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Abstract. Biometrics exhibit noise between repeated readings. Due to
the noise, devices store a plaintext template of the biometric. This stored
template is an appetizing target for an attacker.
Fuzzy extractors derive a stable cryptographic key from biometrics (Dodis
et al., Eurocrypt 2004). Despite many attempts, there are no iris key
derivation systems that prove lower bounds on key strength.
Our starting point is a fuzzy extractor due to Canetti et al. (Eurocrypt
2016). We modify and couple the image processing and cryptographic
algorithms. We then present a sufficient condition on the iris distribution
for security, and analysis this condition using the ND0405 Iris dataset.
We build an iris key derivation system with 32 bits of security even when
multiple keys are derived from the same iris. We acknowledge 32 bits of
security is insufficient for a secure system. Multifactor systems hold the
most promise for cryptographic authentication. Our scheme is suited for
incorporation of additional noiseless factors such as a password.
Our scheme is implemented in C and Python and is open-sourced.

1 Introduction

Authentication schemes combine factors such as passwords, one-time codes, se-
curity questions, and social relationships [11]. Some providers use key derivation
functions to derive cryptographic keys and then protect sensitive data using
these keys. Depending on the entropy of the authentication factors, we can ob-
tain bounds on how long it will take an adversary to correctly guess users’ private
information.

Biometrics are used to authenticate users on mobile devices (phones and
tablets). In these systems, a template of the biometric reading is stored in a
secure processor. Since the template is stored “in the clear,” a secure processing
component is necessary. Furthermore, it means that deploying biometric au-
thentication in a client-server setting is risky. The client-server setting is still
the majority of Internet authentication.

In the absence of a secure processor, two complementary lines of research
emerged: interactive protocols and schemes that create a single value that allows
for authentication (that is, non-interactive protocols). The interactive setting is
well understood [16,28,8,32,27,18,9,26,31]. Importantly, interactive protocols do
not consider server compromise in scope of the threat model. Their focus is



on ensuring an adversary that pretends to be either the client or server gains
minimal information by engaging in the protocol. Furthermore, the interactive
model is not applicable for a user authenticating to a device.

The non-interactive setting is not understood despite years of research. (We
detail prior work in Section 1.1.) For many biometrics there is little in way of im-
plementable work (current proposals either requiring exponential time [41,34,64]
or semantically secure graded encodings [52]). We focus on building non-interactive
key derivation from the iris [57]. We use the definition of fuzzy extractors [30,29].
(Our discussion applies to fuzzy commitments [45] and secure sketches [29].)

Fuzzy extractors derive stable keys from a biometric. Fuzzy extractors consist
of two algorithms Gen, or generate, and Rep, or reproduce. The Gen algorithm
takes an initial reading of the biometric, denoted w, deriving a key Key and a
value Pub. The Rep algorithm is used at authentication time taking Pub and a
later reading of the biometric, denoted w′. If the two readings of the biometric
are similar enough then the same Key should be output by the algorithm. The
security of a fuzzy extractor is analyzed assuming the adversary knows Pub.

The first generation of fuzzy extractors shared the same core construction
and security analysis [25]. These constructions all used a variant of the one-time
pad where the “pad” is a codeword from an error correcting code (rather than
being uniformly distributed).

The quality of the derived key depends on the entropy of the biometric and
size of the error-correcting code. LetW be a biometric of length n and supposeW
has k bits of min-entropy. Suppose the error correcting code has 2α codewords.
Roughly, it is assumed the “one-time pad” leaks the entropy deficiency of the
code or n − α bits. If one wishes to tolerate t bits of error between w and w′,
using bounds on the best code, this loss is at least h2(t/n) ∗ n.
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In many cases h2(t/n) ∗ n is larger than k. Daugman’s seminal paper on
iris recognition [24] transformed iris images into a fixed length 2048 bit vector.
Daugman reports error rates close to 10% in a controlled environment. For more
realistic datasets the error rate is 30% (see Figure 3). In either case, h2(t/n)∗n ≥
h2(.1) ∗ 2048 ≈ 874 is larger than the estimated entropy of 249.4 It is not known
how to analyze the first generation of fuzzy extractors to argue security for the
iris.

Biometrics cannot be changed or updated so provable, cryptographic security
is crucial. A compromise affects an individual for their entire life. We focus on
a strengthening of fuzzy extractors called reusable fuzzy extractors that allows
derivation of multiple keys and multiple public values from the same biometric.

