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Abstract

Online learning is a framework for the design and analysis of algorithms
that build predictive models by processing data one at the time. Be-
sides being computationally efficient, online algorithms enjoy theoreti-
cal performance guarantees that do not rely on statistical assumptions
on the data source. In this survey, we describe some of the most im-
portant algorithmic ideas behind online learning and explain the main
mathematical tools for their analysis. Our reference framework is on-
line convex optimization, a sequential version of convex optimization
within which most online algorithms are formulated. More specifically,
we provide an in-depth description of Online Mirror Descent and Fol-
low the Regularized Leader, two of the most fundamental algorithms
in online learning. As the tuning of parameters is a typically difficult
task in sequential data analysis, in the last part of the survey we fo-
cus on coin-betting, an information-theoretic approach to the design of
parameter-free online algorithms with good theoretical guarantees.
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1. INTRODUCTION

The growing success of technologies based on machine learning is driven by the availability
of massive data sets in digital format. Processing these large amounts of data poses compu-
tational challenges that are not always properly addressed by traditional statistical learning
methods. For this reason, online or sequential learning, a framework specifically designed
to cope with big data scenarios, has become a key tool in machine learning applications.
Online algorithms go through the data points sequentially, using each new data point to
adjust their predictive model or estimator. Typically, this adjustment is “local”, as it only
involves the current model and the new data point. As each data point is often processed
in constant time, this results in an overall running time scaling linearly with the number of
data points. Besides the computational advantage, there are more reasons for which sequen-
tial learning may be preferred over other approaches. In many application domains—such
as online advertising, digital markets, sensor networks, mobile user applications—new data
are generated at high rates. In these cases, the sequential adaptation process of online
learning has the potential of capturing subtle nonstationary features of the unknown data
source.

A fundamental issue in machine learning is what mathematical assumptions on data
sources are reasonable to make. Online learning advocates an approach in which the source
is viewed as an arbitrary and unknown deterministic process. This is a radical departure
from classical statistical approaches to sequential decision-making—such as Bayesian de-
cision theory (Berger 2013) or Markov decision processes (Puterman 2014)—and finds its
roots in the pioneering works on repeated games by Robbins (1951), Hannan (1957), and
Blackwell (1956), where the data source consists of the opponent’s plays in a two-person
game. The theme of predicting individual, deterministic sequences also surfaced in other
disciplines, including information theory (Cover 1965, Feder et al. 1992), and computer sci-
ence (Borodin & El-Yaniv 2005). More recently, some of the online learning techniques—like
exponential weighted aggregation—have also appeared in the statistical literature (see, e.g.,
Dalalyan & Tsybakov 2008, Dalalyan et al. 2012, Rigollet et al. 2012).

Stripping the data source of any statistical assumption allows to define a crisp, min-
imalistic framework for investigating the notion of algorithmic learning, where only the
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empirical properties of the observed data sequence matter. A substitute for the notion of
statistical risk must then be introduced to define a notion of minimax optimality over the
sequence of losses in a mathematically rigorous way. In view of that, one should note that in
online learning we never measure the predictive power of a single model, but rather consider
the ensemble of models sequentially generated by the online learner while processing a data
sequence. The notion of risk that we use to evaluate this ensemble is appropriately called
sequential risk, and measures the extent to which each model generated by the algorithm is
able to predict the next element in the sequence. Sequential risk is thus associated with the
behavior of an algorithm on an individual data sequence. Based on sequential risk, we then
derive the notion of regret, which can be viewed as the online counterpart of the statistical
excess risk measured with respect to a class of predictive models. The control of regret is
the main goal in the analysis of online learning algorithms.

In the rest of this survey, we introduce and describe some of the most fundamental
online learning algorithms. Our goal is to explain the behavior of these algorithms through
the analysis of their regret. Therefore, rather than going through as many as possible of
the existing approaches to online learning, we prefer to focus on the conceptual foundations
and the main proof techniques. We believe this is a more effective way to keeping alive the
interest of someone who wants to know more about this exciting field of research.

1.1. Online convex optimization

The standard framework for the study of parametric online learning with convex losses' is
known as Online Convex Optimization, or OCO (see, e.g., Shalev-Shwartz 2012, Hazan 2016,
McMahan 2017, Orabona 2019). While it is also possible to design and study nonparametric
online learning algorithms, (e.g., Hazan & Megiddo 2007, De Rosa et al. 2015, Kuzborskij
& Cesa-Bianchi 2017), we focus here on the more common parametric setting.

As we said earlier, the data-generating mechanism of online learning is an unknown and
deterministic process. In OCO, the data process is replaced by a deterministic sequence
of unknown and convex loss functions ¢;, evaluating the performance of the models incre-
mentally generated by the algorithm. For example, if we want to cast linear regression in
the OCO framework, then the loss functions ¢ take the form ¢;(w) = (WTXt - yt)Q, where
w € R? is a linear prediction model and (x1,%1), (x2,%2),... € R? x R is the underlying
deterministic data sequence.

Throughout the paper, the model space X is a convex, closed, and nonempty subset
of R?, while a loss function is any nonnegative and convex function ¢; : X — R. For
any sequence f1,fs2,... of loss functions, an online learner A is a sequence Ai, Aa,... of
mappings with range X. The learner’s model at time ¢ is wy = A¢—1(f1,...,4—1), where
w1 = A; € X is the default initial model, and the learner’s loss at time ¢ is £;(w;). While
the notation wy = As—1({1,...,¢:—1) highlights the fact that w41 can depend on all the
past losses, we are especially interested in cases where the update w; — w11 can be done
efficiently based only on wy and #;. Also, for certain applications it makes sense to consider
special cases of this framework, where additional assumptions besides convexity are made
on the loss functions.

1Partial extensions of online learning to nonconvex losses have been recently considered by
Agarwal et al. (2019).
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1.2. Regret and sequential risk

The performance of the learner is measured according to the regret

T
Rr(u) =Y (t(wi) = Le(w))  forueX
t=1
Online learning is concerned with the design of algorithms for which R7(u) grows sublinearly
in T for all u € X and irrespective to the loss sequence (the so-called no-regret property).
The quantity - ZZ;I £y(wy) is sometimes called sequential risk (as opposed to the classical
statistical risk), thus sublinear regret implies that the excess sequential risk

T

25 tw) > )

converges to zero for any u € X.

Algorithms that enjoy the no-regret property can also be used to solve convex optimiza-
tion problems minwex f(W), which are viewed as instances of OCO with ¢; = f for all ¢.
Indeed, Jensen’s inequality shows that

weX

. 1 (<& - Rr(w*)
f(W) —min f(w) < (;&(Wt) —gég;;&(W)) < —F—

where W = £ (w1 +- -+ wr) is the average of the iterates wy and w* is the minimizer of f
in X. Similarly, we may also consider stochastic optimization problems minycx E [F (w, w)] ,
where the random variable F(w,-) is the stochastic objective and F(-,w) is convex for all
w € Q. Given access to i.i.d. draws w1, w2, . .., we can solve stochastic optimization problems
using a no-regret algorithm run with ¢;(w) = F(w,w;). Let w* € argmin,, ¢y E[F(w,w)]
and observe that, using Jensen’s inequality once more,

E[F(W,w) — F(w",w)] <E

1 — .
T tE:1 (F(wt,wt) — F(w ,wt)):|
1

=E T a

Rr(w*
(Zt(wt) — Kt(w*))] S E [%}
t=1
In machine learning, stochastic optimization is typically used to solve empirical risk mini-
mization problems

min 1 Z F(w,z) (1)

weX Mm 4
where z1,...,2, is a dataset and F(w,z;) measures the loss of w on the data point z;. If
F(-,z) is convex for all z, then we may set ¢, = F(-,Z;), where Z1,Z, ... are i.i.d. uniform

draws from the dataset.

