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Record-and-replay systems are useful tools for debugging non-deterministic parallel programs by first record-

ing an execution and then replaying that execution to produce the same access pattern. Existing record-and-

replay systems generally target thread-based execution models, and record the behaviors and interleavings

of individual threads. Dynamic multithreaded languages and libraries, such as the Cilk family, OpenMP, TBB,

and the like, do not have a notion of threads. Instead, these languages provide a processor-oblivious model

of programming, where programs expose task parallelism using high-level constructs such as spawn/sync

without regard to the number of threads/cores available to run the program. Thread-based record-and-replay

would violate the processor-oblivious nature of these programs, as they incorporate the number of threads

into the recorded information, constraining the replayed execution to the same number of threads.

In this article, we present a processor-oblivious record-and-replay scheme for dynamic multithreaded lan-

guages where record and replay can use different number of processors and both are scheduled using work

stealing. We provide theoretical guarantees for our record and replay scheme—namely that record is optimal

for programs with one lock and replay is near-optimal for all cases. In addition, we implemented this scheme

in the Cilk Plus runtime system and our evaluation indicates that processor-obliviousness does not cause

substantial overheads.

CCS Concepts: • Software and its engineering → Software testing and debugging; • Theory of com-

putation → Scheduling algorithms; Shared memory algorithms; • Computing methodologies → Parallel

programming languages; Concurrent programming languages;

Additional Key Words and Phrases: Deterministic replay, dynamic program analysis, reproducible debugging,

work stealing

ACM Reference format:

Robert Utterback, Kunal Agrawal, I-Ting Angelina Lee, and Milind Kulkarni. 2019. Processor-Oblivious

Record and Replay. ACM Trans. Parallel Comput. 6, 4, Article 20 (December 2019), 28 pages.

https://doi.org/10.1145/3365659

This work was done in part while R. Utterback was affiliated with Washington University in St. Louis.

This research was supported in part by National Science Foundation under grant numbers CCF-1150036, CCF-

1218017, XPS-1439062, CCF-1150013, CCF-1439126, CCF-1527692, and CCF-1733873, and Department of Energy under

grant number DE-SC0010295.

Authors’ addresses: R. Utterback, 700 E. Broadway, Monmouth, IL 61462, USA; email: rutterback@monmouthcollege.edu; K.

Agrawal and I.-T. A. Lee, One Brookings Drive, St. Louis, MO 63130, USA; emails: {kunal, angelee}@wustl.edu; M. Kulkarni,

610 Purdue Mall, West Lafayette, IN 47907, USA; email: milind@purdue.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2329-4949/2019/12-ART20 $15.00

https://doi.org/10.1145/3365659

ACM Transactions on Parallel Computing, Vol. 6, No. 4, Article 20. Publication date: December 2019.

https://doi.org/10.1145/3365659
mailto:permissions@acm.org
https://doi.org/10.1145/3365659


20:2 R. Utterback et al.

1 INTRODUCTION

Debugging multithreaded programs is challenging, due to non-deterministic effects such as the in-
terleaving of threads’ accesses to shared data. Different thread interleavings can produce different
results, and a bug that manifests under one interleaving may not manifest under another, making
reproducing bugs notoriously difficult. A popular technique for addressing this problem is record

and replay [3, 21, 30, 35, 37, 38, 42, 43, 45, 49, 56, 59, 61, 67, 75, 76, 78]. One execution records

enough information about its behavior so that a second execution can faithfully replay that be-
havior, producing the same outcome. As a result, any bug that manifests during the recorded run
will be reproduced during the replay run, easing the task of tracking down bugs.

In this work, we focus on programs where shared objects are protected by locks. A record-and-
replay system for these programs must ensure that critical sections protected by the same lock
are executed in the same order during the recorded run and the replay run. For standard thread-
based programming models, this amounts to recording the order in which threads acquire each
lock.1 However, a class of parallel programming languages uses, dynamic multithreading where
the number of threads is not part of the model at all, such as the Cilk family [18, 34, 41], sub-
sets of OpenMP [6], Threading Building Blocks [40], the Habanero family [7, 24], Task Parallel
Library [47], X10 [24, 25], and many others. In these languages and libraries, the program itself
is processor (or thread) oblivious—the programmer specifies the logical parallelism of the program
using primitives such as spawn/sync, async/finish, or parallel-for loops. At run time, a scheduler is
responsible for efficiently mapping this parallelism to worker threads that execute the computation
in parallel.2

Despite the lack of explicit threads, record and replay is still useful for these dynamically multi-
threaded programs: if multiple parallel tasks access shared data using a lock, different executions
might result in tasks accessing that data in different orders. These sources of non-determinism can
lead to difficult-to-identify bugs. To our knowledge, there are no systems that perform record and
replay for dynamic multithreading systems.

A straightforward approach to performing record and replay of a dynamic multithreaded pro-
gram is to treat the composition of the program and the scheduler as a “standard” threaded pro-
gram: the workers managed by the scheduler are the threads whose interleavings must be recorded.
A clear drawback of this approach is that the scheduler itself is a highly parallel component: the
workers are threads that access shared data (e.g., the queues of tasks that workers collaborate to
complete). Cilk’s scheduler, for example, uses randomized work stealing; which workers execute
which tasks when is non-deterministic and can change from one execution of a computation to
the next even if the number of workers remains the same. Recording these computations using
a standard record and replay scheme requires recording all of the decisions of the scheduler and
then reproducing these exact decisions during replay, which can significantly increase the cost of
both record and replay.

