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Abstract—To address the challenge of the renewable energy
uncertainty, the ISO New England (ISO-NE) has proposed to
apply do-not-exceed (DNE) limits, which represent the maximum
nodal injection of renewable energy the grid can accommodate.
Unfortunately, it appears challenging to compute DNE limits that
simultaneously maintain the system flexibility and incorporate a
large portion of the available renewable energy at the minimum
cost. In addition, it is often challenging to accurately estimate the
joint probability distribution of the renewable energy. In this pa-
per, we propose a two-stage distributionally robust optimization
model that co-optimizes the power dispatch and the DNE limits,
by adopting an affinely adjustable power re-dispatch and an
adjustable joint chance constraint that measures the renewable
utilization. Notably, this model admits a second-order conic refor-
mulation that can be efficiently solved by the commercial solvers
(e.g., MOSEK). We conduct case studies based on modified IEEE
test instances to demonstrate the effectiveness of the proposed
approach and analyze the trade-off among the system flexibility,
the renewable utilization, and the dispatch cost.

Index Terms—Power dispatch, renewable energy uncertainty,
robust optimization, do-not-exceed limit, affine policy.

NOMENCLATURE

Indices and Sets

t,1,k,n,l Index for time period, thermal unit, renewable
resource, node, and transmission line, respectively.

T,1,K,N,L Numbers of time periods, thermal units, re-
newable resources, nodes, and transmission lines,
respectively.

[i(n)], [k(n)] Sets of thermal units and renewable resources
at node n, respectively.

[M] [M]:={1,..., M} for positive integer M.

Parameters

C;()  Fuel cost function of thermal unit .

c:t,c,:t Unit cost of overestimating and underestimating
the output of renewable resource k during time
period t, respectively.

Wit Forecasted output of renewable resource k during
time period .

dnt Load of node n during time period ¢.
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F Transmission capacity limit of line .

fri Shift distribution factor of node n to line .

pin pmax Minimum and Maximum generation capacity of

thermal unit ¢, respectively.

Upward and downward ramp-rate of thermal unit

¢ (MW/min), respectively.

Ag,A; Dispatch interval (min) and response time window
(min), respectively.

wiMn 8% Minimum and maximum generation capacity

of renewable resource k, respectively.

Empirical mean and empirical variance of the

prediction error of renewable output & during time

period t, respectively.

uwp dn
Ty Ty

Mkt Okt

é Weight coefficient between power dispatch and
renewable utilization.
Ekt Random variable representing the output deviation

of renewable resource k from its forecast value Wy
during time period t.
Up Lower bound on renewable utilization.

Decision Variables

Dit Scheduled generation amount of thermal unit ¢
during time period ¢.

Dit Actual generation amount of thermal unit 7 at time
t.

€ker€ry Lower and upper do-not-exceed limits of e, re-
spectively.

U Renewable utilization probability.

Birt, bie  Coefficients of the affine decision rule.

Tkt, Skt, 2kt Auxiliary dual variables in the reformulation
of the adjustable joint chance constraint.

I. INTRODUCTION

HE renewable energy (e.g., wind and solar power) leads

to random nodal injections in the power grid and presents
a significant challenge to the power system operation. Many
methods have been proposed to hedge against the renew-
able energy uncertainty, including stochastic programming
(see, e.g., [1]-[3]) and robust optimization approaches (see,
e.g., [4], [5]). These approaches incorporate the uncertainty
based on pre-specified models, e.g., probability distribution in
stochastic programming (SP) approaches and uncertainty set
in robust optimization (RO) approaches. Although SP and RO
approaches are widely applied, we may still need to address
the following two challenges:

Challenge 1 It may be too costly or even infeasible to treat
the renewable energy as non-dispatchable resource



and balance its variation by regulating other dis-
patchable resources, especially when the renewable
penetration is high [6]-[8].

Challenge 2 It is often challenging to accurately estimate
the joint probability distribution of the renewable
energy. Consequently, the solution obtained from a
SP model can perform worse in out-of-sample tests
than in the in-sample tests (see, e.g., [9]-[11]).

To address Challenge 1, the ISO-NE proposes an inspiring
concept of do-not-exceed (DNE) limits under a given power
dispatch strategy [6]. The DNE limits assign an admissible
range of renewable energy to each node of the transmission
system. This provides a clear guideline for utilizing renewable
energy: the system accommodates any nodal injection that
lies within the admissible range, and otherwise emergency
regulations (e.g., renewable energy curtailment, fast-starting
units, and load shedding) may have to be used. In addition,
the DNE limits also offer a convenient way of defining and
measuring of the system flexibility [12].