Recently, a second generation of fuzzy extractors emerged using crypto-
graphic tools [33,20,2,1,63,62]. These constructions are reusable and only provide

3 The quantity h2(t/n) ∗ n is the binary entropy of t/n multiplied by n. The quantity
h2(t/n)∗n is larger than t (when t ≤ .5n). For example, if t = .1n then h2(t/n)∗n ≈
.427n.

4 Any distribution limited to people on the earth can be described using 33 bits. The
estimate of 249 should be understood as the randomness involved in creating a new
iris.



security against computationally bounded adversaries. Some of these construc-
tions provide meaningful security when W has low entropy. However, this secu-
rity requires W to have additional structure beyond entropy. There have been
no empirical evaluations of whether biometrics exhibit this structure. Further-
more, these constructions are stated in asymptotic form and it is not clear what
properties they provide for actual biometrics.

Our contribution We build the first key derivation system that provides mean-
ingful albeit moderate provable security from the iris. Our scheme has been
implemented and open-sourced [36]. The combination of cryptographic and sta-
tistical analysis estimates a security level of 32 bits. As a point of comparison,
recent estimates place password entropy at 22 bits [48,10,61]. We do not believe
this security level is sufficient for a stand alone system. Our hope is that this
work serves as a catalyst for system designers to incorporate our construction
into multi-factor authentication systems and that the overall system provides
strong security. We discuss such a system below.

The starting point for our construction is the recent sample-then-lock scheme
of Canetti et al. [20]. The idea of the scheme is simple: to hash the biometric in an
“error-tolerant” way. Hashing the full biometric doesn’t work (due to biometric
noise). Instead, multiple random subsets of the biometric are hashed. That is,
sample a random subset of bits, denoted I, and hash w restricted to the bits of
I, denoted Hash(wI), and use this value as a pad for a cryptographic Key. That
is, store (Key ⊕ Hash(wI), I). This process is repeated with multiple subsets Ij
and the same Key. Correctness follows if it is likely that in at least one subset
Ij , wIj

= w′
Ij
. The security analysis requires for a random subset Ij of bits that

wIj
has entropy with high probability over the choice of Ij (see Definition 1).

This strengthens the requirement that the whole vector W has entropy.
We first estimate that subsampling iris bits produces a distribution with

entropy (Figure 1). (Efficient entropy estimation is heuristic. Provably accurate
entropy estimation [59,60] requires an exponentially large number of samples in
the actual entropy of the distribution.) We use the same heuristic that occurs in
previous biometric research. Roughly, the distances between transformed irises
of different individuals are compared with the distances that would be produced
by the binomial distribution whose entropy is computable. This is discussed in
further in Section 4.

However, we find that the naive combination of iris processing and the fuzzy
extractor provides inadequate security and efficiency. The core of our technical
contribution is:

1. Modifying sample-then-lock for implementation (and proving security),
2. Modifying the iris image processing to maximize security,
3. Two open source implementations of the resulting scheme (Python and C),
4. Statistical analysis on security, correctness, storage requirements, and tim-

ing. All of our analysis uses the ND-0405 iris data set [56,12] which is a
superset of the NIST Iris Challenge Evaluation Dataset [55]. Throughout
our work we explicitly state what assumptions are needed for security of the
scheme to hold.





A key consideration in reusable fuzzy extractors is the type of correlation
assumed between enrollments Wi and Wj . In many constructions it is assumed
that Wi ⊕Wj does not leak information about Wi or Wj . This assumption has
not been verified in practice and was made by [15,2,63]. We make no assumption
about the correlation between different enrollments, only about the statistical
structure of an individual enrollment. In this model, Alamelou et al. [1] construct
a reusable fuzzy extractor for the set difference metric. The iris has noise in the
Hamming metric. The only construction that appears viable is the sample-then-
lock construction (our starting point) [20].

Many previous works have used a fuzzy extractor in combination with the
iris. These works security claims are troubling for a variety of reasons.