This article is premised on this insight that recording should occur at the correct level of ab-

straction. Dynamic multithreading systems are deliberately processor oblivious: the programming
and execution model make no reference to the number of threads. A record-and-replay system
for dynamic multithreading should also be processor oblivious: by operating at the level of the
programming model, rather than incorporating the scheduler into the recording domain, such a
record-and-replay system can avoid the need to faithfully record and replay the behavior of the
scheduler. Moreover, such a system would inherit the processor-oblivious nature of the underlying

1If there are race conditions in the code, where shared data is not protected by a lock, additional steps must be taken to

ensure safe recording of the accesses to that data. In this article, we consider race-free programs.
2We use workers and processors interchangeably in this article.
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programming model: record and replay could use different numbers of workers, while delivering
the same observed behavior.

In this article, we present PORRidge, the first processor-oblivious record-and-replay system, and
the first known record-and-replay system for dynamically multithreaded programs. PORRidge
targets data-race free (DRF) Cilk programs—those whose accesses to shared data are correctly
synchronized—and hence focuses on controlling the order in which synchronization operations
are performed. While data race freedom may seem to be a strong constraint, we note two things.
First, DRF is a common assumption for record-and-replay systems [35, 52, 67], as well as other
dynamic analyses [58]. Second, DRF is a limitation of the PORRidge implementation, which needs
to track sources of non-determinism. PORRidge uses the DRF assumption to allow it to track lock
operations only. However, the same conceptual record and replay techniques could be applied to
racy programs, by using race detection tools (e.g., [26], [31], [32], and [46]) to identify races and
indicate to PORRidge additional sources of non-determinism (tools like Chimera adopt similar
approaches [44]). We also assume that there is no parallelism within critical sections, which is a
standard assumption for most dynamic multithreaded systems.

Following the processor-oblivious model, PORRidge is oblivious to the number of workers. Work
stealing is used to schedule the computation during both record and replay. Hence, a program
recorded on n workers can be replayed onm workers. Indeed,m can be greater than n—a program
can be replayed on more processors than the original recorded run! Replaying on more processors
than the recording can be useful during debugging: (i) debugging during replay can be performed
with heavyweight instrumentation to aid in bug diagnosis, and replay on more processors can
compensate for the additional overhead of instrumentation; (ii) if a bug is seen during recording
long after a program has started, replay on more processors can reproduce the bug more quickly.

The key insight behind PORRidge is as follows: there are multiple sources of non-determinism
in scheduling when we execute a dynamic multithreaded program, for instance, the random work
stealing decisions that the scheduler makes. However, for a data-race free computation, a recording
run need not record all this information to reproduce it faithfully during replay; it is sufficient
to just record the order in which various critical sections acquired a shared lock. To be more
precise, a dynamic multithreaded program can be viewed as a directed acyclic graph (DAG), with
each node in the graph representing a task and edges between nodes represent dependencies.
This graph is independent of the number of workers and for race-free computations, the only
non-determinism arises from the order that tasks acquire locks. These lock acquisitions represent
additional happened-before edges in the program DAG and recording these additional edges is
sufficient to ensure that the DAG can be replayed faithfully.

Therefore, during a recording run, PORRidge simply records these happened-before edges. POR-
Ridge thus sits on top of the Cilk runtime, and does not need to track the fine-grained, non-
deterministic interleaving of worker threads in the Cilk scheduler. Moreover, during the replay
run, PORRidge ensures that the happened-before relationships that were recorded are respected:
in other words, during replay, PORRidge schedules the augmented DAG which contains all these
happened-before edges in addition to the original dependencies. While this new augmented DAG
may have parallelism limited by the happened-before edges, its parallelism is not directly limited
by the number of threads that the recorded run executed on.

Replay is more complex. The Cilk runtime system is designed to obey edges that arise from
parallel primitives such as spawn/sync. Therefore, PORRidge adds mechanisms to the Cilk runtime
system to respect the additional happened-before edges that arise from lock operations. However,
these mechanisms, and generally all of the non-determinism of the scheduler, remain encapsulated
separately from the replay itself. By keeping the runtime (both during record and during replay)
outside the scope of the system, PORRidge is able to maintain low overhead.
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1.1 Contributions

This article makes several contributions:

(1) We present PORRidge, the first processor-oblivious record-and-replay system for dynamic
multithreaded programs that keeps track of happened-before relationships between criti-
cal sections (Section 3). To our knowledge, this is the first record-and-replay system (pro-
cessor oblivious or not) for these kinds of programs.

(2) We state and prove the theoretical guarantees for PORRidge (Section 4). Despite the fact
that PORRidge requires additional happened-before tracking during record, and requires
conforming to those happened-before edges during replay, it can provide strong guaran-
tees. In particular, letW be the work required by a parallel computation—its serial execu-
tion time; let S be the span (or critical path length—longest sequence of dependencies in the
computation; let P be the number of processors; and let B be the amount of work in critical
sections. Then, the runtime of the recorded execution isO (W /P + S + B). For a single lock,
this bound is asymptotically optimal. While replay incurs slightly higher costs due to the
necessity of respecting happened-before edges, its runtime is O (W /P ′ + S ′ log P ′), where
S ′ is the span of the augmented DAG (i.e., with the additional happened-before edges) and
P ′ is the number of processors the replayed execution is run on. That means, it is possible
for the replay to be asymptotically faster than the recorded run by using more processors.

(3) We implement a prototype of PORRidge by extending the Cilk Plus [41] runtime system
and empirically evaluate our prototype system (Section 5). We show across six bench-
marks that PORRidge delivers low overhead and good scalability for both record and re-
play. In particular, replay can often provide better speedup than record as we increase the
number of cores. In addition, despite requiring additional runtime mechanisms in order to
respect happened-before edges, the additional overhead of replay over the record is small.