1.3. Lower bounds

Consider the easy case when X is a bounded? set with diameter D and all losses /; are
Lipschitz on X, how well can we control the regret Rr in this scenario? It turns out that

2This can be a plausible assumption in many practical cases. For instance, in online linear
regression when upper bounds on max ||x¢||, and max |y¢| are known in advance.

N. Cesa-Bianchi and F. Orabona



the worst case for OCO occurs when all loss functions are linear. Interestingly, the proof
uses a stochastic rather than deterministic loss process. More specifically, let vi, vy € X

such that ||[v1 — vz||, = D and define zp = ﬁ Stochastic losses L1, Lo, . . . are defined
by Li(w) = &L zq W, where €1, €2, . .. are independent Rademacher random variables, i.e.,

P(et =1) =P(e¢ = —1) = %, and L > 0 is the Lipschitz constant for all the losses.
Now, fix any algorithm for OCO. Clearly, its regret satisfies

max  max RT(u)zE[ max RT(u)}

€1,...er ue{vy,va} ue{vy,va}

where the expectation is with respect to the random draw of €1,...,er. Moreover, since
E[Li(w)] = 0 for all w, we have

IE[ max RT(U):| =E

ue{vy,va}

max Z Lt(u):| (2)

ue{vi,va} i~

Now, using the elementary identity max{a, b} = 3 (a+b+|a—b|) and Khintchine inequality
(see, e.g., Cesa-Bianchi & Lugosi 2006, Lemma 8.2) we obtain that the right-hand side of

(2) is equal to
LD

where the equality is proven using zJ (vi — v2) = D due to our choice of zg. This shows
that we cannot expect the regret to grow slower that LD+/T—where D is the Euclidean

T

D e
t=1

L
—E
2

} > %\/ﬁ 3)

T
Zstzg (vi—v2)
t=1

diameter of X and L is the Lipschitz constant of the loss—unless the two main parameters of
our setting, that is the model space X and the loss process {1, {2, . . ., enjoy some additional
properties.

Lower bounds arguments based on the Khintchine inequality are rather common in
online learning, see Luo et al. (2016, Theorem 1) for an example close to the one presented
here. The effectiveness of stochastic loss sequences to prove tight lower bounds in OCO
settings in not accidental. To gain a better understanding of the connections between
stochastic and online learning, see Rakhlin & Sridharan (2014) who study online learning
as a minimax problem.

The game-theoretic roots of OCO are described by Cesa-Bianchi & Lugosi (2006). Since
then, the interface between sequential optimization, game theory, and statistics has been
intensively explored in many works, see the tutorial and surveys by Shalev-Shwartz (2007),
Hazan (2016), McMahan (2017), Orabona (2019).

2. ONLINE MIRROR DESCENT

We now introduce the most popular algorithm for OCO, Online Mirror Descent (or OMD for
short). OMD is the online version of the Mirror Descent algorithm of Nemirovsky & Yudin
(1983) for convex optimization. Mirror Descent is based on a generalization of projected
gradient descent in which distances in the model space X are not necessarily measured using
the Euclidean norm. This allows to take advantage of specific geometrical properties that X
may have. To see how this is done, we start from the iterates w1 = Ilx (wt — mVF(Wt))
of projected gradient descent on a convex and differentiable objective F : R* — R, where
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IIx denotes the Euclidean projection onto X and n: > 0 is the step size at time t. The
expression defining the iterates can be rewritten in an equivalent optimization form,

.1

Wii1 = argmin —— ||[w — w||2 + w ' VEF(w,)
wex  2m¢

Mirror Descent replaces the Euclidean norm in the above equation with a generalized dis-

tance, or divergence D,

Wiq1 = argmin LD(W, wi) +w ' VF(wy) (4)
wex 2

Following Beck & Teboulle (2003), the divergences used by Mirror Descent are parameter-

ized by mirror map functions ¢ : X — R that are strictly convex and continuously differen-

tiable on the interior of X. Given such a 1, the Bregman divergence Dy : X X int X — R is

defined by

T
Dy (u,w) = ¢(u) = ¢(w) = Vih(w) (u—w)

Note that D, is not necessarily symmetric and, since ) is strictly convex, is always nonneg-

ative and equals zero only when w = u. When 4 is also twice differentiable, then Taylor’s

theorem shows that 1
Dy, w) = 5 (u—w)  Vp(z)(u - w)

for some z on the line segment joining u and w. In other words, for i that are twice
differentiable the divergence locally behaves like a squared Mahalanobis distance. Just like
in the Euclidean case, we can also write the Mirror Descent update (4) using a Bregman
projection (see, e.g., Bubeck 2015, Section 4).

The online version of Mirror Descent is now straightforward to obtain. In order to avoid
considering iterates w; on the boundary of X, where Dy (-, w¢) is not defined, we restrict
the argmin in (4) to a convex and nonempty subset V C int X and, consequently, measure
the regret Rr(u) only for u € V. Let w1 € V and fix a sequence 1 > 172 > --- > 0 of step

sizes. Now, for any sequence £1, o, ... of differentiable loss functions, the iterates of OMD
are defined by
. 1
Wi = argmin — Dy, (W, we) + W' g (5)
wev 21

where g; = V/{;(w;). The differentiability assumption for the losses ¢; can be relaxed to
subdifferentiability, in which case g; is any element of the subdifferential of ¢; at w;. This is
useful because some popular loss functions, like the hinge loss £¢(w:) = max {O, 1 —ythxt}
for binary classification (y. € {—1,1}), are not everywhere differentiable. In the rest of this
survey, we use the same notation g: to denote V{;(w:) or any subgradient of ¢; at wy,
according to whether /; is differentiable or only subdifferentiable.

One might wonder why using a linear approximation w ' g; instead of the loss £;(w) in
the update of OMD. Indeed, the variant where £;(w) replaces w ' g; is called proximal point
method in the convex optimization literature and implicit update in the online learning
literature, see Kivinen & Warmuth (1997), Kulis & Bartlett (2010) and also McMahan
(2017, Section 6). Connections between implicit updates and optimistic updates in saddle
point optimization problems were investigated by Mokhtari et al. (2019), see also Section 3
of this survey. We now look at two important choices for the mirror map.

Euclidean. If ¢ = % ||-||2, then Dy (u, w) = Lu- w||3 and the OMD update become the
online version of gradient descent (OGD) with Euclidean projection, wiy1 = Ily(We —17:8¢).

N. Cesa-Bianchi and F. Orabona



Entropic. If X is the simplex of probability distributions over {1,...,d} and % is the
negative entropy ¥ (w) = >, wi Inw;, then Dy (u, w) = >, u; In 2% is the Kullback-Leibler
divergence (or cross-entropy) and the OMD update becomes the LExponentiated Gradient
(EG) algorithm of Kivinen & Warmuth (1997),

wt,ie_ntgt‘i

d—w izly...7d
Zj:l wy,je” It

Wt41,5 =

where g;,; are the components of the gradient g;. As in this case

lim ([ Va(w)]l, = o0 (©)
where bd X is the boundary of X, we can measure the regret Rr(u) against u € X instead
of restricting to u € V C int X. In fact, under the latter condition the update rule of OMD
will never return a point on the boundary of X. For instance, when losses are linear, >, 4
is always minimized at a u located on a corner of the simplex, and we can show that EG
(OMD with entropic mirror map) has vanishing regret with respect to any u in the simplex
X, including the corners.

