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Abstract

Online learning is a framework for the design and analysis of algorithms

that build predictive models by processing data one at the time. Be-

sides being computationally efficient, online algorithms enjoy theoreti-

cal performance guarantees that do not rely on statistical assumptions

on the data source. In this survey, we describe some of the most im-

portant algorithmic ideas behind online learning and explain the main

mathematical tools for their analysis. Our reference framework is on-

line convex optimization, a sequential version of convex optimization

within which most online algorithms are formulated. More specifically,

we provide an in-depth description of Online Mirror Descent and Fol-

low the Regularized Leader, two of the most fundamental algorithms

in online learning. As the tuning of parameters is a typically difficult

task in sequential data analysis, in the last part of the survey we fo-

cus on coin-betting, an information-theoretic approach to the design of

parameter-free online algorithms with good theoretical guarantees.
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1. INTRODUCTION

The growing success of technologies based on machine learning is driven by the availability

of massive data sets in digital format. Processing these large amounts of data poses compu-

tational challenges that are not always properly addressed by traditional statistical learning

methods. For this reason, online or sequential learning, a framework specifically designed

to cope with big data scenarios, has become a key tool in machine learning applications.

Online algorithms go through the data points sequentially, using each new data point to

adjust their predictive model or estimator. Typically, this adjustment is “local”, as it only

involves the current model and the new data point. As each data point is often processed

in constant time, this results in an overall running time scaling linearly with the number of

data points. Besides the computational advantage, there are more reasons for which sequen-

tial learning may be preferred over other approaches. In many application domains—such

as online advertising, digital markets, sensor networks, mobile user applications—new data

are generated at high rates. In these cases, the sequential adaptation process of online

learning has the potential of capturing subtle nonstationary features of the unknown data

source.

A fundamental issue in machine learning is what mathematical assumptions on data

sources are reasonable to make. Online learning advocates an approach in which the source

is viewed as an arbitrary and unknown deterministic process. This is a radical departure

from classical statistical approaches to sequential decision-making—such as Bayesian de-

cision theory (Berger 2013) or Markov decision processes (Puterman 2014)—and finds its

roots in the pioneering works on repeated games by Robbins (1951), Hannan (1957), and

Blackwell (1956), where the data source consists of the opponent’s plays in a two-person

game. The theme of predicting individual, deterministic sequences also surfaced in other

disciplines, including information theory (Cover 1965, Feder et al. 1992), and computer sci-

ence (Borodin & El-Yaniv 2005). More recently, some of the online learning techniques—like

exponential weighted aggregation—have also appeared in the statistical literature (see, e.g.,

Dalalyan & Tsybakov 2008, Dalalyan et al. 2012, Rigollet et al. 2012).

Stripping the data source of any statistical assumption allows to define a crisp, min-

imalistic framework for investigating the notion of algorithmic learning, where only the
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empirical properties of the observed data sequence matter. A substitute for the notion of

statistical risk must then be introduced to define a notion of minimax optimality over the

sequence of losses in a mathematically rigorous way. In view of that, one should note that in

online learning we never measure the predictive power of a single model, but rather consider

the ensemble of models sequentially generated by the online learner while processing a data

sequence. The notion of risk that we use to evaluate this ensemble is appropriately called

sequential risk, and measures the extent to which each model generated by the algorithm is

able to predict the next element in the sequence. Sequential risk is thus associated with the

behavior of an algorithm on an individual data sequence. Based on sequential risk, we then

derive the notion of regret, which can be viewed as the online counterpart of the statistical

excess risk measured with respect to a class of predictive models. The control of regret is

the main goal in the analysis of online learning algorithms.

In the rest of this survey, we introduce and describe some of the most fundamental

online learning algorithms. Our goal is to explain the behavior of these algorithms through

the analysis of their regret. Therefore, rather than going through as many as possible of

the existing approaches to online learning, we prefer to focus on the conceptual foundations

and the main proof techniques. We believe this is a more effective way to keeping alive the

interest of someone who wants to know more about this exciting field of research.

1.1. Online convex optimization

The standard framework for the study of parametric online learning with convex losses1 is

known as Online Convex Optimization, or OCO (see, e.g., Shalev-Shwartz 2012, Hazan 2016,

McMahan 2017, Orabona 2019). While it is also possible to design and study nonparametric

online learning algorithms, (e.g., Hazan & Megiddo 2007, De Rosa et al. 2015, Kuzborskij

& Cesa-Bianchi 2017), we focus here on the more common parametric setting.

As we said earlier, the data-generating mechanism of online learning is an unknown and

deterministic process. In OCO, the data process is replaced by a deterministic sequence

of unknown and convex loss functions ℓt, evaluating the performance of the models incre-

mentally generated by the algorithm. For example, if we want to cast linear regression in

the OCO framework, then the loss functions ℓt take the form ℓt(w) =
(
w⊤xt− yt

)2
, where

w ∈ R
d is a linear prediction model and (x1, y1), (x2, y2), . . . ∈ R

d × R is the underlying

deterministic data sequence.

Throughout the paper, the model space X is a convex, closed, and nonempty subset

of R
d, while a loss function is any nonnegative and convex function ℓt : X → R. For

any sequence ℓ1, ℓ2, . . . of loss functions, an online learner A is a sequence A1, A2, . . . of

mappings with range X. The learner’s model at time t is wt = At−1(ℓ1, . . . , ℓt−1), where

w1 = A1 ∈ X is the default initial model, and the learner’s loss at time t is ℓt(wt). While

the notation wt = At−1(ℓ1, . . . , ℓt−1) highlights the fact that wt+1 can depend on all the

past losses, we are especially interested in cases where the update wt → wt+1 can be done

efficiently based only on wt and ℓt. Also, for certain applications it makes sense to consider

special cases of this framework, where additional assumptions besides convexity are made

on the loss functions.

1Partial extensions of online learning to nonconvex losses have been recently considered by
Agarwal et al. (2019).
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1.2. Regret and sequential risk

The performance of the learner is measured according to the regret

RT (u) =
T∑

t=1

(
ℓt(wt)− ℓt(u)

)
for u ∈ X

Online learning is concerned with the design of algorithms for whichRT (u) grows sublinearly

in T for all u ∈ X and irrespective to the loss sequence (the so-called no-regret property).

The quantity 1
T

∑T
t=1 ℓt(wt) is sometimes called sequential risk (as opposed to the classical

statistical risk), thus sublinear regret implies that the excess sequential risk

1

T

T∑

t=1

ℓt(wt)−
1

T

T∑

t=1

ℓt(u)

converges to zero for any u ∈ X.

Algorithms that enjoy the no-regret property can also be used to solve convex optimiza-

tion problems minw∈X f(w), which are viewed as instances of OCO with ℓt = f for all t.

Indeed, Jensen’s inequality shows that

f(w)−min
w∈X

f(w) ≤ 1

T

(
T∑

t=1

ℓt(wt)−min
w∈X

T∑

t=1

ℓt(w)

)

≤ RT (w
⋆)

T

where w = 1
T

(
w1+ · · ·+wT

)
is the average of the iterates wt and w⋆ is the minimizer of f

in X. Similarly, we may also consider stochastic optimization problems minw∈X E
[
F (w, ω)

]
,

where the random variable F (w, ·) is the stochastic objective and F (·, ω) is convex for all

ω ∈ Ω. Given access to i.i.d. draws ω1, ω2, . . ., we can solve stochastic optimization problems

using a no-regret algorithm run with ℓt(w) = F (w, ωt). Let w⋆ ∈ argmin
w∈X

E
[
F (w, ω)

]

and observe that, using Jensen’s inequality once more,

E
[
F (w, ω)− F (w⋆, ω)

]
≤ E

[
1

T

T∑

t=1

(
F (wt, ωt)− F (w⋆, ωt)

)
]

= E

[
1

T

T∑

t=1

(
ℓt(wt)− ℓt(w

⋆)
)
]

≤ E

[
RT (w

⋆)

T

]

In machine learning, stochastic optimization is typically used to solve empirical risk mini-

mization problems

min
w∈X

1

m

m∑

i=1

F
(
w, zi

)
(1)

where z1, . . . , zm is a dataset and F (w, zi) measures the loss of w on the data point zi. If

F (·, z) is convex for all z, then we may set ℓt = F (·,Zt), where Z1,Z2, . . . are i.i.d. uniform

draws from the dataset.