(4) To evaluate the benefit of processor-oblivious record and replay, we implement a second

record-and-replay system called PARRot that is processor-aware, and we empirically eval-
uate and compare its overhead to that of PORRidge (Section 6). Instead of using a generic
record-and-replay system designed for multithreaded C code that will work out of the
box, we tailor the design of PARRot to target a work-stealing runtime system to avoid
overestimating the overhead of PARRot’s approach. PARRot instruments and records only
memory and lock accesses that can lead to nondeterministic scheduling choices, thereby
incurring much less overhead than a generic record-and-replay system that records all
shared memory and lock accesses. Despite our best efforts in performance engineering
PARRot, it consistently incurs higher overhead than PORRidge and even fails to record
one of the applications tested due to out-of-memory errors. In contrast, PORRidge was
able to record and replay the same benchmark successfully with low overhead and obtain
close to linear speedups, because it need not track all the nondeterminism in the runtime.

2 PRELIMINARIES

This section provides the necessary background on modeling parallel computations, work-stealing
schedulers, and some definitions.

Dynamic Multithreading and Computation DAGs. We use Cilk Plus programming keywords,
cilk_spawn and cilk_sync, to explain the dynamic multithreaded programming model; even
though other languages use different keywords for creating and synchronizing tasks, they provide
similar semantics. Parallelism is created using cilk_spawn. When a function instance F spawns

another function instance G by preceding the invocation with cilk_spawn, the continuation of
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F—the statements after the spawning of G—may execute in parallel with G without waiting for
G to return. A cilk_sync operation acts as a local barrier; the control flow cannot move past a
cilk_sync in function F until functions previously spawned by F have returned.

As is common in the literature, we model the parallel computation as a directed acyclic graph

(DAG), where each node is a unit-time computation and each edge represents a dependence be-
tween nodes. A particular node is enabled and becomes ready to execute when all its predecessors
have executed. Also, as is common, we assume that each node has an out-degree of at most two.
A strand is a chain of nodes all with in-degree and out-degree 1—programmatically, a strand is a
sequence of instructions that contain no parallel primitives and therefore must execute sequen-
tially. We define two parameters on the DAG. Work W is the total number of nodes in the DAG
and represents the execution time of the DAG on one processor. Span S is the length of the longest
path and represents the execution time on an infinite number of processors.

Work-Stealing Scheduler. During execution, a work-stealing scheduler [19, 34] dynamically load
balances a parallel computation across available worker threads. Each worker maintains a double-
ended queue, or deque, of available work (i.e., ready nodes). The node that is currently executed is
called the assigned node. When a worker w finishes executing a node x , the following conditions
may occur. If the execution of x enables one node, the enabled node becomes w ’s new assigned
node. If it enables two nodes, one of them is placed onw ’s active deque and the other becomes the
new assigned node. If it enables no node, w pops the ready node at the bottom of its deque and
makes it its assigned node. If its deque becomes empty, w turns into a thief and chooses a victim

worker uniformly at random to steal from. Given a computation with workW and span S , a work-
stealing scheduler executes the computation in expected time W

P
+O (S ) on P processors [19].

Modeling Critical Sections. Since our computations contain critical sections, we must model
those. We assume that there is no parallelism within a critical section, and thus each critical section
of length x is simply a strand (chain) of x unit time nodes in the DAG. Each node in the chain has
in-degree one and out-degree one. The first node of this chain is called an acquisition node and the
last node is called a release node. We say Bi is the total amount of time the lock �i is held—therefore,
it is the sum of the lengths of all chains representing critical sections held by �i . We say that the
total blocking time is B =

∑
i Bi .

3

Augmented DAG. Once we record the execution of a computation DAG, we must replay it so
that all the critical sections protected by the same lock are executed in the same order as the
recorded execution. Therefore, additional happened-before edges are added to the computation
DAG. We call the new DAG with the happened-before edges an augmented DAG. More precisely,
if a critical section b accesses lock �i after another critical section a that also accesses �i , with no
other critical sections in between accessing �i , then we say that a is the predecessor critical section
to b, and b is the successor critical section of a. In the augmented DAG, we add an edge from the
last node (release node) of a to the first node (acquisition node) of b. (Note that since the last
node of a has out-degree one from assumption, this still maintains the invariant that no node has
out-degree greater than two). The work of this new DAG is still W since we haven’t added new
nodes. However, the span may be larger, and we denote the span of the augmented DAG by S ′.

3 DESIGN OF PORRIDGE

We now describe the design of PORRidge. As mentioned in Section 1, since PORRidge is designed
for data-race free programs, it needs to capture only the happened-before edges formed between

3If we are working with racy programs where we instrument the racy accesses as lightweight critical sections, then we

must also add those critical sections in the calculation of B .
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critical sections protected by the same lock during recording and enforce the same happened-
before edges during replay. Consequently, PORRidge has a lightweight recording process that can
be implemented entirely outside of the work-stealing scheduler. The replay process, on the other
hand, requires modifications to the work-stealing scheduler in order to guarantee the stated the-
oretical bound.

PORRidge provides wrappers for the various thread lock objects and associated acquisition/
release functions; the wrapper functions are invoked via compile-time interpositioning [22] [Chp.
7.13]. Each lock object in PORRidge contains a pointer to the underlying lock defined by the POSIX
thread (Pthread) specification [39] and additional data structures to record and enforce happened-
before edges.