We now look at a different interpretation of the update rule of OMD. First, let a
differentiable function f : X — R be u-strongly conver on V C int X with respect to a norm
[[-|| if for all u,v € V we have that f(u) > f(v) + Vf(v)" (u—v) + £ |u—v|?. Mirror
maps ¢ that are p-strongly convex with respect to a norm ||-|| define Bregman divergences
that grow faster than the square of the same norm, i.e., Dy(u,w) > & |lu — wl%.

For strongly convex mirror maps, an equivalent way of writing (5) is wiy1 =
Vi (Vipy(we) — m:8e), where the function v is the restriction of ¢ to V, ie., ¢v(w) =
P(w) if w € V and v(w) = oo otherwise. The function 93 : RY — R is the Fenchel
conjugate of ¥y, defined by

3(0) = max w0 — yu(w) (7)
weRd

Strong convexity ensures that 13 is differentiable and that Vi3 is the functional inverse of
Vpy. The function 1y maps the iterates w; to the dual space of gradients where a gradient
step is performed. The inverse function 1y maps back to the primal space of iterates. See
Figure 1 for a picture illustrating the OMD update. Going back to the previous examples,
we see that ¢ = %HH% = ¢*. When 1 is the negative entropy we instead have that
47(0) =In (L, ).

We now move on to analyze the regret of OMD, and show us how the change of ge-
ometry caused by the choice of the strongly convex mirror map v affects the algorithm’s
performance. The first step in bounding the regret Rr(u) consists in linearizing the loss
using convexity, £+(w¢) — ¢ (u) < gtT (Wt — u)7 recall that g = V/{;(w,) for differentiable
losses. We call linearized regret the resulting upper bound on Rr(u). Next, using the
properties of the optimization form for the OMD iterates (4), and the u-strong convexity
of the mirror map with respect to |||, it takes a few steps to prove that

2
neg (we —u) < Dy(u,we) — Dy(u, wey1) + ;L; llgell?

where ||-||, is the dual norm of ||-||. Now, dividing both sides by 7 > 0 and summing over
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Figure 1
A step of Online Mirror Descent (OMD) run with ¢y (the restriction to the model space V C X of

a strongly convex mirror map ). The function 3 is the Fenchel conjugate of ¢y. The vector gt
denotes the loss gradient V¢ (w¢) (or any subgradient of ¢; at w¢) and 7 > 0 is a variable stepsize.

t=1,...,T gives the following chain of inequalities

M~

RT(U) = (ét (Wt) — Kt(u))

o~
Il

1

g (wt — u) (linearized regret)

NE

o~
Il

1

M~

T
Dy (u, we) D1f)(uth+1)) 1 2
- + 5o D neligelly
( s o sl

t=1 e Tt
T—1 T
Dy(u,w1)  Dy(u, wri1) ( 1 1 > 1 2
= - + — — | Dy(u,w + — .
m Nr4+1 Z Met1 Mt v (1, We) 2p Zm e
< D—2+ (i——> —l——Znt lle:ll? (where D* = max Dy (u,w))
T nr m u,weV ¥

= —+—Znt gl (8)
We can now set n: = D, / =—%t—— and obtain

i llesll?

Rr (u) <2D

1 T
= llell? (9)
H t=1

Equipped with this result, we can see how the choice of the mirror map affects OMD
performance. Consider first OGD, where V is the closed Euclidean ball of diameter U and
¥ =23 If ||g]|, < G for some G > 0, then ||g¢||> = ||g¢|2 < G*d and OGD has a regret
bound of the form Rp(u) < 2U GVdT. Under these assumptions, losses have Lipschitz
constant L = max; ||g:||, < GV/d, and so this regret bound matches the lower bound (3)
of Subsection 1.3 up to constant factors. Therefore, in the Euclidean domain, OGD has
essentially optimal dependence on time, diameter of the model space, and Lipschitz constant
of the losses.

N. Cesa-Bianchi and F. Orabona



Next, consider EG, where V is the probability simplex and ¥(w) = 3. w; Inw;, which
is 1-strongly convex with respect to ||-||,. Here, we run into a problem because the diameter
of the simplex is unbounded when measured using the cross-entropy (i.e., the Bregman
divergence D, corresponding to the entropic mirror map). This prevents us from obtaining
a constant upper bound D? on max; D, (1, w;). We can fix this by choosing a constant step
size 1, which allows us to transform the regret guarantee (8) into the following alternative
bound,

Dy (u,wi) d
Rp(u) < =500 4 LS el (10)
n 2p =
Under the same assumption ||g:|| . < G as before, we get ||g:||> = |lg:||>, < G?. Hence,

choosing w1 = (1/d,...,1/d) as first iterate so that Dy (u,w1) < Ind, and setting n =
Vv (2Ind)/(G?*T), gives Rr(u) < G+/(T'Ind)/2. Using the squared Euclidean norm in
the same setting would instead give Rr(u) < QGM . Note that for linear losses the
quantity G4/ (T Ind)/2 is asymptotically minimax, including constants (see Cesa-Bianchi &
Lugosi 2006, Corollary 8.3). This shows the importance of matching the mirror map to the
geometry of the model space. From a practical point of view, the logarithmic dependence
on d in the regret guarantees that EG is robust to a large number of irrelevant features.

When the convex losses ¢; are induced by pairs (x¢, yt), as in f¢(w) = (WTXt fyt)z, then
loss gradients V¢, (w) are proportional to data points x;. In this case, bounds on Rr(u) for
OGD and EG depend on different products of dual norms: (max: ||x¢[, ) [[ul|, for OGD and
(max [|x¢]| ) [Jul|, for EG. Since |||, < ||l < [|ll,, neither bound dominates. However,
for sparse u, ||ul|,; approaches |ju||_ and EG performs better than OGD.

The analysis of OGD can be easily adapted to derive a regret bound for the Perceptron
algorithm of Rosenblatt (1958) for binary classification, without need of assuming linear
separability of the data sequence (see Freund & Schapire 1999). In the special case of
separable data sequences, the regret bound reduces to the result originally proven in the
well-known Perceptron Convergence Theorem (Block 1962, Novikoff 1963).

If the loss functions are known to be p-strongly convex and L-Lipschitz in V, then the
step size of OGD can be set more aggressively to n; = ui so to exploit the curvature. The

t
resulting bound on the regret is

2

Rr(u) < %L T +1) VeV

Note that there is no dependence on the diameter of the model space in this bound, but only
on the gradients of the losses (through the Lipschitz constant L). Many machine learning
algorithms, including Support Vector Machines (Cortes & Vapnik 1995), can be trained
using stochastic optimization over a training set of data points z1,...,2,, to minimize a
strongly convex functional F', see (1). A prime example of a stochastic gradient descent
algorithm is OGD run on the sequence of strongly convex losses ¢ = F(-,Z:), where Z; is
drawn at random from the dataset. The regret analysis of OGD with strongly convex losses
can be used to obtain rates of convergence to the minimum of F' in (1). This is done, for
example, to analyze the Pegasos algorithm of Shalev-Shwartz et al. (2011).

The EG algorithm is an instance of the multiplicative update method, a technique
that found applications in computer science (Littlestone & Warmuth 1994), game theory
(Fudenberg & Levine 1995), information theory, statistics, and other disciplines (see, e.g.,
Cesa-Bianchi & Lugosi 2006, Arora et al. 2012b). In the special case of linear losses with
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uniformly bounded coefficients, EG is known as the Hedge algorithm (Freund & Schapire
1997) and the corresponding setting is known as prediction with expert advice (Cesa-Bianchi
et al. 1997).

