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Abstract—Fuzzy extractors (Dodis et al., Eurocrypt 2004)
convert repeated noisy readings of a high-entropy source into
the same uniformly distributed key. The functionality of a fuzzy
extractor outputs the key when provided with a value close to the
original reading of the source. A necessary condition for security,
called fuzzy min-entropy, is that the probability of every ball of
values of the noisy source is small.

Many noisy sources are best modeled using continuous metric
spaces. To build continuous-source fuzzy extractors, prior work
assumes that the system designer has a good model of the
distribution (Verbitskiy et al., IEEE TIFS 2010). However, it
is impossible to build an accurate model of a high entropy
distribution just by sampling from the distribution.

Model inaccuracy may be a serious problem. We demonstrate
a family of continuous distributions )V that is impossible to
secure. No fuzzy extractor designed for /V extracts a meaningful
key from an average element of V. This impossibility result
is despite the fact that each element W < )V has high fuzzy
min-entropy. We show a qualitatively stronger negative result
for secure sketches, which are used to construct most fuzzy
extractors.

Our results are for the Euclidean metric and are information-
theoretic in nature. To the best of our knowledge all continuous-
source fuzzy extractors argue information-theoretic security.

Fuller, Reyzin, and Smith showed comparable negative results
for a discrete metric space equipped with the Hamming metric
(Asiacrypt 2016). Continuous Euclidean space necessitates new
techniques.

I. INTRODUCTION

Many physical processes have entropy but exhibit noise
between readings of the same process [1]-[9]. When a se-
cret is read multiple times, readings are close (according to
some metric dis) but not identical. Wyner [10] and Bennett,
Brassard, and Robert [1] identified two fundamental tasks:
1) Information-reconciliation: removing noise without leaking
information and 2) Privacy amplification: converting an en-
tropic secret to uniformly random. We focus on non-interactive
protocols that provide information-theoretic security.

In this setting, information reconciliation is performed by
a secure sketch [11]. A secure sketch is a pair of algorithms
(SS, Rec). Sketch or ss <— SS(w) converts an initial reading
w to a nonsecret helper value ss. Let ¢ be an error parameter.
Then recover or Rec(w’, ss) should output w if dis(w, w’) < ¢.
The security requirement for a secure sketch is that w is hard
to predict given ss.

A fuzzy extractor performs both tasks [11] and consists
of two algorithms. The generate algorithm ((key, pub) <«

Gen(w)) produces a key and nonsecret value pub. The re-
produce algorithm (key < Rep(w’, pub)) reproduces key if
dis(w,w") < t. The value key should be statistically close to
uniform knowing pub. Most fuzzy extractors combine a secure
sketch and a randomness extractor [12]. We consider sources
W over a continuous metric space. We consider n-dimension
space with Euclidean distance: dis(z,y) = />, (z; — y;)%.

The key question in designing a continuous-source fuzzy
extractor [13] is which distributions W can be “secured.” In
asking whether a distribution W can be secured, one considers
a specific distance tolerance t. Fuller, Reyzin, and Smith [14]
introduced a precise notion to measure a noisy distribution’s
suitability for stable key derivation called fuzzy min-entropy.
Fuzzy min-entropy codifies the adversary’s success when
provided with only the functionality of a fuzzy extractor (or
secure sketch).

For a distribution W, with just functionality of Rep (or Rec),
the adversary’s best strategy is to find w’ that maximizes the
weight of possible w € W within distance ¢ of w’. Denote
by Bi(w') the closed ball of radius ¢ around w’. Fuzzy min-
entropy is formally defined as

HEZE (W) <~ log (max Pr{IW € By(w')])

Since fuzzy extractors are designed for entropic distributions,
the designer only has a model of the underlying physical
process. After deployment, the adversary may spend more time
modeling, resulting in a more accurate model. As a result fuzzy
extractors work for all distributions in a family W/. Ensuring
security for a whole family is called the distributional uncer-
tainty setting.

Fuller, Reyzin, and Smith presented a family of distributions
W where each element W € W has fuzzy min-entropy such
that no fuzzy extractor (Genyy, Rep,,,) can simultaneously se-
cure the family WV. That is, any fuzzy extractor (Genyy, Repyy))
must be insecure for at least one element W € VYV assuming
the adversary knows the probability distribution W and the
public helper value. Their result is for discrete Hamming
space.

