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Abstract—Fuzzy extractors (Dodis et al., Eurocrypt 2004)
convert repeated noisy readings of a high-entropy source into
the same uniformly distributed key. The functionality of a fuzzy
extractor outputs the key when provided with a value close to the
original reading of the source. A necessary condition for security,
called fuzzy min-entropy, is that the probability of every ball of
values of the noisy source is small.

Many noisy sources are best modeled using continuous metric
spaces. To build continuous-source fuzzy extractors, prior work
assumes that the system designer has a good model of the
distribution (Verbitskiy et al., IEEE TIFS 2010). However, it
is impossible to build an accurate model of a high entropy
distribution just by sampling from the distribution.

Model inaccuracy may be a serious problem. We demonstrate
a family of continuous distributions W that is impossible to
secure. No fuzzy extractor designed for W extracts a meaningful
key from an average element of W . This impossibility result
is despite the fact that each element W ∈ W has high fuzzy
min-entropy. We show a qualitatively stronger negative result
for secure sketches, which are used to construct most fuzzy
extractors.

Our results are for the Euclidean metric and are information-
theoretic in nature. To the best of our knowledge all continuous-
source fuzzy extractors argue information-theoretic security.

Fuller, Reyzin, and Smith showed comparable negative results
for a discrete metric space equipped with the Hamming metric
(Asiacrypt 2016). Continuous Euclidean space necessitates new
techniques.

I. INTRODUCTION

Many physical processes have entropy but exhibit noise

between readings of the same process [1]–[9]. When a se-

cret is read multiple times, readings are close (according to

some metric dis) but not identical. Wyner [10] and Bennett,

Brassard, and Robert [1] identified two fundamental tasks:

1) Information-reconciliation: removing noise without leaking

information and 2) Privacy amplification: converting an en-

tropic secret to uniformly random. We focus on non-interactive

protocols that provide information-theoretic security.

In this setting, information reconciliation is performed by

a secure sketch [11]. A secure sketch is a pair of algorithms

(SS,Rec). Sketch or ss ← SS(w) converts an initial reading

w to a nonsecret helper value ss. Let t be an error parameter.

Then recover or Rec(w′, ss) should output w if dis(w,w′) ≤ t.
The security requirement for a secure sketch is that w is hard

to predict given ss.

A fuzzy extractor performs both tasks [11] and consists

of two algorithms. The generate algorithm ((key, pub) ←

Gen(w)) produces a key and nonsecret value pub. The re-

produce algorithm (key ← Rep(w′, pub)) reproduces key if

dis(w,w′) ≤ t. The value key should be statistically close to

uniform knowing pub. Most fuzzy extractors combine a secure

sketch and a randomness extractor [12]. We consider sources

W over a continuous metric space. We consider n-dimension

space with Euclidean distance: dis(x, y) =
√

∑n
i=1(xi − yi)2.

The key question in designing a continuous-source fuzzy

extractor [13] is which distributions W can be “secured.” In

asking whether a distribution W can be secured, one considers

a specific distance tolerance t. Fuller, Reyzin, and Smith [14]

introduced a precise notion to measure a noisy distribution’s

suitability for stable key derivation called fuzzy min-entropy.

Fuzzy min-entropy codifies the adversary’s success when

provided with only the functionality of a fuzzy extractor (or

secure sketch).

For a distribution W , with just functionality of Rep (or Rec),

the adversary’s best strategy is to find w′ that maximizes the

weight of possible w ∈ W within distance t of w′. Denote

by Bt(w
′) the closed ball of radius t around w′. Fuzzy min-

entropy is formally defined as

Hfuzz
t,∞ (W )

def
= − log

(

max
w′

Pr[W ∈ Bt(w
′)]
)

.

Since fuzzy extractors are designed for entropic distributions,

the designer only has a model of the underlying physical

process. After deployment, the adversary may spend more time

modeling, resulting in a more accurate model. As a result fuzzy

extractors work for all distributions in a family W . Ensuring

security for a whole family is called the distributional uncer-

tainty setting.

Fuller, Reyzin, and Smith presented a family of distributions

W where each element W ∈ W has fuzzy min-entropy such

that no fuzzy extractor (GenW ,RepW) can simultaneously se-

cure the familyW . That is, any fuzzy extractor (GenW ,RepW)
must be insecure for at least one element W ∈ W assuming

the adversary knows the probability distribution W and the

public helper value. Their result is for discrete Hamming

space.