2.1. The AdaGrad algorithm

A variant of OMD that has become of widespread use as a stochastic gradient descent
algorithm for training neural networks is the AdaGrad algorithm, independently introduced
by McMahan & Streeter (2010) and Duchi et al. (2011). For simplicity, we look at the so-
called diagonal version of AdaGrad, which uses a coordinate-dependent step size.

Let V be the hyperrectangle [a1,bi] X -+ X [aq,ba] and D; = b; — a; for ¢ = 1,...,d.
AdaGrad runs OMD with mirror map ¢ = |]|*> and projection onto V. The iterates,
including the projection step, can be written as w¢41,; = max { min{we; — Ne,ige,i b, ai} for
i =1,...,d and an arbitrary initial point w1 € V. The components of the step size are

chosen as
D;

Tt,i = T
\/ 2 Zs:l g\g,z

The regret analysis is straightforward: after linearizing the losses so that £;(wy) — ¢ (u) <
g (wt — u), one can simply perform the standard OMD analysis independently for each
coordinate. By applying the bound (9) on each coordinate, and then summing over coordi-
nates, we obtain

RT(U)

IN

(11)

We can compare this bound to (9) with 4 =1 and ||-||, = ||||,- For simplicity, we take V
to be the hypercube with D; = 1, so that D in (9) is equal to v/d. Using Cauchy-Schwartz,

T

d
Z llgell3 < Z
=1

t=1

where (9) appears in the right-hand side and (11) appears in the middle. Hence, ignoring
the fact that the sequence of realized subgradients g is different for the two algorithms,
with this choice of V AdaGrad can gain up to a factor of v/d in the regret bound with
respect to plain OMD. Compared to the EG algorithm, which uses an entropic mirror map
on the probability simplex, here the advantage is brought by a coordinate-dependent step
size, which exploits the decomposability of the regret across the d coordinates granted by
the geometry of V.

Note that the specific choice of the step size makes the algorithm independent with
respect to rescalings of the coordinates (Orabona & P&l 2018). This property is especially
useful in neural network training, where the range of gradient components may vary a lot
across the different layers.

3. FOLLOW THE REGULARIZED LEADER

A very natural online learning strategy for the OCO setting is Follow the Leader (FTL),
which corresponds to predicting with the model minimizing the sum of the losses observed

N. Cesa-Bianchi and F. Orabona



so far,
t

W1 = argmin E Le(w)
weV o—1

Here w; € V is any convex, closed, and nonemtpy subset of R?. When losses are strongly
convex and Lipschitz in V, FTL achieves Rr(u) = O(InT) for all u € V (McMahan 2017,
Section 3.7). However, the curvature of each loss function is necessary to obtain a nontrivial
performance. When losses are linear, FTL provably incurs a regret that grows linearly in T'
(see, e.g., Shalev-Shwartz 2012, Example 2.2). This is caused by the intrinsic instability of
the algorithm: in a nonstochastic setting, one can design the loss sequence so that the tra-
jectory wi, wa,... of FTL models oscillates wildly in V, a behavior that the adversary can
exploit to increase the regret. Similarly to OMD, which achieves stability by forcing w41
to be not too far away from wy, see (5), FTL can be stabilized by adding a strictly convex
regularization function. The resulting algorithm, appropriately called Follow the Regular-
ized Leader (FTRL), is a close relative of OMD. Indeed, the regularization functions used
by FTRL are formally equivalent to OMD’s mirror maps ¢. As FTRL is not formulated as a
gradient descent method, we replace OMD'’s step sizes 7, with time-dependent regularizers

1. For any sequence 11,2, ... of strictly convex regularizers, FTRL iterates are defined
by
t
Wi1 = argmin Yy1(w) + ZES (w) (12)
weV o—1
where /1,42, ... is an arbitrary sequence of convex losses. From the viewpoint of regret

minimization, we know that £,(w) can be replaced by g. w (recall the linearization step in
Section 2), where g, is the gradient (or subgradient) of £s(ws). If we do that in (12), we
obtain

t
Wiy = argmin Y1 (w) + Zg;rw (13)
wev o—1

This is the version of FTRL we study in the rest of this section. Let v+ be the restriction
of 1; to V (see Section 2). If the regularizers 1y ; are all strongly convex, then w¢,1 in (13)

t
Wil = Vi1 (— ng>
s=1

where 9y ;1 ; is the Fenchel conjugate of v, ;1 (differentiability of 15 ;. is guaranteed by

has the closed form

the strong convexity of ¥y ¢+1). By letting 0:y1 = —(g1 + - - - + g¢), the FTRL iterates can
be written as wii1 = Vb§ ;41 (9t+1), see Figure 2. By comparison, the OMD iterates for
strongly convex mirror maps are written as w1 = Vo3 (6541) where 6, = Vipy(wy) —
Nt8t-

Note that FTRL keeps a state variable 8; in the dual space of gradients. This is mapped
to the primal space of iterates every time a prediction is needed. On the other hand, OMD
keeps its state w; in the primal space of iterates. This is then mapped to the dual space of
gradients every time an update must be computed. Another difference is that gradients are
all equally weighted in FTRL, whereas in OMD each gradient g; is weighted by a potentially
different step size ;.

FTRL was originally introduced by Abernethy et al. (2008), although the key ideas
are already contained in (Shalev-Shwartz 2007). The version with linearized losses and
Y= =3 |3 was introduced by Zinkevich (2004) as a “lazy update” variant of OMD.
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Figure 2

A step of Follow the Regularized Leader (FTRL) run with linearized losses and time-dependent
regularizers ¥y ; (these are the restrictions to the model space V C X of strongly convex
regularizers ;). The functions w{,, , are the Fenchel conjugate of ¢y ;. The vectors g: denote the
loss gradients V{:(w¢) (or any subgradient of ¢; at w¢), while the state variables 0; are simply the
sum of all past loss gradients, 8 = —(g1 + -+ + &¢t—1)-

In order to understand whether the two algorithms can produce the same sequence of
iterates, we focus on the case when 7, = 7 in OMD and ¢ = ¢ /n in FTRL, for all ¢. Then
we define the iterates of both OMD and FTRL through a common optimization problem
W1 = argming, oy Fi41(W), where

Frra(w) = Dy(w, we) +ng{ w (OMD)
Fr(w) = b(w)+ Y glw (FTRL)
s=1

When V is such that wey1 satisfies VFiy1(wer1) = O for both instances of Fyi1, a quick
computation shows us that for both choices of Fiy; the gradient vanishes when Vi)(wyy1) =
—n0:+1. Due to the strong convexity of 1, this is equivalent to w1 = VY (—n0it1).
Under these conditions, the two algorithm produce the same sequence of iterates. A concrete
setting in which the two algorithms become identical is V=R? and ¢ = % (1113

FTRL enjoys a regret bound similar to the one we stated for OMD. Let ¥ : V — R
be a p-strongly convex function with respect to a norm ||-||. Since FTRL is invariant to
positive constants added to the regularizers, without loss of generality we may assume that
minyev ¥ (u) = 0. For scaling factors f1 > B2 > ... > 0, let ¢ = ¢/B:. Then, for any

sequence {1, /2, ... of convex losses, the regret of FTRL satisfies
Y(w) | 1§
Rr(u) < —— + — 2 Vuev 14
o) < S5 Sl (14)

This is very similar to the OMD bound (8). However, unlike OMD where the step size n;
is used in the update wy — w41, in the above formulation FTRL uses the scaling factor
B¢ in the update wi—1 — w;. In particular, in FTRL (; cannot depend on g.

