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Abstract

We consider the problem of minimizing a convex risk with stochastic subgradients
guaranteeing ǫ-locally differentially private (ǫ-LDP). While it has been shown that
stochastic optimization is possible with ǫ-LDP via the standard SGD (Song et al.,
2013), its convergence rate largely depends on the learning rate, which must be
tuned via repeated runs. Further, tuning is detrimental to privacy loss since it
significantly increases the number of gradient requests. In this work, we propose
BANCO (Betting Algorithm for Noisy COins), the first ǫ-LDP SGD algorithm that
essentially matches the convergence rate of the tuned SGD without any learning
rate parameter, reducing privacy loss and saving privacy budget.

1 Introduction

In this paper, we consider the problem of minimizing the convex risk of a machine learning predictor,
guaranteeing local differential privacy. Instead of going through the empirical risk minimization route,
we directly optimize the stochastic objective of the risk via stochastic subgradients appropriately
sanitized to guarantee the local differential privacy. Our proposed algorithm is a variant of stochastic
subgradient descent, with the important feature of not requiring the tuning of learning rates. Yet,
it guarantees the same convergence rate and local differential privacy of a stochastic subgradient
descent procedure with the oracle tuning of its learning rate.

More in details, consider the risk R(w) ∶ Rd → R defined as R(w) ∶= Ex∼ρX
[ℓ(w,x)], where

ℓ(w,x) is convex in the first argument and x represents sensitive data about an individual drawn i.i.d.
from ρX . In machine learning terms, R(w) represents the test loss that we are interested in directly
minimizing, while ℓ(w,x) is the loss on a single sample x. It is well-known that, by linearity of
the expectation, we can get an unbiased estimate of a subgradient of R(w) just using a subgradient
w.r.t. the first argument of ℓ(⋅,x) where x is drawn i.i.d. from ρX . Hence, we can construct sanitized
subgradients simply returning a noisy version G(w) ∈ ∂ℓ(w,x)+ ξ where the noise ξ guarantees the
ǫ-Local Differential Privacy (ǫ-LDP), which prevents the private information from being identified.
We elaborate more on the problem definition and the assumptions in Section 2.

One immediately obvious algorithm to try for ǫ-LDP is the standard stochastic subgradient descent
(SGD) algorithm together with the popular choice of density p(ξ)∝ exp(− ǫ

2
∥ξ∥) (Song et al., 2013;

2015; Wu et al., 2017). Let us consider the SGD with a constant learning rate η for simplicity.1 The
convergence rate of SGD w.r.t. the optimum w∗ = minw R(w) after one pass over T samples is

E[R(wT )] −R(w∗) = O( ∥w∗∥2ηT
+

d2

ǫ2
η). Notice that the convergence rate largely depends on the

learning rate, and setting η = ǫ/d√
T

results in the rate of O(d
ǫ
∥w∗∥2/√T ). While the optimal tuning

∥w∗∥ ǫ/d√
T

would result in a much better rate of O(d
ǫ
∥w∗∥/√T ), the value ∥w∗∥ cannot be known

beforehand. Therefore, practitioners need to tune the learning rate by trying out various values over
multiple runs. However, this significantly increases the number of subgradient requests, which can be

1The same argument holds for adaptive learning rates such as Duchi et al. (2010).
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interpreted as the privacy cost. This also implies that, when there is a fixed budget of privacy loss,
one would have to use a smaller ǫ to allow multiple runs, which slows down the convergence.

Departing from the cumbersome and privacy-costing parameter tuning, we propose a new algorithm

BANCO (Betting Algorithm for Noisy COins) that enjoys the convergence rate Õ(d
ǫ
∥w∗∥/√T )

without having to tune any parameters, where Õ hides logarithmic factors. At the heart of the
algorithm is a decomposition that isolates the work of adapting to the norm of the optimum ∥w∗∥
and delegates it to a one-dimensional stochastic optimization algorithm. We describe our algorithm
and highlight the proof sketch in Section 3 and conclude with future directions in Section 4.

