(Z') is higher
than even Bn).

We will use W to prove the theorem statement. First, we
will show that every distribution W, € W has sufficient Hf"Z*.
Indeed, z constrains info(z) coordinates out of n and leaves
the rest uniform. Thus, Hf“2*(W,) is the same as Hf'Z* of
the uniform distribution on the space {0, 1}~ (=) Let a =
n — info(z). By Lemma 2.2

HEZ(W2) > a (1 e (2))
> n(l - g) (1 —ha (n(lt—ﬁ)»

=n(l - B) (1—h2(1 Tﬂ)) .
and therefore

u(lﬂ)(l@(lfﬁ)). (M

Note that smaller 3 gives a higher fuzzy entropy rate.
Second, we now want to show, similarly to the proof of
Theorem 5.1, that SD((Key, P, Z), (U, P, Z)) > 5. We will
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do so by considering the family V. Observe that by triangle
inequality
SD((Key, P, Z), (U, P, Z))
> SD((Key, P, Z"), (U, P, Z"))
— SD((Key, P, Z'), (Key, P, z>>
—SD((Uy, P, Z), (UmP zZ"
( )

1
> SD((Key, P, 2), (Un, P.2')) = =
The last line follows by Hoeffding’s inequality [50],

SD(Z’', Z) = Prlinfo(Z') > fn]

< exp <2n (14>2) < i
- Vn 50
Denote SD((Key, P, Z"), (U, P,Z")) by €. To bound €',
we recall a result of Holenstein and Renner [25, Theorem 4]
(we will use the version presented in [51, Lemma 4.4]). For a
random variable W with a values in {0, 1}", let W"°*¥ denote
a noisy copy of W: namely, the random variable obtained by
passing W through a binary symmetric channel with error
rate 25% (that is, W;""*Y = W; with probability 1% and
WY = 1 — W; with probability 152, independently for
each position 7). Holenstein and Renner show that if a? < f3,
then Shannon entropy of Key conditioned on P and W0V
is greater than Shannon entropy of Key conditioned on Z and
W noisy, Intuitively, this means that the Rep, when given P
and WY knows less about Key than the adversary (who
knows P and 7).
Recall the definitions of Shannon entropy Hi(X)

E.x —logPr[X = z] and conditional Shannon entropy

H(XY) € Eyey Hi (XY =),

Theorem 6.2 ([25, Theorem 4]; [51, Lemma 4.4]):
Suppose that (P, Key) is a pair of random variables derived
from W. If a? < /3, then

Hy(Key|P, Z'") < Hy(Key| P, W)

def

where H; denotes Shannon entropy, W™V is W passed
through a binary symmetric channel with error rate 1<, and
7' is W passed through a binary erasure channel w1th erasure
rate 1 — 3.

(For a reader interested in how our statement of Lemma
6.2 follows from [51, Lemma 4.4], note that what we call
Key, P,WW™°Y and Z' are called U, V, Y, and Z, respectively,
in [51]. Note also that we use only the part of the lemma that
says that secret key rate S, = 0 when o? < f3, and the
definition [51, Definition 3.1] of the notion S_, in terms of
Shannon entropy.)

We now need to translate this bound on Shannon entropy to
the language of statistical distance ¢ of the key from uniform,
reliability § of the procedure Rep, and key length x, as used
in the definition of fuzzy extractors. First, we will do this
translation for the case of noisy rather than worst-case input
to Rep.

Lemma 6.3: Let (W, W™"s%_ Z') be a triple of correlated
random variables such that
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o W and W™V are uniform over {0,1}",

o W™isY is W passed through a binary symmetric channel
with error rate 1_7“ (that is, each bit position of W
agrees with corresponding bit position of W™°*Y with
probability 1), and

e Z' is W passed through a binary erasure channel with
erasure rate 1 — 3’ (that is, each bit position of Z’ agrees
with the corresponding bit position of ¥~ with probability
B’ and is equal to L otherwise).