3.1 Identifying Critical Sections

The information stored in each PORRidge lock must uniquely identify critical section instances
in the computation DAG, and the identification must be consistent across different executions.
Here, we use pedigree [48], a sequence of integers corresponding to the rank ordering of spawn
statements in the ancestor functions (including the current function) that lead to the current strand.
Pedigrees uniquely identify each strand in a consistent manner since they depend only on the
computation DAG and not on the schedule. Critical section instances can be uniquely identified by
uniquely identifying the strand they are in and then their ordering within the strand. Therefore,
it is sufficient to modify the pedigree mechanism slightly to uniquely identify critical sections.
Specifically, we append another integer to the pedigree sequence and increment this integer when
a critical section ends, i.e., when a lock is released.

The open-source Cilk Plus runtime [41] readily provides support for pedigree; however, each
read to the pedigree incurs a worst-case Θ(d ) overhead, where d is the maximum spawn depth,
the number of spawn statements nested on the stack during serial execution. Since the pedigree
must be read in every lock acquisition, this causes lock acquisitions to incur Θ(d ) overhead during
record and replay. Ideally, we would like the cost of lock acquisitions to be constant in order to
guarantee both the record and replay time bounds.

To achieve the desired constant overhead, we use a strategy similar to DotMix [48] to give
each critical section instance a critical section ID, which is effectively a hash of the modified pedi-
gree that can be maintained and derived with constant overhead. DotMix works as follows: the
runtime generates a size-d vector of random numbers using a seed at the beginning of the com-
putation. Given a pedigree, DotMix takes dot-product of the pedigree with the vector and mods
the dot-product result with a large prime p; provided that we use the same seed, a pedigree always
hashes to the same random number. Moreover, two random numbers generated via two different
pedigree have a low probability of collision [48]. Using a similar strategy as DotMix, we ob-
tain unique critical section IDs with constant overhead per lock acquisition by maintaining them
incrementally—the runtime maintains and passes down the prefix of the dot-product calculation
as the execution spawns each function. To obtain a critical section ID, a worker multiplies the rank
ordering of the current strand with the appropriate element in the random vector, adds the prod-
uct into the prefix, and mods the result. The prefix can be maintained with constant overhead per
spawn, and the generation of the critical section ID given the prefix incurs constant overhead. The
drawback of critical section IDs is the (rare) possibility of collisions, which we discuss in Section
3.2.

3.2 Record

Conceptually during recording, PORRidge stores with each lock an ordered list of previous acqui-
sitions of the lock, henceforth referred to as the lock-acquisition list. Upon lock creation, the lock
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is assigned an ID based on the current strand ID so that its lock-acquisition list can be assigned
to it during replay. When a worker successfully acquires a lock, it simply adds the current critical
section ID to the end of its lock-acquisition list. If the lock is not available, the worker spins.4

As mentioned in Section 3.1, there is a (very) small possibility of collision where different critical
section instances for the same lock yield the same critical section ID.5 To handle these collisions, at
each lock acquisition the critical section ID is also inserted into a per-lock hash table. The critical
section ID is used as the key so that the hash table disambiguates lock acquisitions with the same
critical section ID. The value of each entry contains a pointer to the corresponding lock-acquisition
list node. Upon a collision, the initial list node is marked as “has collision” and the pedigree of the
current critical section is read and stored in the new lock-acquisition list node.

At the end of the recorded execution, every lock object writes out the critical section IDs (and
pedigrees read in the event of collisions) in its lock-acquisition list to a log file in the order inserted.

3.3 Replay

At the beginning of the replay, the runtime reads in the previously recorded log and recreates
the lock-acquisition list and hash table for each lock. When a lock is created the current strand
ID is used to find the corresponding lock-acquisition list and hash table. PORRidge maintains the
invariant that the head of the list always points to the next strand that should successfully acquire
the given lock. Each list node also contains a pointer to the runtime data necessary to enable
suspending and resuming the strand. During replay, if a worker encounters a lock acquisition for
critical section b, and its predecessor—a lock release of the critical section a that was executed
immediately before b during the recorded run—has not executed yet, the worker suspends the
execution of the strand, since it is not ready in the augmented DAG. On the other hand, when
some worker (in this case, the worker that executed a) releases a lock, it may enable critical section
b (which was tried earlier and suspended); this worker must then resume this suspended critical
section.

Lock Acquire. When a worker encounters a lock-acquisition operation, it must first find the lock-
acquisition list node corresponding to the current critical section ID. This is done by searching the
hash table with the current critical section ID. If duplicates are found, the full pedigree must be
read and compared. If no pedigrees match, the worker concludes that its node is the first one, since
no pedigree is read for the first critical section ID involved in a collision.

Once found, this list node is compared to the head of the corresponding lock-acquisition list.
If the node is at the head, the worker acquires the lock and continues execution. Otherwise, the
worker marks the corresponding list node to indicate that the lock-acquisition has been tried and
suspended. It then suspends the execution of its current deque and work steals.

During process-oblivious replay, a worker must never spin or wait to acquire a lock—spinning
not only hurts performance, it can also lead to deadlocks. Consider an execution recorded on mul-
tiple workers and replayed on one worker. Say the computation contains two critical sections x
and y, protected by the same lock, that are logically in parallel with each other except for the
happened-before dependence. If x comes before y during sequential execution, during replay on
one worker, the worker will encounter x first. However, since record is done on multiple proces-
sors, y could have acquired the lock before x during record, and thus replay must execute y before
it can execute x . If during replay, the worker simply spins when it encounters x , it will spin indef-
initely since no other workers are around to execute y. Similar examples can also be created for

4PORRidge does not support try-lock operations but could be extended to handle them.
5Even though ID collisions can also occur among different critical section instances for different locks, such collisions do

not matter since they are recorded in different lock-acquisition lists.
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multiple-processor replay. Therefore, when a worker encounters a lock that it cannot yet acquire
during replay, it is essential that it suspends and finds other work to do.

