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Abstract

Iris recognition systems transform an iris image into a
feature vector. The seminal pipeline segments an image into
iris and non-iris pixels, normalizes this region into a fixed-
dimension rectangle, and extracts features which are stored
and called a template (Daugman, 2009). This template is
stored on a system. A future reading of an iris can be trans-
formed and compared against template vectors to determine
or verify the identity of an individual.

As templates are often stored together, they are a valu-
able target to an attacker. We show how to invert templates
across a variety of iris recognition systems. Our inversion
is based on a convolutional neural network architecture we
call RESIST (REconStructing IriSes from Templates).

We apply RESIST to a traditional Gabor filter pipeline, to
a DenseNet (Huang et al., CVPR 2017) feature extractor, and
to a DenseNet architecture that works without normaliza-
tion. Both DenseNet feature extractors are based on the re-
cent ThirdEye recognition system (Ahmad and Fuller, BTAS
2019). When training and testing using the ND-0405 dataset,
reconstructed images demonstrate a rank-1 accuracy of
100%, 76%, and 96% respectively for the three pipelines.
The core of our approach is similar to an autoencoder. To
obtain high accuracy this core is integrated into an adver-
sarial network (Goodfellow et al., NeurIPS, 2014)

1. Introduction

This work explores the vulnerability of storing the output
of an iris recognition system. Irises are strong biometrics
with a high entropy rate [25] and strong consistency [34,49].
The seminal processing pipeline due to Daugman proceeds
in three stages [9]. First, the iris region is segmented from
the rest of the image. Second, this region is normalized into
a rectangular representation. Lastly, a feature extractor, such
as a 2-dimensional Gabor filter is applied with the resulting
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values converted to binary to form a template. Daugman’s
pipeline is known as the iriscode.

Due to the noise experienced when collecting irises in
real environments, new pipelines are steadily proposed. In
most systems, there are two main stored values. The first
is the model or feature extraction mechanism (which may
be a traditional set of feature extractors or a deep neural
network architecture trained on irises). The second is a set
of output feature vectors known as templates that are used
to identify individuals. If a reading is collected the identity
of this person is calculated (or verified) as the identity of the
minimum distance stored iris provided that the distance is
less than some predefined threshold.

If an attacker has a target’s iris they may be able to gener-
ate spoofed iris images [22,47,50] to fool an iris recognition
system. There are multiple ways a spoofed iris can be pre-
sented to the iris recognition system including a printed iris
or a textured contact lens; these attacks are known as pre-
sentation attacks. Defenses to these attacks [8,12,41] are
usually trained on certain types of presentation attacks. As
an example, Chen et al. [7] use deep convolutional neural
networks (CNNs) to detect presentation attacks. Kohli et
al. [32] extract Zernike moments and local binary pattern fea-
tures which are used in a neural network classifier to detect
presentation attacks.

A second attack vector inverts a template back into a cor-
responding an iris image [13]. An attack is successful if the
resulting image is classified in the same class as the template
by the recognition system. Templates are more accessible to
an attacker than actual biometrics since recognition systems
store templates to compare against any input to the system.
Thus, if one can reconstruct an iris, one can execute a pre-
sentation attack in more settings. Galbally et al. [13] showed
how to invert a Gabor filter feature extractor.

While templates are usually encrypted at rest, for authen-
tication systems in use, templates will be unencrypted in
memory. Template protection and cancellable biometrics
protect against this threat [42,55]. Bloom filters are widely
used to protect Gabor filter based feature extractors [6,15,48].
Fuzzy extractors [11,29,30] have been used to provide secure



iris authentication [5, 18,45].