Suppose Gen(WW') produces (Key, P) with Key of length k.
Suppose Pr[Rep(W™°¥ P) = Key] = 1 — §']. Suppose
further that SD((Key, P, Z"), (Us, P, Z")) = €. If a® < 3,
then
j < hg(e/) + h2(5/)
- 1-€-¢

: 2 /ol 1
In other words, if a* < ', € < 35,

1-bit Key is impossible to obtain.

and 6’ < {5, then even a

(We note that a similar result follows from [51, Theorem
3.17] if we set the variables S_,, «, and m in that theorem
to 0,4, and k, respectively. However, we could not verify
the correctness of that theorem due to its informal treatment
of what “e-close to uniform” means; it seems that the small
correction term —hs(€), just like in our result, is needed on
the right-hand side to make that theorem correct.)

Proof of Lemma 6.3: Reliability allows us to bound the
entropy of the key. By Fano’s inequality [52, Section 6.2, p.
1871,

H, (Key| P, W) < k8" + ha(8').

Hence, by Theorem 6.2 (and the assumption that a® > '),
we have

Hi(Key|P, Z") < k&' + ha(d"). )

We now need the following lemma, which shows that near-
uniformity implies high entropy.

Lemma 6.4: For a pair of random variables (A, B) such
that the statistical distance between (A, B) and U, X B is ¢,
then Hy(A|B) > (1 — €)k — ha(e).

Proof: Let E denote a binary random variable correlated
with (A, B) as follows: when A =a and B =b, then £ =0
with probability

max(Pr[(A, B) = (a,b)] — Pr[U, x B = (a,b)],0).

Similarly, let F' denote a binary random variable correlated
with U, x B as follows: when U, = a and B = b, then
F' = 0 with probability

max(Pr[U, x B = (a,b)] — Pr[(4, B) = (a,b)],0).

Note that Pr[E = 0] = Pr[F = 0] = ¢, by definition of
statistical distance. Note also that (A, B|E = 1) is the same
distribution as (U, x B|F = 1). Since conditioning cannot
increase Shannon entropy (by a simple argument — see, e.g.,

[47, Theorem 1.4.4]), we get

H,(A|B) > H,(A|B, E)
=Pr[EF =1]H,(A|B,E =1)
+ Pr[F =0]H,(A|B,E =0)
> (1- M (AB,E=1)
=(1—-€)H,(Uy|B,F =1).

To bound this latter quantity, note that (the first line follows
from the chain rule H;(X) < H1(X,Y) = Hi(X|Y) +
Hy(Y) [47, Theorem 1.4.4])
k= Hy(U|B)

< H(Uxl|B,F) + Hy (F)

=(1—-e¢)H1(Ux|B,F =1)+¢- Hi(Ug|B, F = 0) + ha(e)

<(1—-€H(Usg|B,F=1)+e€- K+ hae)

Rearranging terms, we get
Hy(Ui|B,F =1) >k —ha(e)/(1 —¢),

and thus
Hi(A|B) > (1 — e)k — ha(e) .

This concludes the proof of Lemma 6.4. [ ]
Combining (2) and Lemma 6.4 (applied to A = Key, B =
(P,Z"), and € = €), we get the claimed bound. This concludes
the proof of Lemma 6.3. [ ]
Next, we translate this result from the noisy-input-case
to the worst-case input case. Set o« = +/B’. Suppose ¢t >

n (177‘//7 + \1/—%) By Hoeffding’s inequality [50],

Pr[dis(W, W™™¥) > {] < exp (—Qn (3/%>Q> <

Thus, a fuzzy extractor that corrects ¢ errors with reliability
§ implies that Pr[Rep(W"0"s% P) = Key] > 1 — §'] for ¢’ =
§ + 25. Since § < 1/25, we have §' < 1/12 and Lemma 6.3
applies to gives us ¢ > 1/12 and € > 1/12 —1/25 > 1/25
as long as k > 0.

Finally, we work out the relationship between p and 7 and
eliminate 3, as follows. Recall that 8 = 8’ + %; therefore

VB < VB + nll'/24, and it suffices to take 7 > 1_2‘/E + 4%/5
Thus, we can set any 7 > # as long as n is sufficiently
large. Solving for 3 (that is, taking any 3 > (1 — 27)?) and
substituting into Equation 1, we can get any p < 47(1 —
7 (18 ()

L
50

for a sufficiently large n. [ ]

VII. STRONGER IMPOSSIBILITY RESULT FOR SECURE
SKETCHES

Most fuzzy extractor constructions share the following fea-
ture with our Construction 4.2: p includes information that
is needed to recover w from w’; both Gen and Rep simply
apply an extractor to w. The recovery of w from w’, known
as information-reconciliation, forms the core of many fuzzy
extractor constructions. The primitive that performs this infor-
mation reconciliation is called secure sketch. In this section we
show stronger impossibility results for secure sketches. First,



we recall their definition from [14, Section 3.1] (modified
slightly, in the same way as Definition 2.3).