Our Contribution and Techniques We show a family of
distributions VW where no fuzzy extractor or secure sketch can
secure VW (Theorems IV.1 and V.1 respectively). That is, there
is a family W such that for any cryptographic construction
designed for W there exists an adversary that breaks security.



The secure sketch result is qualitatively stronger as it holds
even if the secure sketch is allowed to be wrong a constant
fraction of the time. The geometry of continuous Euclidean
space is more challenging than discrete Hamming space and
necessitates new techniques.

To give intuition we consider the case of a secure sketch
(SS, Rec). Our result relies on the following asymmetry: SS
sees only w sampled from W while the adversary knows
which distribution W was used to sample w <— W. For error
tolerance the public output ss must have some information
about w. If the family W is carefully designed we can argue
the adversary gains independent knowledge from ss and the
distribution W. Together this independent knowledge can be
used to break security. In both negative results there are two
key components:

1) Leakage: Arguing that the public value ss restricts the

set of possible w. For SS to be correct for w it must hold
that for most nearby w’, Rec(w’, ss) = w. Denote by C
the set of all points w where Rec of nearby points is w.
More formally,

c={u

The points in C' form a Shannon error correcting code.
This implies that Va,y € C, dis(xz,y) > t/2. Since C
forms a code, one can bound the size of C' using packing
arguments.

2) Independence: Knowing the distribution W provides
independent and new information about the point w.
To show that learning the distribution W gives fresh
information, we consider distributions W that are the set
of all points with the same output of a universal hash
family [15]. That is, the description of W has two parts,
the description of a hash function & and an output y.
A distribution W), ,, is the uniform distribution over the
set {w|h(w) = y}. Since the hash is universal and h is
not known to the SS algorithm, given w, the rest of the
support of W is unknown. Thus, the information in h(y)
reduces the uncertainty on the point w.

Pr [Rec(w', ss) = w] > 1/2} :

w’ |dis(w,w’)<t

The hash function we use is all points in the coset of a random
p-ary lattice with minimum distance ¢. This hash function and
the resulting family of distributions is described in detail in
Section III.

For a fuzzy extractor, showing the Leakage property is more
delicate because a continuous region can map to the same key.
The adversary instead partitions the metric space based on the
output key and consider only points in the interior of each part.
Using volume arguments we can show that many distributions
in YW must not have any points in the interior of most parts.

Prior Positive Results for a single distribution Recent
work [14], [16] shows that for any discrete distribution W
with (super-logarithmic) fuzzy-min entropy there is a secure
discrete fuzzy extractor (Genyy, Repyy,). These constructions
need to know the probability distribution function of W
exactly and are not instantiable in polynomial time. This is
called the precisely known distribution or distribution sensitive

setting. However, these techniques are inherently limited to
discrete metric spaces.

Prior continuous-source fuzzy extractors applied quantiza-
tion or partitioned the input space. As an example, Verbitskiy
et al. [17] describe a continuous-source fuzzy extractor in
the precisely known distribution model for distributions over
[0,1]. However, it is not clear how their technique extends
to multiple dimensions. While Verbitskiy et al. [17] extend
their construction to the distributional uncertainty setting, they
only show security when the statistical distance between the
observed distribution 17 and the actual distribution W is small.
The distributions described in this work can not be accurately
estimated using a polynomial number of samples.

To the best of our knowledge it is not known how to
build a continuous-source fuzzy extractor for each distribution
with fuzzy min-entropy. Prior work either considers a small
constant number of dimensions [17] or requires dimensions
of the input to be uniform or independently distributed [18].
The major open question resulting from this work is whether
continuous-source fuzzy extractors exist for each distribution
with fuzzy min-entropy.

Correlated random variables A rich line of research views
w and w’ as samples from a correlated pair of random
variables [10], [19]-[24]. Key length is bounded based on
mutual information. These works consider the precisely known
distribution setting.