Our Contribution and Techniques We show a family of

distributionsW where no fuzzy extractor or secure sketch can

secureW (Theorems IV.1 and V.1 respectively). That is, there

is a family W such that for any cryptographic construction

designed for W there exists an adversary that breaks security.



The secure sketch result is qualitatively stronger as it holds

even if the secure sketch is allowed to be wrong a constant

fraction of the time. The geometry of continuous Euclidean

space is more challenging than discrete Hamming space and

necessitates new techniques.

To give intuition we consider the case of a secure sketch

(SS,Rec). Our result relies on the following asymmetry: SS

sees only w sampled from W while the adversary knows

which distribution W was used to sample w ←W . For error

tolerance the public output ss must have some information

about w. If the family W is carefully designed we can argue

the adversary gains independent knowledge from ss and the

distribution W . Together this independent knowledge can be

used to break security. In both negative results there are two

key components:

1) Leakage: Arguing that the public value ss restricts the

set of possible w. For SS to be correct for w it must hold

that for most nearby w′, Rec(w′, ss) = w. Denote by C
the set of all points w where Rec of nearby points is w.

More formally,

C =

{

w

∣

∣

∣

∣

Pr
w′|dis(w,w′)≤t

[Rec(w′, ss) = w] ≥ 1/2

}

.

The points in C form a Shannon error correcting code.

This implies that ∀x, y ∈ C, dis(x, y) ≥ t/2. Since C
forms a code, one can bound the size of C using packing

arguments.

2) Independence: Knowing the distribution W provides

independent and new information about the point w.

To show that learning the distribution W gives fresh

information, we consider distributions W that are the set

of all points with the same output of a universal hash

family [15]. That is, the description of W has two parts,

the description of a hash function h and an output y.

A distribution Wh,y is the uniform distribution over the

set {w|h(w) = y}. Since the hash is universal and h is

not known to the SS algorithm, given w, the rest of the

support of W is unknown. Thus, the information in h(y)
reduces the uncertainty on the point w.

The hash function we use is all points in the coset of a random

p-ary lattice with minimum distance t. This hash function and

the resulting family of distributions is described in detail in

Section III.

For a fuzzy extractor, showing the Leakage property is more

delicate because a continuous region can map to the same key.

The adversary instead partitions the metric space based on the

output key and consider only points in the interior of each part.

Using volume arguments we can show that many distributions

in W must not have any points in the interior of most parts.

Prior Positive Results for a single distribution Recent

work [14], [16] shows that for any discrete distribution W
with (super-logarithmic) fuzzy-min entropy there is a secure

discrete fuzzy extractor (GenW ,RepW ). These constructions

need to know the probability distribution function of W
exactly and are not instantiable in polynomial time. This is

called the precisely known distribution or distribution sensitive

setting. However, these techniques are inherently limited to

discrete metric spaces.

Prior continuous-source fuzzy extractors applied quantiza-

tion or partitioned the input space. As an example, Verbitskiy

et al. [17] describe a continuous-source fuzzy extractor in

the precisely known distribution model for distributions over

[0, 1]. However, it is not clear how their technique extends

to multiple dimensions. While Verbitskiy et al. [17] extend

their construction to the distributional uncertainty setting, they

only show security when the statistical distance between the

observed distribution W̃ and the actual distribution W is small.

The distributions described in this work can not be accurately

estimated using a polynomial number of samples.

To the best of our knowledge it is not known how to

build a continuous-source fuzzy extractor for each distribution

with fuzzy min-entropy. Prior work either considers a small

constant number of dimensions [17] or requires dimensions

of the input to be uniform or independently distributed [18].

The major open question resulting from this work is whether

continuous-source fuzzy extractors exist for each distribution

with fuzzy min-entropy.

Correlated random variables A rich line of research views

w and w′ as samples from a correlated pair of random

variables [10], [19]–[24]. Key length is bounded based on

mutual information. These works consider the precisely known

distribution setting.

Organization The remainder of this paper is organized as

follows, Section II covers basic notation and mathematical

prerequisites, Section III shows the family of distributions

W that is used in both negative results, Section IV shows

our fuzzy extractor negative result, and Section V shows our

secure sketch negative result. We focus on the fuzzy extractor

negative result as it is more challenging.