Lock Release. The worker first advances the head of the list and checks to see if the next lock
acquisition has been tried and suspended. If not, the worker simply continues the execution after
the lock release. If the next lock acquisition has been tried and suspended, the worker performing
the lock release now has two continuations that it can potentially work on—the continuation after
the lock release, and the suspended lock acquisition enabled by this lock release. Both choices
lead to the same theoretical guarantees. In our implementation, we chose to have the worker
suspend the continuation after the lock release and resume the next lock acquisition in the list to
reduce contention. Note that it is possible for a worker to release a lock while a different worker
is concurrently suspending the next lock acquisition in line. Since there are at most two workers
concurrently operating on a given list node, we coordinate the synchronization using a variant of
Dekker’s algorithm [29], which coordinates the synchronization among two workers using atomic
reads and writes.

Runtime Modifications. The fact that a lock acquisition causes a worker to suspend its current
execution causes the PORRidge scheduler to diverge from the vanilla work-stealing scheduler used
by Cilk Plus without locks. The vanilla work-stealing scheduler maintains the invariant that there
are at most P deques containing ready work throughout execution, where P is the number of work-
ers used, and this fact is important for proving the scheduling bound. The PORRidge scheduler no
longer maintains the P-deque invariant, since a worker can suspend execution of a non-empty
deque. Thus, the runtime must handle multiple deques per worker, and additional care must be
taken to provide the provably-scalable time bound for replay.

During replay, a worker can suspend execution (1) upon a lock acquisition if the lock acquisition
is not ready, or (2) upon a lock release, if the lock release in turn enables a suspended lock acqui-
sition. In the first case, if the worker suspends its current (non-empty) deque, it work steals and
allocates a new deque for the stolen work, thereby increasing the total number of deques. In the
second case, the worker suspends the continuation after the lock release and resumes the deque
containing the lock acquisition that it just enabled; in this case, the overall number of deques in
the system does not increase.

One important thing to note is that a suspended lock acquisition is never on top of any deque
and therefore no one ever steals it. When a worker suspends a deque due to a lock acquisition that
is not ready, the suspended lock acquisition is at the bottom of the deque, and everything above
it in the deque is ready. If the suspended deque contains only the lock acquisition, the PORRidge
runtime frees the deque. The suspended lock acquisition, in turn, is always resumed (or enabled)
by the lock release that unblocks it. In particular, if r and s are critical sections for the same lock,
and r acquired the lock immediately before s during recording, then there is an edge from the lock
release in r to the lock acquisition in s in the augmented DAG. Therefore, if the lock acquisition
in s is suspended during replay, then s is resumed by the processor that executed the lock release
in r . This ensures (1) that no worker ever waits or spins to acquire a lock, and (2) stealing into a
suspended deque always results in a successful steal.

Since the PORRidge scheduler does not maintain the P-deque invariant during replay, we need
to make a few changes to the scheduler to provide the provably good replay bound. First, we
maintain the invariant that all P processors have approximately the same number of deques by
the following mechanisms: (1) When a worker suspends a non-empty deque, it picks a worker
uniformly at random to deposit the suspended deque with; and (2) on a steal attempt, if the thief
steals into a victim worker v’s a suspended deque and takes the last ready node in the deque, the
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deque is freed, and the thief randomly chooses a worker w and moves a suspended deque from
w to v if w is not the same as v . Effectively, these mechanisms ensure that, whenever a deque
appears in the system (due to suspension) or disappears from the system (due to stealing into the
last ready node), the appearances and disappearances of deques are roughly equally distributed
among workers to keep the loads of deques across workers roughly balanced. Second, given that
all workers have approximately the same number of deques, we modify the steal protocol to ensure
that workers steal from all deques uniformly at random. When a thief steals, it not only selects a
victim at random, it also chooses among all the deques that the victim has to steal from at ran-
dom. Finally, in the event that a worker releases a lock that enables both the continuation after
the lock release and the next (suspended) lock acquisition, the worker suspends its deque with the
continuation and executes the next lock acquisition by swapping its deque with the deque that
contains the next lock acquisition. Doing so does not change the loads of deques across work-
ers. We show how these changes allow us to provide a provably scalable replay time bound in
Section 4.

3.4 Performance Optimization

Thus far, we have been discussing the design assuming each lock contains a lock-acquisition list
and a hash table. The hash table can incur large overhead in practice for benchmarks that are
already memory-bound (such as the graph benchmarks described in Section 5), since random ac-
cesses to the hash table inherently lack locality and incur additional cache misses. We optimized
the implementation of the record phase in PORRidge by using a small Bloom filter [16] to detect
critical section ID collisions in place of a hash table. Doing so, allows the PORRidge to store the
Bloom filter with the lock object itself, leading to better spatial locality, and it uses much less
space than keeping an actual hash table. The trade-off is that a Bloom filter can report false pos-
itives (i.e., detecting collisions between section IDs with different values) and thus may lead to
reading and logging the full pedigrees unnecessarily. In our experiments, however, we find that
using the Bloom filter outperforms the hash table due to cache effects.

