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Abstract

Most iris recognition pipelines involve three stages: seg-

menting into iris/non-iris pixels, normalization the iris re-

gion to a fixed area, and extracting relevant features for

comparison. Given recent advances in deep learning, it is

prudent to ask which stages are required for accurate iris

recognition. Lojez et al. (IWBF 2019) recently concluded

that the segmentation stage is still crucial for good accuracy.

We ask if normalization is beneficial?

Towards answering this question, we develop a new iris

recognition system called ThirdEye based on triplet convolu-

tional neural networks (Schroff et al., ICCV 2015). ThirdEye

directly uses segmented images without normalization.

We observe equal error rates of 1.32%, 9.20%, and 0.59%

on the ND-0405, UbirisV2, and IITD datasets respectively.

For IITD, the most constrained dataset, this improves on

the best prior work. However, for ND-0405 and UbirisV2,

our equal error rate is slightly worse than prior systems.

Our concluding hypothesis is that normalization is more

important for less constrained environments.

1. Introduction

This work investigates iris biometric [5, 33, 34]. Specif-
ically, we focus on iris recognition: systems that create
an initial template of a person and can identify if a target

corresponds to a previously known identity. Current perfor-
mance is strong on datasets but lacks when the environment
changes. This is particularly true for learning-based tech-
niques which often specialize to the training dataset. Iris
recognition systems have three core components:

1. Segmentation which identifies pixels of an image as iris
or non-iris.

2. Normalization which maps iris pixels to a fixed dimen-
sion array. This step often transforms from polar to
Cartesian coordinates.
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3. Feature extraction which produces a succinct vector
that identifies the image. For different images of the
same iris this vector should be stable. Simultaneously,
this vector should vary widely for images of different
individuals.

Daugman’s seminal work [5, 6] followed this pipeline and
used Gabor filters to extract features from a normalized
vector. Matching between the template and the target was
done by computing the Hamming distance between the two
vectors. Wildes [39], followed by Ma [22], explored other
system-level considerations such as matching efficiency. In
the twenty years since these pioneering works, there has been
substantial work to create accurate systems. In this work we
focus on approaches using deep learning (we compare our
results to all state of the art approaches).

Deep learning [17] uses complex models to learn rep-
resentations from high dimensional data allowing learning
of features from complex datasets. Deep learning has been
applied to various biometrics [19, 20, 27, 38]. Like prior
work [19, 23, 24, 32] we use convolutional neural networks

or CNN to extract features from the iris. We defer further
discussion of related work until after introducing our system.

The main goal of this work is to understand how much
of the above pipeline is necessary for modern learning ap-
proaches. Recent work of Lojez et al. [21] concluded a
separate segmentation stage is still critical to accurate iris
recognition. The question of this work is:

Is normalization necessary for accurate iris recog-
nition using modern techniques?

1.1. Our Contribution

Our main contribution is a new iris recognition system
we call ThirdEye. The core of ThirdEye is a CNN trained
using the triplet based training framework [37]. This network
directly uses a segmented iris image but does not include any
normalization. Triplet based networks train on three input
images at a time, two from the same class/iris and the third
from a different class/iris. These three images are known as
target, pos, and neg respectively. The current weights are



Dataset ERR C. EER Prior best
ND-0405 1.32% - Zhao et al. [40] .99%
UbirisV2 9.20% 35.00% Gangwar et al. [9] 8.50%
IITD 0.59% 1.90% Zhao et al. [40] 0.64%

Table 1: Summary of accuracy results. Full results in are
Tables 3, 4, and 5. The C. EER column describes the
accuracy of ThirdEye when training on ND-0405 and

testing on one of the other datasets.

evaluated based on the objective:

d(target, pos)− d(target, neg).

Triplet based networks focus simultaneously on minimizing
distance between images in the same class and maximizing
distance between images in different classes. Our system is
trained in batches; triples are selected (to use for weight up-
dates) by finding the current hardest triple. For each target,
the hardest triplet in a batch, the positive instance, pos, is
the image in the same class as target with the maximal
distance. Similarly, the negative instance, neg, is the image
not in target class with minimum distance to target. This
process is called triplet mining and is done for every target
in the batch. However, we find triplet networks collapse
due to the uniform black regions representing the sclera and
pupil. These regions make all images very similar to a ran-
domly initialized network. A normalized network would not
suffer from this problem.

To avoid this problem, our network begins with a partially
trained version of ResNet [10]. The network is pre-trained
using softmax classification and then trained using triplet
loss. For generalization purposes, the training and testing
sets inside a datasets are completely disjoint (have different
classes). Lastly, we add several test time augmentations to
produce an output feature vector (see Section 2).

In this work we consider three datasets:

1. ND-0405 [4, 28], is a large near infrared (NIR) dataset,

2. IITD [16], is a more controlled NIR dataset and

3. UbirisV2 [31], is a visible light and unconstrained
dataset.

We report on ThirdEye’s accuracy when testing and training
on the each dataset. We also show our system has promise
for generalization by training on the ND-0405 dataset and
testing on the UbirisV2 and IITD datasets. EERs (equal
error rate) of our system and state of the art are described in
Table 1.