Our Contribution The primary contribution of this work
is a convolutional neural network architecture called RESIST
for REconStructing IriSes from Templates. RESIST effec-
tively reconstructs irises from a stored template. RESIST is
a black-box attack which does not utilize the specifics of
the feature extraction to train the reconstruction network.
However, we do assume knowledge of the length of the fea-
ture vector. RESIST is able to accurately reverse a variety of
iris template systems. RESIST has a core network which is
similar to an autoencoder. We first train this core and then
as the generator of the GAN. We apply RESIST to three iris
processing pipelines which are summarized in Figure 1:

RESIST-G A traditional Gabor filter based processing
pipeline (with segmentation and normalization before
applying Gabor filters).

RESIST-DN A deep neural network feature extractor based
on DenseNet [21] that works on normalized images.

RESIST-D A deep neural network feature extractor based
on DenseNet that directly works on segmented images.

Both deep neural network approaches build on the recent
ThirdEye architecture [2], see Section 2. Our goal is to
directly invert the resulting feature vector. For the neural
networks this is a vector of real values. It is a binary vector
for RESIST-G. In many applications, the real valued vector
resulting from a neural network is projected to a binary
vector using locality sensitive hashes [26], we leave inverting
this system as future work.

Our technical approach is drawn from the area of syn-
thetic iris generation. Recent machine learning techniques
such as generative adversarial networks or GANs [16] have
made it possible to generate synthetic irises given access
to a database. Yadav et al. [53] use RaSGAN (relativistic
average standard GAN) [28] to generate synthetic irises for
the purpose of studying their effects on presentation attack
defence (PAD) algorithms. Irises from the RaSGAN perform
well against PAD and follow real iris statistics well. Kohli et
al. [33] use the DCGAN architecture to generate synthetic
irises. Our reconstructed irises can be used in presentation
attacks in a similar fashion as these works.

Our approach can be seen as creating a synthetic iris
database with an important change. Instead of generating
a database of (synthetic) irises we focus on the individual
mapping from a single template to a corresponding iris. Re-
constructing irises from corresponding templates is a harder
task. Synthetic irises can be viewed as irises that must closely
resemble bonafide irises as discussed in [33,53]. The objec-
tive of RESIST is to create synthetic irises with the additional
constraint that they match the source template, therefore it
is not enough to learn the distribution of iris. RESIST must
learn from the individual template.

Figure 2 shows a standard iris image on the left. As
mentioned above, our approach has two training stages, first
we build a core that is similar to an autoencoder. This core is
then placed inside of GAN for a second training stage. The
center image is a reconstructed iris using the core, this image
has low pixel error (optimized by the core) with an average
pixel error of 3%. However, when matched with real iris
images, this technique only achieves rank-1 accuracy of 62%
and true acceptance rate of only 18.5% at 1% FAR. Rank-1
accuracy is how frequently an iris template of the same class
is the closest value in the dataset.

To deal with this inaccuracy, we introduce the second
stage of training, the core is moved inside a GAN as the
generator. When trained from scratch, this GAN collapsed.
To deal with this issue, we use three techniques:

1. Pretraining the core before training in the GAN (pre-
training was used in prior iris recognition networks [4]),

2. Adding noise to the real iris images during training, and

3. Using spectral normalization [38].

The right hand image in Figure 2 shows a characteristic
image output by RESIST.

We report rank-1 accuracy as well as accuracy metrics
from a recent facial reconstruction paper [36]. We report
this for both the RESIST templates and the corresponding
legitimate templates. The ND-0405 dataset for training and
testing. We summarize our findings here with the rank-1
of reconstructed irises compared with rank-1 accuracy for
legitimate irises (see Table 3):

e RESIST-D: 96.3% vs. DenseNet: 99.9%,
e RESIST-DN 89.3% vs. DenseNet Normal: 98.7%, and
e RESIST-G 97.1% vs. Gabor filter: 97.9%.

Underlying system accuracy is an upper bound for our
accuracy. We explore the accuracy rates further in Section 5.