1.3. Lower bounds

Consider the easy case when X is a bounded2 set with diameter D and all losses ℓt are

Lipschitz on X, how well can we control the regret RT in this scenario? It turns out that

2This can be a plausible assumption in many practical cases. For instance, in online linear
regression when upper bounds on maxt ‖xt‖2 and maxt |yt| are known in advance.
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the worst case for OCO occurs when all loss functions are linear. Interestingly, the proof

uses a stochastic rather than deterministic loss process. More specifically, let v1,v2 ∈ X

such that ‖v1 − v2‖2 = D and define z0 = v1−v2

‖v1−v2‖2
. Stochastic losses L1, L2, . . . are defined

by Lt(w) = εtL z⊤0 w, where ε1, ε2, . . . are independent Rademacher random variables, i.e.,

P(εt = 1) = P(εt = −1) = 1
2
, and L > 0 is the Lipschitz constant for all the losses.

Now, fix any algorithm for OCO. Clearly, its regret satisfies

max
ε1,...,εT

max
u∈{v1,v2}

RT (u) ≥ E

[
max

u∈{v1,v2}
RT (u)

]

where the expectation is with respect to the random draw of ε1, . . . , εT . Moreover, since

E
[
Lt(w)

]
= 0 for all w, we have

E

[
max

u∈{v1,v2}
RT (u)

]
= E

[

max
u∈{v1,v2}

T∑

t=1

Lt(u)

]

(2)

Now, using the elementary identity max{a, b} = 1
2

(
a+b+ |a−b|

)
and Khintchine inequality

(see, e.g., Cesa-Bianchi & Lugosi 2006, Lemma 8.2) we obtain that the right-hand side of

(2) is equal to

L

2
E

[∣∣∣∣∣

T∑

t=1

εtz
⊤
0 (v1 − v2)

∣∣∣∣∣

]

=
LD

2
E

[∣∣∣∣∣

T∑

t=1

εt

∣∣∣∣∣

]

≥ LD

4

√
2T (3)

where the equality is proven using z⊤0 (v1 − v2) = D due to our choice of z0. This shows

that we cannot expect the regret to grow slower that LD
√
T—where D is the Euclidean

diameter of X and L is the Lipschitz constant of the loss—unless the two main parameters of

our setting, that is the model space X and the loss process ℓ1, ℓ2, . . ., enjoy some additional

properties.

Lower bounds arguments based on the Khintchine inequality are rather common in

online learning, see Luo et al. (2016, Theorem 1) for an example close to the one presented

here. The effectiveness of stochastic loss sequences to prove tight lower bounds in OCO

settings in not accidental. To gain a better understanding of the connections between

stochastic and online learning, see Rakhlin & Sridharan (2014) who study online learning

as a minimax problem.

The game-theoretic roots of OCO are described by Cesa-Bianchi & Lugosi (2006). Since

then, the interface between sequential optimization, game theory, and statistics has been

intensively explored in many works, see the tutorial and surveys by Shalev-Shwartz (2007),

Hazan (2016), McMahan (2017), Orabona (2019).

2. ONLINE MIRROR DESCENT

We now introduce the most popular algorithm for OCO, Online Mirror Descent (or OMD for

short). OMD is the online version of the Mirror Descent algorithm of Nemirovsky & Yudin

(1983) for convex optimization. Mirror Descent is based on a generalization of projected

gradient descent in which distances in the model space X are not necessarily measured using

the Euclidean norm. This allows to take advantage of specific geometrical properties that X

may have. To see how this is done, we start from the iterates wt+1 = ΠX

(
wt − ηt∇F (wt)

)

of projected gradient descent on a convex and differentiable objective F : Rd → R, where

www.annualreviews.org • Online Learning Algorithms 5



ΠX denotes the Euclidean projection onto X and ηt > 0 is the step size at time t. The

expression defining the iterates can be rewritten in an equivalent optimization form,

wt+1 = argmin
w∈X

1

2ηt
‖w −wt‖22 +w

⊤∇F (wt)

Mirror Descent replaces the Euclidean norm in the above equation with a generalized dis-

tance, or divergence D,

wt+1 = argmin
w∈X

1

2ηt
D(w,wt) +w

⊤∇F (wt) (4)

Following Beck & Teboulle (2003), the divergences used by Mirror Descent are parameter-

ized by mirror map functions ψ : X → R that are strictly convex and continuously differen-

tiable on the interior of X. Given such a ψ, the Bregman divergence Dψ : X× intX → R is

defined by

Dψ(u,w) = ψ(u)− ψ(w)−∇ψ(w)⊤(u−w)

Note that Dψ is not necessarily symmetric and, since ψ is strictly convex, is always nonneg-

ative and equals zero only when w = u. When ψ is also twice differentiable, then Taylor’s

theorem shows that

Dψ(u,w) =
1

2
(u−w)⊤∇2ψ(z)(u−w)

for some z on the line segment joining u and w. In other words, for ψ that are twice

differentiable the divergence locally behaves like a squared Mahalanobis distance. Just like

in the Euclidean case, we can also write the Mirror Descent update (4) using a Bregman

projection (see, e.g., Bubeck 2015, Section 4).

The online version of Mirror Descent is now straightforward to obtain. In order to avoid

considering iterates wt on the boundary of X, where Dψ(·,wt) is not defined, we restrict

the argmin in (4) to a convex and nonempty subset V ⊆ intX and, consequently, measure

the regret RT (u) only for u ∈ V. Let w1 ∈ V and fix a sequence η1 ≥ η2 ≥ · · · > 0 of step

sizes. Now, for any sequence ℓ1, ℓ2, . . . of differentiable loss functions, the iterates of OMD

are defined by

wt+1 = argmin
w∈V

1

2ηt
Dψ(w,wt) +w

⊤
gt (5)

where gt = ∇ℓt(wt). The differentiability assumption for the losses ℓt can be relaxed to

subdifferentiability, in which case gt is any element of the subdifferential of ℓt at wt. This is

useful because some popular loss functions, like the hinge loss ℓt(wt) = max
{
0, 1−ytw⊤xt

}

for binary classification (yt ∈ {−1, 1}), are not everywhere differentiable. In the rest of this

survey, we use the same notation gt to denote ∇ℓt(wt) or any subgradient of ℓt at wt,

according to whether ℓt is differentiable or only subdifferentiable.

One might wonder why using a linear approximation w⊤gt instead of the loss ℓt(w) in

the update of OMD. Indeed, the variant where ℓt(w) replaces w⊤gt is called proximal point

method in the convex optimization literature and implicit update in the online learning

literature, see Kivinen & Warmuth (1997), Kulis & Bartlett (2010) and also McMahan

(2017, Section 6). Connections between implicit updates and optimistic updates in saddle

point optimization problems were investigated by Mokhtari et al. (2019), see also Section 3

of this survey. We now look at two important choices for the mirror map.

Euclidean. If ψ = 1
2
‖·‖22, then Dψ(u,w) = 1

2
‖u−w‖22 and the OMD update become the

online version of gradient descent (OGD) with Euclidean projection, wt+1 = ΠV(wt−ηtgt).

6 N. Cesa-Bianchi and F. Orabona



Entropic. If X is the simplex of probability distributions over {1, . . . , d} and ψ is the

negative entropy ψ(w) =
∑
i wi lnwi, then Dψ(u,w) =

∑
i ui ln

ui

wi
is the Kullback-Leibler

divergence (or cross-entropy) and the OMD update becomes the Exponentiated Gradient

(EG) algorithm of Kivinen & Warmuth (1997),

wt+1,i =
wt,ie

−ηtgt,i

∑d
j=1 wt,je

−ηtgt,j
i = 1, . . . , d

where gt,i are the components of the gradient gt. As in this case

lim
w→bdX

‖∇ψ(w)‖2 = ∞ (6)

where bdX is the boundary of X, we can measure the regret RT (u) against u ∈ X instead

of restricting to u ∈ V ⊆ intX. In fact, under the latter condition the update rule of OMD

will never return a point on the boundary of X. For instance, when losses are linear,
∑
t ℓt

is always minimized at a u located on a corner of the simplex, and we can show that EG

(OMD with entropic mirror map) has vanishing regret with respect to any u in the simplex

X, including the corners.