Even though we were able to use a Bloom filter during recording, the same optimization does
not work during replay. During replay, beyond collision detections, a worker encountering a lock
acquisition that is not yet at the head of the list needs to find the corresponding list node in order
to mark it suspended. A Bloom filter is not sufficient for such a purpose. Since the number of
lock acquisitions for a given lock is known a priori during replay, PORRidge uses a simple array
to store the lock acquisitions instead. Moreover, whether a particular lock acquisition incurs a
collision or not is also known. At a lock acquisition, either the lock acquisition is at the head, or if
there is a possibility of collision and suspension, a worker scans the entirety of the array (starting
at the current head) to check for collisions of its critical section ID and to find the corresponding
list node. For many benchmarks, the number of acquisitions for a given lock is small; thus, the
spatial locality and decrease in memory usage when using a simple array outweighs the benefit of
constant-time search via a hash table.

Finally, in the PORRidge scheduler, we perform the following optimization that is not necessary
for the scheduling bound but which improves performance in practice. Recall that there are two
types of suspended deques. (1) When a worker suspends a deque due to a lock acquisition, the
bottom node of this deque is a suspended node. (2) When a worker suspends a deque after a lock
release, all the nodes in the deque are ready to resume and there are no suspended nodes. When
another worker steals from the second type of deque with no suspended nodes, instead of stealing
just the top strand, it mugs the entire deque and resumes the bottom node. This optimization
reduces the number of deques faster, making replay more efficient.
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4 THEORETICAL ANALYSIS

In this section, we prove theoretical upper bounds on the running time of our record and replay
strategy. Recording and replaying are done in different processes and we provide separate bounds
for them. The bound on the record process follows directly from the bounds for work-stealing. For
replay, we analyze the scheduling strategy provided in Section 3. In the analysis, we extensively
use the analysis of work stealing using a potential function provided by Arora et al. [4] (abbreviated
as ABP).

4.1 Running Time of Record

Theorem 4.1. Given a computation with workW , span S , and blocking B (defined in Section 2), if

we record the computation on P processors, the running time is O (W /P + S + B) in expectation.

Record analysis directly follows from work-stealing analysis. The only additional factor is that
a worker spins when waiting on a lock, making no progress towards completing the computation.
Thus, we divide the computation into two types of phases and bound them separately. A phase is
non-blocking if no processor is waiting on a lock, otherwise it is blocking.

Lemma 4.2. The total amount of time spent in blocking phases is at most B.

Proof. This statement simply follows from the fact that the total time any processor could be
holding the lock is at most B. �

Lemma 4.3. The total expected time spent in non-blocking phases is W /P +O (S ). The time spent

in non-blocking phases isW /P +O (S + lg 1/ϵ ) with probability 1 − 1/ϵ .

Proof. During non-blocking phases, the processors are either working or stealing. The total
number of work steps is at mostW , since each work step consumes a unit of work in the computa-
tion DAG. From an argument very similar to that in ABP [4], one can show that the total number
of steal steps when no worker is blocked isO (PS ) in expectation andO (PS + P lg 1/ϵ ) with proba-
bility at least (1 − 1/ϵ ). Since there are a total of P processors executing these work or steal steps,
the total time spent on non-blocking phases is as stated. Note that some work may also be done
during blocking phases; however, this only over-estimates the running time. �

Combining Lemmas 4.2 and 4.3 gives us the stated theorem.

4.2 Running Time of Replay

Theorem 4.4. Given an augmented DAG with workW and span S ′, the replay process completes

in expected time O (W /P + S ′ lg P ).

As with the analysis of recording, we divide replay time steps into work steps and steal steps.
No worker ever waits on a lock, so there are no blocking steps. The total work is still bounded by
W . Therefore, it only remains to bound the number of steal attempts.

We use the ideas from the ABP analysis to bound the number of steal attempts. The main dif-
ference between vanilla work stealing and our replay strategy is that we now have more than P
deques. In particular, the high-level idea in the ABP analysis is the following. If there areX deques
in the system, then X steal attempts are likely to reduce the critical path by a constant amount.
Therefore, the total number of steal attempts is ((number of deques) × S ) in expectation. Since our
scheduler can have an arbitrarily large number of deques (as large as the number of critical sec-
tions in the program), we would get a very bad bound if we directly applied that technique. We
use additional insights to bound the number of steal attempts for a replay scheduler. We first make
the following observation:
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Observation 1. A steal from a suspended deque always succeeds since it is never empty. Since a

successful steal is followed by a unit of work by the thief, the total number of steals from suspended

deques is bounded byW .

Note also that when the number of suspended deques is small, i.e. still approximately O (P ), we
can use an analysis similar to ABP to bound the steal attempts. We only run into issues when the
number of suspended deques is not small. Thus, in the analysis, we divide the phases into two
different types.

A work-bounded phase begins when at least P/2 workers have at least one suspended deque.
During a work-bounded phase, about a quarter of the steal attempts are likely to succeed (since
that many steals occur from a suspended deque). Thus we can bound the total number of steal
attempts in these phases by the work of the computation. A steal-bounded phase begins with fewer
than P/2 workers having any suspended deques. Recall, as described in Section 3, we try to keep
the number of deques across workers roughly balanced by throwing deques to workers at random.
Therefore, if fewer than P/2 workers have suspended deques, the total number of deques in the
system are likely to be small. Therefore, we will bound the steal attempts occurred during steal-
bounded phases using analysis similar to that in ABP. Note that each phase is either work-bounded
or steal-bounded.

We can now see that if there are sufficient deques in the system, then the phase will be work
bounded.

Lemma 4.5. Say there are more than 2P suspended deques. At least P/2 workers have at least one

suspended deque with probability at least 1 − (e/8)P/2 ≥ 1 − 1/P2 for large enough P .