Related work. While there is a large body of work on differentially private (DP) empirical risk
minimization, there is less research on studying the generalization properties of the obtained solution.
Moreover, most of the work is based on the notion of differential privacy rather than on the stronger
notion of local differential privacy (LDP). We remind the readers that the DP is useful when the
data provider trusts the learning agents to be DP and allows them to access sensitive data (or data
provider may possess the learners internally) whereas LDP is useful when the data provider does not
trust the learning agents and thus have to release sanitized version of individual data. Due to space
constraints, we focus on discussing the most relevant works. The notion of LDP was introduced in
Duchi et al. (2014) and Song et al. (2013; 2015). Duchi et al. (2014) study the generalization of
locally differentially private SGD, focusing on the optimal dependency on the number of dimensions,
but assuming bounded domains to optimally tune the learning rates. Song et al. (2013; 2015) use
locally differentially private SGD to minimize the regularized ERM problems. Wu et al. (2017) study
the convergence of SGD to minimize the ERM problem and guarantee differential privacy through
the output perturbation method, and they also require the knowledge of the norm of the optimal
solution to optimally tune the learning rates. Bassily et al. (2014) studies the generalization properties
of locally differentially private SGD, but it requires a bounded domain to set the learning rates or
the presence of a regularizer, that in turn must be tuned. Instead, our work gives a generalization
guarantee for a locally differentially private SGD with one pass over the data and no learning rates to
tune.

The problem of parameter-free ǫ-LDP SGD can be seen as a noisy version of the parameter-free
SGD problem (Streeter and McMahan, 2012; Orabona and Pal, 2016; Orabona and Tommasi, 2017;
Cutkosky and Orabona, 2018). However, the extension of existing (near-optimal) parameter-free
SGDs to noisy gradients is not immediately clear since the noise makes the gradients unbounded while
the parameter-free SGDs require bounded gradients. Specifically, naively feeding in the unbounded
gradients can even make the algorithm undefined, let alone the lack of convergence guarantees;
see (Jun and Orabona, 2019, Section 3) for a detailed argument. Our solution in this paper goes back
to the more general version of Online Convex Optimization (OCO) (Zinkevich, 2003) and reconsider
its formulation to allow unbounded noise, which is more general than the ǫ-LDP setting. In this paper,
however, we focus on the LDP setting; we refer the interested readers to Jun and Orabona (2019).

2 Problem Definition and Preliminaries

In this section, we describe our notations and provide relevant background.

Locally Differentially Private (LDP) SGD. An ǫ-differentially private algorithm must guarantee
that the log-likelihood ratio of the outputs of the algorithm under two databases differing in a single
individual’s data is smaller than ǫ (Dwork et al., 2006). In the stricter definition of local differential
privacy (LDP) (Wasserman and Zhou, 2010; Kasiviswanathan et al., 2011; Duchi et al., 2014; Song
et al., 2013; 2015) an untrusted algorithm is allowed to access a perturbed version of a sensitive data
point only through a sanitization interface. In particular, the sanitization mechanism must guarantee
that the log-likelihood ratio of the data of two individuals x and x′ is smaller than ǫ.

Definition 1 (Local Differential Privacy). Let D = (X1, . . . ,Xn) be a sensitive dataset where
each Xi ∼ ρX corresponds to data about individual i. A randomized sanitization mechanism M
which outputs a disguised version (U1, . . . Un) of D is said to provide ǫ-local differential privacy to
individual i, if

sup
S

sup
x,x′∈D

P[Ui ∈ S∣Xi = x]
P[Ui ∈ S∣Xi = x′] ≤ exp(ǫ),

where the probability is w.r.t. the randomization in the sanitization mechanism.
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Algorithm 1 Betting Algorithm for Noisy COins (BANCO) for Differentially Private SGD

1: Set w1 = q1
= 0 ∈ Rd

2: for t = 1 to T do
3: Receive a noisy negative subgradient ĝt such that E[ĝt] ∈ −∂ℓ(wt,x) where x ∼ ρX
4: Update magnitude: mt+1 = 1

2a ∫
a

−a β exp (β∑t
s=1⟨ĝs,qs⟩ − β2t (σ2

2
+G2))dβ

where a =min (k1

G
, 1
b
), and k1 = 0.6838

5: Update direction: qt+ 1

2

= qt −
ĝ
t√

∑t

s=1
∥ĝ

s
∥2
2

6: Project direction onto L2 ball: qt+1 = qt+ 1

2

⋅min(1, ∥qt+ 1

2

∥−1
2

)
7: Update the weight vector: wt+1 =mt+1qt+1 ∈ R

d

8: end for
9: Return 1

T ∑
T
t=1wt

Denote by ∂ℓ(w,x) the subdifferential set of ℓ w.r.t. its first argument evaluated at (w,x). The
local differential setting can be specialized to SGD, as described in the introduction, by a mechanism

that, upon receiving a subgradient in ∂ℓ(w,x) with x
i.i.d.∼ ρX , returns a noisy version G(w) ∈

∂ℓ(w,x) + ξ, where the noise ξ guarantees the ǫ-local differential privacy.