Definition 7.1: An (M, W, m,t)-secure sketch with error
d is a pair of randomized procedures, “sketch” (SS) and
“recover” (Rec). SS on input w € M returns a bit string
ss € {0,1}*. Rec takes an element w’ € M and ss € {0, 1}*.
(SS, Rec) have the following properties:

1) Correctness: Yw,w' € M if dis(w,w’)

Pr[Rec(w’,SS(w)) = w] > 1 —4.
2) Security: for any distribution W €
Hoo (W[SS(W)) > .

Secure sketches are more demanding than fuzzy extractors
(secure sketches can be converted to fuzzy extractors by using
a randomness extractors like in our Construction 4.2 [14,
Lemma 4.1]). We prove a stronger impossibility result for
them. Specifically, in the case of secure sketches, we can
extend the results of Theorems 5.1 and 6.1 to cover imperfect
correctness (that is, 6 > 0) and entropy rate u up to % We
stress that most fuzzy extractor constructions rely on secure
sketches.

Theorem 7.2: Let M denote the Hamming space {0,1}".
There exists a family of distributions W over M such that for
each element W € W, H{'%2*(W) = Hoo(W) > m, and yet
any (M, W, m,t)-secure sketch with error ¢ has m < 2.

This holds under the following conditions on ¢, the entropy
rate ;1 = m/n, noise rate 7 = t/n, and n:

e any 0 <7 < % and p > 0 such that p < ha(7) and p <

1-— hQ (T)
e any n > max (

< t then

W9

ho(T)—p 7 1=ha(T)—p

Note that the result holds for any p < 0.5 as long as
§ < (ha(7) — n)/4 and n is sufficiently large. The 7 vs. u
tradeoff is depicted in Figure 2. Any fuzzy extractor that uses
secure sketch (part of its output is SS(w)) is subject to these
bounds. In addition, any fuzzy extractor where the true input
point w can be computed from key is subject to this bound as
well (called an almost injective invertible fuzzy extractor by
Yasanuga and Yuzawa [53]).

Before starting the formal proof we note that the overall
strategy is the same as Theorem 5.1. The only substan-
tive difference is that the functionality of secure sketches
allow us to prove a stronger upper bound on the num-
ber of possible w’s when SS(w) is known (Lemma 7.3).
The core of this proof is arguing that the set of possible
{v]| Prys|dis(v,0r)<t[Rec(v’,SS(v)) = v] > 1/2} form a good
error correcting code.

The family used is the same as in Theorem 5.1 with more
parameter flexibility as more entropy is lost in Lemma 7.3.

Proof of Theorem 7.2: Similarly to the proof of
Theorem 5.1, we will prove that any secure sketch algo-
rithm fails for an average element of W: letting Z de-
note a uniform choice of W from W, we will show that
Hoo (Wz|SS(W2), Z) < 2. The overall proof strategy is the
same as for Theorem 5.1. We highlight only the changes here.
Recall that | B;| denotes the volume of the ball of radius ¢ in
the space {0, 1}". The parameters of the hash family are the
same, except for universality: we require 2~ “-universality for
a = (n—log|B| + h2(29))/(1 — 29).

.5log n+46n+4 2 )
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We postpone the question of the existence of such a hash
family until the end of the proof. We can now state an analogue
of Lemma 5.2. This result is an extension of lower bounds
from [14, Appendix C], which handles only the case of perfect
correctness. It shows that the value of the sketch reduces the
entropy of a uniform point by approximately log | By|.