Given the similarities between OMD and FTRL, are there settings in which the latter
should be preferred over the former? Consider for instance the analysis of the EG algorithm
(i.e., OMD run with entropic mirror map and V set to the probability simplex). In this case
we can not use OMD with a variable step size because of the unboundedness of the Bregman
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divergence. When FTRL is applied to the same setting, the regret bound specializes to

where, we recall it, G upper bounds ||g:|| . for all ¢t. Taking 8; = \/(Ind)/(G?t) then gives
Rr(u) < 2GVTInd. Up to constants, this is the same as the bound we obtain for OMD
when the step size is tuned with prior knowledge of the number of rounds 7.

3.1. Online Newton Step

As mentioned at the beginning of this section, strongly convex losses are an easy case for
online learning. A simple algorithm like FTL achieves logarithmic regret on any sequence
of such losses whenever the strong convexity coefficients in the loss sequence are bounded
away from zero. A natural question is then whether logarithmic regret is possible for convex
loss functions that are not strongly convex but also not linear.

For any symmetric and positive semidefinite matrix M, introduce the semi-norm ||-||,,
such that |w|3, = w' Mw. As it turns out, the right curvature property sufficient to
guarantee logarithmic regret is the following:

A
() 2et(w)+gT(u—w)+§||u—w\|§gT uwevV (15)

for some A > 0, where g = V/{,(w) (or any subgradient if ¢; is only subdifferentiable). In

words, we require ¢; to be strongly convex only in the direction of its gradient (or in the

direction of some of its subgradients). For example, the square loss ¢;(w) = %(wat — yt)2

satisfies property (15) for A < g1z whenever |wat’7 ly:] < C (Hazan et al. 2007, Lemma 3).
Also, the logistic loss £;(w) = In (1 + exp(—w x)) satisfies property (15) when w belongs

—aly

to an Euclidean ball of fixed radius. More in general, any loss ¢; such that e is concave

in V for some a > 0 satisfies property (15) with A < 2 min{g5,a}, where D is the
Euclidean diameter of V and G is a bound on maxwev ||V£4:(w)||. Such losses are said to
be a-exp-concave in V (Kivinen & Warmuth 1999). If ¢; is twice differentiable, then a-exp-
concavity in V is equivalent to V2, (w) — aV{(w)VE(w) " being positive semidefinite for
all w e V.

Hazan et al. (2007, Theorem 6) prove a O(dInT) regret bound on FTL for all sequences

of loss functions ¢; satisfying (15) for some A > 0. They do so by introducing the quadratic

approximation of each loss function Zt(w) =li(we)+g (W—wi)+ 3 |lw— Wt”;grv where
g: = Vi (w:) and wi,wa,... € V are defined by /
t
Wil = argminz& (w) (16)
wev 1

(w1 can be defined arbitrarily). Observe that (16) is just FTL run on the losses £;. Moreover,
Ly(wy) = £i(wy) and, because of (15), £(u) < £i(u) for all u € V. This implies that the
regret of F'TL with respect to the original losses ¢; satisfies

Rr(u) <Y l(w) = > f(u)  VueV

www. annualreviews.org ¢ Online Learning Algorithms

13



14

The rest of the proof uses the special properties of the functions lZ to derive the desired
O(dInT) bound on the regret. Hazan et al. (2007, Lemma 4) also prove that (16) is
equivalent to
t
1
win=SE Y (8w -5 )

(17)

wess = argmin [w — wa |,

where S;t denotes the Moore-Penrose pseudoinverse of S; = gigl +-+gigl .
A similar O(d1nT) bound can be proven through a more general proof, this time using
the FTRL framework with linearized losses. Define the regularizers ¥1, 2, ... given by

_Iwli

P1(w) 5

and g (w) = du(w) + 5w~ w2, 7 (15)

where gy = V{4, (w;) and the w; are the FTRL iterates defined in (13),
t
Wiy = argmin Y1 (w) + ZEJW (19)
wev s—1

An equivalent and more explicit form for the iterates (19), which brings out the similarity
with (17), is

t
W1l£+1 = Agl Z (g;rws - 1)gs
s=1 (20)

. ’
Wiyl = argmin HW - Wi HA
weV ¢

where where Ag =1 and A; = A;_1 + )\gtg;r.

Each regularizer 1; of the form (18) is 1-strongly-convex with respect to the norm
II-I] a,_,- Using this property, and the special recursive form of these regularizers, one can
prove for this algorithm a regret bound of the following form: for any sequence ¢1, 2, ... of
losses satisfying (15),

a1, e 2 d AGT
< - 1 < — —_—
Rr(w) £ 752+ 5 3 Nl < 552 4 gptn (1455 (21)

where max, ||g¢||, < G and we used a standard majorization for bounding the sum of terms
||gt|\i;1 (see, e.g., Cesa-Bianchi & Lugosi 2006, Lemma 11.11 and Theorem 11.7).

One may also wonder whether the same logarithmic regret bound for losses satisfying
(15) could be achieved using OMD instead of FTL/FTRL as we did in this section. Noting
that, for M symmetric and positive definite, the divergence associated with ¢ = % ””?\1 is
D(u,w) =1|u-— w/||3,, we may introduce the following instance of OMD

_ o1 2 T
W41 = argmin — |w — Wf”At +w g
weV 2

where Ao = I, Ay = A1 + Agrgl , and g = V€(w;). The closed-form expression is

/ —1
Wiy = A g,

- , (22)
Wiyl = argmin HW — Wi HA,
weV :
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Note that this algorithm is rather different from both (17) and (20). Its regret analysis is
relatively simple, although it is not derived as a special case of the general OMD analysis
(which uses constant mirror maps). Fix any sequence {1, {2, ... of loss functions satisfying
(15). Since w41 is the projection of w;,; onto V, the update (22) ensures that

2
Iweer —ul, < [[wier —ul} = we —ull’, + &l A'g — 28/ (we — ) (23)

for all u € V. By the curvature property (15), we then have that

Me

2Rr(u (gt we —u) — A||wy — qutgtT)

t=1
T

<> (gl amr + liwe = wll%, = wess =y, = Alwe = ull? =) (using (23))
T T

= Z HgtHA el + D (W —w) (A= Ar — Al ) (we — )
t=1 t=1
T
z |gt|‘i;l + [ul2 (using the definition of A;)

Now note that the the above is exactly equivalent to the bound (21) which we proved for
FTRL.

3.2. Online linear regression

An important special case of online learning is (unconstrained) online linear regression,
where V = R% and the losses l(w) = % (wat — yt)2 are induced by an arbitrary and
deterministic sequence (x1,¥y1), (X2, ¥z),... of data points x; € R? and values y; € R. The
online version of the classical Ridge Regression algorithm by Hoerl & Kennard (2000) is an
instance of FTRL without linearized losses, see (12),

2
Wil = argmln = HW||2 + = Z (w Xs — ys) (24)

s=1

Letting Ay = I + ZZ:I XsX. , where I is the d x d identity matrix, the Ridge Regression
iterates (24) can be written in closed form as wy 1 = At_1 (y1x1 +- 4 ytxt). Online Ridge
Regression enjoys the following regret bound (Cesa-Bianchi & Lugosi 2006, Theorem 11.7),