Related Work Galbally et al. [13] use a genetic algorithm
which reconstructs irises from their Gabor filter templates.
Their method is stochastic and generates multiple irises from
a single template. Venugopalan et al. [50] show how given
an Gabor filter template f(x) for an individual x, another
individual y can transform their iris image into one with a
similar Gabor filter templateas x. Mai et al. [36] recently
considered reconstruction attacks on the facial biometric.
Their attack relies on a large training dataset containing 2
million facial images. To our knowledge such a large iris
dataset does not exist. Facial recognition is done using deep
neural networks which work on a centered face image to
generate a template. Iris as a biometric has multiple ways to
generate templates. We primarily explore the different types
of iris templates and use a single reconstruction network in
contrast to Mai et al. where a GAN is used to augment their
existing training dataset and train a reconstruction network
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Figure 1: Our iris reconstruction system. Blue lines represent 3 different iris processing pipelines. The traditional Gabor
filter pipeline is on the bottom. A DenseNet based pipeline on normalized images in the middle and a DenseNet pipeline on
unnormalized images on the top. Both DenseNet pipelines follow the three stages show in the top pipeline. These are drawn
from prior work and discussed in Section 2. For the two normalized pipelines, RESIST reconstructs normalized images while
for the pipeline without normalization it reverses to a segmented iris.

Figure 2: Iris reconstructions from templates. Original, net-
work core and GAN reconstructions respectively.

on the augmented facial images. To the best of our knowl-
edge, RESIST is the first attack that reconstructs irises from
deep learning based processing templates.

Organization The rest of this work is organized as fol-
lows. In Section 2 we describe the three attacked pipelines,
Section 3 describes the design of RESIST, Section 4 provides
an overview of the evaluation strategy and the dataset used
with results in Section 5. Section 6 concludes.

2. Iris Processing Pipelines

We apply RESIST to three iris processing pipelines. This
section briefly introduces the attacked pipelines. We explore
both Gabor filter and deep learning based systems.

In traditional iris recognition systems there are three
stages 1) segmentation, 2) normalization and 3) feature ex-
traction. The first stage segments the provided image into
iris and non-iris pixels. Normalization then converts the iris
region into a rectangular representation whose area is fixed.
This allows correction for different possible locations of the
iris within the image. Finally, features are extracted from this
normalized rectangle. In the traditional Gabor filter template
pipeline this extraction is two stages 1) convolutions with

Gabor filters and 2) binarization of the resulting complex
numbers. Subsequent iris readings by the system will un-
dergo the same procedure with Hamming distance used to
match templates. Our goal is to take the binarized template
and reconstruct back to the normalized iris representation.
We form a traditional iris recognition pipeline using USIT
software to do segmentation and normalization [20]. We use
transform 5 from Osiris’s [39] Gabor filter banks.

We consider two deep-learning based iris pipelines. We
use the NotreDame 0405 [3] to train these two models. Both
DenseNet networks use the first 25 left iris images of each
subject for training. The test comprises first 10 right iris
images of each subject. Both DenseNet networks are trained
to convergence (98% rank-1 accuracy on testing set). We
further report on the tradeoff between true and false accept
rates of these models in Section 5.

For both pipelines, the training process of the DenseNet
is to the specification of Ahmad and Fuller [2], however we
change our network from ResNet [17] to DenseNet. We
choose DenseNet-169 as our feature extractor. The ResNet
based architecture achieves an EER of 1.32% on the ND-
0405 test set specified by Ahmad and Fuller whereas chang-
ing to a DenseNet based architecture improves the EER to
1.16%. The resulting EER is close to State of Art EER of
0.99% [54]. The DenseNet learns feature embeddings per
iris by minimizing the triplet loss [44]. The trained network
outputs a 1024 dimensional feature vector per iris. A simple
augmentation of flipping the iris image along the horizontal
axis is done and another feature vector is extracted. This aug-
mentation improves the recognition accuracy finally yielding
a feature vector of 2048 dimensional feature vector per iris.

The first pipeline uses normalized iris images obtained
by using the USIT software. This feature vector serves as



the input for RESIST-DN.