Assumptions. Throughout, we work with negative subgradients for notational simplicity. Let ĝt

be the negative subgradient received at time step t. Let gt = Et[ĝt] be the true negative subgradient
and ξt = ĝt −Et[ĝt] where we use the notation Et to denote E[⋅ ∣ ξ

1
, . . . ,ξt−1].

We assume that the true subgradients are bounded by G: ∥gt∥2 ≤ G. Furthermore, the noise ξt is
conditionally zero-mean and has conditional finite variance:

Et [∥ξt∥22] ≤ σ2,∀t, (1)

for some σ > 0. We also assume a tail condition such that ξt is conditionally sub-exponential with
parameters (σ2

1D, b):
max

a∶∥a∥2≤1
Et [exp(β⟨ξt,a⟩)] ≤ exp (β2σ2

1D/2) , ∀∣β∣ ≤ 1/b . (2)

One can show that, when (2) is achieved with equality, we have σ2

1D ≤ σ2. The intuition of the
condition above is that the tail of the noise ξt behaves well in any direction. This noise definition
covers a wide range of distributions, including Gaussian and Laplace. If d = 1, we have σ2 = σ2

1D.
This is not true in general and the relationship depends on the noise distribution. If ξt ∼N (0, s2I),
then one can see that σ2

1D = s
2 and σ2 = ds2. As another example, the Laplace mechanism noise

used in differentially-private learning satisfies the tail condition above; see Jun and Orabona (2019,
Lemma 7).

3 Parameter-free Stochastic Optimization with Noise

We now describe BANCO that achieves essentially the convergence rate of optimally-tuned SGD
without repeated runs for tuning the learning rate, thus being truly one-pass. BANCO decomposes the
optimization process into two parts: one for optimizing the direction and the other for the magnitude
of the solution vector. For the direction, we use projected stochastic gradient descent with adaptive
learning rates (Orabona and Pál, 2018). While, for the magnitude we use a parameter-free algorithm
based on coin-betting (Orabona and Pal, 2016; Jun and Orabona, 2019). We then construct the
solution vector as the multiplication of the two solutions. The full pseudocode can be found in
Algorithm 1. Note that mt+1 has a closed form solution as follows: with shorthands x = ∑t

s=1⟨ĝs,qs⟩
and y = t(σ2/2 +G2),

mt+1 =
e−a(ay+x) (√πx exp ( (2ay+x)2

4y
)(erf(2ay+x

2
√
y
) + erf(2ay−x

2
√
y
)) + 2√y(1 − e2ax))

8ay3/2
.

For improving numerical precision for computing mt+1, we refer to (Koolen, 2015).

We now show that BANCO is a parameter-free ǫ-LDP SGD algorithm. Consider the Laplace
sanitization mechanism that adds noise with probability density function ρξ(z) ∝ exp(− ǫ

2
∥z∥2),

which makes the subgradients very similar to one another. Song et al. (2015) proved that this
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mechanism is ǫ-locally differentially private and ensures E [∥ξt∥
2

2
] ≤ 4(d2+d)

ǫ2
, satisfying (1). Further,

Jun and Orabona (2019, Lemma 7) show that this mechanism satisfies (2) with σ2

1D = 18d
2/ǫ2 and

b = ǫ/4.

Theorem 2. Assume that ℓ(w,x) is convex in the first argument w ∈ Rd and has its subgradients’
L2-norm bounded by 1, where the subgradient is with respect to the first argument. Let the noise
ĝt −E[ĝt] follow the density ρ(z)∝ exp(− ǫ

2
∥z∥2). Then, for any w⋆ ∈ Rd, after one pass over T

samples Algorithm 1 guarantees

E [R( 1
T

T

∑
t=1

wt)] −R(w⋆) ≤ O (d∥w⋆∥2
ǫ
√
T

√
ln (1 + d2∥w⋆∥2T

ǫ2
) + 1

T
) .