Our accuracy rates are competitive with state of the art
systems that use normalization. The accuracy is achieved
under coarse segmentation [12] which does not remove eye

lash occlusions and reflections. Better segmentation would
increase recognition accuracy with modern methods. The
works of [14] and [13] explore the link between segmentation
and correct recognition.

Recently, Lozej et al. who argued that normalization
on harder datasets might be erroneous [21] propagating to
recognition errors. However, the most constrained dataset
(IITD) is where our accuracy improves over state of the
art. Accuracy rates for a slightly harder NIR dataset (ND-
0405) are less than state of the art. The least constrained
dataset (Ubiris) is where our accuracy is furthest from state
of the art. Thus, our current hypothesis is normalization is
least useful in constrained environments but is still important
in unconstrained environments. We discuss this further in
Section 4.

1.2. Related Work

Before turning to the technical description of our design
we provide more background on prior work. Discussing all
prior work is not possible in this space. We focus on the ma-
jor innovations in iris recognition and then turn to learning
based approaches relevant to our work. The seminal work
of Daugman [6] proposed using Gabor filters on normal-
ized iris images. The output from convolving the iris image
with the Gabor filter yields an iriscode. These iriscodes are
compared using Hamming distances. Traditional iris recog-
nition algorithms using Gabor filters are reproducible with
open source computer vision libraries. OSIRIS is an open
source implementation [26] that closely follows Daugman’s
techniques.

Early works rely on iris images captured using specialized
cameras having NIR sensors. Images captured using these
sensors expose the intricate details of the iris and are easier
to segment and extract features from. With the advent of
consumer digital cameras with RGB sensors, iris recognition
began including RGB images. The Ubiris dataset [30] fol-
lowed by the UbirisV2 dataset [31] are collected using RGB
sensors. UbirisV2 incorporates iris at a distance (IAAD)
images. More than 90% of its images include occlusions, are
blurred, or off-angle. Due to these factors segmentation, fea-
ture extraction, and recognition are all harder. The UbirisV2
dataset is still a challenge for iris recognition algorithms
with EER rates higher than EER rates on NIR datasets [36].

These harder datasets necessitated new feature extrac-
tion. Alonso-Fernandez et al. used scale invariant feature
transform (SIFT) to recognize irises [2]. Tan et al. [36]
use Zernike moments for iris recognition on the Ubiris.v2
dataset. Research work then transitioned to machine learn-
ing, an early paper by Raja et al. [33] made use of learnt
filters for smartphone based iris recognition. These methods
improved accuracy over Gabor filters.

The framework is thus robust under imperfect segmentation, notably
on the Ubiris.v2 dataset.









Figure 4: Triplet design. The top part of the figure shows training the ResNet with hard triples. The bottom shows feature
vector generation at test time.

ing parameters introducing some realness to the dataset. The
images are also RGB thus do not present clear iris patterns
as other NIR datasets. Images in the dataset are taken at
different distances which can lead to different results. The
segmented images of this dataset are of resolution 200×200.
All left eye images were used for training while 10 randomly
chosen images were taken for testing. As explained above
images captured at different distances yield different EER
rates, for ensuring unbiased results two test sets of 10 ran-
domly chosen images from testing class are created and the
accuracy rates were averaged.

3.2. Evaluation scheme

Feature vectors are generated for every image in the test
set. We use an all-all matching scheme where a feature vector
is compared with every other feature vector. This is done
for all the images in the test set. Large number of images
per class can help in the matching process, a feature vector
can match closely in its class if it has more templates for
its class. This however can also harm the matching process
due to the variation when matching across many images.
Simple datasets like IITD are ideal for an all-all matching
scheme. An unconstrained dataset like Ubiris where there
is high variability between images will yield low accuracy

in an all-all matching. To compare with the state of the art
by [40] we follow their evaluation scheme. They select the
first 10 images of the ND-0405 dataset while we pick 10
images at random to better check the generalizability of the
network. Randomly selecting images from the test set yields
similar EER numbers so comparison with state of the art
is still valid. Some incorrectly segmented images having
segmentation inaccuracy of more than 50% were removed
from the testing sets of ND-0405 and Ubiris. We use cosine
distance when comparing feature vectors. We find that it
delivers better accuracy than using L2 (Euclidean) distance.

4. Results

We propose two testing configurations. The first configu-
ration is training and testing on the same dataset. This con-
figuration validates the proposed iris recognition framework
and its accuracy on each individual dataset. The hardness of
a dataset will skew the results in this configuration. Some
level of generalization will be examined since the training
and testing sets are completely disjoint. The second config-
uration has a network trained on the ND-0405 dataset and is
used to recognize irises from the remaining datasets. This
configuration is designed to check the generalizability of the
trained network. We stress that the train/test splits of the
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