Recently, the DNE limits have received increasing attention
in the literature. [7], [13] show that the admissible range of
a power grid is mathematically equivalent to a polytope. This
generalizes the concept of the DNE limits, which take the
form of a hypercube. In [6], [7], [13], the admissible range
is obtained based on a given power dispatch strategy, which,
however, may not be optimal for accommodating renewable
generation. As a result, this might underestimate the dispatch
capability of the power system in accommodating renewable
energy. As an alternative, many studies propose to co-optimize
the power dispatch and the DNE limits. [14] proposes a
single-stage RO model that co-optimizes the power dispatch
and the polytopic admissible range. To incorporate recourse
actions (e.g., power re-dispatch), [15] proposes an adjustable
RO model in which recourse actions follow an affine decision
rule (ADR) with given coefficients. [16] studies an adjustable
RO model with ADR and optimized coefficients. Additionally,
the proposed model in [16] incorporates risk criteria based
on the radius and the coverage probability of the admissible
range. Without applying an ADR, [17] considers an adjustable
RO model that co-optimizes power dispatch and DNE limits
with full recourse. Later, [8] extends [17] by incorporating
unit commitment (UC) into the co-optimization, and employs
the column-and-constraint generation (CCG) algorithm [18] to
solve the proposed model. [19] also considers an adjustable
RO model with full recourse that incorporates UC and a
polytopic admissible range. Furthermore, [20] considers the
risk of the renewable energy being realized outside of the ad-
missible region, which result in, e.g., curtailment of renewable
energy. Differently, [21] models this risk by maximizing the
probability that the renewable energy being realized within the
DNE limits. Then, this model is solved by using the sample
average approximation algorithm. [22] considers an adjustable
RO model with both discrete and continuous recourse and
proposes to solve this model with a nested CCG algorithm.
[23] incorporates topology control into the co-optimization
and considers zonal DNE limits. Similarly, [24] also considers
topology control and proposes a multistage framework to

improve the computational efficacy. It is worth mentioning
that solving the adjustable RO model with full recourse
requires repeatedly solving mixed-integer programs with big-
M coefficients (see, e.g., [8], [13], [20], [23]), which may be
challenging when many nodes of the power grid incorporate
renewable energy.

A natural way of mitigating Challenge 2 is to employ
distributionally robust optimization (DRO). In contrast to SP
that considers a single probability distribution, DRO consid-
ers a family of probability distributions that are plausible
of modeling the renewable energy. We term the family of
distributions as an ambiguity set. In the existing literature,
ambiguity sets based on the moments of uncertainty (e.g.,
mean, variance, etc.) are commonly applied (see, e.g., [25]-
[28]). Other distributional information based on, e.g., the
Wasserstein distance [29], [30], the ¢-divergence [11], [31],
and the unimodality [16], [32], [33], have also been proposed
to characterize the ambiguity set. Accordingly, DRO formu-
lates a robust counterpart of SP and hedges against the worst-
case probability distribution within the ambiguity set.

In this paper, we consider a distributionally robust (DR) co-
optimization model for the power dispatch and the DNE limits.
Our model follows [20], [21] to incorporate the operational
risks. The main contributions of this paper are summarized as
follows.

1) We propose and incorporate adjustable DR joint chance
constraints into the DNE model. This incorporation im-
proves the out-of-sample performance on renewable uti-
lization and dispatch cost, and provides a clear picture of
the trade-off between these two performance metrics.

2) The optimization of the DNE limits results in a (compu-
tationally prohibitive) two-stage RO formulation with a
decision-dependent uncertainty set. By using ADR with
optimized coefficients, we show that this problem admits
a conservative approximation based on linear constraints,
which can be efficiently handled in commercial solvers.
This improves the scalability of the DNE approach.

3) In an extensive case study, we demonstrate the improved
out-of-sample performance and scalability of the pro-
posed approach based on various systems, including the
IEEE 14-, 118-, and 300-bus systems.

This paper focuses on the renewable generation uncertainty,
but the proposed approach can be extended to handle other
uncertainties (such as load uncertainty and contingencies)
with slight changes. In addition, the proposed model assumes
a fixed UC and power grid topology. Nevertheless, these
decisions can also be incorporated into this model with slight
changes, leading to mixed 0-1 conic programming reformula-
tions.

The remainder of this paper is organized as follows. Section
IT presents the mathematical formulation and Section III
describes the solution methodology. Section IV extends the
model and solution methodology to incorporate alternative
operational risks. Section V reports the case studies that
demonstrate the effectiveness of the proposed approach, before
we draw conclusions in Section VI.



II. MATHEMATICAL FORMULATION

We describe the co-optimization model of power dispatch
and DNE limits in Section II-A and the adjustable DR chance
constraint in Sections II-B.

A. DNE Limits

Given the forecasted renewable energy outputs wWgy,
the nominal economic dispatch (ED) model maintains the
generation-load balance under operational restrictions. Math-
ematically, we formulate the constraints of a multi-period
nominal ED model as follows:

szt“‘ Z Wkt = Z dng, Vt € [T], (la)

€[] ke[K] née[N]

*F‘l< Z fnl Z plt+ Z wkt nt SFla
n€[N] i€[i(n)] ke[k(n)]

vie (L), Vte [T], (1b)

PP < P < pP, Vi€ (1], Vit e [T], (Io)

—1{"Ag < Pir — Pip—1 <P Ag, Vi€ [I], VEE[T], (1d)

where p;; represents the pre-dispatch strategy based on the
forecast renewable generation g, constraints (la) represent
the generation-load balance, (1b) represent the transmission
line capacity restrictions based on the dc approximation of
the power flow equations, (1c) represent the capacity limits of
the thermal units, and (1d) represent the ramp-rate limits of
the thermal units. When taking the uncertainty of renewable
energy and the DNE limits into account, the power system
aims to accommodate any nodal injections of renewable en-
ergy through corrective power re-dispatch, as long as such
injections lie within the DNE limits. We formulate this re-
quirement as follows for all ¢ € [T7:

Vei € [ef,€¢], there exist {pi(e¢)}ic(r such that:

Z Pit(et) Z (Wit +€pe) = Z dnt, (2a)
i€[I] kE[K] n€[N]

—F <> | Y pale)+ D (e +exe)

n€(N] i€[i(n)] ke[k(n)]
= > fudm < B, Vi€ (L, (2b)
n€[N]

P < pule) < p™, Vi€ (1], (20)
— 1A < pirler) — pir—1(ei-1) < riPAg, Vi € [I], (2d)
— A < piler) — pu < TiPA,, Vi € [T, (2e)

where constraints (2a)—(2d) are counterparts of (1a)—(1d) with
regard to the power re-dispatch variables p;:(e;) and con-
straints (2e) represent the ramping capacity limits within the
response time window. In this paper, we assume that p;(c;)
follows an ADR, i.e., p;:(e¢) is the following affine function
of g;:

Dit(et) Zﬁit+Z(Bikt€kt + bire), Vi € [I], Vt € [T], (2f)
%

where B;; and b, represent the response of p;(g;) to the
forecast error €; and can be adjusted to optimize the objective

function (to be specified in Section II-B). On the one hand, the
ADR corresponds to the incremental output of the automatic
generation control (AGC) units as an affine function of the
renewable generation deviation. For the non-AGC units, we
can set B;i; = bjx: = 0. On the other hand, the ADR restricts
the search space of the recourse variables p;;(s;) and so yields
a conservative approximation of the constraints (2a)—(2e).

B. Adjustable DR Joint Chance Constraints

We note that formulations (1a)—(1d) and (2a)—(2e) do not
incorporate any distributional information of the forecast error
€kt This may cause a mismatch between the DNE limits
and renewable energy. For example, it may be unlikely that
the renewable generation is realized within the DNE limits,
and accordingly we may curtail a significant portion of the
renewable generation. To address this challenge, we first
designate that the DNE limits contain the forecasted output
of renewable energy and lie within the capacity limits of the
renewable generation:

m]n max
< Wt + ey < Wit < Wi + e < W™,

Vke[ ], Vt € [T]. (3)

Second, we consider an adjustable joint chance constraint to
measure the utilization of renewable energy:

>
[P%ggp(gt S [gtaet]) Z U, Vt € [T}v (4’3')
up <u <1, (4b)

where u estimates the probability of fully utilizing the re-
newable energy and wuo represents a lower bound of u. In
this paper, we assume that ug > 2/3 (see Theorem 1).
This assumption is not very restrictive because power system
operators often desire high utilization of renewable energy
(see, e.g., [34]). Additionally, we note that u represents a
decision variable in our model and can be adjusted to opti-
mize the trade-off between the power dispatch cost and the
renewable utilization. In addition, we consider an ambiguity
set D consisting of probability distributions P that (i) match
the empirical mean puy; and empirical variance oy of each ey,
and (ii) is unimodal about py, i.e.,

D {IP’ _EP[EM] = pre, Var(ep) = o, } '

"et is unimodal about prt, Vk € [K],Vt € [T

&)
Unimodality about p; indicates that the probability den-
sity function of ey, if exists, is nondecreasing from 0 to
i and is nonincreasing afterwards. In the literature, many
probability distributions proposed for modeling the renewable
energy forecast error are unimodal (see, e.g., [35]-[37]). It
is worth mentioning that [16] consider the unimodality of
the joint probability distribution P of all €. In contrast, the
unimodality in D is with respect to the marginal distribution
of each ey, which is weaker than the joint unimodality
assumed in [16] and easier to verify by the historical data. In
addition, the ambiguity set D leads to a polynomially solvable
reformulation (see Section III).



We close this section by formulating the DR co-optimization
(DRCO) model of power dispatch and DNE limits:

no Y Y Cilpa) (6a)
EL’EI},;L te[T] i€ (1]
st (la=(1d), 2a)-(2D), (3), (4a)-(4b),  (6b)

where the objective function (6a) contains two terms, with
the first term representing the power dispatch cost and the
second representing the renewable utilization u, which is
amplified by a weight 4. The system operator can set § based
on her trade-off between the renewable utilization and the
dispatch cost. If 4 is close to zero then the dispatch cost
and the renewable utilization are low. As § increases, both
dispatch cost and renewable utilization increase. By gradually
increasing the value of § and re-solving model (6a)—(6b),
we obtain a cost-utilization frontier that can clearly indicate
the trade-off between these two performance measures (see
Section V for related case studies).