We now look at a different interpretation of the update rule of OMD. First, let a

differentiable function f : X → R be µ-strongly convex on V ⊆ intX with respect to a norm

‖·‖ if for all u,v ∈ V we have that f(u) ≥ f(v) + ∇f(v)⊤(u − v) + µ
2
‖u− v‖2. Mirror

maps ψ that are µ-strongly convex with respect to a norm ‖·‖ define Bregman divergences

that grow faster than the square of the same norm, i.e., Dψ(u,w) ≥ µ
2
‖u−w‖2.

For strongly convex mirror maps, an equivalent way of writing (5) is wt+1 =

∇ψ⋆V (∇ψV(wt)− ηtgt), where the function ψV is the restriction of ψ to V, i.e., ψV(w) =

ψ(w) if w ∈ V and ψV(w) = ∞ otherwise. The function ψ⋆V : R
d → R is the Fenchel

conjugate of ψV, defined by

ψ⋆V(θ) = max
w∈Rd

w
⊤
θ − ψV(w) (7)

Strong convexity ensures that ψ⋆V is differentiable and that ∇ψ⋆V is the functional inverse of

∇ψV. The function ψV maps the iterates wt to the dual space of gradients where a gradient

step is performed. The inverse function ψ⋆V maps back to the primal space of iterates. See

Figure 1 for a picture illustrating the OMD update. Going back to the previous examples,

we see that ψ = 1
2
‖·‖22 = ψ⋆. When ψ is the negative entropy we instead have that

ψ⋆(θ) = ln
(∑d

i=1 e
θi
)
.

We now move on to analyze the regret of OMD, and show us how the change of ge-

ometry caused by the choice of the strongly convex mirror map ψ affects the algorithm’s

performance. The first step in bounding the regret RT (u) consists in linearizing the loss

using convexity, ℓt(wt) − ℓt(u) ≤ g⊤
t

(
wt − u

)
, recall that gt = ∇ℓt(wt) for differentiable

losses. We call linearized regret the resulting upper bound on RT (u). Next, using the

properties of the optimization form for the OMD iterates (4), and the µ-strong convexity

of the mirror map with respect to ‖·‖, it takes a few steps to prove that

ηtg
⊤
t

(
wt − u

)
≤ Dψ(u,wt)−Dψ(u,wt+1) +

η2t
2µ

‖gt‖2⋆

where ‖·‖⋆ is the dual norm of ‖·‖. Now, dividing both sides by ηt > 0 and summing over

www.annualreviews.org • Online Learning Algorithms 7





Next, consider EG, where V is the probability simplex and ψ(w) =
∑
i wi lnwi, which

is 1-strongly convex with respect to ‖·‖1. Here, we run into a problem because the diameter

of the simplex is unbounded when measured using the cross-entropy (i.e., the Bregman

divergence Dψ corresponding to the entropic mirror map). This prevents us from obtaining

a constant upper bound D2 on maxtDψ(u,wt). We can fix this by choosing a constant step

size η, which allows us to transform the regret guarantee (8) into the following alternative

bound,

RT (u) ≤
Dψ(u,w1)

η
+

η

2µ

T∑

t=1

‖gt‖2⋆ (10)

Under the same assumption ‖gt‖∞ ≤ G as before, we get ‖gt‖2⋆ = ‖gt‖2∞ ≤ G2. Hence,

choosing w1 =
(
1/d, . . . , 1/d

)
as first iterate so that Dψ(u,w1) ≤ ln d, and setting η =√

(2 ln d)/(G2T ), gives RT (u) ≤ G
√

(T ln d)/2. Using the squared Euclidean norm in

the same setting would instead give RT (u) ≤ 2G
√
dT . Note that for linear losses the

quantity G
√

(T ln d)/2 is asymptotically minimax, including constants (see Cesa-Bianchi &

Lugosi 2006, Corollary 8.3). This shows the importance of matching the mirror map to the

geometry of the model space. From a practical point of view, the logarithmic dependence

on d in the regret guarantees that EG is robust to a large number of irrelevant features.

When the convex losses ℓt are induced by pairs (xt, yt), as in ℓt(w) =
(
w⊤xt−yt

)2
, then

loss gradients ∇ℓt(w) are proportional to data points xt. In this case, bounds on RT (u) for

OGD and EG depend on different products of dual norms:
(
maxt ‖xt‖2

)
‖u‖2 for OGD and(

maxt ‖xt‖∞
)
‖u‖1 for EG. Since ‖·‖∞ ≤ ‖·‖2 ≤ ‖·‖1, neither bound dominates. However,

for sparse u, ‖u‖1 approaches ‖u‖∞ and EG performs better than OGD.

The analysis of OGD can be easily adapted to derive a regret bound for the Perceptron

algorithm of Rosenblatt (1958) for binary classification, without need of assuming linear

separability of the data sequence (see Freund & Schapire 1999). In the special case of

separable data sequences, the regret bound reduces to the result originally proven in the

well-known Perceptron Convergence Theorem (Block 1962, Novikoff 1963).

If the loss functions are known to be µ-strongly convex and L-Lipschitz in V, then the

step size of OGD can be set more aggressively to ηt =
1
µt

so to exploit the curvature. The

resulting bound on the regret is

RT (u) ≤
L2

2µ
ln(T + 1) ∀u ∈ V

Note that there is no dependence on the diameter of the model space in this bound, but only

on the gradients of the losses (through the Lipschitz constant L). Many machine learning

algorithms, including Support Vector Machines (Cortes & Vapnik 1995), can be trained

using stochastic optimization over a training set of data points z1, . . . , zm to minimize a

strongly convex functional F , see (1). A prime example of a stochastic gradient descent

algorithm is OGD run on the sequence of strongly convex losses ℓt = F (·,Zt), where Zt is

drawn at random from the dataset. The regret analysis of OGD with strongly convex losses

can be used to obtain rates of convergence to the minimum of F in (1). This is done, for

example, to analyze the Pegasos algorithm of Shalev-Shwartz et al. (2011).

The EG algorithm is an instance of the multiplicative update method, a technique

that found applications in computer science (Littlestone & Warmuth 1994), game theory

(Fudenberg & Levine 1995), information theory, statistics, and other disciplines (see, e.g.,

Cesa-Bianchi & Lugosi 2006, Arora et al. 2012b). In the special case of linear losses with
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uniformly bounded coefficients, EG is known as the Hedge algorithm (Freund & Schapire

1997) and the corresponding setting is known as prediction with expert advice (Cesa-Bianchi

et al. 1997).

2.1. The AdaGrad algorithm

A variant of OMD that has become of widespread use as a stochastic gradient descent

algorithm for training neural networks is the AdaGrad algorithm, independently introduced

by McMahan & Streeter (2010) and Duchi et al. (2011). For simplicity, we look at the so-

called diagonal version of AdaGrad, which uses a coordinate-dependent step size.

Let V be the hyperrectangle [a1, b1] × · · · × [ad, bd] and Di = bi − ai for i = 1, . . . , d.