2
Rr(u) < @ +dln (1 + % ( max ||Xt||2)> (t:r{{z?%Tét(wt)) Yu € R

This result shows a regret potentially logarithmic in time, except for the extraneous quantity
max; £;(w;) in place of the correct scaling factor max; yi. If we knew an upper bound Y
on maxy |y:|, then we could obtain the desired scaling by clipping predictions w; X; in the
interval [—Y,Y], (Vovk 2001, Theorem 4). Luckily, there is a better fix which does not
require any preliminary knowledge about max; |y:|: simply add to the objective function in
(24) an extra loss term associated with the data point x;+1 and the value y¢+1 = 0. As we
see next, this has the effect of shrinking (towards zero) the linear predictions w{ x;, thus
adding stability to the algorithm. Cesa-Bianchi & Lugosi (2006) call the resulting algorithm
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VAW, after Vovk (2001) and Azoury & Warmuth (2001) who independently introduced it.
VAW iterates are defined by

t
. 1 2 1 T ) 2 1 T 2
= = 5 s — Ys a 25
wier = argiin 5 Wil + 5 g (Whxe—pe) + 5 (W i) (25)
The closed form expression is simply w41 = A;rll (y1x1 +-- -+ytxt). In order to appreciate
how predictions are shrunk by the addition of the term %(WTXtH)Q, let jjgf} = W,IHXtH
be the Ridge Regression prediction computed via (24). Then, the VAW prediction ﬂt\f,_Alw =
w1X¢+1 computed via (25) satisfies

~RR
~VAW __ Yt41

Y41 = = -7 -
1+ XtT+lAt Xt+1

Clearly, |§t\j_A1W| < |§RR| whenever ||x¢y1]|, > 0. It is interesting to compare VAW to a

Gaussian Process (GP) for regression (Rasmussen & Williams 2005). It is known that GP
predicts with @}T}, however it also returns an estimate of the variance of the prediction that
depends on xtTHA; 'xt41. Hence, VAW shrinks more the points that are assigned a high
variance estimate by a GP. The regret analysis of WAV shows that

[u |2 2\ d T 2 d
< =0 bt i
Rr(u) < 5 +1, max_ v | 5 In(1+ 7 t:Hll,z.i.}.i,T”XtHQ Yu e R (26)
Note that this bound simultaneously holds for any sequence (x1,%1), (X2,%z2),... € R? X R,
for any time horizon T, and for any linear comparator u € R?. Moreover, as proven in
Vovk (2001, Section 3.3), the bound (26) is asymptotically optimal, including the leading
constant.

3.3. Optimistic updates

The iterates of VAW are computed by adding to the expression in the argmin an extra
loss term %(waHl)Q that “predicts” the next label y;+1 to be zero. This idea can be
generalized to what is known in the literature as an optimistic update (Chiang et al. 2012,
Rakhlin & Sridharan 2013). Given any sequence {1, {2,... of convex losses, FTRL with

linearized losses and optimistic updates uses the iterates

t
. T ~T
Wi41 = argmin ¢t+1(W) + Z 8s W+ g1 W
weV —1

where g, = VUli(ws), 8i+1 is a guess for Vly1(wey1), and 11,19, ... are arbitrary u-
strongly convex regularizers with respect to a norm ||-||. One can show that, for all u € V,

T

R () < dra(0) = va(w1) + 53 (g = Bell, + Velwers) = Yema (wes))  (27)

We now describe two concrete and simple examples. First, consider g;41 = % 22:1 gs with
g1 = 0 and—for the sake of simplicity—assume the convex losses are 1-Lipschitz in V, so
that ||g¢||, < 1 for all g; generated in (27). Take 1y = & ||-||3 for all t. Then, for allu € V,

T
o 1 ~
Re(w) < 5 i3+ 53 e — 23
t=1
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Now note that £, = 1 |lg: — H; is a 1-strongly convex loss, and g1, go, ... correspond to
the predictions of FTL on the sequence ¢1, {2, ... of such losses. Therefore, using the FTL
analysis for strongly convex losses mentioned at the beginning of this section we have that

T T
—~ 12 . 2

— — min — =0O(nT

;:1 llg: — &l g:ugn2s1;=1 llg: —gllz =O0(nT)

It is easy to see that the minimizer in the above expression is g = % >, 8t So, we conclude

T
n 1 _
Rr(w) < 5 a3+ 53 llge — &l + On 1)

t=1

Hence, the regret is bounded in terms of the cumulative empirical variance of the loss
gradients. Using more sophisticated time-dependent regularizers, the regret can be bounded
by an expression sublinear in the cumulative variance. We mention a similar result in the
next example, where we choose g;+1 = g;. In other words, we guess the next loss gradient
to be similar to the current one. This is only beneficial under the additional assumption
that losses are smooth, which is equivalent to assume that gradients are Lipschitz. Then,
choosing regularizers vy = B¢, where v is a base 1-strongly convex regularizer with respect
to a norm ||-|] and B¢ > 0 is a scaling factor, one can prove that the regret is bounded by
an expression of the order of (see Orabona 2019)

T
14> [Vl(wior) = Vi (we)|?

t=2

Bounds of this form were first proven by Chiang et al. (2012). Optimistic updates have
been also applied to show fast rates for regret minimization problems in game theory by
Syrgkanis et al. (2015), Foster et al. (2016).

4. UNCONSTRAINED ONLINE CONVEX OPTIMIZATION

As discussed in previous sections, both Online Mirror Descent (OMD) and Follow the
Regularized Leader (FTRL) enjoy a regret of order O (D\/T ) for convex and Lipschitz
losses, where D bounds the diameter of V according to the divergence D, (for OMD) or
to the range of the base regularizer ¥ (for FTRL), see (8) and (14). If V is unbounded,
say V =R, and losses are convex Lipschitz, we can still run OGD with w; = 0 and fixed
stepsize n = a/v/T for a > 0. Using (10) we get the following upper bound on the regret
2

Rr(u) < % (";”2 +a> VT YueR? (28)
By tuning o optimally with respect to [lu||2 we could get the bound Rr(u) < |[ul|, VT.
This is equivalent to what we would get by running OGD with projection in the Euclidean
ball of radius U = ||ul|,. However, this bound cannot be simultaneously achieved for all u
because the algorithms must be run with only one choice of their parameters. The problem

we study in this section is whether we can get a bound better than (28) in the unconstrained
setting. In order to answer this question, we explore the connection between online convex
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optimization and the problem of sequentially betting on the elements of a deterministic
sequence of values.

The fact that certain instances of online learning could be phrased as a gambling problem
is known since the works of Kelly (1956), Cover (1974), and Feder (1991). It was only
recently, however, that Orabona & P4l (2016) realized that certain betting strategies could
be used to derive OCO algorithms with no parameters to tune, which could be also used
for solving unconstrained OCO in an optimal way.

The betting game we are interested in is parameterized by an unknown deterministic
sequence z1,Z2,... € [—1,1] of real numbers. The bettor starts out with an initial wealth
of Co =€ > 0. In each round t = 1,2, ... of the game,

1. The bettor bets a; € [—1,1], whose absolute value is the fraction of their current
wealth C;_; they are betting, and whose sign indicates which sign we bet z; will
have;

2. The next value z; € [—1,1] is revealed;

3. The bettor’s return is x; X a:Ci—1 € R.

Note that the bettor’s wealth changes in each step ¢ according to Cy = (1 + a¢x¢)Cr—1.