Lemma 7.3: Let M denote the Hamming space {0, 1}"™ and
|B;| denote the volume of a Hamming ball of radius ¢ in
{0,1}™. Suppose (SS,Rec) is a (M, W,m,t) secure sketch
with error 4, for some distribution family VW over M. Then for
every v € M there exists a set GdSS,, such that Pr[SS(v) €
GdSS,] > 1/2 and for any fixed ss,

n — log | Bt| + ha(26)
1-26 ’
and, therefore, for any distribution D4 over M,

Ho(Dalss € GdSSp,,) < ~— logllB_t |2:; ha(20)

Proof: For any v € M, define Neigh,(v) be the uniform
distribution on the ball of radius ¢ around v and let

log [{v € M|ss € GdSS, }| <

GdSS, = {ss| Pr

v’<—Neigh, (v)

[Rec(v', ss) # v] < 24} .

We prove the lemma by showing two propositions.
Proposition 7.4: For all v € M, Pr[SS(v) € GdSS,]
1/2.
Proof: Let the indicator variable 1, ., be 1 if
Rec(v’, ss) = v and O otherwise. Let ¢ss be the quality of
the sketch on the ball B;(v):

v

[Rec(v', s5) = v] = E

v’ & Neigh, (v)

qss = Pr ]-v’,ss .
v’ & Neigh, (v)
By the definition of correctness for (SS,Rec), for all v/ €
Bt(v),
Pr  [Rec(v',ss) =v]>1-9.
554—-SS(v)

Hence, Eys Gen(v) 1v7,ss = 1 — 6. Therefore,

E QSS:EElleSS:]E]Elv/’SSZE(l—(S):l—(S.
ss+Gen(v) ss v’ ’ v’ ss v’

Therefore, applying Markov’s inequality to 1 — gs5, we get
Prlgss > 1 — 28] = Pr[l — gss < 28] < 1/2. ]

To finish the proof of Lemma 7.3, we will show that the set
{v € M|ss € GdSS, } forms a kind of error-correcting code,
and then bound the size of the code.

Definition 7.5: We say that a set C' is an (¢,9)-Shannon
code if there exists a (possibly randomized) function Decode
such that for all ¢ € C,

/
CIF,\II‘;EI%(C)[Decode(c ) # ] <.
The set {v € M|ss € GdSS, } forms (¢,24) Shannon code if
we set Decode(y) = Rec(y, ss). We now bound the size of
such a code.

Proposition 7.6: If C C {0,1}" is a (¢,0)-Shannon code,

then

n — log | B:| + ha(9)

1 <
og|C| < s
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Proof: Let the pair of random variables (X,Y’) be ob-
tained as follows: let X be a uniformly chosen element of C
and Y be a uniformly chosen element of the ball of radius ¢
around Y. By the existence of Decode and Fano’s inequality
[52, Section 6.2, p. 187], H1(X|Y) < hy(d)+d1og |C|. At the
same time, Hq(X|Y) = H1(X)—H:1(Y)+H:(Y|X) (because
Hy(X,Y) = Hi(X) + Hi(Y|X) = Hi(Y) + Hi (X[Y)), and
therefore H1(X|Y) > log |C|—n+log | By| (because Hy(Y) <
n). Therefore, log |C| —n +log |Bi| < h2(d) + dlog |C|, and
the lemma follows by rearranging terms. ]

Lemma 7.3 follows from Proposition 7.6. ]

We now show that entropy drops further when the adversary
learns Hashy(w). Let M denote the uniform distribution on
M and K denote the uniform distribution on K. Applying
Lemma 5.3 to Lemma 7.3, we get that for any ss,

Hy(M|ss € GdSSw, K, Hashi (M))
n —log | By| + ha(26)
—Qa .
1-20

< max <1,1 + 3)

To comp}ete the proof, we will use this bound on ﬁo as a
bound on H., as justified by the following lemma:

Lemma 7.7: For any random variables X and Y,

Proof: Starting with the definition of I:Ioo, recall that
—loga =log1/a, and apply Jensen’s inequality to get

1
E,—y max, Pr[X = z|Y =y])
1
<log E
=08 Oy max, Pr[X = z|Y = y])
<log E |{z|Pr[X =z|Y =y] > 0}].
y<Y

log

We need just one more lemma before we can complete the
result, an analogue of [14, Lemma 2.2b] for conditioning on
a single value Z = z rather than with Z on average (we view
conditioning on a single value as equivalent to conditioning
on an event).

Lemma 7.8: For any pair of random variables (X,Y") and
event 7 that is a (possibly randomized) function of (X,Y),
Hoo (X|7,Y) 2 Hoo (X]Y') —log 1/ Pr[n].