Hao et al. [40] use the code-offset construction with a code with 2140 code-
words with the Iriscode transform of Daugman [24]. Using standard fuzzy ex-
tractor analysis this provides no security: it could leak as much as 2048 − 140
bits. Hao et al. claim a key strength of 140 without justification. Hao et al.
then argue an adversary providing a random iris would succeed with probability
2−44. This corresponds to an adversary that does not have access to Pub (plain-
text template storage suffices in this model). Note that providing an adversary
providing a random iris should yields an upper bounds for the security of the
system, immediately contradicting the claim of 140 bits of security. These issues
have been communicated with Hao et al.

Bringer et al. [17] do not state a key strength but they report a nonzero false
accept rate which implies a small effective key strength. Reporting a nonzero
false accept rate is common in iris key derivation despite claimed key lengths
> 40 bits (see discussion [53,43]). Using the birthday bound, false acceptances
should appear when the tested dataset size approaches the square root of the
claimed key size (i.e. > 220). No published iris datasets have close to a million
individuals.

Kanade et al. [46] claim a fuzzy extractor construction but they report the
entropy of the iris as over 1000 bits, much higher than other estimates. Other
research states that each bit of the iris transform is independent [39] which is
demonstrably not true (see for example our statistical analysis in Section 4).

The above discussion is necessarily incomplete (see the survey of Bowyer
et al. [14, Section 6]). It demonstrates a large gap between theoretical fuzzy
extractor constructions and their use, justifying a rigorous analysis of iris key
derivation that makes assumptions explicit and accurately estimates security.

Recently, Cheon et al. [22] also modified sample-then-lock. However, their
work contains a flaw in its security argument. At a high level, the authors incor-
rect argue that many polynomial size random oracles can’t be exhausted by an
unbounded adversary. This flaw has been communicated to and acknowledged
by the authors. No public revision has been made.

Organization The rest of this work is organized as follows, in Section 2 we review
basic definitions and cryptographic tools, Section 3 describes our scheme and
software, Section 4 describes iris image processing and the transform used as
input to our scheme, Section 5 evaluates the performance and correctness of our



system, Section 6 concludes. More statistical analysis and a second version of
the scheme requiring additional statistical assumptions are deferred to the full
version of this work [35].

2 Definitions and Cryptographic Tools

We use capital letters to refer to random variables. For a set of indices J , XJ

is the restriction of X to the indices in J . Un denotes the uniformly distributed
random variable on {0, 1}n. Logarithms are base 2. The min-entropy of X is
H∞(X) = − log(maxx Pr[X = x]). We use the notion of average min-entropy
to measure the conditional entropy of a random variable. The average min-
entropy of X given Y is H̃∞(X|Y ) = − log (Ey∈Y maxx Pr[X = x|Y = y]) .The
statistical distance between random variables X and Y with the same domain is
∆(X,Y ) = 1

2

∑

x |Pr[X = x]−Pr[Y = x]|. Our construction requires additional
structure past entropy that we call k entropy samples [20]:

Definition 1. Let W = W1, . . . ,Wn be a distribution over {0, 1}n. For k, α, we
say that W is a source with α-entropy k-samples if H̃∞(Wj1 , . . . ,Wjk | j1, . . . , jk) ≥
α for uniformly random 1 ≤ j1, . . . , jk ≤ n.

We use the version of fuzzy extractors that provides security against com-
putationally bounded adversaries [33]. Dodis et al. provide comparable defini-
tions for information-theoretic fuzzy extractors [29, Sections 2.5–4.1]. A desirable
property of a fuzzy extractor is that an individual can enroll their biometric with
multiple service providers and retain security.6 Informally, each cryptographic
key should be secure if an adversary knows all public helper values and all other
derived keys. We state the definition of a reusable computational fuzzy extractor:

Definition 2. Let W be a family of distributions over metric space (M, dis).
A pair of randomized procedures “generate” (Gen) and “reproduce” (Rep) is an
(M,W, κ, t, ρ)-computational fuzzy extractor that is (εsec, ssec)-hard with error
δ if Gen and Rep satisfy the following properties:

1) Correctness: if dis(w,w′) ≤ t and (r, p)← Gen(w), Pr[Rep(w′, p) = r] ≥ 1− δ.

2) Security Let (W 1,W 2, . . . ,W ρ) be ρ correlated random variables such that
each W j ∈ W. Let D be an adversary. Define the following game for j = 1, ..., ρ:

– Sampling The challenger samples wj ←W j, u← {0, 1}κ.

– Generation The challenger computes (rj , pj)← Gen(wj).