In order to show how to apply a betting strategy to any OCO problems, we first consider
the 1-dimensional case with losses £1,#2, ... defined on R and having uniformly bounded
derivatives |€§’ < 1 for all ¢t. First of all, recall that, because of the convexity of losses, for
any u € R the regret Ry (u) of any online algorithm predicting with wq, ws, ... € R is upper
bounded by Zz;l(wt —u)ge, where g, is the derivative of ¢; at w;. In order to use a betting
strategy to solve the online problem, we set w: = a;Cy—1. We then have C; = Ci—1 + wexy,
which implies Cr = ¢ + 23:1 wixe. If we now set ¢ = —g¢ € [—1,1] (by our assumption
on the losses), we get

T T T

Cr :€H(1+atzt) :€+Zw1zt ze—szgt VTi,..., 2T (29)

t=1 t=1 t=1

Next, we prove that a lower bound on the wealth Cr can be used to upper bound Rr(u)
for all w € R. In particular, assume that we have a betting strategy ai,a2,... € R such
that

Cr>¢ (i mt> =¢ (— im) (30)

t=1

18 N. Cesa-Bianchi and F. Orabona



for some convex real function ¢. Then, for any u € R we have

M=

Rr(u) < ) (wi —u)gi

t=1
T T
t=1 t=1
T

= Z —ugt — Cr +¢ (using (29))
t=1
T T

< Z —uge — ¢ (— th> +e (by our assumption on Cr)
t=1 t=1

<sup Ou— ¢(f) +¢
9cR

=¢"(u)+e¢ (using the definition (7) of Fenchel conjugate)

Now that we established a formal connection between online prediction (in the 1-dimensional
case) and betting, we must pick a good betting strategy, one that has a small regret in
the betting game. We measure this regret against the class of strategies that always bet
the best constant o € [—1,1]. After T steps, the final wealth of each such strategy is
Or(a) = e[1/—, (1 + ax¢). Since wealth changes multiplicatively, it is natural to define the
regret of a betting strategy a1, as, ... using the logarithm of the wealth,

Rr(a) =1In (5 H(l + amt)> —In <€ H(l + oetmt)> = Zln(l + axy) — Zln(l + aixt)

t=1 t=1

In the special case of Boolean values x: € {—1,1}, the optimal regret Rr(a) was very
precisely determined (including constants) by Shtarkov (1987), who established that

Rr(a) = %lnTJr %mg Yo(l)  Vae|-11]

Unfortunately, Shtarkov’s strategy is not efficiently computable. A more efficient (and
nearly optimal) strategy was introduced a bit earlier by Krichevsky & Trofimov (1981).
The Krichevsky-Trofimov (KT) strategy has a regret of

Re(a)= ;T +0(1)  Vael-11]

which is optimal only up to constants. When z; € [—1, 1], the KT strategy takes the simple
form an =0and oy = (z1 4+ -+ 2¢-1) /t‘ Orabona & P4l (2016) proved that the wealth
of the KT strategy satisfies

1 (SN

€

Cr>——exp| — E T
VT 2T \ ="

for some universal constant ¢ > 0.

Going back the the 1-dimensional online convex optimization case, recalling (29) and
z¢ = —gi € [—1,1], we see that the KT strategy generates predictions of the form

t—1 t—1
1
we = Oétthl = — (t 295) <5 - 295“&) (31)

www. annualreviews.org ¢ Online Learning Algorithms

19



20

Using (30) and our bound Rr(u) < ¢*(u) + ¢ on the regret, we can compute ¢* for our case
and derive the bound

Rr(u) < |uly/Tln(u?c?T +1) +1 Vu € R (32)

where, for simplicity, we set ¢ = 1. Recall that this bound holds, simultaneously for all
u € R, under the condition that |V€t’ < 1 for all t. Under the same conditions, OGD
guarantees a bound on the regret Rr(u) of worse order u?v/T, see (28).

This result has been extended to R¢ (and more generally to Banach spaces) by Cutkosky
& Orabona (2018) using a simple trick: in order to bound the regret Rr(u) against any
u € R? we use the 1-dimensional KT strategy to learn the length [Ju]| of u and OMD with
model space V = {u € R? : |lu|| < 1} to learn the direction u/ ||u|| of u, where ||| is any
desired norm. This is done as follows: let w; the prediction (31) of KT and let v; be the
prediction of OMD. Then, the combined algorithm predicts w¢v; and, upon receiving the
gradient g; = V4 (weve), feeds the derivative gtT v to KT and the gradient g; to OMD.

To analyze the regret of this combined KT-OMD strategy, note that ||v¢| < 1 for all ¢
because OMD projects onto V. Therefore, }g:vt| <|/gll,- So, by linearizing the regret, we
can write

]~

Rr(u) =Y l(weve) = i(u)

o~
Il
—

gtT (weve —u)

]~

-
Il
=

I
M~

T
(wigd ve — Il gl ve) + > (lull g vi — g )
t=1

T
u
(T ve— Tl ve) + al 3 (v e ) -
1 t=1

o
Il
-

I
M~

o«
Il

Now note that the first sum is the linearized regret of KT against ||u|, where g/ v; are the
loss derivatives. The second sum (ignoring the |lu|| factor) is instead the linearized regret
of OMD against u/ [[u|| with loss gradients g;.

Since KT requires the loss derivatives to belong to [—1, 1], we can apply the above bound
when ’g;rvt} € [0, 1], which holds when ¢; is 1-Lipschitz for all ¢. Assuming that, and in
view of comparing to (28), we consider OGD run on the unit Euclidean ball with step size
ne = 1/+/t and KT run with e = 1. Then using (9) for OGD and (32) for KT we obtain
that the regret of KT-OGD satisfies

Rr(u) :0(( In (|[ulZT +1) +1) |\u\|2x/T+1) Yu € R? (33)

Note that, except for the logarithmic factor 4/In (HuH;TJr 1) + 1, this bound matches
the bound |Jul|, VT for OGD tuned with the unknown knowledge of [[uf. Indeed, this
logarithmic term is the price we have to pay for the adaptivity of the algorithm to ||u], as
Streeter & McMahan (2012) showed it to be unavoidable in the unconstrained setting.
Note that parameter-free algorithms like KT-OMD are useful also when u lives in a
bounded subset V C RY, but the Bregman divergence D, is unbounded in V. The prime

N. Cesa-Bianchi and F. Orabona



example for this scenario is the entropic mirror map 3 on the simplex V, where Dy, is the
cross-entropy. The regret bound (10) for the corresponding instance of OMD (which we
called EG) has the form

Rr(u) = 0O <w +nT) VueV

for any fixed choice of the stepsize 1. In the setting of prediction with expert advice (a
special case of OCO), an implicitly defined parameter-free version of EG for linear losses
called NormalHedge was introduced by Chaudhuri et al. (2009). The bound was later
improved by Chernov & Vovk (2010) with another implicitly defined algorithm. Using a
different reduction to betting strategies, Orabona & P&l (2016) proved a bound of order

v/ (Dy(u,wi) +1)T for all u in the simplex using a closed form update. Note that, as
before, this bound is equal to the bound which one would get by tuning EG using the
(unknown) knowledge of Dy (u, wi). Further improvement were obtained by Koolen &
Van Erven (2015), who introduced an algorithm called Squint.

One of the nice features of (33) is that R (0) does not depend on T. So we can then
run multiple instances of the combined KT-OMD strategy using a different mirror map for
each OMD instance. This allows to bound the regret as if we ran the algorithm using the
best mirror map in hindsight (where best is relative to the linearized regret). Suppose for
example we run two instances of KT-OMD and predict using the sum w; = wil) + w£2> of
their predictions. Then, linearizing the regret, we obtain

T T T
Rr(u) <Y (we—w)= min (S g/ (Wi —v)+ D g (wi? ~2)
t=1 V’feﬁ{d t=1

T T
= min {Zg: (wgl) — u) ,Zg;r (WEQ) — u)}
t=1

For instance, if we run OMD using the p-norm® mirror map @) = %HH; for 1 < p < 2
which is (p — 1)-strongly convex with respect to the same norm, then Ry (u) is bounded in
terms of [[ul|, and ||g[|,, where g is the conjugate coefficient of p, satisfying % + % =1
Interestingly, one can show (Gentile & Littlestone 1999) that choosing p = 2Ind/ (2Ind — 1)
(for d > 3) gives a regret bound of the form (||u|\f Ja+a) GVTInd for all u € R and
for max; ||g¢||,, < G. As this is very similar to the bound obtained by EG when V is the
simplex, we see that by choosing p € (1,2] we can interpolate between OGD and EG. By
running multiple instances of KT-OMD, where the OMD instances use different values of
p, one can derive a regret bound almost as good as the p-norm OMD run with the best
value of p.