III. SOLUTION METHODOLOGY

We recast the DRCO model (6a)-(6b) as a second-order
conic program that is polynomially solvable. For notation
brevity, we derive based on abstract notation. First, we repre-
sent constraints (2a)—(2f) in the following abstract form:

Jet e ple):
Tz + Wp(e) < He, Ve € [€",€"], (72)
p(e) = Be + b, (7b)

where p(e) denotes the power re-dispatch variables, matrices
T, W, and H denote the given parameters in constraints (2a)—
(2e), and matrix B and vector b denote the variables in the
ADR (2f). Letting F := diag(¢” — £"), we represent the
hypercube [e, "] as {e" + Ev : v € [0, €]}, where e denotes
the vector of all ones. Then, we recast (7a)—(7b) as

Je4e",B,b:
Tz + W(BEv + Be" + b) < He"+ HEw,

Yov € [0, ¢€]. (7¢)

We claim that (7¢) is equivalent to

L 1) .
Je e 8,80

Tz + W (Sv+ so) < He" + HEv, Yo € [0,¢].  (7d)

We now prove the equivalence (7c) < (7d). One the one
hand, suppose that there exist B and b such that (7c) holds
valid. Then, we let S = BE and 5 = Be' + b to yield
Tz + W (Sv+ 59) < He* + HEv for all v € [0, e]. Hence,
(7¢) implies (7d). On the other hand, suppose that there exist
S and sq such that (7d) holds valid. Then, we let B = SE~!
and by = s9 — SE~'e" to yield Tz + W (BEv + Be" +by) <
He" + HEw for all v € [0,¢]. Hence, (7d) also implies
(7¢). Furthermore, we note that constraint (7d) holds valid
if and only if sup,co o { (WS —HE)v} < Het —Tx — Wi,
where the supremum operator is applied on each component
of (WS — HE)v. Using the standard technique in robust

optimization (see, e.g., [38]), we recast this constraint, and
so constraints (2a)—(2f), as the following linear inequalities:
Je4eY S, 50, R
Re < He" — Tx — Wy,
R>WS—-HE, R>0.

(Te)
(7)

Second, we recast the adjustable DR joint chance constraint
(4a) as second-order conic constraints. We present this result
in the following theorem and its proof in Appendix A.

Theorem 1: If uw > 2/3, then, for all ¢ € [T], chance
constraint (4a) is equivalent to the following constraints:

8
[ 3 ] S Tkt + Zkty Vk S [K]7 (83)
Tkt — Zkt] ||o
Skt — 1
[ 2y ] , <sg+1, Vk € [K], (8b)
Ottt < pkt — Efy> Vk € [K], (8¢)
Okt < gy — fit, Vk € [K], (8d)
Z spe <1 —u, (8e)
ke[K]
Tkts Skt Rkt Z 0, Vk € [K] (Sf)

To summarize, the DRCO model (6a)-(6b) is equivalent to
the following second-order conic program:

ﬁ’Sgloi,Ifl?,u, > > Cilbu) (9a)
e elirs,z te[T]ie(I]
s.t. (la)—~(1d), (7e)-(71), (3), (4b), (8a)—(8f). (9b)

It is well-known in the optimization literature that second-
order conic programs like (9a)—(9b) can be solved in time
polynomial of the problem inputs. Specifically, (9a)—(9b) in-
volves O((I + L)KT) many linear constraints and O(KT)
many conic constraints, each based on a 3-dimensional second-
order cone. Then, by Theorem 5.4 in [46], the primal-dual
path-following algorithms using the Nesterov-Todd direction
and large-update methods solve (9a)—(9b) to any precision e
in O(V KT log(1/¢)) many iterations and each iteration needs
at most O((I + L)>K3T3) many arithmetic operations.

IV. EXTENSION TO ALTERNATIVE OPERATIONAL RISKS

We extend the DRCO model (6a)—(6b) by considering
alternative operational risks of the chance constraint (4a),
which computes the expected costs incurred by overestimat-
ing/underestimating the renewable energy. We note that such
operational risks are studied in [20]. In this paper, we study
the DR counterpart of the risks based on the ambiguity
set D defined in (5). Specifically, the DR expected cost of
overestimation/underestimation are defined as

+
Pt(e",e") := supEp E E e lehe —er)™ | s
PeD ) tel2] ]
P L _U\ .__ E +
(e, e") := supEp Cop €kt — €07 |
Pep K] te[T] ]




where [z]" = max{z,0} for z € R. When ey, ¢ [e},,},]
emergency regulations (e.g., renewable generation curtail-
ment, fast-starting units, and load shedding) may be needed
to recover the operational feasibility. Accordingly, the cost
coefficients c;rt and c;, should be estimated based on the
corresponding regulations (e.g., the opportunity/penalty cost of
curtailing renewable generation, the estimated real-time price
of using fast-starting units, and the penalty cost of shedding
load). Then, the DRCO model (6a)-(6b) can be extended by

incorporating P* (", ¢V)as follows:

. (A +p+ (L U —pD— (L U
min 3> Cilpi) — Su+ 6T PT(eN ) + 6P (e €Y)

P,B,b, :
eV te[T] ie[I]

s.t. (la)—=(1d), (2a)=(2f), (3), (4a)—(4b),

where 1 and §~ represent the weights on the expected costs
of overestimation/underestimation, respectively.

We compute P*(e",¢") by solving conic programs. We
present this result in the following theorem and its proof
in Appendix B. Accordingly, the extended DRCO model
presented above can be recast as a conic program that can
be efficiently solved by commercial solvers.