AdaGrad runs OMD with mirror map ψ = 1
2
‖·‖2 and projection onto V. The iterates,

including the projection step, can be written as wt+1,i = max
{
min{wt,i − ηt,igt,i}, ai

}
for

i = 1, . . . , d and an arbitrary initial point w1 ∈ V. The components of the step size are

chosen as

ηt,i =
Di√

2
∑t
s=1 g

2
s,i

The regret analysis is straightforward: after linearizing the losses so that ℓt(wt)− ℓt(u) ≤
g⊤
t

(
wt − u

)
, one can simply perform the standard OMD analysis independently for each

coordinate. By applying the bound (9) on each coordinate, and then summing over coordi-

nates, we obtain

RT (u) ≤
d∑

i=1

Di

√√√√2

T∑

t=1

g2t,i (11)

We can compare this bound to (9) with µ = 1 and ‖·‖⋆ = ‖·‖2. For simplicity, we take V

to be the hypercube with Di = 1, so that D in (9) is equal to
√
d. Using Cauchy-Schwartz,

√√√√
T∑

t=1

‖gt‖22 ≤
d∑

i=1

√√√√
T∑

t=1

g2t,i ≤
√
d

√√√√
T∑

t=1

‖gt‖22

where (9) appears in the right-hand side and (11) appears in the middle. Hence, ignoring

the fact that the sequence of realized subgradients gt is different for the two algorithms,

with this choice of V AdaGrad can gain up to a factor of
√
d in the regret bound with

respect to plain OMD. Compared to the EG algorithm, which uses an entropic mirror map

on the probability simplex, here the advantage is brought by a coordinate-dependent step

size, which exploits the decomposability of the regret across the d coordinates granted by

the geometry of V.

Note that the specific choice of the step size makes the algorithm independent with

respect to rescalings of the coordinates (Orabona & Pál 2018). This property is especially

useful in neural network training, where the range of gradient components may vary a lot

across the different layers.

3. FOLLOW THE REGULARIZED LEADER

A very natural online learning strategy for the OCO setting is Follow the Leader (FTL),

which corresponds to predicting with the model minimizing the sum of the losses observed
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so far,

wt+1 = argmin
w∈V

t∑

s=1

ℓt(w)

Here w1 ∈ V is any convex, closed, and nonemtpy subset of Rd. When losses are strongly

convex and Lipschitz in V, FTL achieves RT (u) = O(lnT ) for all u ∈ V (McMahan 2017,

Section 3.7). However, the curvature of each loss function is necessary to obtain a nontrivial

performance. When losses are linear, FTL provably incurs a regret that grows linearly in T

(see, e.g., Shalev-Shwartz 2012, Example 2.2). This is caused by the intrinsic instability of

the algorithm: in a nonstochastic setting, one can design the loss sequence so that the tra-

jectory w1,w2, . . . of FTL models oscillates wildly in V, a behavior that the adversary can

exploit to increase the regret. Similarly to OMD, which achieves stability by forcing wt+1

to be not too far away from wt, see (5), FTL can be stabilized by adding a strictly convex

regularization function. The resulting algorithm, appropriately called Follow the Regular-

ized Leader (FTRL), is a close relative of OMD. Indeed, the regularization functions used

by FTRL are formally equivalent to OMD’s mirror maps ψ. As FTRL is not formulated as a

gradient descent method, we replace OMD’s step sizes ηt with time-dependent regularizers

ψt. For any sequence ψ1, ψ2, . . . of strictly convex regularizers, FTRL iterates are defined

by

wt+1 = argmin
w∈V

ψt+1(w) +
t∑

s=1

ℓs(w) (12)

where ℓ1, ℓ2, . . . is an arbitrary sequence of convex losses. From the viewpoint of regret

minimization, we know that ℓs(w) can be replaced by g⊤
s w (recall the linearization step in

Section 2), where gs is the gradient (or subgradient) of ℓs(ws). If we do that in (12), we

obtain

wt+1 = argmin
w∈V

ψt+1(w) +

t∑

s=1

g
⊤
s w (13)

This is the version of FTRL we study in the rest of this section. Let ψV,t be the restriction

of ψt to V (see Section 2). If the regularizers ψV,t are all strongly convex, then wt+1 in (13)

has the closed form

wt+1 = ∇ψ⋆V,t+1

(

−
t∑

s=1

gs

)

where ψ⋆V,t+1 is the Fenchel conjugate of ψV,t+1 (differentiability of ψ⋆V,t+1 is guaranteed by

the strong convexity of ψV,t+1). By letting θt+1 = −(g1 + · · ·+ gt), the FTRL iterates can

be written as wt+1 = ∇ψ⋆V,t+1

(
θt+1

)
, see Figure 2. By comparison, the OMD iterates for

strongly convex mirror maps are written as wt+1 = ∇ψ⋆V
(
θ
′
t+1) where θ

′
t+1 = ∇ψV(wt) −

ηtgt.

Note that FTRL keeps a state variable θt in the dual space of gradients. This is mapped

to the primal space of iterates every time a prediction is needed. On the other hand, OMD

keeps its state wt in the primal space of iterates. This is then mapped to the dual space of

gradients every time an update must be computed. Another difference is that gradients are

all equally weighted in FTRL, whereas in OMD each gradient gt is weighted by a potentially

different step size ηt.

FTRL was originally introduced by Abernethy et al. (2008), although the key ideas

are already contained in (Shalev-Shwartz 2007). The version with linearized losses and

ψt = ψ = η
2
‖ · ‖22 was introduced by Zinkevich (2004) as a “lazy update” variant of OMD.
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divergence. When FTRL is applied to the same setting, the regret bound specializes to

RT (u) ≤
ln d

βT
+
G2

2

T∑

t=1

βt

where, we recall it, G upper bounds ‖gt‖∞ for all t. Taking βt =
√

(ln d)/(G2t) then gives

RT (u) ≤ 2G
√
T ln d. Up to constants, this is the same as the bound we obtain for OMD

when the step size is tuned with prior knowledge of the number of rounds T .

3.1. Online Newton Step

As mentioned at the beginning of this section, strongly convex losses are an easy case for

online learning. A simple algorithm like FTL achieves logarithmic regret on any sequence

of such losses whenever the strong convexity coefficients in the loss sequence are bounded

away from zero. A natural question is then whether logarithmic regret is possible for convex

loss functions that are not strongly convex but also not linear.

For any symmetric and positive semidefinite matrix M , introduce the semi-norm ‖·‖M
such that ‖w‖2M = w⊤Mw. As it turns out, the right curvature property sufficient to

guarantee logarithmic regret is the following:

ℓt(u) ≥ ℓt(w) + g
⊤(u−w) +

λ

2
‖u−w‖2

gg⊤ u,w ∈ V (15)

for some λ > 0, where g = ∇ℓt(w) (or any subgradient if ℓt is only subdifferentiable). In

words, we require ℓt to be strongly convex only in the direction of its gradient (or in the

direction of some of its subgradients). For example, the square loss ℓt(w) = 1
2

(
w⊤xt− yt

)2

satisfies property (15) for λ ≤ 1
8C2 whenever

∣∣w⊤xt
∣∣, |yt| ≤ C (Hazan et al. 2007, Lemma 3).

Also, the logistic loss ℓt(w) = ln
(
1 + exp(−w⊤xt)

)
satisfies property (15) when w belongs

to an Euclidean ball of fixed radius. More in general, any loss ℓt such that e−α ℓt is concave

in V for some α > 0 satisfies property (15) with λ ≤ 1
2
min

{
1
GD

, α
}
, where D is the

Euclidean diameter of V and G is a bound on maxw∈V ‖∇ℓt(w)‖. Such losses are said to

be α-exp-concave in V (Kivinen & Warmuth 1999). If ℓt is twice differentiable, then α-exp-

concavity in V is equivalent to ∇2ℓt(w)− α∇ℓt(w)∇ℓt(w)⊤ being positive semidefinite for

all w ∈ V.

Hazan et al. (2007, Theorem 6) prove a O(d lnT ) regret bound on FTL for all sequences

of loss functions ℓt satisfying (15) for some λ > 0. They do so by introducing the quadratic

approximation of each loss function ℓ̂t(w) = ℓt(wt)+g⊤
t (w−wt)+

λ
2
‖w −wt‖2gtg

⊤
t
, where

gt = ∇ℓt(wt) and w1,w2, . . . ∈ V are defined by

wt+1 = argmin
w∈V

t∑

s=1

ℓ̂s(w) (16)

(w1 can be defined arbitrarily). Observe that (16) is just FTL run on the losses ℓ̂t. Moreover,

ℓ̂t(wt) = ℓt(wt) and, because of (15), ℓ̂t(u) ≤ ℓt(u) for all u ∈ V. This implies that the

regret of FTL with respect to the original losses ℓt satisfies

RT (u) ≤
T∑

t=1

ℓ̂t(wt)−
T∑

t=1

ℓ̂t(u) ∀u ∈ V
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The rest of the proof uses the special properties of the functions ℓ̂t to derive the desired

O(d lnT ) bound on the regret. Hazan et al. (2007, Lemma 4) also prove that (16) is

equivalent to

w
′
t+1 = S+

t

t∑

s=1

(
g
⊤
s ws −

1

λ

)
gs

wt+1 = argmin
w∈V

∥∥w −w
′
t+1

∥∥
St

(17)

where S+
t denotes the Moore-Penrose pseudoinverse of St = g1g

⊤
1 + · · ·+ gtg

⊤
t .