Proof: The intuition is that to guess X given Y, the
adversary can guess that  happened and fail if the guess is

wrong. Formally,
Hoo (X]Y)
=—log E maxPr[X =z|Y = y]
y<Y

x

PriX =z AY =y)]

= —log E max

yeY PrlY =]
PriX=2AY =yA
< —log E max il x y Al
yeY @ PrlY =y
PriX =z AY = yln] Prly]
=-1 E
08 oy PrlY = y]
1
= logm —log Z m?XPr[X =z AY =yn]
y<—Y
1 Pr[X =z AY =y|n)
=log—— —log E max
Pely] v e PrlY =y
1
=lo —log E maxPr[X =znAY =
8B 08, S, [ I vl
1 .
=log 5+ +HOO(X|77aY) :
Pr(n]

|
Combining Lemmas 7.8 and 7.7 with Equation 3, we get

Hoo (W2|Z,SS(Wz)) = Hao (M|SS(M), K, Hashy (M))
1
<
<198 555(M) € GasSm]
Hoo (M]ss s.t. ss = SS(M) A ss € GdSSw, K, Hashx (M))
1
& Pr[SS(M) € GdSSw]
Hy(M|ss s.t. ss = SS(M) A ss € GdSSy, K, Hashk (M))
1
1
< '°% BISS(M) € GdSSw]
n—log|By| +hs(20)
1-26 '

We can have shown that Ho, (Wz|Z,SS(Wz)) < 2, because
the first term of the above sum is at most 1 by Proposition 7.4
and the second term is 1 by our choice of a as a = (n —
log | By| + h2(20)) /(1 — 26).

It remains to show that the desired hash family exists. Note
in that (because 6 < .25) setting any a > 1 — ha(7) +
M and choosing an an-universal hash function will
be sufficient, because, by Lemma 2.2, log|B;| > nha(7T) —
1logn — 1, and so

 n—log |Bi| + ha(20)

<1 +

+ max (1,1+

1-20
<. 1 — ha(7r) + (Blogn + 1 4 ha(260))/n
- 1—26
<n-(1—hy(r) + '51°g”+:b T ha(20) |y
<n. (1h2(7')+ .510gn+45n—|—2>
n
<n-«a

(the second inequality is true because for any x < 1 and
0<y<.b x/(1-y) <x+2y, because z < (z+2y)(1—y),
because 0 < y(2 — z — 2y); the third inequality follows from



h2(26) < 1). Such a hash family exists by Lemma 5.4 as long
as u <1—a—2/n < hy(r)— (5logn + 46n + 4)/n and
1 — ho(1) — 2/n). |

=
IA =

VIII. CONCLUSION

This work introduces fuzzy min-entropy as a new metric
for measuring the suitability of deriving keys from a noisy
probability distribution. This condition is sufficient for security
if the distribution is exactly known. This setting is comparable
to the traditional setting when Eve receives no auxiliary
information.

Our negative results show that providing security simultane-
ously for a family of sources is impossible for all distributions
with fuzzy min-entropy. The core of all of these proofs is
constructing a family of distributions VW where the description
of the element W € W provides the adversary with informa-
tion independent of what is (necessarily) leaked by the fuzzy
extractor (or secure sketch). Our three results require a careful
tuning between the information leaked by the fuzzy extractor
and the independent information in the description. This state
of affairs seems somewhat bleak, however, there are several
ways to avoid these negative results:

1) Focus on providing security for high entropy distributions
only. However, many noisy distributions come from na-
ture and system designers cannot effectively adjust their
parameters,

2) Assume some additional structure from the distribution
such as independence between dimensions [21] or that
random subsets of dimensions have high entropy [54].

3) Restrict the adversary, for example, assuming the ad-
versary runs in polynomial time. Recently, constructions
have shown fuzzy extractors secure against bounded
adversaries relying on hardness of discrete log [55],
[56], decoding random codes [28], [57], security of
hash functions [54], [58], and general cryptographic
primitives [59]. Fuller, Meng, and Reyzin showed
that computationally-secure sketches imply information-
theoretic ones, so computationally-secure sketches are
subject to the negative results in this work [28, The-
orem 1]. A comparable theorem is not known for
computationally-secure fuzzy extractors.
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