Theorem 2: Let g({(ckt, Tht) }re[k],tc|T]) Tepresent the op-
timal value of the following conic program:

i 1 1
m.?,l/l\nktij V3 Z Z CrtOkt(Tike + T3kt + 1) (102)
ke[K] te[T)
S.t. Aptoo = e, Vk € [K], YVt € [T], (10b)
T2kt
‘ [mkt e+ 1} , < ke + Take + 1,
Vk € [K], Vt € [T), (10c)
Z Aktzg = Oa
igi itg=20—1
V0 =1,2,3, Vk € [K], Vt € [T], (10d)
> Akij = T,
ig: =20
VO =1,2,3, Vk € K], Vt € [T], (10e)
Ayt € SY4, Yk € [K], Yt € [T, (10f)

where Si” represents the cone of all 4 x 4 positive semidef-
inite matrices. Then, we have

P+(€L EU):g {(C: :u‘kts%ct)}
) t 9
V30Kt kE[K],t€[T)
_ _ €Yy — Mkt
P (‘C:L?EU) =49 {(C 7kt>} 9
M V30 kE[K],te[T]

Furthermore, P*(c",¢") can be conservatively approxi-
mated by piecewise linear functions of (&“,e") with arbitrary
precision.

V. CASE STUDIES

We carry out numerical case studies on modified IEEE 14-
bus and IEEE 118-bus systems. All programs are developed
using MATLAB2014a and solved by MOSEK via YAIMIP
11.5 on a laptop with a 2.7GHz Intel Core i5 CPU and 8GB
RAM.

A. The Modified IEEE 14-bus System

In this system, there are 20 transmission lines and 5
generators (G1-G5) providing corrective power re-dispatch.
The generators and network characteristics can be found in
MATPOWER [39]. Two wind power farms with 80 MW (W1)
and 100MW (W2) installed capacity are connected to the
system at nodes 5 and 7, respectively. The load profile is
from [19] and scaled by a factor of 0.1. We set A; = 60min,
A, = 5min, T = 24hr, and p"" = 0.1p™ for all i € [I].

(3

B. The Cost-Utilization Frontier and the DNE Limits

To demonstrate the trade-off between the dispatch cost
and the utilization of renewable energy, we generate a cost-
utilization frontier by gradually increasing the value of § and
re-solving the DRCO model (6a)-(6b) for each §. To this
end, we first obtain the wind power forecast of W1 and W2
from the NREL Eastern Wind Dataset [40]. We generate a
set of wind power prediction error data by using Gaussian
distribution, whose mean is set to be 0 for all ¢ € [T]
and variance increases from 10% of the installed capacity
by 0.1% as t increases from 1 to T'. Second, we divide the
data into two parts. We use the first part to calibrate the
ambiguity set D based on the empirical mean and variance.
Then, for fixed §, we solve the DRCO model to obtain
the optimal DNE limits [¢"*,e"*] and the minimum power
dispatch cost ;e D1y Ci(]y), where p* represents an
optimal solution of p. We use the second part of the data to
obtain an out-of-sample empirical estimate of the renewable
utilization probability P{e € [¢'*,e"*]}. Third, we repeat the
second step by gradually increasing the value of ¢ from 1 to
38000. We set the step length as 100 when § < 1000, 400
when § € (1000,5000], 1000 when 6 € (5000, 10000], and
4000 when 6 > 10000. Accordingly, we obtain 33 groups of
minimum power dispatch costs, optimal DNE limits, and the
corresponding renewable utilization probabilities.
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Fig. 1: Minimum Dispatch Costs vs. Admissible Ranges of
Wind Power, with ;¥ = 7{" = 2.0% x p™ for all i € [I]

In Fig. 1, we display the minimum power dispatch cost
and the optimal DNE limits under various § values. For
intuitive presentation, we shift the DNE limits to obtain the
admissible ranges of wind power [wy, wy] = > x (ke +
€t)s 2oner) (Bt + €4y)]- The interpretation of each pair of
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Fig. 3: The Cost-Utilization Frontier under Various System
Load Levels and Network Topology. The load levels of the left
three, middle three, and right three curves are 0.9, 1.0, and 1.1
multiples of the original load level, respectively. Under each
load level, the topology associated with the 3 curves from left
to right is original topology, line 7 open, and line 1 capacity
reduction, respectively.

points (t, Cnin, wj) and (¢, Cin, wy) is that, during time period
t, we need to spend at least Cy;, on power dispatch in order to
accommodate any total wind power output within the interval
[w}, wy]. From Fig. 1, we observe that the admissible range of
wind power broadens as the minimum dispatch cost increases.
This indicates that the power system can become more flexible
as we invest more on power dispatch.

To take a closer look at the trade-off between the dis-
patch cost and the renewable utilization, we display the
cost-utilization frontiers under various ramping capabilities in
Fig. 2. Specifically, we consider three ramping capabilities in
which 7{* and 7" equal 1.6%, 2.0%, and 2.4% of p"™ for all
i € [I], respectively. For each capability and for each § value,
we depict the minimum power dispatch cost versus the small-
est renewable utilization probability in all time periods. From
Fig. 2, we first observe that the renewable utilization increases
as the dispatch cost increases, confirming our observation from
Fig. 1. Second, the increasing trend of renewable utilization
diminishes as the dispatch cost increases. Take the middle

curve with 2% ramping capability for example. On this curve,
we highlight two segments with § < 10,000 and ¢ > 10, 000,
respectively. The first segment reflects a 19.5% increase in
renewable utilization with only an 0.9% increase in the power
dispatch cost (i.e., increasing by $521). This translates into
a 0.037%/$ increasing rate of the renewable utilization. On
the contrary, the second segment reflects a 2.7% increase
in renewable utilization with a 1.8% increase in the power
dispatch cost (i.e., increasing by $1021). This translates into
a 0.003%/$ increasing rate of the renewable utilization. This
observation indicates that a small additional investment on
power dispatch can quickly enhance the renewable utilization,
but this investment becomes less efficient when the utilization
is already high. Third, we observe from Fig. 2 that the frontier
rises as the ramping capability increases. For example, to
achieve a 95% renewable utilization, it costs 5.67 x 10%$
when the ramping capability is 1.6%, 5.61 x 10*$ when
the ramping capability is 2.0%, and 5.58 x 10*$ when the
ramping capability is 2.4%. This observation indicates that a
small enhancement on the ramping capability can significantly
improve the cost-effectiveness of utilizing renewable energy.