– Distinguishing For all D of size at most ssec, the advantage of D is

Pr[D(rj , {ri}i=1,...,ρ
i 6=j , {pi}ρi=1) = 1]− Pr[D(u, {ri}i=1,...,ρ

i 6=j , {pi}ρi=1) = 1] ≤ ε.

6 Unlinkability prevents an adversary from telling if two enrollments correspond to
the same physical source [21,47]. Our construction satisfies unlinkability (assuming
security of the underlying cryptographic tools).



Digital Lockers Our construction uses digital lockers [19]. A digital locker is
an algorithm lock which takes an input val and an output key, producing an
algorithm unlock, unlock reproduces key if and only if the same val is provided
as input. Digital lockers have two important properties:

1. Information about key is only obtained if the combination is guessed.
2. It is possible to detect the wrong val with high probability.

Digital lockers can be constructed from variants of the Diffie-Hellman assump-
tion [19]. Let HMAC be HMAC-SHA256. Our construction assumes that HMAC can
be used to construct digital lockers. The “locking” algorithm outputs the pair

nonce, HMAC(nonce, w)⊕ (0128||key),

where nonce is a nonce, || denotes concatenation, 0128 is the all zeros string of
length 128, a security parameter. Unlocking proceeds by recomputing the hash
and checking for a prefix of 0128. If this prefix is found then the suffix key′ is out-
put. This construction was proposed in [3] and shown to be secure in the random
oracle model by Lynn, Prabhakaran, and Sahai [50, Section 4]. It is plausible
that in the standard model (without random oracles) hash functions provide the
necessary security [19, Section 3.2], [23, Section 8.2.3]. We now present the full
formal definition [5]:

Definition 3. The pair of algorithm (lock, unlock) with security parameter λ is
an `-composable secure digital locker with error γ if the following hold:
Correctness For any pair key, val, Pr[unlock(key, lock(key, val)) = val] ≥ 1− γ.
Also, for any key′ 6= key, Pr[unlock(key′, lock(key, val)) =⊥] ≥ 1− γ.
Security For every PPT adversary A and every positive polynomial p, there
exists a (possibly inefficient) simulator S and a polynomial q(λ) such that for
any sufficiently large s, any polynomially-long sequence of values (vali, keyi) for
i = 1, . . . , `, and any auxiliary input z ∈ {0, 1}∗,

∣

∣

∣
Pr

[

A
(

z, {lock (keyi, vali)}
`
i=1

)

= 1
]

− Pr
[

S
(

z, {|keyi|, |vali|}
`
i=1

)

= 1
]∣

∣

∣
≤

1

p(s)

where S is allowed q(λ) oracle queries to the oracles {idealUnlock(keyi, vali)}
`
i=1 .

Technical Remark: Unfortunately, the security definition of digital lockers
(Definition 3) is “inherently” asymptotic. A different simulator is allowed for each
distance bound p(s) making it difficult to argue what quality key is provided with
respect to a particular adversary.

3 Our Construction & Implementation

Our construction builds on the construction of Canetti et al. [20]. The high
level idea is to encrypt the same key multiple times using different subsets of w.
Pseudocode for the algorithm is in Figure 2.



Gen(w):

1. Sample random 128 bit key.
2. For i = 1, ..., `:

(i) Choose 1 ≤ ji,1, ..., ji,k ≤ |w|
(ii) Choose 512 bit hash key hi.
(iii) ci = Hash(hi, wji,1 , ..., wji,k ).

(iv) Set pi = (0128||key)⊕ ci.
3. Output (key, pi, {ji,m}, hi).

Rep(w′, pi, {ji,m}, hi)

1. For i = 1, ..., `:
(i) ci = Hash(hi, w

′

ji,1
, ..., w′

ji,k
).

(ii) If (ci ⊕ pi)1..128 = 0128,
output (ci ⊕ pi)129..256.

2. Output ⊥.

Fig. 2: Overview of generation (enrollment) and reproduction (authentication)
of key derivation system.

In the description above, xa..b denotes the restriction of a vector to the bits
between a and b. The parameters k and ` represent a tradeoff between correctness
and security. For the scheme to be correct at least one of the ` subsets should
have no error with high probability. Canetti et al. show it is possible to set ` if
the expected error rate is sublinear in |w|. That is, when d(w,w′)/|w| = o(|w|).
We set ` and k in Section 4.