The second pipeline is trained directly on segmented iris
images (again using DenseNet). We use the same DenseNet
variant and train it to convergence using the same iris (seg-
mented only) images. Since USIT directly outputs normal-
ized images for this pipeline we use segmentation pipeline
of Ahmad and Fuller [1]. The segmentation accuracy of the
segmentation tool is comparable to state of art. We call these
two pipelines DenseNetNormal and DenseNet respectively.

3. Design

The core of RESIST is a convolutional network similar
to an autoencoder. We train the core standalone and inside
a GAN as the generator. The objective of an autoencoder
is to compress its input to form a feature representation
and then recreate the input from the compressed feature
representation. That is, the autoencoder learns two functions
f and f’ where the range of f has smaller dimension and
9= f'(f(x)) = x for all trained values.

We slightly abuse this framework, we use templates as
the input value z and try to reconstruct iris images y. Our
core is based on U-Net [43] which has been used in pix2pix
GANSs [24] for image to image translation and fits our tem-
plate inversion use case. The full architecture is presented
in Section 3.3. We first describe the loss functions for the
network core when trained standalone. We then describe
integration in the GAN, and finally present the overall archi-
tecture.

3.1. Standalone Network Core Training

Our standalone core training works in two stages. First,
we train the core using the L1 loss. Our models minimize the
absolute differences (of pixels) between the predicted and the
ground truth iris image. The L1 loss or mae (mean absolute
error) provides crisper details in reconstructed images than
L2 loss [51]. The L1 loss function:

Zhﬂu'y(h’ ’LU) - g(h w)'
h xw

Lmae = ; (l)
where h, w denote the height and width of the image, y is
the original image and g is the output of the core. Finally,
mae is the mean absolute error or the L1 loss. To fine tune
the reconstructions we add two new losses. The first opti-
mizes the Structural similarity (SSIM) [52] between images.
Structural similarity measures the product of two terms. The
first term of SSIM is roughly the product of the two image
means normalized by the sum of means. The second term
is the covariance of the two images normalized by the sum
of variance. The actual definition adds an additional term in
the normalization to account for small values. We minimize
structural dissimilarity between the real and reconstructed
images:

Figure 3: Iris reconstructions after addition of L1 loss, SSIM
loss and perceptual loss from left to right.

Lssiv =1 —SSIM(y,7) ()

The third loss function is the Perceptual loss [27]. This
loss takes as input the reconstructed image from the first
head (T2 in Figure 4) and passes it through a pre-trained
VGG16 [46] network. This VGG16 network is trained on the
ImageNet dataset [10] and not fine tuned on any iris dataset.
The VGG16 network serves as a texture based feature ex-
tractor where an intermediary layer represents textures in the
reconstructed iris image. Perceptual loss minimizes the L2
distance between textures of the real and reconstructed iris
images.
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where ¢ denotes activations of VGG16 after its 9th convolu-
tion operation, C,H,W are layer activation dimensions and y
and g are real and reconstructed iris images.
The need for the three loss functions To illustrate how the
three loss functions work to improve the core, we discuss
accuracy numbers of this standalone core using the DenseNet
pipeline as an example. Reconstructions using just L,,qe
capture the boundary and some high level textures of the
iris. However, such images have an average L1 distance of
8%. Furthermore, the quality of these images is not high,
the left of Figure 3 shows a reconstruction using just L, qe.
Adding Lggras improves the image quality and actually
reduces Ly,qe to 4%. Lgsra improves the reconstructions
of the first head by extracting features from the output of
the first head and trying to reconstruct an iris image by
minimizing structural dissimilarity. The reconstructed irises
now contain better textured iris patterns however they are not
sharp relative to their equivalent real irises. This can be seen
in the center iris of Figure 3. Finally, we employ L peyceptual
loss [27]. Average L1 distance after using perceptual loss
drops to 3%. Furthermore, the texture quality improves as
well, see the right image in Figure 3.