Organization The remainder of this paper is organized as
follows, Section II covers basic notation and mathematical
prerequisites, Section III shows the family of distributions
W that is used in both negative results, Section IV shows
our fuzzy extractor negative result, and Section V shows our
secure sketch negative result. We focus on the fuzzy extractor
negative result as it is more challenging.

II. PRELIMINARIES

We use uppercase letters for random variables and cor-
responding lowercase letters for their samples. Multiple oc-
currence of the same random variable in an expression sig-
nifies the same value of the random variable: for example
(W,SS(W)) is a pair of random variables obtained by sam-
pling w according to W and applying the algorithm SS to
w. The statistical distance between random variables A and
B with the same domain is SD(4,B) = 1Y |Pr[4 =
a)l — Pr[B = b]|.

All logarithms in this work are base 2. Let (X,Y) be
a pair of random variables. Define min-entropy of X as
Hoo(X) = —log(max, Pr[X = z]). The average (condi-
tional) min-entropy [11, Section 2.4] of X given Y is

I:IOO(X|Y) = —log ( E maxPr[X =z|Y = y]> )
yey =z

Fuller, Smith, and Reyzin [14] proposed fuzzy min-entropy to
measure suitability of a noisy distribution for key extraction.
Fuzzy min-entropy captures the adversary’s success probabil-
ity when provided with the functionality of the primitive. We
adopt this notion:



Definition I1.1. The t-fuzzy min-entropy of distribution W in
a metric space (M, dis) is:

Hf"*(W) = —log max/ dw | .
' W Jwe M|dis(w,w’) <t

In the above, the measure assigns probability 1 to M and for
any set X assigns probability | X |/|M|.

Fuzzy extractors derive stable keys from noisy sources.

Definition IL.2. [11] An (M, W, k,t,¢)-fuzzy extractor is a
pair (Gen,Rep). Gen on input w € M outputs an extracted
string key € {0,1}* and a helper string pub € {0,1}*. Rep
takes w' € M and pub € {0,1}* as inputs. (Gen, Rep) have
the following properties:
1) Correctness: if dis(w,w") < t and (key, pub) + Gen(w),
Pr[Rep(w’, pub) = key] = 1.
2) Security: VIV € W, if (Key,Pub)
SD((Key, Pub), (U,, Pub)) < e.

+— Gen(W),

Recovering w from w’ forms the core of many fuzzy ex-
tractor constructions. The primitive that performs just recovery
is called a secure sketch. We recall the definition from [11,
Section 3.1]:

Definition IL.3. An (M, W, m,t)-secure sketch with error ¢
is a pair (SS,Rec). SS on input w € M returns a bit string
ss € {0,1}*. Rec takes an element w' € M and ss € {0,1}*.
(SS, Rec) have the following properties:
1) Correctness: Vw,w’ € M if dis(w,w’)
Pr[Rec(w’,SS(w)) = w] > 1 = 6.
2) Security: for any W € W, H(W|SS(W)) > .

< t then

III. THE FAMILY OF DISTRIBUTIONS W

In this section we describe the family of distributions W
used in our negative results for both fuzzy extractors and
secure sketches. We use different properties of this family
in the two negative results, however, all of the properties
are achieved by the same family of functions. Our negative
results are for an average element of V. Thus, instead of
thinking of the adversary as receiving the description of W
we think of the adversary receiving Z where Z describes
the uniform choice of W from W and we use Wy to
refer to an individual distribution. We define Z to be the
restriction of the uniform distribution to points that have a
particular output for a specified element of a hash family. Z
consists of two components z = (A, h) that correspond to the
description of the hash and its output respectively. We then
define W, = {w|Hasha(w) = h}.

The key to both results is showing that it is hard to recover
A,h from a single w and that the hash has good geometric
properties. The required properties are: 1) universality 2)
regularity 3) the set W, has minimum distance and 4) a large
volume is required to cover every possible output of the hash
family for every fixed A.