This convergence rate matches the private SGD of Wu et al. (2017) up to polylogarithmic terms, with
the important difference that we do not need to assume the knowledge of the norm of the optimal
solution w⋆ to tune the learning rates. Furthermore, the rate in Theorem 2 is unimprovable up to
logarithmic factors as shown in Jun and Orabona (2019). Finally, we remark that Algorithm 1 is in
fact an instance of Jun and Orabona (2019), and more generic algorithms are available via a reduction
therein, which can be of independent interest. Also, the Gaussian noise can be used as well, resulting
a better dependency in the dimension of the space, but in the weaker (ǫ, δ)-LDP.

3.1 Proof Sketch

The proof is mainly concerned with regret, a standard quantity in online learning that measures the
suboptimality with an arbitrary comparator u. Theorem 2 is a direct consequence of the expected
regret bound we describe below using so-called the online-to-batch conversion (Cesa-Bianchi et al.,
2004). Theorem 3 below shows that the expected regret of Algorithm 1 is decomposed into two
expected regrets, each for the magnitude learner mt and the direction learner qt. The fact that we
require the expected regret of the direction learner w.r.t. the unit norm comparator frees us from
tuning its learning rate, delegating the burden of adaptation to the magnitude learner. In turn, the
magnitude algorithm is parameter-free, giving the best guarantee without having to tune any learning
rates. The proof is simple and immediate from Cutkosky and Orabona (2018). Hereafter, we consider
linear functions that can be written as ℓ(w,x) = ⟨−gt,w⟩ for some gt without loss of generality (due
to the convexity).

Theorem 3. Suppose the direction learner obtains expected regret Regret
D
T (u) ∶= ∑T

t=1⟨ĝt,u − qt⟩
for any competitor u in the unit ball S ⊂ R

d and the magnitude learner obtains expected regret

Regret
M
T (v) ∶= ∑T

t=1 st ⋅ (v −mt) for any competitor v ∈ R where st = ⟨ĝt,qt⟩. Then, the iterates
mtqt guarantee

ERegretT (u) ∶= E T

∑
t=1

⟨gt,u −mtqt⟩ = E T

∑
t=1

⟨ĝt,u −mtqt⟩ ≤ RegretM
T (∥u∥) + ∥u∥RegretD

T ( u
∥u∥
),

where we define u/∥u∥ = 0 when u = 0.

For the direction learner, one can invoke any algorithm that guarantees the optimal regret with
respect to competitors in the unit ball. Here, we have used projected online gradient descent with the
scale-free learning rates in Orabona and Pál (2018). One can then immediately obtain the expected
regret bound with noisy subgradients:

E [RD
T ( u∥u∥2 )] = O

⎛⎜⎝E
⎡⎢⎢⎢⎢⎣
¿ÁÁÀ T

∑
t=1

∥ĝt∥22
⎤⎥⎥⎥⎥⎦
⎞⎟⎠
(a)= O

⎛⎜⎝
¿ÁÁÀ T

∑
t=1

(E ∥gt∥22 + σ2)⎞⎟⎠ ,
where (a) uses Jensen’s inequality and the fact that E[∥ĝt∥2] = E[∥gt∥22] + σ2.

Finally, for the magnitude learner, we have instantiated the coin betting algorithm of Jun and Orabona
(2019) that has the following regret bound:

E[RD
T (u)] = O⎛⎝∣u∣max{(1 + b) ln (∣u∣(1 + b)) ,√(1 + σ2

1D)T ln (∣u∣(1 + σ2

1D)T + 1)} + 1⎞⎠ .
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4 Future Work

Our study opens up numerous research directions. First, one immediate difference in our upper bound
from the standard SGD algorithm with adaptive step size is that we do not have a data-dependent regret

bound; we have (G2+σ2)T rather than E[∑T
t=1 ∥ĝt∥2]. It would be interesting to investigate whether

data-dependent bounds are possible. Second, it would be desirable not to require the knowledge of
the noise through (σ2, b) so we can have a single algorithm that can adapt to various types of noise.
Finally, high probability regret bounds are a straightforward research direction.
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