A single digital locker requires storage of 32 bytes for the output of the hash
and 64 bytes for each hash key hi. In addition, the public value must store the
randomly sampled locations. The two natural solutions for this are 1) storing a
mask of size |w| for each subset or 2) a location set of size log |w| ∗ k for each
subset. Using either approach, in our analysis, storing subsets required more
space that the hash outputs and keys. This led to our main modification of the
cryptographic scheme.

Canetti et al. [20, Section 4] note that rather than using independent subsets
they could be selected using a sampler [37]. We show the security argument holds
as long as each subset is random on its own. That is, the different subsets can
be arbitrarily correlated. We will use this fact to reduce the storage requirement
of the scheme. We now state security of the modified scheme.

Theorem 1. Let λ be a security parameter, Let W be a family with α-entropy
k-samples for α = ω(log λ). Suppose the HMAC construction is a secure digital
locker. Let Ij be the jth subset generated in Gen. The fuzzy extractor in Fig. 2 is
secure if each individual Ij is uniformly distributed (but different subsets Ij , I`
are potentially correlated). More formally, for any ssec = poly(λ) there exists
some εsec = ngl(λ) such that sample-then-lock is a (Zn,W, κ, t)-computational
fuzzy extractor that is (εsec, ssec)-hard with error δ = negl(λ). No claim about
correctness is made if Ij and I` are correlated.

We only show security when Gen is run once, reusability follows using the
same argument as in Canetti et al. [20].

Proof. Let V1, ..., V` be random variables corresponding to W restricted to the
bits selected in subset Ii. Similarly, let Pi be the random variable corresponding
to the public part of the output produced in iteration i. Let R denote the dis-
tribution over output key values. Lastly, let U denote the uniform distribution



over {0, 1}|key|. We show for all ssec = poly(λ) there exists εsec = ngl(λ) such
that

δDssec ((R, {Pi}
`
i=1), (U, {Pi}

`
i=1)) ≤ εsec.

Fix some polynomial ssec and let D be a distinguisher of size at most ssec.
We proceed by contradiction: supposing |E[D(R, {Pi}

`
i=1)]−E[D(U, {Pi}

`
i=1)]|

is not negligible. Suppose there is a polynomial p(·) such that for all λ0 there
exists some λ > λ0 such that

|E[D(R, {Pi}
`
i=1)]− E[D(U, {Pi}

`
i=1)]| > 1/p(λ).

By Definition 3, there is a polynomial q and an unbounded time simulator
S (making at most q(λ) queries to the oracles {idealUnlock(vi, r)}

`
i=1) such that

1

3p(λ)
≥ |E[D(R,P1, ..., P`)]− E

[

S{idealUnlock(vi,r)}
`
i=1

(

R, {Ii}
`
i=1, k, |key|

)

]

|

(1)

This is also true if we replace R with an independent uniform random variable U
over {0, 1}|key|. We now prove the following lemma, which shows that S cannot
distinguish between R and a independent U .

Lemma 1. Let all variables be as above. Then
∣

∣

∣
E

[

S{idealUnlock(vi,r)}
`
i=1

(

R, {Ii}
`
i=1, k, |key|

)

]

−E

[

S{idealUnlock(vi,r)}
`
i=1

(

U, {Ii}
`
i=1, k, |key|

)

] ∣

∣

∣

≤
q(q + 1)

2α
≤

1

3p(λ)

where q is the maximum number of queries S can make.

Proof. Fix some u ∈ {0, 1}|key|. The only information about whether the value is
r or u can obtained by S through the query responses. First, modify S slightly
to quit immediately if it gets a response not equal to ⊥. There are q+1 possible
values for the view of S on a given input (q of those views consist of some
number of ⊥ responses followed by the first non-⊥ response, and one view has
all q responses equal to ⊥). By [29, Lemma 2.2b], H̃∞(Vi|V iew(S), {Ij}) ≥

H̃∞(Vi|{Ij})−log(q+1) ≥ α−log(q+1). Therefore, at each query, the probability
that S gets a non-⊥ answer (equivalently, guesses Vi) is at most (q+1)2−α. Since
there are q queries of S, the overall probability is at most q(q + 1)/2α. Then
since 2α is ngl(λ), there exists some λ0 such that for all λ > λ0, q(q + 1)/2α ≤
1/(3p(λ)).