In addition, we test the dynamics of the cost-utilization
frontier under various system states and report the results in
Fig. 3. From this figure, we observe that the cost-utilization
frontier remains almost unchanged in shape and only shifts
horizontally as the system state changes. In addition, the
impact of network topology on this frontier becomes more
significant as the system load increases. Furthermore, for a
fixed value of ¢, the system states have limited impacts on the
renewable utilization. For example, when we set § as 10,000,
the dispatch cost significantly changes under different system
states, while the renewable utilization remains almost the same
(see the nine solid dots in Fig. 3). This indicates that, once
the system operator sets  based on her cost-utilization trade-
off, the guaranteed renewable utilization is insensitive to the
system states.

C. Comparisons with the Original DNE Limit Approach

We compare the proposed DRCO model (termed the IDNE
approach) with the original DNE approach (termed ODNE)
in [6], which computes the DNE limits based on a given
dispatch strategy without explicitly modeling the renewable
ambiguity. Besides, to demonstrate the value of the DR chance
constraints (DRCC), we also compare with an intermediate
model that incorporates DRCC into the ODNE model (termed
ODNE+DRCC). We randomly generate 5,000 out-of-sample
scenarios of wind prediction errors from the hypothetical
Gaussian distribution and compare (i) the optimal DNE limits,
(ii) the renewable utilization probability, and (iii) the actual
cost incurred in each scenario. The actual cost consists of
the pre-dispatch cost, the corrective re-dispatch cost which
is the incremental cost over the pre-dispatch cost, and the
penalty costs which are incurred (a) when gy < €j,, the
load shedding takes place at a cost of 2,000$/MW and (b)
when ey > €}, the renewable energy is curtailed at a cost
of 100$/MW. Renewable curtailment incurs a cost due to the
loss of opportunity in generating electricity and the loss of



environmental benefit. In all comparisons, we set § = 10,000

and ;" = rd" = 2.0% x p™* for all i € [I].
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Fig. 4: Comparisons of ODNE, ODNE+DRCC, and IDNE
on (a) Admissible Ranges of W1, (b) Admissible Ranges of
W2, (c) Total Admissible Ranges of Wind Power, and (d)
Renewable Utilization Probability

First, we compare the admissible ranges of wind power and
the corresponding out-of-sample renewable utilization proba-
bilities in Fig. 4. By comparing ODNE and ODNE+DRCC,
we observe that their total admissible ranges are similar
(see Fig. 4(c)). However, under ODNE, the allocation of the
admissible ranges between W1 and W2 is unbalanced, yielding
very narrow admissible ranges for W1 (see Fig. 4(a)) and very
wide ones for W2 (see Fig. 4(b)). As a result, ODNE performs
poorly in utilizing wind power (see Fig. 4(d)). In contrast,
the allocation of admissible ranges is more balanced under
ODNE+DRCC and the wind utilization becomes significantly
higher and more consistent (see Fig. 4(d)) than under ODNE.
This demonstrates the value of incorporating DRCC into
the DNE framework. Additionally, IDNE further widens the
admissible ranges and provides higher wind utilization (see
Fig. 4(a)—(d)). For example, IDNE can consistently accom-
modates more than 95% of the wind power throughout the 24
time periods, while ODNE+DRCC accommodates less than
90% and shows a decreasing trend in renewable utilization as
t increases.

TABLE I: Comparisons of Various Approaches

#* Expected Cost
Actual Cost

10 11
Cost of ODNE (x 10%%)

Fig. 5: Comparison on Actual Cost

actual cost for all 5,000 scenarios and the 45-degree reference
line represents that the two costs agree. From this figure,
we observe that most points distribute around or below the
reference line, indicating that IDNE is likely to outperform
ODNE in out-of-sample tests. In addition, most points line
up along the horizontal line of 5.6 x 10*$, i.e., the IDNE pre-
dispatch cost. This indicates that the IDNE yields stable actual
costs with small variations. That is, the proposed DR approach
provide stable and predictable out-of-sample performance.
In Table I, we report the average actual cost (AvgC), the
maximum actual cost (MaxC), the average load shedding
(AvgLS), and the average wind curtailment (AvgWC) among
the 5,000 scenarios. This table confirms the observations on
the actual cost from Fig. 5, and further demonstrates that
IDNE incurs one order of magnitude less load shedding as
well as wind curtailment than ODNE does. We observe that
ODNE+DRCC outperforms ODNE in almost all aspects in
their out-of-sample comparisons. This confirms the value of
incorporating DRCC into the DNE framework. We also test the
stochastic programming model based on 50 scenarios (SP50)
and 300 scenarios (SP300), respectively, and compare their
out-of-sample performance with that of IDNE in Table I.
From this table, we observe that IDNE outperforms both SP
formulations in almost all aspects.
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Fig. 6: Comparison on the Generation Amounts of the Thermal
Units