A similar O(d lnT ) bound can be proven through a more general proof, this time using

the FTRL framework with linearized losses. Define the regularizers ψ1, ψ2, . . . given by

ψ1(w) =
‖w‖22
2

and ψt+1(w) = ψt(w) +
λ

2
‖wt −w‖2

gtg
⊤
t

(18)

where gt = ∇ℓt(wt) and the wt are the FTRL iterates defined in (13),

wt+1 = argmin
w∈V

ψt+1(w) +

t∑

s=1

g
⊤
s w (19)

An equivalent and more explicit form for the iterates (19), which brings out the similarity

with (17), is

w
′
t+1 = A−1

t

t∑

s=1

(
g
⊤
s ws − 1

)
gs

wt+1 = argmin
w∈V

∥∥w −w
′
t+1

∥∥
At

(20)

where where A0 = I and At = At−1 + λgtg
⊤
t .

Each regularizer ψt of the form (18) is 1-strongly-convex with respect to the norm

‖·‖At−1
. Using this property, and the special recursive form of these regularizers, one can

prove for this algorithm a regret bound of the following form: for any sequence ℓ1, ℓ2, . . . of

losses satisfying (15),

RT (u) ≤
‖u‖22
2

+
1

2

T∑

t=1

‖gt‖2A−1

t
≤ ‖u‖22

2
+

d

2λ
ln

(
1 +

λGT

d

)
(21)

where maxt ‖gt‖2 ≤ G and we used a standard majorization for bounding the sum of terms

‖gt‖2A−1

t

(see, e.g., Cesa-Bianchi & Lugosi 2006, Lemma 11.11 and Theorem 11.7).

One may also wonder whether the same logarithmic regret bound for losses satisfying

(15) could be achieved using OMD instead of FTL/FTRL as we did in this section. Noting

that, for M symmetric and positive definite, the divergence associated with ψ = 1
2
‖·‖2M is

D(u,w) = 1
2
‖u−w‖2M , we may introduce the following instance of OMD

wt+1 = argmin
w∈V

1

2
‖w −wt‖2At

+w
⊤
gt

where A0 = I, At = At−1 + λgtg
⊤
t , and gt = ∇ℓ(wt). The closed-form expression is

w
′
t+1 = A−1

t gt,

wt+1 = argmin
w∈V

∥∥w −w
′
t+1

∥∥
At

(22)
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Note that this algorithm is rather different from both (17) and (20). Its regret analysis is

relatively simple, although it is not derived as a special case of the general OMD analysis

(which uses constant mirror maps). Fix any sequence ℓ1, ℓ2, . . . of loss functions satisfying

(15). Since wt+1 is the projection of w′
t+1 onto V, the update (22) ensures that

‖wt+1 − u‖2At
≤
∥∥w′

t+1 − u
∥∥2
At

= ‖wt − u‖2At
+ g

⊤
t A

−1
t gt − 2g⊤

t (wt − u) (23)

for all u ∈ V. By the curvature property (15), we then have that

2RT (u) ≤ 2

T∑

t=1

(
g
⊤
t (wt − u)− λ ‖wt − u‖2

gtg
⊤
t

)

≤
T∑

t=1

(
‖gt‖A−1

t
+ ‖wt − u‖2At

− ‖wt+1 − u‖2At
− λ ‖wt − u‖2

gtg
⊤
t

)
(using (23))

=

T∑

t=1

‖gt‖2A−1

t
+ ‖u‖2A0

+

T∑

t=1

(wt − u)⊤(At −At−1 − λgtg
⊤
t )(wt − u)

=
T∑

t=1

‖gt‖2A−1

t
+ ‖u‖22 (using the definition of At)

Now note that the the above is exactly equivalent to the bound (21) which we proved for

FTRL.

3.2. Online linear regression

An important special case of online learning is (unconstrained) online linear regression,

where V = R
d and the losses ℓt(w) = 1

2

(
w⊤xt − yt

)2
are induced by an arbitrary and

deterministic sequence (x1, y1), (x2, y2), . . . of data points xt ∈ R
d and values yt ∈ R. The

online version of the classical Ridge Regression algorithm by Hoerl & Kennard (2000) is an

instance of FTRL without linearized losses, see (12),

wt+1 = argmin
w∈Rd

1

2
‖w‖22 +

1

2

t∑

s=1

(
w

⊤
xs − ys

)2
(24)

Letting At = I +
∑t
s=1 xsx

⊤
s , where I is the d × d identity matrix, the Ridge Regression

iterates (24) can be written in closed form as wt+1 = A−1
t

(
y1x1+ · · ·+ ytxt

)
. Online Ridge

Regression enjoys the following regret bound (Cesa-Bianchi & Lugosi 2006, Theorem 11.7),

RT (u) ≤
‖u‖2
2

+ d ln

(
1 +

T

d

(
max

t=1,...,T
‖xt‖22

))(
max

t=1,...,T
ℓt(wt)

)
∀u ∈ R

d

This result shows a regret potentially logarithmic in time, except for the extraneous quantity

maxt ℓt(wt) in place of the correct scaling factor maxt y
2
t . If we knew an upper bound Y

on maxt |yt|, then we could obtain the desired scaling by clipping predictions w⊤
t xt in the

interval [−Y, Y ], (Vovk 2001, Theorem 4). Luckily, there is a better fix which does not

require any preliminary knowledge about maxt |yt|: simply add to the objective function in

(24) an extra loss term associated with the data point xt+1 and the value yt+1 = 0. As we

see next, this has the effect of shrinking (towards zero) the linear predictions w⊤
t xt, thus

adding stability to the algorithm. Cesa-Bianchi & Lugosi (2006) call the resulting algorithm
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VAW, after Vovk (2001) and Azoury & Warmuth (2001) who independently introduced it.

VAW iterates are defined by

wt+1 = argmin
w∈Rd

1

2
‖w‖22 +

1

2

t∑

s=1

(
w

⊤
xs − ys

)2
+

1

2

(
w

⊤
xt+1

)2
(25)

The closed form expression is simply wt+1 = A−1
t+1

(
y1x1+ · · ·+ytxt

)
. In order to appreciate

how predictions are shrunk by the addition of the term 1
2

(
w⊤xt+1

)2
, let ŷ RR

t+1 = w⊤
t+1xt+1

be the Ridge Regression prediction computed via (24). Then, the VAW prediction ŷVAW
t+1 =

w⊤
t+1xt+1 computed via (25) satisfies

ŷVAW
t+1 =

ŷ RR
t+1

1 + x⊤
t+1A

−1
t xt+1

.

Clearly,
∣∣ŷVAW
t+1

∣∣ <
∣∣ŷ RR

∣∣ whenever ‖xt+1‖2 > 0. It is interesting to compare VAW to a

Gaussian Process (GP) for regression (Rasmussen & Williams 2005). It is known that GP

predicts with ŷ RR
t+1, however it also returns an estimate of the variance of the prediction that

depends on x⊤
t+1A

−1
t xt+1. Hence, VAW shrinks more the points that are assigned a high

variance estimate by a GP. The regret analysis of WAV shows that

RT (u) ≤
‖u‖2
2

+

(
max

t=1,...,T
y2t

)
d

2
ln

(
1 +

T

d

(
max

t=1,...,T
‖xt‖22

))
∀u ∈ R

d (26)

Note that this bound simultaneously holds for any sequence (x1, y1), (x2, y2), . . . ∈ R
d ×R,

for any time horizon T , and for any linear comparator u ∈ R
d. Moreover, as proven in

Vovk (2001, Section 3.3), the bound (26) is asymptotically optimal, including the leading

constant.