The overall theorem follows using the triangle inequality with equation 1, equa-
tion 1 with R replaced with U , and Lemma 1 yielding δD((R,P ), (U,P )) ≤
1/p(λ). This completes the proof of Theorem 1.



This theorem gives us a mechanism for saving on storage size. Instead of
choosing independent subsets, the implementation chooses a master subset and
then generates permutations πj to create new subsets based on public crypto-
graphic keying material. The new scheme works as follows:

1. Choose a master subset I uniformly at random where |I| = k.
2. For each locker j generate a permutation πj : {0, 1}

|w| → {0, 1}|w|.
3. Apply πj to each element of I to get Ij .

To efficiently generate permutations we do the following:

1. Select a single master CHACHA20 key
2. Encrypt the permutation number j, creating log |w| ∗ |w| bits of output c.
3. We split c into log |w| bit sections c1, ..., c|w|.
4. Define πj(i) = ci

The output of CHACHA20 is not a permutation: it is not guaranteed that log |w|
consecutive bits do not repeat. Furthermore, looking ahead to Section 4, our iris
processing results in a vector of 12000 bits. The above algorithm only works if
|w| is a power of 2. We adapt our algorithm by adding a check for each section ci.
If ci > |w| or ci is repeated it is discarded. To compensate for these two failure
conditions it is necessary to produce more than |w| sections. Producing 2000
additional sections was sufficient to always output a permutation in our exper-
iments. This modification reduces overall storage to a single CHACHA20 key,
the single randomly generated subset, and 96 byte per subset storage. Generat-
ing these permutations takes additional computation. One can tradeoff between
storing all subsets and a single master subset, storing some fraction of subsets
and regenerating the rest. We are not aware of how to reduce the 96 byte per
subset storage. An idea is to use a single nonce, we were not able to argue security
of this modified scheme. We leave this as an open problem.

Implementation We implemented our construction in both Python and C and
both implementations are open sourced [36]. Previous implementations of fuzzy
extractors required expertise in error-correcting codes. Our construction only
requires repeated evaluation of a hash function.

The entire Python library is 100 lines of code with dependencies on numPy
(for array manipulation), random, and hashlib. Our Gen code is single threaded
because the majority of execution time is spent generating the subsets ji,1, ..., ji,k.
The Rep functionality is embarrassingly parallel. We implemented a parallel ver-
sion that simply partitions the hashes to be performed. Rep succeeds when one
of these threads returns. Unfortunately, neither implementation is fast enough
with authentication taking seconds (see Section 5).

We also developed an optimized C implementation designed for fast Rep

performance. As Rep is used at every authentication its speed is more important
than Gen which is only used when a user enrolls with a new service. For this
implementation we used Libsodium [4] as the cryptographic backend and HMAC-
SHA-512 to instantiate the digital locker. This library makes use of low level



bit level operations for quickly packing and selecting bits the iris vector. In
preliminary testing a major obstacle to fast Rep was disk load time. Recall, each
subset selected in Gen requires storage of 96 bytes.

4 Iris Image Processing and Setting Parameters

This section provides a brief overview of iris image processing and the transform
used in our system. Iris image processing is an entire field [13]. Our scheme can
be used with techniques that produce a vector with Hamming errors (fraction
of symbols that are the same).

The starting point for our transform is open-source OSIRIS package [49].
This package is open source and uses representative techniques. OSIRIS takes a
near infrared iris image and produces a 32768 bit vector w. The stages of OSIRIS
are:

1. Iris and Pupil Localization: This step finds the inner and outer boundaries
of the iris accounting for pupil dilatation and occlusions.

2. Iris Unwrapping: The iris is converted into a 2D matrix. This array is indexed
by (r, θ) which is the polar position of the pixel in the original image.

3. Featurization: 2D Gabor filters [38] centered at different positions are con-
volved with the image yielding a complex values at locations (r, θ). This
produces a 64× 512 vector of complex valued numbers.

4. Binarization: Complex numbers are quantized based on sign to produce two
bits.

The OSIRIS library includes six transforms. These transforms are the real
and imaginary components of three different sets of Gabor filters. Our experi-
ments showed the histogram with the lowest error rate (for images of the same
iris) was Transform 5. We thus used Transform 5 for all of our analysis.