Proof. The probability that P/2 workers have no suspended deques is ( P
P/2 ) (1/2)2P ≤

(2e/16)P/2. �

In addition, we can bound the number of steal attempts in a work bounded phase by the work
of the computation.

Lemma 4.6. The expected number of steal attempts during work-bounded phases is O (W ).

Proof. In work-bounded phases, at least P/2 processors have suspended deques. Since a thief
chooses a victim uniformly at random, we have 1/2 probability of stealing into these processors
with suspended deques. In addition, since these workers have at most one active deque and at least
one suspended deque, about half of the steals from these workers are expected to be successful.
Therefore, the expected number of steals attempts during work-bounded phases is 4X where X
is the number of steal attempts from suspended deques. Combining with Observation 1 gives the
lemma. �

Therefore, we now only need consider the phases where the total number of deques in the
system is smaller than 2P . We now consider bounding the steal attempts in steal-bounded phases.
Although we now potentially have more than P deques, we can still use analysis similar to ABP to
bound the steal attempts. At a very high level, the ABP analysis works as follows: The computation
starts out having bounded “potential,” which is a function of the computation’s span. Note that
the important node that one needs to execute in order to make progress on the span always sits on
top of some deque. The key point in the ABP analysis is that, if there are X deques in the system,
and we steal uniformly at random from them, then after O (X ) steal attempts, some worker steals
and executes the important node at the top of some deque and thus make progress on the span.
Hence, we can bound the number of steal attempts to be O (XS ) in expectation.
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Similar to ABP, we define a potential function based on the depth of nodes in the augmented
DAG. The depth of a node d (u) is recursively defined as one plus the maximum depth of all its
parents. The weight of a node is w (u) = S ′ − d (u). Then, we define a potential as follows:

Definition 4.7. The potential Φ(u) of a node u is 32w (u )−1 if u is assigned, and 32w (u ) if u is ready.

The total potential of the computation is the sum of the potentials of all its ready and assigned
nodes, and the following lemma follows from the ABP analysis in a straightforward manner.

Lemma 4.8. The initial potential is 32S ′−1 and it never increases during the computation.

The following lemma is a straightforward generalization of Lemmas 7 and 8 in ABP [4].

Lemma 4.9. Let Φi denote the potential at time t and say that the probability of each deque being

a victim of a steal attempt is at least 1/X . Then, after X steal attempts, the potential is at most Φ(t )/4
with probability at least 1/4.

In ABP, X would be P . In our case, we need to analyze what X is. To bound X , we define the
number of suspended deques a worker has as its load, and we are concerned with the maximum

load, i.e., highest number of suspended deques a worker can have.

Lemma 4.10. If there are at most K ≤ P lg P suspended deques over all processors, then with prob-

ability at least 1 − o(1/P ), the processor with the largest load has at most k = lg P +O (1) suspended

deques.

Proof. The lemma follows from the classic balls into bins analysis [54, 62]—if we throw K balls
into P bins, the number of balls in the most loaded bin is O (1) + lg P if K < P lg P . If we think of
suspended deques as balls and processors as bins, by performing the load balancing of suspended
deques described at the end of Section 3, this result guarantees that when deques are suspended,
they are distributed approximately evenly. �

In steal-bounded phases,K ≤ 2P ≤ P lg P . Therefore, the maximum load is at most lg P with high
probability. We will say that a distribution is balanced if the processor with the largest number of
deques has fewer than 2 lg P deques, otherwise, we will say that the distribution is unbalanced.

We divide each steal-bounded phase into rounds with 2P lg P steal attempts. We say that a round
is good if the maximum load is at most 2 lg P throughout the round and bad otherwise.

Lemma 4.11. Let Φ(t ) denote the potential at the beginning of a good round. After 2P lg P steal

attempts, at the end of the round, the potential is at most 3Φ(t )/4 with probability at least 1/4.

Proof. Since the maximum load is at most 2 lg P throughout the round (by the definition of
a good round), the probability that a particular steal attempt hits a particular deque is at least
1/(2P lg P ) (it may be higher since some workers have fewer than lg P suspended deques). There-
fore, we can apply a small modification to Lemma 4.9 generalized from ABP and argue that the
total potential decreases. Specifically in ABP, X from Lemma 4.9 would be P ; in our case, X is
2P lg P . �

Lemma 4.12. The total number of good rounds is O (S ′) in expectation.

Proof. At a high level, from Lemma 4.11, a constant number good rounds suffice to decrease the
potential by a constant factor in expectation. Therefore, the number of rounds needed to reduce

the potential to one is log of the initial potential, which is 32S ′ . Therefore, after O (S ′) rounds, the
potential disappears and the computation completes. This argument of how we bound the number
of good rounds based on reducing the potential is similar to how the ABP analysis bounds the
number of phases. �
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Fig. 1. An example DAG with multiple locks where getting a tight bound for recording is impossible for an
online scheduler. The offline scheduler can always schedule the “important” (in this case, the rightmost)
critical section first, but an online scheduler has no way of knowing which critical section is “important”,
and therefore may execute it last.

We still need to bound the number of bad rounds, however.

Lemma 4.13. The number of bad rounds is O (X ) where X is the number of good rounds.

Proof. A steal-bounded round is good with probability at least 1 − o(1) from Lemma 4.10.
Therefore, the total number of bad rounds is smaller than the total number of good rounds. �

The following lemma follows from Lemmas 4.12 and 4.13 and the fact that each round has P lg P
steals.

Lemma 4.14. The expected number of steal attempts in steal bounded phases is at mostO (S ′P lg P ).

The following lemma follows from Lemmas 4.6 and 4.14:

Lemma 4.15. The total number of steal attempts across all phases is O (W + S ′P lg P ).