The hash function we use is the coset of the input point
with respect to a random p-ary lattice with minimum distance

> t. Let K be the set of lattices of all p-ary lattices A,(A)
where A € Zp*™ has minimum distance tp defined by
Ap(A) = {y € Z; : y = As mod p for some s € Z™}.
Define Hashac 4 : (R/Z)™ — (R/pZ)™ /A, (A) be defined by

T [pac]Ap(A)

where we understand [px] (a) to be a coset containing px
with respect to the lattice. Scaling a random lattice to the
unit cube is known as Construction A and is well studied
in the lattice packing literature (Conway and Sloane [25]).
In our presentation we expand the input point rather than
compressing the lattice.

Note: The family is stated with respect to the input
space (R/Z)™. This metric space will be used in Section IV.
Section V uses the metric [0, 1]”. We only use the first three
properties in Section V and these properties carry over to
[0, 1]™.

Theorem IIL.1. Let p be some prime and let n,m € Z*
such that m = pn for some p € (0,1/2). For some matrix
A € Zp*™ define the lattice Aj(A) = {Ax|x € Z;'}. Let A be
the set of all lattices with minimum distance t' = tp = Tp\/n
where T = (6p*y/2e)™1. Define Hashac(w) = [pw]a, (A)-
If p > (3v2e)Y0~1) the following are simultaneously
achieved:
1) is 2 %-universal for a = (n—m)logp—1, that is Vv, #
vy € (R/Z)™,
Pr [Hasha(v1) = Hasha (vg)] < 27 ((n=m)logp—1)
A—A
2) is p™ regular, that is
VA € A, h € Range(Hasha), |Hashy ' (h)| > p™,

3) preimage sets have minimum distance t for t = T+/n,
that is VA € A, vy # va, if

Hasha(v1) = Hasha(va) then dis(vi,v2) >t

- )

4) and has p~""-preimage volume, that is
VAe AV C (R/Z)",

Vol(V)
pHn :

Pr [Hashy'(h) NV # 0] <

h<—Range(Hasha)

The proof of this theorem is delayed to the full version [26].

IV. NO FUZZY EXTRACTOR CAN SECURE W

We now prove it is impossible to build a fuzzy extractor that
secures W. As discussed in the introduction we use (R/Z)"
as the input space equipped with the Euclidean metric.

Theorem IV.1. Let v > 1 be a constant. Let M = (R/Z)™.
Let pu € [0,1/2) be a constant and define m = pn. Then there
is a W of distributions (see Section IIlI) with parameters
1) Let p be a prime such that p > (3v/2¢)'/ (=),
. _ 1
2) Noise rate T = TS and
3) Forall W e W, H'Z = Hoo (W) > m,
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We show the impossibility for an average member of W.
Recall that we think of the distribution W € W as being
described by an auxiliary variable Z that is a pair (A, h)
where W, = {w|Hasha(w) = h}. The hash function we use
is Hashaca : (R/Z)™ — (R/pZ)™/A,(A) be defined by

T = [Px]A (A)

where [pz]a () the coset of the input point with respect to A.
The COIldlthIlS of Theorem IV.1 implies those of Theorem III.1
and thus we can use Theorem III.1. For this proof we need
the regularity, minimum distance, and preimage volume condi-
tions. By the 2™-regularity and minimum distance properties
of Hash, Vz € Z,Hoo (W) = H{"22(W.) = m.

We now want to show that for a random z <+ Z, if
(key, pub) is the output of Gen(W,), then key can be easily
distinguished from uniform in the presence of pub and z. The
outline for the proof is as follows:

« Without knowing z, the value w is uniform.

o The value pub partitions the key space.

« Each part is the partition created by pub is bounded in

size.

e Valid w come from the interior of a part (by correctness
of Rep, for every candidate input w to Gen all of its
neighbors w’ produce the same output of Rep(w’, pub)).

e The volume of the interior of a part is smaller than the
volume of a part.

e Many parts have interior volume smaller than the preim-
age volume of the lattice (the volume of the Voronoi
region of the lattice).

« Many elements W € WV have no point in the interior of
the part.

« By averaging across parts, the average distribution 1V has
no points in the interior of many parts.

e It is possible to distinguish a random key from one
produced by Gen by checking if it comes from a part
whose interior has no preimage in W.

The proof of theorem is delayed to the full version [26].