3.3. Optimistic updates

The iterates of VAW are computed by adding to the expression in the argmin an extra

loss term 1
2

(
w⊤xt+1

)2
that “predicts” the next label yt+1 to be zero. This idea can be

generalized to what is known in the literature as an optimistic update (Chiang et al. 2012,

Rakhlin & Sridharan 2013). Given any sequence ℓ1, ℓ2, . . . of convex losses, FTRL with

linearized losses and optimistic updates uses the iterates

wt+1 = argmin
w∈V

ψt+1(w) +
t∑

s=1

g
⊤
s w + ĝ

⊤
t+1w

where gs = ∇ℓs(ws), ĝt+1 is a guess for ∇ℓt+1(wt+1), and ψ1, ψ2, . . . are arbitrary µ-

strongly convex regularizers with respect to a norm ‖·‖. One can show that, for all u ∈ V,

RT (u) ≤ ψT+1(u)− ψ1(w1) +
1

2µ

T∑

t=1

(
‖gt − ĝt‖⋆ + ψt(wt+1)− ψt+1(wt+1)

)
(27)

We now describe two concrete and simple examples. First, consider ĝt+1 = 1
t

∑t
s=1 gs with

ĝ1 = 0 and—for the sake of simplicity—assume the convex losses are 1-Lipschitz in V, so

that ‖gt‖2 ≤ 1 for all gt generated in (27). Take ψt =
µ
2
‖·‖22 for all t. Then, for all u ∈ V,

RT (u) ≤
µ

2
‖u‖22 +

1

2µ

T∑

t=1

‖gt − ĝt‖22
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Now note that ℓt = 1
2
‖gt − ·‖22 is a 1-strongly convex loss, and ĝ1, ĝ2, . . . correspond to

the predictions of FTL on the sequence ℓ1, ℓ2, . . . of such losses. Therefore, using the FTL

analysis for strongly convex losses mentioned at the beginning of this section we have that

T∑

t=1

‖gt − ĝt‖22 − min
g : ‖g‖

2
≤1

T∑

t=1

‖gt − g‖22 = O(lnT )

It is easy to see that the minimizer in the above expression is g = 1
T

∑
t gt. So, we conclude

RT (u) ≤
µ

2
‖u‖22 +

1

2µ

T∑

t=1

‖gt − g‖22 +O(lnT )

Hence, the regret is bounded in terms of the cumulative empirical variance of the loss

gradients. Using more sophisticated time-dependent regularizers, the regret can be bounded

by an expression sublinear in the cumulative variance. We mention a similar result in the

next example, where we choose ĝt+1 = gt. In other words, we guess the next loss gradient

to be similar to the current one. This is only beneficial under the additional assumption

that losses are smooth, which is equivalent to assume that gradients are Lipschitz. Then,

choosing regularizers ψt = βtψ, where ψ is a base 1-strongly convex regularizer with respect

to a norm ‖·‖ and βt > 0 is a scaling factor, one can prove that the regret is bounded by

an expression of the order of (see Orabona 2019)

√√√√1 +
T∑

t=2

‖∇ℓt(wt−1)−∇ℓt−1(wt−1)‖2⋆

Bounds of this form were first proven by Chiang et al. (2012). Optimistic updates have

been also applied to show fast rates for regret minimization problems in game theory by

Syrgkanis et al. (2015), Foster et al. (2016).

4. UNCONSTRAINED ONLINE CONVEX OPTIMIZATION

As discussed in previous sections, both Online Mirror Descent (OMD) and Follow the

Regularized Leader (FTRL) enjoy a regret of order O
(
D
√
T
)

for convex and Lipschitz

losses, where D bounds the diameter of V according to the divergence Dψ (for OMD) or

to the range of the base regularizer Ψ (for FTRL), see (8) and (14). If V is unbounded,

say V = R
d, and losses are convex Lipschitz, we can still run OGD with w1 = 0 and fixed

stepsize η = α/
√
T for α > 0. Using (10) we get the following upper bound on the regret

RT (u) ≤
1

2

(
‖u‖22
α

+ α

)
√
T ∀u ∈ R

d (28)

By tuning α optimally with respect to ‖u‖22 we could get the bound RT (u) ≤ ‖u‖2
√
T .

This is equivalent to what we would get by running OGD with projection in the Euclidean

ball of radius U = ‖u‖2. However, this bound cannot be simultaneously achieved for all u

because the algorithms must be run with only one choice of their parameters. The problem

we study in this section is whether we can get a bound better than (28) in the unconstrained

setting. In order to answer this question, we explore the connection between online convex
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optimization and the problem of sequentially betting on the elements of a deterministic

sequence of values.

The fact that certain instances of online learning could be phrased as a gambling problem

is known since the works of Kelly (1956), Cover (1974), and Feder (1991). It was only

recently, however, that Orabona & Pál (2016) realized that certain betting strategies could

be used to derive OCO algorithms with no parameters to tune, which could be also used

for solving unconstrained OCO in an optimal way.

The betting game we are interested in is parameterized by an unknown deterministic

sequence x1, x2, . . . ∈ [−1, 1] of real numbers. The bettor starts out with an initial wealth

of C0 = ε > 0. In each round t = 1, 2, . . . of the game,

1. The bettor bets αt ∈ [−1, 1], whose absolute value is the fraction of their current

wealth Ct−1 they are betting, and whose sign indicates which sign we bet xt will

have;

2. The next value xt ∈ [−1, 1] is revealed;

3. The bettor’s return is xt × αtCt−1 ∈ R.

Note that the bettor’s wealth changes in each step t according to Ct = (1 + αtxt)Ct−1.

In order to show how to apply a betting strategy to any OCO problems, we first consider

the 1-dimensional case with losses ℓ1, ℓ2, . . . defined on R and having uniformly bounded

derivatives
∣∣ℓ′t
∣∣ ≤ 1 for all t. First of all, recall that, because of the convexity of losses, for

any u ∈ R the regret RT (u) of any online algorithm predicting with w1, w2, . . . ∈ R is upper

bounded by
∑T
t=1(wt−u)gt, where gt is the derivative of ℓt at wt. In order to use a betting

strategy to solve the online problem, we set wt = αtCt−1. We then have Ct = Ct−1 +wtxt,

which implies CT = ε +
∑T
t=1 wtxt. If we now set xt = −gt ∈ [−1, 1] (by our assumption

on the losses), we get

CT = ε

T∏

t=1

(1 + αtxt) = ε+

T∑

t=1

wtxt = ε−
T∑

t=1

wtgt ∀x1, . . . , xT (29)

Next, we prove that a lower bound on the wealth CT can be used to upper bound RT (u)

for all u ∈ R. In particular, assume that we have a betting strategy α1, α2, . . . ∈ R such

that

CT ≥ φ

(
T∑

t=1

xt

)

= φ

(

−
T∑

t=1

gt

)

(30)
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for some convex real function φ. Then, for any u ∈ R we have

RT (u) ≤
T∑

t=1

(wt − u)gt

=
T∑

t=1

−ugt −
(

ε−
T∑

t=1

wtgt

)

+ ε

=

T∑

t=1

−ugt − CT + ε (using (29))

≤
T∑

t=1

−ugt − φ

(

−
T∑

t=1

gt

)

+ ε (by our assumption on CT )

≤ sup
θ∈R

θu− φ(θ) + ε

= φ⋆(u) + ε (using the definition (7) of Fenchel conjugate)

Now that we established a formal connection between online prediction (in the 1-dimensional

case) and betting, we must pick a good betting strategy, one that has a small regret in

the betting game. We measure this regret against the class of strategies that always bet

the best constant α ∈ [−1, 1]. After T steps, the final wealth of each such strategy is

CT (α) = ε
∏T
t=1(1 + αxt). Since wealth changes multiplicatively, it is natural to define the

regret of a betting strategy α1, α2, . . . using the logarithm of the wealth,

RT (α) = ln

(

ε

T∏

t=1

(1 + αxt)

)

− ln

(

ε

T∏

t=1

(1 + αtxt)

)

=

T∑

t=1

ln(1 + αxt)−
T∑

t=1

ln(1 + αtxt)

In the special case of Boolean values xt ∈ {−1, 1}, the optimal regret RT (α) was very

precisely determined (including constants) by Shtarkov (1987), who established that

RT (α) =
1

2
lnT +

1

2
ln
π

2
+ o(1) ∀α ∈ [−1, 1]

Unfortunately, Shtarkov’s strategy is not efficiently computable. A more efficient (and

nearly optimal) strategy was introduced a bit earlier by Krichevsky & Trofimov (1981).