5. OTHER NOTIONS OF REGRET

Bounding the regret Rr(u) for all u € V may not be crucial in some practical applications.
For example, if the loss sequence ¢1, {2, . .. is such that no u € V achieves a small cumulative
loss £1(u) + £2(u) + - -+, then regret bounds may not be at all helpful in telling good
algorithms from bad ones. This lack of a single good minimizer in V of the cumulative loss is

3Recall the definition of p-norm of a vector u € R?, flull, = (lual® +---+ \ud|p)1/p.
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likely to occur when the loss sequence is generated by a highly nonstationary data sequence,
possibly affected by seasonalities and other disturbances. In this case, regret should be
replaced by more robust measures, allowing better comparators than fixed elements of V.
In what follows, D5 is the Euclidean diameter of V and L is the Lipschitz constant of the
convex loss functions in the sequence ¢4, ..., 7.

Dynamic regret. A notion of regret which captures nonstationary comparators is that of
dynamic regret (Herbster & Warmuth 1998b),

T T
R%y“(ul, .oour) = Z&(wt) — Zﬁt(ut) where uy,...,ur € V
=1 =1

Note that RdTyn(u, ...,u) = Rr(u), so dynamic regret includes standard regret as a special
case. Zhang et al. (2018a) show a general lower bound on dynamic regret of the form

Q (L, /(D2 + HQ,T)DzT), where

T—1
Ip,r = Z [uers —uefl,
t=1

is the p-norm path-length function, measuring the nonstationarity of the comparator se-
quence ui,...,ur. When u; = --- = ur then I, 7 = 0. In this case the lower bound on
the dynamic regret reduces (for p = 2) to the lower bound (L2D2 \/T) on the standard
regret proven in Section 1.3.

Herbster & Warmuth (1998b)—see also Cesa-Bianchi & Lugosi (2006, Theorem 11.4)—
prove upper bounds on the dynamic regret of OMD run with the p-norm mirror map (for
1 < p <2) of the form

2

RdTy"(ul,...,uT)gw#—l—nLiT Yui,...,ur €V
where D,, is the diameter of V measured using the p-norm, and L, is the Lipschitz constant
(with respect to the dual ¢g-norm) of the loss functions in the sequence /1, ..., ¢r —see also
Zinkevich (2003) for similar results in the special case of p = 2. Choosing the stepsize as
n = 1/(LgVT) gives a suboptimal upper bound of the order of Lq(Dj + II, 7Dp)VT. In
the Euclidean case (p = 2), Zhang et al. (2018a) use the Hedge algorithm (a special case
of EG) to aggregate O(InT) instances of OGD, each one run with a different choice of 1 to
guess the desired value of IIs, 7 (up to a constant factor). They prove the dynamic regret
bound O (L2 (D2 + HQ,T)DQT), matching the lower bound up to constants.

Adaptive regret. A different view on the theme of nonstationary comparators is offered
by the notion of adaptive regret (Hazan & Seshadhri 2007). Adaptive regret evaluates
the performance of the online algorithm against that of the best fixed comparator in any
interval of time. Formally,

s=1,..., T—7+1

s+7—1 s+7—1
Ridﬁ = max < ; le(we) — rl?elg ; Zt(u)> , where 7 € {1,...,T}

In their paper, Hazan & Seshadhri (2007) use a harder notion of adaptive regret, namely
max, Ri’?%. They show an online algorithm whose regret grows in T like \/T'(In7T)3. In a
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follow-up paper, Daniely et al. (2015) devise an online algorithm with the adaptive regret
bound
R (u) = O (DL +1nT) /7) ucv (34)

where D is the Euclidean diameter of V and L is the Lipschitz constant (with respect to the
Euclidean norm) of the loss functions in the sequence £1, ..., ¢p. This result is improved by
Jun et al. (2017), who show the better bound R2%(u) = O ((DL + \/ﬁ) \/F) using the
betting framework described in Section 4.

Most of the online algorithms for minimizing adaptive regret work by combining several
instances of an online algorithm for the standard notion of regret. Fach instance is run
in a specific interval of time, where the set of intervals is carefully designed so that the
overall number of instances to be run is O(InT'). These instances are then combined using
an algorithm based on the framework of prediction with expert advice (Cesa-Bianchi et al.
1997) where each instance is viewed as an expert. As instances typically run for less than
T time steps, Jun et al. (2017) combine the betting framework with the sleeping experts
model (Freund et al. 1997), which allows only for a subset of the experts to be active at
any point of time.

Although the algorithm of Jun et al. (2017) is designed to minimize adaptive regret,
Zhang et al. (2018b) show that the same algorithm can be also used to prove the following
dynamic regret result

RY™(uy,... ,ur) =0 (DL max {\/TlnT, TZ/SVTI/S(lnT)l/S}) (35)
where
T
Ve =3 sup 0 (u) — £ (w)],
—, ueVv
measures the variation of the loss sequence ¢1,...,¢r. As shown by Besbes et al. (2015),

the dependence on Vr in (35) is not improvable.
A result relating dynamic regret to adaptive regret is proven by Zhang et al. (2018b),
who show that
dyn . ada
RE™(ui,....,ur) < min I; (Rifhr + 271V (D))
T

where the min is taken over all partitions Pr of {1,...,T} in intervals Z = {t,,...,ts} of
consecutive time steps, with 1 < r < s <T. The quantity

Vr(Z) = nggllét(u) —b—1(u)][y

tez v

is the variation of the loss sequence within the time interval. This is later extended by
Zhang et al. (2020), who prove

R (ws,..., ur) < min (Rﬁ}}ij n L|I\HT(I)) Vui,...,ur €V
T zerr

where

Hr(Z) = Z [laetr —well,

teT
is the path length over the interval Z. However, when combined with known bounds on
the dynamic regret, this bound does not give the optimal bound O (Lg (D2 + HQVT)DQT)
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for dynamic regret. Zhang et al. (2020) also derive algorithms simultaneously minimizing
adaptive and dynamic regret.

Some of these notions of regret were originally introduced in the setting of prediction
with expert advice (i.e., OCO with linear losses, where V is equal to the probability sim-
plex and regret is measured against the corners of the simplex, where linear functions are
minimized). In that framework, dynamic regret is known as tracking or shifting regret
(Herbster & Warmuth 1998a). Other notions of regret, instead, are mostly studied in the
experts framework. For example, policy regret (Arora et al. 2012a) applies to settings where
the loss function ¢; at each time ¢ depends not only on the current model w;, but also on
the past models w;_,, where s spans a window in the past (whose size H could potentially
depend on t). These loss functions can be used to model natural scenarios, such as the
“switching cost” scenario where H = 1 and £¢(wW¢, Wey1) = ¢ whenever wy # wi_1 (Kalai
& Vempala 2005). Swap regret (Blum & Mansour 2007), instead, measures regret against
a set of modification rules. Each modification rule F' is an operator on the set {1,...,d} of
coordinates. The instantaneous regret at time ¢ against F' of an algorithm choosing w in
the simplex is £;(w) — £, (w'")), where w®) = > #(j)=i Wi- Note that when F(j) =i for
all j = 1,...,d, swap regret against F' reduces to standard regret against the i-th corner
e; of the simplex, that is ¢; (W<F>) = (;(e;) for all w. Swap regret is especially important
when using online learning algorithms to approximate equilibria in games (Cesa-Bianchi &
Lugosi 2006).
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