Parameter discussion: There are settings of u, 7,k = ©(1)
such that the statistical distance € is a constant. Taking
logp™ < log(b‘/_'h/_) —.1334 implies that x only needs

to satisfy x > 1 + log 7. Substituting p > (3v/2¢)/1 1) and
ignoring factors due to finding a prime p this condition holds
when p < .045. When v = 4 then € > .35 (when k > 3). The
full setting of achievable parameter ranges for a constant s, €
are in Figure 1.

V. NO SECURE SKETCH CAN SECURE W

‘We now show no secure sketch can be secure for an average
member of W. We consider the metric space [0, 1]™ but we can
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Fig. 1. Tradeoff between entropy rate p and noise rate 7 for both fuzzy
extractors (red) and secure sketches (blue). Illustration of parameters in
Theorem IV.1 and Theorem V.1. In this analysis we assume that there always
exists a prime of size exactly 3(26)1/(17“). The allowed noise rate 7 may
be reduced to find such a prime. Recall that Bertrand’s postulate states that a
prime exists between n and 2n for any integer n > 1.

embed other bounded, continuous spaces of finite dimension
into the unit cube.

Theorem V.1. Ler M = [0,1]" with the Euclidean metric
dis where n is even positive integer. Let u € [0,%) be a

constant and define m 4 un. There is a family VW where
for all W € W, HYZ (W) = Hoo(W) > m, such that for
any (M, W, M, t)-secure sketch with error 5, we have i < 3
provided the following conditions hold:

1) n > 2(ha(20) 4 loge). Note that n > 6 suffices.

2) Let p be a prime integer parameter such that p >

(3v/2e) W
3) Define the noise rate T 4 t/\/n where T = 6pl"1\/2_e'
4) The error parameter § satisfies

log(1/7) >
2(1 — p)logp

1
selo, = —
€ (0,3

Parameters As an example, p = .3 implies that p > 129,
so if we consider p = 131, we have that 7 < .017 and § < .08.
That is, there is a family with constant fuzzy entropy, constant
error rate, and constant error where no good secure sketch
exists. The trade-off between p and 7 is illustrated in Figure 1.

Interpreting the result: A secure sketch “discretizes” the
input space into regions that produce a consistent value. Thus
it is not surprising that a continuous secure sketch is not
always possible. Note, the geometry of the Euclidean metric is
more challenging than the Hamming metric due to the slower
growth of volume. Proof of this theorem is delayed to the full
version [26].

VI. CONCLUSION

Our two results show that model inaccuracy may be a major
hurdle to constructing a continuous source fuzzy extractor.
There are three ways to overcome our results:

1) Our results use distributions W that have fuzzy min-

entropy at most .5n and algorithms that correct ¢ ~



.074/n errors (see Figure 1). One may be able to avoid
these results when more fuzzy min-entropy is present or
less error tolerance is required.

2) One could use properties of a distribution beyond fuzzy
min-entropy. For example, Li et al. [18] assumed that
dimensions were independently distributed.

3) Some discrete fuzzy extractors provide computational
security [27]-[33]. One could provide computational se-
curity instead of information-theoretic security. We are
not aware of any prior continuous-source fuzzy extractors
that argue computational security.

For secure sketches we considered the metric space [0, 1]™.
Our results can be extended to other bounded subsets of R".
Our fuzzy extractor result instead considers (R/Z)™. This is
due to a technical limitation of the proof technique. We show
that the volume of the interior of a part is smaller than the
volume of the part. Roughly, maximum security drops by a
factor proportional to the ratio between these volumes. To get
a good bound on key length (reducing by a factor proportional
to n) this ratio must be exponential in the dimension n. In the
metric space [0, 1]™ most parts can be on a boundary of the
unit cube. In the worst case these objects can be 1-dimension
so their interior volume is only a constant factor smaller than
their total volume.

We consider this to be an artifact of working with the
unit cube. If a fuzzy extractor only secures points on the
boundary then the data does not simultaneously vary in n
dimensions. Since extraneous dimensions complicate error-
correction, a system designer would first reduce dimensionality
(see for example [34]) to find a representation that varies
across all dimensions. This transformed distribution would be
used for stable key derivation. In the “mod” space there are
no boundary points, the entire region is “n-dimensional.”
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