The Krichevsky-Trofimov (KT) strategy has a regret of

RT (α) =
1

2
lnT +Θ(1) ∀α ∈ [−1, 1]

which is optimal only up to constants. When xt ∈ [−1, 1], the KT strategy takes the simple

form α1 = 0 and αt = (x1 + · · ·+ xt−1)
/
t. Orabona & Pál (2016) proved that the wealth

of the KT strategy satisfies

CT ≥ ε

c
√
T

exp



 1

2T

(
T∑

t=1

xt

)2




for some universal constant c > 0.

Going back the the 1-dimensional online convex optimization case, recalling (29) and

xt = −gt ∈ [−1, 1], we see that the KT strategy generates predictions of the form

wt = αtCt−1 = −
(
1

t

t−1∑

s=1

gs

)(

ε−
t−1∑

s=1

gsws

)

(31)
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Using (30) and our bound RT (u) ≤ φ⋆(u)+ε on the regret, we can compute φ⋆ for our case

and derive the bound

RT (u) ≤ |u|
√
T ln (u2c2T + 1) + 1 ∀u ∈ R (32)

where, for simplicity, we set ε = 1. Recall that this bound holds, simultaneously for all

u ∈ R, under the condition that
∣∣∇ℓt

∣∣ ≤ 1 for all t. Under the same conditions, OGD

guarantees a bound on the regret RT (u) of worse order u2
√
T , see (28).

This result has been extended to R
d (and more generally to Banach spaces) by Cutkosky

& Orabona (2018) using a simple trick: in order to bound the regret RT (u) against any

u ∈ R
d we use the 1-dimensional KT strategy to learn the length ‖u‖ of u and OMD with

model space V ≡
{
u ∈ R

d : ‖u‖ ≤ 1
}
to learn the direction u

/
‖u‖ of u, where ‖·‖ is any

desired norm. This is done as follows: let wt the prediction (31) of KT and let vt be the

prediction of OMD. Then, the combined algorithm predicts wtvt and, upon receiving the

gradient gt = ∇ℓt (wtvt), feeds the derivative g⊤
t vt to KT and the gradient gt to OMD.

To analyze the regret of this combined KT-OMD strategy, note that ‖vt‖ ≤ 1 for all t

because OMD projects onto V. Therefore,
∣∣g⊤
t vt

∣∣ ≤ ‖g‖⋆. So, by linearizing the regret, we

can write

RT (u) =

T∑

t=1

ℓt(wtvt)−
T∑

t=1

ℓt(u)

≤
T∑

t=1

g
⊤
t (wtvt − u)

=

T∑

t=1

(
wtg

⊤
t vt − ‖u‖g⊤

t vt

)
+

T∑

t=1

(
‖u‖g⊤

t vt − g
⊤
t u
)

=

T∑

t=1

(
wtg

⊤
t vt − ‖u‖g⊤

t vt

)
+ ‖u‖

T∑

t=1

(
g
⊤
t vt − g

⊤
t

u

‖u‖

)
.

Now note that the first sum is the linearized regret of KT against ‖u‖, where g⊤
t vt are the

loss derivatives. The second sum (ignoring the ‖u‖ factor) is instead the linearized regret

of OMD against u
/
‖u‖ with loss gradients gt.

Since KT requires the loss derivatives to belong to [−1, 1], we can apply the above bound

when
∣∣g⊤
t vt

∣∣ ∈ [0, 1], which holds when ℓt is 1-Lipschitz for all t. Assuming that, and in

view of comparing to (28), we consider OGD run on the unit Euclidean ball with step size

ηt = 1
/√

t and KT run with ε = 1. Then using (9) for OGD and (32) for KT we obtain

that the regret of KT-OGD satisfies

RT (u) = O
((√

ln
(
‖u‖22 T + 1

)
+ 1

)
‖u‖2

√
T + 1

)
∀u ∈ R

d (33)

Note that, except for the logarithmic factor
√

ln
(
‖u‖22 T + 1

)
+ 1, this bound matches

the bound ‖u‖2
√
T for OGD tuned with the unknown knowledge of ‖u‖. Indeed, this

logarithmic term is the price we have to pay for the adaptivity of the algorithm to ‖u‖, as
Streeter & McMahan (2012) showed it to be unavoidable in the unconstrained setting.

Note that parameter-free algorithms like KT-OMD are useful also when u lives in a

bounded subset V ⊂ R
d, but the Bregman divergence Dψ is unbounded in V. The prime
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example for this scenario is the entropic mirror map ψ on the simplex V, where Dψ is the

cross-entropy. The regret bound (10) for the corresponding instance of OMD (which we

called EG) has the form

RT (u) = O
(
Dψ(u,w1)

η
+ ηT

)
∀u ∈ V

for any fixed choice of the stepsize η. In the setting of prediction with expert advice (a

special case of OCO), an implicitly defined parameter-free version of EG for linear losses

called NormalHedge was introduced by Chaudhuri et al. (2009). The bound was later

improved by Chernov & Vovk (2010) with another implicitly defined algorithm. Using a

different reduction to betting strategies, Orabona & Pál (2016) proved a bound of order√
(Dψ(u,w1) + 1)T for all u in the simplex using a closed form update. Note that, as

before, this bound is equal to the bound which one would get by tuning EG using the

(unknown) knowledge of Dψ(u,w1). Further improvement were obtained by Koolen &

Van Erven (2015), who introduced an algorithm called Squint.

One of the nice features of (33) is that RT (0) does not depend on T . So we can then

run multiple instances of the combined KT-OMD strategy using a different mirror map for

each OMD instance. This allows to bound the regret as if we ran the algorithm using the

best mirror map in hindsight (where best is relative to the linearized regret). Suppose for

example we run two instances of KT-OMD and predict using the sum wt = w
(1)
t +w

(2)
t of

their predictions. Then, linearizing the regret, we obtain

RT (u) ≤
T∑

t=1

g
⊤
t (wt − u) = min

v,z∈R
d

v+z=u

(
T∑

t=1

g
⊤
t

(
w

(1)
t − v

)
+

T∑

t=1

g
⊤
t

(
w

(2)
t − z

))

= min

{
T∑

t=1

g
⊤
t

(
w

(1)
t − u

)
,
T∑

t=1

g
⊤
t

(
w

(2)
t − u

)}

For instance, if we run OMD using the p-norm3 mirror map ψ = 1
2
‖·‖2p for 1 < p ≤ 2,

which is (p− 1)-strongly convex with respect to the same norm, then RT (u) is bounded in

terms of ‖u‖p and ‖gt‖q, where q is the conjugate coefficient of p, satisfying 1
p
+ 1

q
= 1.

Interestingly, one can show (Gentile & Littlestone 1999) that choosing p = 2 ln d
/
(2 ln d− 1)

(for d ≥ 3) gives a regret bound of the form
(
‖u‖21 /α+ α

)
G
√
T ln d for all u ∈ R

d and

for maxt ‖gt‖∞ ≤ G. As this is very similar to the bound obtained by EG when V is the

simplex, we see that by choosing p ∈ (1, 2] we can interpolate between OGD and EG. By

running multiple instances of KT-OMD, where the OMD instances use different values of

p, one can derive a regret bound almost as good as the p-norm OMD run with the best

value of p.

5. OTHER NOTIONS OF REGRET

Bounding the regret RT (u) for all u ∈ V may not be crucial in some practical applications.