Daugman [24] reports mean error rates of 11%, but we are unaware of any
subsequent work that an error rate that lowachieves as low an error rate as 11%.7

All of our statistical analysis is performed using the ND-0405 dataset [12]
which is a superset of the NIST Iris Challenge Evaluation Dataset [55]. The ND-
0405 dataset includes 356 persons and 64964 total images. We observe a mean
error rate of 32% using the ND-0405 Iris data set [56,12].

Our analysis includes intraclass comparisons which are comparisons of the
Hamming distance between two transformed images of the same iris and in-
terclass comparisons which are comparisons of the Hamming distance between
two transformed images of different irises. The ND-0405 dataset contains images
from the left and right eye of the same individual. These are treated as interclass
comparisons.

Figure 3 shows the histograms for fractional Hamming distance between two
images of the same individual (same) and different individuals (different) for

7 The security/correctness tradeoff of our system immediately improves with an iris
transform with lower error rate.



the dataset. This histogram is produced by computing the fractional Hamming
distance of every iris with every other iris (for a total of ≈ 109 comparisons).
The fractional Hamming distances were then grouped into interclass/different
comparisons corresponding to the same iris and intraclass/same comparisons
corresponding to different irises. The error rate of the data is defined as the
expected fractional Hamming distance between two images of the same iris. For
intraclass comparisons we observed a mean error rate of .32. For different irises,
we observe the interclass mean and interclass variance as µ = .494 and σ = .0008.

The standard method for estimating the entropy of the iris [24] is to compare
the interclass histogram with a Binomial distribution with the same mean µ and
variance σ. If the observed distribution and the Binomial distribution have very
similar histograms, then the observed distribution is assumed to have the same
entropy as the Binomial distribution. This technique is necessarily a heuristic.

We computed this heuristic generating a binomial distribution with mean
µ = .494 and variance σ = .0008. The statistical distance between the interclass
histogram and the binomial distribution was computed with a total statistical
distance of .005. We use the entropy of the Binomial distribution as a stand in
for the entropy of the observed distribution. The entropy of the Binomial is cal-
culated using the following equations (where dF stands for degrees of freedom):

dF =
µ(1− µ)

σ
= 311

entropy = (−µ logµ− (1− µ) log(1− µ)) ∗ dF

= 311.

Our entropy estimate is different from Daugman’s. It is common for this
estimate to vary across data sets, this estimate is capturing useful information
of the underlying biologic process and noise which is less useful. However, since
the construction has to “correct” the noise, the noise should also be counted for
security.

Entropy of Subsamples Our security theorem requires not only overall entropy,
but entropy of random subsets (see Definition 1 and Theorem 1). In the worst
case, sampling only preserves the entropy rate of a distribution which for OSIRIS
is 311/32768 ≈ 1%.

Iris entropy is believed to be geographically distributed throughout the iris.
The OSIRIS output is produced by convolving a fixed Gabor filter at overlapping
regions of the unwrapped iris. So one would expect nearby bits to be correlated.
If only nearby bits are correlated, subsampling random bits will increase the
entropy rate. To test this hypothesis, we performed the following analysis (for
subset size k) with 10 trials for each subset size:

1. Randomly sample k distinct positions.
2. Compute the intraclass and interclass histograms for the dataset restricted

to these positions.
3. Compute the µ and σ for the interclass histogram. (Using the same method

as in Figure 3).





security but hurts correctness, increasing ` improves correctness but costs time
and storage. The two parameters are related by

1− (1− (1− error rate)k)` = Pr[correct]. (2)

We will set the number of lockers ` = 106. This results in storage of approxi-
mately 100 MB which is dominated by the per locker storage of the HMAC key
and output. We assume a correctness target of 50% true positive rate. While
this number is unacceptable for an authentication system, correctness rate is an
“s-curve” in error rate. Correctness increases quickly once it hits 50%, achieving
correctness of 1−2−x for some x requires multiplicatively increasing the number
of lockers by 2x−1. So 93.75% correctness requires 8×106 lockers (roughly 800MB
of storage). We note that in many biometric authentication settings, the sensor
can rapidly collect multiple images, allowing multiple chances to authenticate.
We consider these parameters fixed.