II. PRELIMINARIES

We use uppercase letters for random variables and cor-

responding lowercase letters for their samples. Multiple oc-

currence of the same random variable in an expression sig-

nifies the same value of the random variable: for example

(W, SS(W )) is a pair of random variables obtained by sam-

pling w according to W and applying the algorithm SS to

w. The statistical distance between random variables A and

B with the same domain is SD(A,B) = 1
2

∑

a |Pr[A =
a]− Pr[B = b]|.

All logarithms in this work are base 2. Let (X,Y ) be

a pair of random variables. Define min-entropy of X as

H∞(X) = − log (maxx Pr[X = x]) . The average (condi-

tional) min-entropy [11, Section 2.4] of X given Y is

H̃∞(X|Y ) = − log

(

E
y∈Y

max
x

Pr[X = x|Y = y]

)

.

Fuller, Smith, and Reyzin [14] proposed fuzzy min-entropy to

measure suitability of a noisy distribution for key extraction.

Fuzzy min-entropy captures the adversary’s success probabil-

ity when provided with the functionality of the primitive. We

adopt this notion:



Definition II.1. The t-fuzzy min-entropy of distribution W in

a metric space (M, dis) is:

Hfuzz
t,∞ (W ) = − log

(

max
w′

∫

w∈M|dis(w,w′)≤t
dw

)

.

In the above, the measure assigns probability 1 to M and for

any set X assigns probability |X|/|M|.
Fuzzy extractors derive stable keys from noisy sources.

Definition II.2. [11] An (M,W, κ, t, ε)-fuzzy extractor is a

pair (Gen,Rep). Gen on input w ∈ M outputs an extracted

string key ∈ {0, 1}κ and a helper string pub ∈ {0, 1}∗. Rep
takes w′ ∈ M and pub ∈ {0, 1}∗ as inputs. (Gen,Rep) have

the following properties:

1) Correctness: if dis(w,w′) ≤ t and (key, pub)← Gen(w),
Pr[Rep(w′, pub) = key] = 1.

2) Security: ∀W ∈ W , if (Key,Pub) ← Gen(W ),
SD((Key,Pub), (Uκ,Pub)) ≤ ε.

Recovering w from w′ forms the core of many fuzzy ex-

tractor constructions. The primitive that performs just recovery

is called a secure sketch. We recall the definition from [11,

Section 3.1]:

Definition II.3. An (M,W, m̃, t)-secure sketch with error δ
is a pair (SS,Rec). SS on input w ∈ M returns a bit string

ss ∈ {0, 1}∗. Rec takes an element w′ ∈M and ss ∈ {0, 1}∗.
(SS,Rec) have the following properties:

1) Correctness: ∀w,w′ ∈ M if dis(w,w′) ≤ t then

Pr[Rec(w′, SS(w)) = w] ≥ 1− δ.
2) Security: for any W ∈ W , H̃(W |SS(W )) ≥ m̃.

III. THE FAMILY OF DISTRIBUTIONSW
In this section we describe the family of distributions W

used in our negative results for both fuzzy extractors and

secure sketches. We use different properties of this family

in the two negative results, however, all of the properties

are achieved by the same family of functions. Our negative

results are for an average element of W . Thus, instead of

thinking of the adversary as receiving the description of W
we think of the adversary receiving Z where Z describes

the uniform choice of W from W and we use WZ to

refer to an individual distribution. We define Z to be the

restriction of the uniform distribution to points that have a

particular output for a specified element of a hash family. Z
consists of two components z = (A, h) that correspond to the

description of the hash and its output respectively. We then

define Wz = {w|HashA(w) = h}.
The key to both results is showing that it is hard to recover

A, h from a single w and that the hash has good geometric

properties. The required properties are: 1) universality 2)

regularity 3) the set Wz has minimum distance and 4) a large

volume is required to cover every possible output of the hash

family for every fixed A.