For example, if the loss sequence ℓ1, ℓ2, . . . is such that no u ∈ V achieves a small cumulative

loss ℓ1(u) + ℓ2(u) + · · · , then regret bounds may not be at all helpful in telling good

algorithms from bad ones. This lack of a single good minimizer in V of the cumulative loss is

3Recall the definition of p-norm of a vector u ∈ R
d, ‖u‖p = (|u1|p + · · ·+ |ud|

p)1/p.
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likely to occur when the loss sequence is generated by a highly nonstationary data sequence,

possibly affected by seasonalities and other disturbances. In this case, regret should be

replaced by more robust measures, allowing better comparators than fixed elements of V.

In what follows, D2 is the Euclidean diameter of V and L is the Lipschitz constant of the

convex loss functions in the sequence ℓ1, . . . , ℓT .

Dynamic regret. A notion of regret which captures nonstationary comparators is that of

dynamic regret (Herbster & Warmuth 1998b),

Rdyn
T (u1, . . . ,uT ) =

T∑

t=1

ℓt(wt)−
T∑

t=1

ℓt(ut) where u1, . . . ,uT ∈ V

Note that Rdyn
T (u, . . . ,u) = RT (u), so dynamic regret includes standard regret as a special

case. Zhang et al. (2018a) show a general lower bound on dynamic regret of the form

Ω
(
L
√

(D2 +Π2,T )D2T
)
, where

Πp,T =

T−1∑

t=1

‖ut+1 − ut‖p

is the p-norm path-length function, measuring the nonstationarity of the comparator se-

quence u1, . . . ,uT . When u1 = · · · = uT then Πp,T = 0. In this case the lower bound on

the dynamic regret reduces (for p = 2) to the lower bound Ω
(
L2D2

√
T
)
on the standard

regret proven in Section 1.3.

Herbster & Warmuth (1998b)—see also Cesa-Bianchi & Lugosi (2006, Theorem 11.4)—

prove upper bounds on the dynamic regret of OMD run with the p-norm mirror map (for

1 < p ≤ 2) of the form

Rdyn
T (u1, . . . ,uT ) ≤

‖uT ‖2p +Πp,TDp

η
+ ηL2

qT ∀u1, . . . ,uT ∈ V

where Dp is the diameter of V measured using the p-norm, and Lq is the Lipschitz constant

(with respect to the dual q-norm) of the loss functions in the sequence ℓ1, . . . , ℓT —see also

Zinkevich (2003) for similar results in the special case of p = 2. Choosing the stepsize as

η = 1
/
(Lq

√
T ) gives a suboptimal upper bound of the order of Lq(D

2
p + Πp,TDp)

√
T . In

the Euclidean case (p = 2), Zhang et al. (2018a) use the Hedge algorithm (a special case

of EG) to aggregate O(lnT ) instances of OGD, each one run with a different choice of η to

guess the desired value of Π2,T (up to a constant factor). They prove the dynamic regret

bound O
(
L2

√
(D2 +Π2,T )D2T

)
, matching the lower bound up to constants.

Adaptive regret. A different view on the theme of nonstationary comparators is offered

by the notion of adaptive regret (Hazan & Seshadhri 2007). Adaptive regret evaluates

the performance of the online algorithm against that of the best fixed comparator in any

interval of time. Formally,

Rada
τ,T = max

s=1,...,T−τ+1

(
s+τ−1∑

t=s

ℓt(wt)−min
u∈V

s+τ−1∑

t=s

ℓt(u)

)

, where τ ∈ {1, . . . , T}

In their paper, Hazan & Seshadhri (2007) use a harder notion of adaptive regret, namely

maxτ R
ada
τ,T . They show an online algorithm whose regret grows in T like

√
T (lnT )3. In a
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follow-up paper, Daniely et al. (2015) devise an online algorithm with the adaptive regret

bound

Rada
τ,T (u) = O

(
(DL+ lnT )

√
τ
)

u ∈ V (34)

where D is the Euclidean diameter of V and L is the Lipschitz constant (with respect to the

Euclidean norm) of the loss functions in the sequence ℓ1, . . . , ℓT . This result is improved by

Jun et al. (2017), who show the better bound Rada
τ,T (u) = O

((
DL+

√
lnT

)√
τ
)
using the

betting framework described in Section 4.

Most of the online algorithms for minimizing adaptive regret work by combining several

instances of an online algorithm for the standard notion of regret. Each instance is run

in a specific interval of time, where the set of intervals is carefully designed so that the

overall number of instances to be run is O(lnT ). These instances are then combined using

an algorithm based on the framework of prediction with expert advice (Cesa-Bianchi et al.

1997) where each instance is viewed as an expert. As instances typically run for less than

T time steps, Jun et al. (2017) combine the betting framework with the sleeping experts

model (Freund et al. 1997), which allows only for a subset of the experts to be active at

any point of time.

Although the algorithm of Jun et al. (2017) is designed to minimize adaptive regret,

Zhang et al. (2018b) show that the same algorithm can be also used to prove the following

dynamic regret result

Rdyn
T (u1, . . . ,uT ) = O

(
DLmax

{√
T lnT , T 2/3V

1/3
T (lnT )1/3

})
(35)

where

VT =

T∑

t=2

sup
u∈V

‖ℓt(u)− ℓt−1(u)‖2

measures the variation of the loss sequence ℓ1, . . . , ℓT . As shown by Besbes et al. (2015),

the dependence on VT in (35) is not improvable.

A result relating dynamic regret to adaptive regret is proven by Zhang et al. (2018b),

who show that

Rdyn
T (u1, . . . ,uT ) ≤ min

PT

∑

I∈PT

(
Rada

|I|,T + 2|I|VT (I)
)

where the min is taken over all partitions PT of {1, . . . , T} in intervals I = {tr, . . . , ts} of

consecutive time steps, with 1 ≤ r ≤ s ≤ T . The quantity

VT (I) =
∑

t∈I

sup
u∈V

‖ℓt(u)− ℓt−1(u)‖2

is the variation of the loss sequence within the time interval. This is later extended by

Zhang et al. (2020), who prove

Rdyn
T (u1, . . . ,uT ) ≤ min

PT

∑

I∈PT

(
Rada

|I|,T + L|I|ΠT (I)
)

∀u1, . . . ,uT ∈ V

where

ΠT (I) =
∑

t∈I

‖ut+1 − ut‖2

is the path length over the interval I. However, when combined with known bounds on

the dynamic regret, this bound does not give the optimal bound O
(
L2

√
(D2 +Π2,T )D2T

)
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for dynamic regret. Zhang et al. (2020) also derive algorithms simultaneously minimizing

adaptive and dynamic regret.

Some of these notions of regret were originally introduced in the setting of prediction

with expert advice (i.e., OCO with linear losses, where V is equal to the probability sim-

plex and regret is measured against the corners of the simplex, where linear functions are

minimized). In that framework, dynamic regret is known as tracking or shifting regret

(Herbster & Warmuth 1998a). Other notions of regret, instead, are mostly studied in the

experts framework. For example, policy regret (Arora et al. 2012a) applies to settings where

the loss function ℓt at each time t depends not only on the current model wt, but also on

the past models wt−s, where s spans a window in the past (whose size H could potentially

depend on t). These loss functions can be used to model natural scenarios, such as the

“switching cost” scenario where H = 1 and ℓt(wt,wt+1) = c whenever wt 6= wt−1 (Kalai

& Vempala 2005). Swap regret (Blum & Mansour 2007), instead, measures regret against

a set of modification rules. Each modification rule F is an operator on the set {1, . . . , d} of

coordinates. The instantaneous regret at time t against F of an algorithm choosing w in

the simplex is ℓt(w)− ℓt
(
w(F )

)
, where w

(F )
i =

∑
j :F (j)=i wj . Note that when F (j) = i for

all j = 1, . . . , d, swap regret against F reduces to standard regret against the i-th corner

ei of the simplex, that is ℓt
(
w(F )

)
= ℓt(ei) for all w. Swap regret is especially important

when using online learning algorithms to approximate equilibria in games (Cesa-Bianchi &

Lugosi 2006).
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