Second, we compare the actual cost in Fig. 5 and Table 1.
In Fig. 5, we plot the IDNE actual cost versus the ODNE

Third, we compare the optimal pre-dispatch strategies of
IDNE and ODNE in Fig. 6, from which we observe that the



pre-dispatch generation amounts of G1 and G3 under IDNE
are lower than those under ODNE in most time periods.
This strategy enhances the system flexibility under IDNE
by preserving more ramping capability, especially when the
load is high. Take the time period ¢ = 11 for example,
in which the load is high and Gl, G3 under ODNE reach
their maximum generation capacities. In this case, the upward
ramping capability of ODNE becomes scarce. On the contrary,
IDNE sets a lower pre-dispatch generation amounts of Gl
and G3, and so preserves more (upward) ramping capability.
This demonstrates how the power dispatch and DNE limits
can coordinate in the proposed DRCO model to enhance the
system flexibility. In addition, we observe that G1 and G3
generate 1.94% and 0.83% less power in IDNE, respectively,
than they do in ODNE. This yields opportunity losses of these
two generators in exchange of the higher renewable utilization.
These losses can be paid off via compensation, e.g., based on
the electricity price.

Finally, it takes 3.74 CPU seconds on average and 4.47 CPU
seconds at maximum to solve the DRCO model with various
values of §, which verifies the tractability of the proposed
approach. For comparison, the time of computing SP50 and
SP300 are 6.45 seconds and 130.9 seconds, respectively.
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D. The Modified IEEE 118-bus System and the Larger-Sized
Systems

In the modified IEEE 118-bus system, there are 186
transmission lines and 54 generators providing corrective re-
dispatch. Three wind farms with an identical 300 MW installed
capacity are connected to the system at nodes 18, 32, and
88, respectively. The generator and network characteristics
are from MATPOWER 5.1 [39] and the load profile is the
same as in [19]. In addition, the wind forecasts are from the
NREL Eastern Wind Dataset [40] and the mean and variance
of the wind power prediction error are set as in the previous
case study. The number of time periods is 24. We display
the minimum power dispatch cost and the optimal DNE limits
under various J values in Fig. 7 and the cost-utilization frontier
in Fig. 8. We make similar observations from these two figures
on the trade-off between the power dispatch cost and the
renewable utilization. Finally, it takes 18.47 CPU seconds on
average and 20.25 CPU seconds at maximum to solve the
DRCO model with various values of J.

TABLE II: Computing Time for Systems of Various Sizes

118
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61.31

418
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Fig. 9: Computing Time for Various Numbers of Wind Re-
sources for (a) 118-Bus System and (b) 300-Bus System

We conduct additional case studies on larger-sized systems,
including the IEEE 300-bus system, 418-bus system (merged
IEEE 118-bus and IEEE 300-bus systems), 600-bus system
(two IEEE 300-bus systems merged), and 900-bus system
(three IEEE 300-bus systems merged), all with 24 time pe-
riods. The results are summarized in Table II. From this table,
we observe that our approach can be solved within 10 minutes
for 118-, 300-, 418-, 600-, and 900-bus systems on a laptop,
which demonstrates the scalability of the proposed method.
Furthermore, we incorporate more wind resources into 118-bus
and 300-bus systems, both with 24 time periods. Fig. 9(a)-(b)
visualize the computing time as a function of the number of
wind resources. There figures demonstrate that the proposed
method is scalable in the number of uncertain parameters.

VI. CONCLUSION AND FUTURE RESEARCH

We propose a DRCO model for power dispatch and DNE
limits. Our model incorporates an adjustable DR joint chance



constraint to explicitly measure the utilization of renewable en-
ergy. By using ADR, we derive a second order conic program
that conservatively approximates the DRCO model. The case
studies based on modified IEEE 14-bus and 118-bus systems
demonstrate the effectiveness and computational tractability
of the proposed approach. Future research includes alternative
ambiguity sets and the corresponding DRCO models, as well
as modeling and compensating the opportunity losses of the
non-renewable resources in the IDNE approach.

APPENDIX A
PROOF OF THEOREM 1

First, we observe that ambiguity set D satisfies Assumption
(Al) in [41]. Hence, by Theorem 3 in [41], the chance
constraint (4a) is equivalent to its Bonferroni approximation:

inf  Pre(ert € € ehe)) = 1 — Skt

Prt €Dkt

Vk € [K], Vt € [T], (11a)
> sk <1—u, VEe(T), (11b)
kE[K]

spe >0, Vk € [K], Vt € [T], (11¢)

where Py, represents the (marginal) probability distribution of
each ey and Dyt = {Px: : Ep,, [ext] = e, Var(ert) = o3y,
Pkt is unimodal about fiy: }.

Second, chance constraint (11a) is equivalent to:

—Mkt})
(11d)

where 1 — sz > u > 2/3 due to (11b). By the Gauss
inequality [42], we recast (11d) as
4

- —>1-
9A7,

inf  Pry (Jene — pae] < min{puee — €fy, €y

Pt €Dkt
>1— sk, Yk € [K], Vit e [T],

ske, VEk € [K], Vt € [T], (11e)
where Mgy := min{pp: — €}y, €% — Hit )/ Okt

Third, we recast inequality (l1le) as second-order conic
constraints (8a)—(8d) by introducing auxiliary variables r; and
zi (see [43]).