To summarize, the standalone training for the core has
two phases, first the core is trained on just the L1 loss to
capture the iris structure. The second phase adds two losses
and one extra head to the core. The two heads are T2 and
T3 in Figure 4. Both L,,4. and Lperceptuar are on the T2



head. The T3 head minimizes Lgsyps. The standalone core
is trained to minimize the loss:

LAE - aLPerceptual + 5Lmae + ’YLSSIM (4)

Where «, 3, v are weight terms for the equation with values
2,1,1 respectively.

3.2. Improved Core Training in a GAN

We discussed training the core in a standalone fashion.
Now we train the core as a generator inside a GAN. The
idea for this comes from prior work which shows training
autoencoders in an adversarial setting yields better results
than training the standalone [37].

The final architecture is a GAN which takes as input a
template and yields a reconstructed iris image (see Figure 4).
In essence when RESIST is coupled with a feature extractor
network for template inversion an autoencoder is formed
where an iris image is converted to a template by the feature
extraction network and back to an iris image by RESIST. A
GAN has a generator which generates images and a discrimi-
nator which judges how good the generated images are. Our
generator is the core discussed above. We use a recently
proposed relativistic average discriminator [28] as our dis-
criminator. To build up to the relativistic discriminator we
first start with the original GAN loss functions:

L(D) = = Eywp, .., [log(D(y))] Q)
—Ejp . [log(1 = D(3))]
L(G) = = Ejpy,. [log(D(9))]- (6)

L(D) is called the discriminator loss and L(G) is called the
generator loss. y and ¢ are the original and reconstructed
irises. In the original GAN a noise vector is sampled from
a multivariate normal distribution with a mean of 0 and a
variance of 1. This vector is transformed into an image by
the generator while the discriminator compares the generated
image and the ground truth image. P,..; is the distribution
of real images and Py, is usually a multivariate normal
distribution with mean of 0 and variance of 1, P4y, is the
distribution of the iris templates for RESIST.

Both losses are minimized using gradient descent. The
generator and discriminator play a zero sum game. The gen-
erator weights are updated on how good its fake images are
while the discriminator weights are updated on how well
it differentiates between real and fake images. A discrim-
inator outputs a probability, therefore the last layer of the
discriminator is a sigmoid activation. To achieve this we add
a sigmoid function o as the last layer of a discriminator, we
then define a discriminator D as:

D(y) : o(C(y)) ()
Where ¢ is the sigmoid function and C' is a layer in any
discriminator preceding the final sigmoid output. This layer

is layer T4 in our architecture shown in figure 4. C(x) is
thus the non-transformed discriminator output (before the
sigmoid function). The discriminator will ideally output 1
for real images and 0 for fake images.

We use the relativistic average discriminator in our work
which judges the generated images relative to their real coun-
terparts and vice versa. Then:

DRa(y) =0
Dra(9) = o(C(§ — E[C(y])) ©)

Where E is an averaging operation which averages all
fake data samples in a batch. With the definition of a dis-
criminator above, the two original loss functions become:

L(Dpga) =~ Ey P, ca [log(Dra(y))] (10)
—Egjopy,.[log(l — D(9))]
L(GRa) = — Egnr,or. [l0g(Dra(9))] an

—Eyp,.., [l0g(1 — D(y))]

7 is the generated output from the convolutional network
core and y is the real iris image. The generator takes tem-
plates as input to generate reconstructed irises, Prqr. is
therefore the distribution of the templates and P,..,; is the
distribution of the real iris images. The final loss for the
generator of all variants of RESIST becomes:

L(GRESIST) - L(GR{I) +aLPe7'ceptual +6Lmae +7LSSIM
(12)

To summarize, all RESIST variants are trained in two
stages. The core is trained standalone using the process
described in Section 3.1. This trained core is then used as
the generator of a RESIST network which is trained as a
GAN. Both training stages use the Adam optimizer [31].