The hash function we use is the coset of the input point

with respect to a random p-ary lattice with minimum distance

≥ t. Let K be the set of lattices of all p-ary lattices Λp(A)
where A ∈ Z

n×m
p has minimum distance tp defined by

Λp(A) = {y ∈ Z
n
p : y = As mod p for some s ∈ Z

m}.
Define HashA∈A : (R/Z)n → (R/pZ)m/Λp(A) be defined by

x 7→ [px]Λp(A)

where we understand [px]Λp(A) to be a coset containing px
with respect to the lattice. Scaling a random lattice to the

unit cube is known as Construction A and is well studied

in the lattice packing literature (Conway and Sloane [25]).

In our presentation we expand the input point rather than

compressing the lattice.

Note: The family is stated with respect to the input

space (R/Z)n. This metric space will be used in Section IV.

Section V uses the metric [0, 1]n. We only use the first three

properties in Section V and these properties carry over to

[0, 1]n.

Theorem III.1. Let p be some prime and let n,m ∈ Z
+

such that m = µn for some µ ∈ (0, 1/2). For some matrix

A ∈ Z
n×m
p define the lattice Λp(A) = {Ax|x ∈ Z

m
p }. LetA be

the set of all lattices with minimum distance t′ = tp = τp
√
n

where τ = (6pµ
√
2e)−1. Define HashA∈A(w) = [pw]Λp(A).

If p ≥ (3
√
2e)1/(1−µ) the following are simultaneously

achieved:

1) is 2−a-universal for a = (n−m) log p−1, that is ∀v1 6=
v2 ∈ (R/Z)n,

Pr
A←A

[HashA(v1) = HashA(v2)] ≤ 2−((n−m) log p−1),

2) is pm regular, that is

∀A ∈ A, h ∈ Range(HashA), |Hash−1A
(h)| ≥ pm,

3) preimage sets have minimum distance t for t = τ
√
n,

that is ∀A ∈ A, v1 6= v2, if

HashA(v1) = HashA(v2) then dis(v1, v2) ≥ t,

4) and has p−µn-preimage volume, that is

∀A ∈ A, V ⊆ (R/Z)n,

Pr
h←Range(HashA)

[

Hash−1
A

(h) ∩ V 6= ∅
]

≤ Vol(V )

p−µn
.

The proof of this theorem is delayed to the full version [26].

IV. NO FUZZY EXTRACTOR CAN SECUREW
We now prove it is impossible to build a fuzzy extractor that

secures W . As discussed in the introduction we use (R/Z)n

as the input space equipped with the Euclidean metric.

Theorem IV.1. Let γ ≥ 1 be a constant. Let M = (R/Z)n.

Let µ ∈ [0, 1/2) be a constant and define m = µn. Then there

is a W of distributions (see Section III) with parameters

1) Let p be a prime such that p ≥ (3
√
2e)1/(1−µ),

2) Noise rate τ = 1
6pµ
√
2e

, and

3) For all W ∈ W , Hfuzz
t,∞ = H∞(W ) ≥ m,





.07
√
n errors (see Figure 1). One may be able to avoid

these results when more fuzzy min-entropy is present or

less error tolerance is required.

2) One could use properties of a distribution beyond fuzzy

min-entropy. For example, Li et al. [18] assumed that

dimensions were independently distributed.

3) Some discrete fuzzy extractors provide computational

security [27]–[33]. One could provide computational se-

curity instead of information-theoretic security. We are

not aware of any prior continuous-source fuzzy extractors

that argue computational security.

For secure sketches we considered the metric space [0, 1]n.

Our results can be extended to other bounded subsets of R
n.

Our fuzzy extractor result instead considers (R/Z)n. This is

due to a technical limitation of the proof technique. We show

that the volume of the interior of a part is smaller than the

volume of the part. Roughly, maximum security drops by a

factor proportional to the ratio between these volumes. To get

a good bound on key length (reducing by a factor proportional

to n) this ratio must be exponential in the dimension n. In the

metric space [0, 1]n most parts can be on a boundary of the

unit cube. In the worst case these objects can be 1-dimension

so their interior volume is only a constant factor smaller than

their total volume.

We consider this to be an artifact of working with the

unit cube. If a fuzzy extractor only secures points on the

boundary then the data does not simultaneously vary in n
dimensions. Since extraneous dimensions complicate error-

correction, a system designer would first reduce dimensionality

(see for example [34]) to find a representation that varies

across all dimensions. This transformed distribution would be

used for stable key derivation. In the “mod” space there are

no boundary points, the entire region is “n-dimensional.”
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