Optimizing the transform A technique commonly used to improve iris transforms
is called masking. (Bowyer et al. survey iris processing techniques [13].) In most
iris transforms in addition to the binary vector w the transform additionally
outputs a second vector mask. Bits set in mask indicate an error in the trans-
form perhaps due to an eyelash or eyelid (known as an occlusion). Rather than
comparing the Hamming distance d(w,w′), the authentication only compares
locations i where maski = 0 = mask′i. The intuition behind the mask vector is
that occluded locations are expected to have higher error rates and should be
ignored.

A possible way to incorporate mask into sample-then-lock is to only sample
from positions that are not masked. This technique limits “comparison” to lo-
cations where maski = 0. However, mask may be correlated to the underlying
values w, so choosing subsets in this way may leak information to the attacker.
Locations to be masked are not uniformly distributed throughout the iris. Rather
masked bits usually occur on the top, bottom, inside and outside of the iris [42].

Instead, we will restrict the 32768 bit vector to locations that are unlikely
to be masked across the dataset. We denote by prmask the vector of mask prob-
abilities for each bits. To find the right restriction we did the following for a
threshold thres ∈ {1, .0975, .095, .0925, ..., .05, .025} ∪ {.015}.

1. Restrict the input locations to positions j where prmask,j > thres.
2. Compute the mean error rate restricted to these bits.
3. Compute the maximum subset size k such that Pr[correct] ≥ .5. (see Equa-

tion 2).
4. Repeat 10 times:

(a) Sample k random bits I from locations where prmask,j > thres.
(b) Restrict the input dataset to locations in I. Compute interclass his-

togram across the entire dataset.
(c) Compute µthres,i, σthres,i for trial i.
(d) Compute the entropy ethres,i for trial i.

5. Compute the overall entropy as ethres = − logEi 2
−ethres,i



Pr of mask Number of Bits Subsample Size Entropy

1 32768 32 28
0.9 31810 33 29
0.8 31256 33 29
0.7 30528 33 29
0.6 29455 34 29
0.5 27910 34 30
0.4 26115 35 30
0.3 23861 37 32
0.2 20109 39 31
0.1 15953 41 33

0.075 14572 42 32
0.05 12718 43 32

0.025 9661 44 30
0.015 7619 45 30

Table 1: Average min-entropy of input subset to sample-then-lock when restrict-
ing to bits that are unlikely to be masked.

A subset of this analysis is in Table 1. This analysis has a minimum entropy,
28, and subset size, 32, when all bits are likely to be included. The entropy is
maximized at 33, while subset size is maximized at 45. In the full version, we
compare this approach with restricted to bits that demonstrate the highest error
rate [35]. Both approaches result in similar parameters. We include the 12000
bits that are least likely to be masked as our “iris transform.” This was the size
that allowed the highest subset size where entropy was close to the maximum.

5 Evaluation

In this section we evaluate the running time and correctness of our system. The
basis of our security argument is Theorem 1 and Table 1 which give a necessary
condition for security and the estimated entropy of subsets being used in our
construction respectively.

This performance analysis was performed on a Dell Precision Tower 7000
Series with 4 Xeon E5-2620 v4 processors and 64GB of RAM. The computation
was parallelism bound.

We report performance numbers for both the Python and C implementations.
In the Python implementation Gen takes 220s. We implemented a parallel version
of Rep which takes 12s. Since Rep must be performed on every authentication
this is not fast enough for most use cases. These performance numbers do not
include disk read time, which was greater than the computation time.

For the C implementation, we consider the speed of three different operations,
Gen, Rep and subset generation. We do not include time for subset generation
in Gen and Rep. Furthermore, we do not include disk read time. The reported
times for Rep assumes the data structure is already in memory. Depending on
the use case the data structure for Pub may be stored in memory, on disk, or
regenerated as needed. Importantly, subset generation is independent of the iris





the system. Ideally, one could use a hash function that is easy to compute in
parallel with fast access to a large memory but hard for GPUs. We are unaware
of any such candidates.

Biometric authentication is a fact of life. This work explores how secure
cryptographic techniques can be made for real biometrics. While our system does
not achieve “cryptographic” security levels, we believe they are in reach. We hope
this work encourages further research into the iris and other biometric modalities.
Lastly, porting to mobile platforms is a natural goal. We believe satisfactory
performance on mobile devices requires new cryptographic and architectural
techniques. We leave this as future work.
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