Training In addition to using the relativistic discrimina-
tor and using an already trained generator we employ differ-
ent techniques to stabilize the training of RESIST. Spectral
normalization [38] is applied to both discriminator and gen-
erator. Convolution and dense operators are both normalized
using their spectral norms. Spectral normalization provided
sufficient stabilization for RESIST training, hence other sta-
bilization techniques were not used. We also use two time
scale update rule [19] for training, our learning rates are
1x1075 and 1.5x10~° for the generator and discriminator
respectively. Gaussian noise sampled from a normal distri-
bution of mean 0 and variance 1 is added to every pixel of
real irises during training. RESIST variants are trained for
400 epochs (200 steps per epoch) with a batch size of 12.
Each batch consists of y and j pairs.

For RESIST-D and RESIST-DN the template is the output
of the DenseNet based feature extractor and the DenseNet
Normal feature extractors described in Section 2. From an
architectural point of the view the only difference is the



DenseNet

.DS3DS4 T4

Relativistic
average
Discriminator

DSZ SSIM Ioss

. I-—( Discriminator loss |

L1+ Perceptual loss |

Generator

D5 T2

Figure 4: RESIST architecture. The generator reconstructs iris images from its corresponding template. The discriminator
judges the reconstructed iris as real or fake. The DenseNet is not part of RESIST training. Perceptual loss is minimized by
passing reconstructed iris from T2 to a VGG16 network which is not shown in the figure.

output dimension. RESIST-G differs from both RESIST-
D and RESIST-DN in input templates because it is binary
(instead of real-valued).

3.3. Architecture

RESIST architecture borrows concepts from U-Net [43]
which has skip connections [17] from all its encoder layer to
its decoder layers. The use of skip connections allows more
gradient to flow through the network.

The layer and architecture details are in Tables 1 and 2
respectively. The architecture is shown using DenseNet as
an example pipeline in Figure 4. First layer (T1) transforms
the template to the same dimension of the iris image. This
is done using a FC layer. The encoder consists of five lay-
ers (E1-5 in Table 2), each layer has a convolution operation
with a LeakyReLU [35] activation followed by batchnormal-
ization [23]. Dimensionality is reduced by strided convolu-
tion. The decoder also has five layers (D1-5 in table 2), each
layer has deconvolution operation with a ReLU activation
followed by batchnormalization. Each decoder layer accepts
a skip connection from its corresponding encoder layer, as an
example encoder layer 5’s gradient will be added to decoder
layer’s 1’s gradient and so on for other layers in the encoder-
decoder architecture in a U-Net fashion. Dimensionality is
regained by strided deconvolution.

The first head of RESIST reconstructs the iris image us-

Layer Elements

T1 Dense

E* Conv(Stride 2),BN,LeakyReL.U
D#* DeConv(Stride 2),BN,ReLU,Skip
T2 Conv

T3 Dense,Conv

DS* Conv(Stride 2)

T4 Dense

Table 1: Layers

Layer OutputSize Kernels

Input 1x1024 -

T1 1x256x256 1

E{1-5} Input Size/2 | 32,64,128,256,512,64,128,256
D{1-5} Input Size*2 512,256,128,64,32

T2 1x256x256 1

T3 1x256x256 1

DS{1-4} | Input Size/2 128,128,128,128

T4 1 1

Table 2: GAN architecture

ing a convolution operation coupled with a sigmoid activa-
tion (T2) while minimizing the L1 loss from equation 1. This
reconstructed image is passed through a VGG16 network
to have its perceptual loss minimized shown in equation 3.
The reconstructed image from the first head is also passed
through another series of encoder layers and another recon-
structed iris image is formed. These encoder layers accept
skip connections from the encoder-decoder. This second



reconstruction is formed by using a dense layer with pixels
equivalent to the dimension of the iris image followed by a
convolution operation coupled with a sigmoid activation (T3)
which minimizes the loss in equation 2.