APPENDIX B
PROOF OF THEOREM 2

First, for given 7 € R, we compute the worst-case
expectation J(7) := suppep, Eple — 7]7 with Dy = {P :
Eple] = 0,Var(e) = 1/3,¢ is unimodal about 0}. To this
end, by the unimodality of e, there exists a random variable
¢ € R such that ¢ = U(, where U is uniform on (0,1)
and independent of ( (see [44]). It follows that Ep[¢] = 0,
Var(¢) = 1, and Ep[e — 7]T = Ep[h(()], where

0 if ¢ <0,
ne) = { { fﬂ if ¢ > 0.
by

We compute suppep, Ep[h(C)]
optimization problem:

max /R h(¢)dP

formulating the following

(12a)

s.t. /CQd]P =1, (12b)

R
/ (dP =0, (12¢)

R
/ dP =1, (124d)

R

whose dual formulation is

min w3 +m + 1 (12e)
st 3¢t +ml 41 +12>0, V¢ >0, (12f)
V¢ >0, (12g)

T3¢ +7T2C+7T1+1>1_Z

where dual variables 73, w9, and 7 + 1 are associated with
primal constraints (12b)—(12d), respectively. Dual constraint
(12f) is equivalent to m; + 1 — (mg)?/(4m3) > 0, which is
further equivalent to

2
7T1—7T3+1 2

In addition, dual constraint (12g) is equivalent to m3(34mo¢2+
w1+ 7 > 0 for all ¢ > 0, which is further equivalent to

JA € Siﬂl such that:

<m +m3+ 1L (12h)

AOO =T, (121)
> A =0,V=1,23, (12j)

it i+j=20—1
> Aij=m, =123 (12k)

i, =20
by Proposition 3.1(b) in [45]. It follows that J(r) =

suppep, Ep[h(¢)] equals the optimal value of the following
conic program:

min s+ + 1 (121)

71-7

st. (12h)—(12k), A € ST (12m)

Second, we have P~ (g",€") = > (s 2oter) Cht SUPPeD
Epleg: — €},]1 because D is separable over indices & and ¢.
But

sup B [ege — ]
PeD

U +
=30y sup Ep K€kt _ Mkt) - <€kt _ ukt)]
tIPe’D \/go'kt \/30 kt
= \/§O'k J (élit ukt)
= . —kt U
\/gU kt
because random variable (ex; — x¢)/(V/30%:) has mean 0,
variance 1/3, and is unimodal about 0. Hence,

A5, T ()

ke[K] te[T]

=9 { <Clzta ke _,Ukt> } .
V3ot ke[K]te[T)

Similarly, P*(e", £¥) = g({(c'k“t, (prt — s;t)/(\/gakt))}ke[m’

tE[T])-
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Fig. 10: An Illustration of J(7) and its CPLA (H = 4)

Third, J(7) is convex in 7 because 7 appears in the right-
hand side of the formulation (121)-(12m) with a minimization
objective function that defines J(7). It follows that J(7)
admits a conservative piecewise linear approximation (CPLA,
see Fig. 10). Specifically, suppose that J(7) is defined on the
interval |7, 7y]. Then, letting ny, = 7.+ (h—1)(7,—7.)/H for

H e Ny and h € [H + 1], we have J(7) < ZhH:ll And (ng),
where

H1
E Apnp =T,
h=1

H+1
S =1, Ay >0, Vhe[H+1].
h=1

Hence J(7) can be conservatively approximated by
Z )\hJ (np). Additionally, by construction, it is clear
that hmH%o S LI (ny) = J(7). For all k € [K]
and t € [T], we have 0 < ¢}, < wpi™ — Wy
and wm‘" — W < ef, < 0 by constraint (3). It fol-
lows that P~ (g",€") can be conservatively approximated by
\/?jZke[K] Zte[T] ZhH;ll CreOkt Ay (M), Where ny, =
— e/ (V30kt), m et = (W™ — by — pie)/(V30kt),
Mg = Ny +(h=1) (0 4 gy =701y, /H forall b € [H+1],

and
H+1 Qv
\" oo, — Ckt Hit
nkt'hkt = 7
h=1 Tkt
H+1

Z At = 1,

Similarly, P*(e",¢") can be conservatively approximated by
H+1

\[Zke (K] Zte[T Dohet Cﬁﬂkt/\ﬁkﬂ(”%)’ where n-li_kt =

pie/(V30k1), 1 (e + Dre — wi")/(V30ke),

e >0, Vh e [H+1).

H+1)kt

Mo = Wi H (h=1) (0 y = ny) /H forall b € [H+1],
and

H+1 o

Z )‘hktnhkt \[Ukt

H+1

Z )‘hkt

1, Ay, >0, Vhe[H+1].

Finally, we note that the values of J(ny,,) can be efficiently
obtained by solving the conic program (121)—(12m) by setting
T = nfkt. Hence, we can incorporate the conservative
approximations of P¥(¢", £¥) into the DRCO model by using
a set of linear constraints.
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