The reconstructed image from the first head is output and
fed to the discriminator along with its corresponding real
image. The discriminator judges the reconstruction relative
to the real iris image. The discriminator has four layers each
comprising strided convolution operations (DS1-4). After
the fourth convolution the features are flattened and passed
to a dense layer which has a sigmoid activation outputting a
probability (T4).

4. Evaluation

The ND-0405 [3] dataset contains 64,980 iris samples
from 356 subjects and is a superset of the NIST Iris Chal-
lenge Evaluation dataset [40]. Iris images are captured using
the LG 2200 (Near infrared) biometric system. The images
have blurring from motion and some out of focus images.

Methodology We described how the two DenseNet mod-
els are trained in Section 2. All three RESIST variants are
trained on features from all remaining left iris images from
each subject (apart from the 25 images per subject used to
train the feature extractors). The testing set for all three
pipelines is 20% of right iris images. The training and test-
ing set is kept same for all three pipelines. We consider the
right and left irises of a subject as separate classes based
on prior work showing statistical independent [9]. Training
and testing sets are class disjoint. Furthermore, no training
images for RESIST are used in training the DenseNet models.

DenseNet All images used to train DenseNet feature ex-
tractor and train RESIST-D have been segmented using a
publicly available Mask R-CNN based iris segmentation
tool [1]. The feature extractor (DenseNet) is trained on
these images while minimizing the triplet loss and generat-
ing feature embeddings per iris. The segmented irises do not
contain any non-iris occlusions. The segmented images are
centered and resized to a resolution of 256x256 and directly
fed to the feature extractor without any pre-processing.

DenseNetNormal For RESIST-DN the images are seg-
mented and normalized using the USIT software. The im-
ages are of resolution 64x512. These images contain some
non-iris occlusions (eyelid, eyelashes). We do not use the
masks provided per iris image by the USIT software. The
normalized iris images are directly fed to the normalized iris
feature extractor.

Gabor Filter For the Gabor filter feature extractor, we
use filter bank 5 from OSIRIS. The binarized output after
convolution of normalized iris image with filter bank 5 of
OSIRIS is our template. This is fed to RESIST-G which
learns to reconstruct back the corresponding normalized iris
image.

We explore two types of attacks defined by Mai et al. [36],
Type-1 attack where a reconstructed iris is matched with
its corresponding real iris and Type-2 attack where recon-
structed irises are matched with real irises of the same class.
Type-1 and Type-2 accuracy depend on a distance thresh-
old. This distance threshold is varied to trade off between
TAR/FAR. When we vary between TAR/FAR we are chang-
ing the threshold according to the feature extractors and
observing the resulting change on RESIST. We also report
Rank-1 of our reconstructed irises. Rank-1 accuracy is an
all-all matching and does not use a threshold. A recon-
structed iris has its distance calculated across the entirety of
the real dataset. A true positive in this case is if the lowest
distance (between a reconstructed and a real iris) is with an
iris of the same class. We use the cosine distance for our
deep templates and the Hamming distance for Gabor filter
templatebased template.

5. Results

We summarize our results in Table 3 and Figure 5. In
Table 3, the legitimate row describes our three accuracy
measures on legitimate irises. Note that Type-1 accuracy
will always be 100% for a deterministic, legitimate transform
(as the exact same template will be produced twice).

The first reconstruction is done using RESIST-D. The
DenseNet based feature extractor is robust, achieving 99.9%
rank-1 accuracy on legitimate irises on the test set. RESIST-
D achieves a rank-1 accuracy of 96.29% when matching the
reconstructed test set against the real test set. This means
that in a recognition system a reconstructed iris would be
classified as a member of the stored database 96% of the time
amatch is made. True acceptance rate at 1% false acceptance
rate is 43.3% which represents the Type-2 accuracy rate for
RESIST-D. Type-1 accuracy for RESIST-D is 76%. We also
show results from our standalone network core.

Template inversion for deep templates for normalized
irises works better than irises without normalization. The
Rank-1 accuracy is lower at 89% for RESIST-DN vs 96%
for RESIST-D. We attribute this to the normalized feature
extractor model having worse accuracy compared to the seg-
mented iris feature extractor (98% vs 99%). We also do not
use any masks from the USIT software therefore the feature
extractor has to learn extra information about occlusions.
Eyelashes and eyelids are some common occlusions found
in normalized iris images. RESIST-DN has higher Type-1
and Type-2 accuracy rates than RESIST-D. The Type-1 ac-
curacy rate is especially high at 96% when compared to the
Type-1 accuracy of RESIST-D at 76%.

Previous works have shown that Iriscode based templates
can be inverted [14]. We achieve similar results with RESIST-
G. Reconstruction accuracy across all three metrics is high.
The Type-1 reconstruction accuracy for RESIST-G is 100%.
This means that every iris in the test set reconstructed using
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Pipeline Method Typel Type2 | Rank-1
DenseNet Legitimate 100% 98.7% 99.9%
RESIST-D 759% | 43.28% 96.3%
Core 30.3% 18.5% 62.2%
DenseNet | Legitimate 100% 95.2% 98.7%
Normal RESIST-DN | 96.7% 62.5% 89.3%
Gabor Legitimate 100% 88.2% 97.9%
RESIST-G 100% 85.2% 97.1%

Table 3: Reconstruction accuracy for 3 different pipelines.
Legitimate shows the accuracy of the underlying pipeline,
while the second row shows accuracy for RESIST images.
True acceptance rate (TAR) is at 1.0% FAR.

RESIST-G matched with its real counterpart with a Hamming
distance below the threshold. Type-2 and Rank-1 accuracy
is comparable to accuracy numbers for the true dataset.

Discussion Reconstruction accuracy is proportional to
recognition accuracy of a model. If all the important features
are being captured by the feature extractor for comparison,
then these features are also available for inversion.

Type-1 error validates RESIST networks learning features
of a particular image while Type-2 error validates if the learnt
features can accurately reconstruct irises of a specific person.
The gap in these errors can be attributed to the variance
among the irises of a single person.

The RESIST-D template is hardest to invest. We theorize
this is due to limited spatial correlation between irises as the
feature extraction network takes as input segmented only iris
images. Only iris regions are present in the image which
are hard to invert. Gabor filter templateis the easiest to
invert since the template contains texture information of the
original iris. Occlusions in the Gabor filter templateare well
defined and are helpful in the inversion process. Among the
deep templates normalized iris based templates are easier to
invert than non-normalized iris based templates. We attribute
this to spatial correlation in the irises and the presence of

occlusions. Some deep learning feature extractors use masks
per iris image [54], we do not use any masks in our work. We
hypothesize that masks would provide additional information
to the reconstruction. We believe this would improve both
recognition and reconstruction accuracy.

Type-1 accuracy for RESIST-DN is higher than the Type-
2 original accuracy curve in Figure 5 after 1% percent FAR.
We attribute this to sharp reconstructions since the recon-
struction network behaves both as a reconstruction and super
resolution network due to the presence of perceptual loss.

6. Conclusion

We study inverting three types of templates, Gabor filter
templatewhere prior work exists and has good inversion re-
sults and deep templates where there is limited prior work.
Our iris reconstruction networks perform well on all three
types of templates, with deep templates proving harder to
invert than Gabor filter template. Within the two deep tem-
plates segmented only iris templates are harder to invert than
normalized iris based templates. Our work reinforces the
value of template protection mechanisms. In particular, it
seems important to find template protection mechanisms
that work on real valued feature vectors where comparison
is via the cosine distance. Future work should look into
template inversion across datasets, inversion of binary vec-
tors produced from deep neural networks, and the feasibility
of storing templates which have limited spatial correlation
with their corresponding biometrics. Template inversion in
the presence of template protection such as encryption or
random sampling is also another direction for future work.
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