Lemma 4.15 and the facts that the total amount of work isW implies Theorem 4.4.

4.3 Discussion

We now discuss how good or bad these bounds are, theoretically. For a single lock, note thatW /P , S ,
andB are all lower bounds on the execution on P workers; therefore, the bound is tight. For multiple
locks whileW /P and S are still lower bounds, B is not a lower bound for all DAGs. Nevertheless,
this bound is existentially tight—there exist DAGs for which it is tight. In general, it is difficult
for online schedulers to get tight bounds on all computation DAGs with multiple locks without
knowing what the future DAG looks like. Consider the DAG shown in Figure 1. Gray rectangles
represent critical sections, and all critical sections in the same layer access the same lock. An
optimal offline scheduler will schedule the rightmost critical section of each layer first so it can
schedule the next layer in parallel with the previous layers and can get good speedup. However,
an online scheduler cannot know which critical section of each layer leads to more future work
and may execute them in an order that gets no speedup. In general, an online scheduler cannot
guarantee optimality, since for any online strategy, there is a bad DAG where the next layer is
always created by the critical section this strategy executes last.

Let us now consider replay. In this case, W /P , and S ′ are lower bounds; therefore, the replay
bound of O (W /P + lg PS ′) is nearly tight—it just has an additional lg P factor on the span term
which is tiny for most machines. In addition, since it is on the span term, according to the work-
first principle [34], this overhead does not affect computations with sufficient parallelism.

On series-parallel (or more generally, fully-strict) computations, depth-first work stealing (of the
kind we use) also guarantees a space bound; in particular, if the sequential execution uses S1 stack
space, work-stealing uses O (PS1) when using P workers. Since record uses vanilla work-stealing,
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it also provides this space bound. However, the replay scheduler executes the augmented DAG
which is not a fully-strict DAG, and thus such a space bound is unattainable, as indicated by the
lower bound in Section 3.1 in [17].

5 EMPIRICAL EVALUATION OF PORRIDGE

This section presents an empirical evaluation of PORRidge. The main benefit of a processor-
oblivious record-and-replay system is that one can replay an execution on a different number of
processors from that used during the recording—including a larger number—allowing the replay
to benefit from parallel execution. There are inherent overheads in the record and replay in order
to allow processor-oblivious replay, however. Specifically, during record, PORRidge must record
happened-before edges via critical section IDs in a schedule-independent fashion; during replay,
PORRidge may need to suspend and resume strands upon lock acquisitions and releases.

We empirically evaluated the overhead and scalability of the record phase and replay phase
across six benchmarks with different execution characteristics. Our results indicate that, for bench-
marks that have a sufficiently large work-to-critical-section ratio, record and replay incur negligi-
ble overhead. For benchmarks whose work is dominated by critical sections, record and replay can
incur up to 3.73× overhead, with replay incurring slightly higher overhead than record. In terms
of scalability, recording scales similarly compared to the baseline. As long as there is sufficient par-
allelism in the recorded execution, the replay scales similarly. Moreover, due to its non-blocking
execution model, the replay continues to get speedup beyond Pr ec workers, where Pr ec is the
number of workers used during recording.

Benchmarks. We used the following six benchmarks to evaluate the PORRidge system. The first
one, chess, is a Cilk Plus program published by Intel [66] that solves a chess puzzle—given eight
chess pieces excluding pawns, it counts the number of configurations where the pieces can attack
all squares on an 8 × 8 chess board. The original program uses reducers [33] to keep the count
of the number of such configurations found and to perform I/O; we modified the program to use
locks instead. Two benchmarks, dedup and ferret, are from the PARSEC benchmark suite [13,
14]; they can be implemented as Cilk Plus programs that use locks for performing file I/O. Fi-
nally, we converted several nondeterministic versions of graph algorithms from the Problem Based
Benchmark Suite [70] to use locks instead of Compare-And-Swap (CAS): MIS (Maximal Indepen-
dent Set), matching (Maximal Matching), and refine (Delaunay Refinement). These benchmarks
cover a wide spectrum of behaviors. Their runtime characteristics when executing on one worker
are shown in Table 1. Note that the characteristics during parallel execution may differ slightly for
some of the graph benchmarks as they are nondeterministic by nature. The first three benchmarks
use few locks, but still have plenty of critical sections; however, they do a significant amount of
work outside of critical sections. The graph benchmarks use a much larger number of locks, since
there is one lock per vertex in the input graph. In addition, they do almost all of their work within
critical sections.

Experimental Platform. We ran our experiments on an Intel Xeon E5-2665 with 16 2.40-GHz
cores on two sockets; 64 GB of DRAM; two 20 MB L3 caches, each shared among 8 cores; and pri-
vate L2- and L1-caches of sizes 2 MB and 512 KB, respectively. Both hyperthreading and dynamic
frequency scaling are disabled in order to get consistent results across runs. For recorded runs,
running times are in seconds as the mean of five runs, and we used a 64-bit Bloom filter in our
implementation (see Section 3). For a given number of workers, the recording with the median run-
ning time is chosen for the replay runs. For the most part, the standard deviation was within 5% of
the mean for both record and replay. A few data points were the exception—graph algorithms that
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Table 1. Application Benchmarks Used and Their Execution
Characteristics Measured When Running on One Worker

number number of lock acquisitions

application of locks total min max mean std. dev.
chess 4 2.8e4 0 2.8e4 7.1e3 1.4e4
dedup 1 7.3e5 7.3e5 7.3e5 7.3e5 n/a
ferret 1 256 256 256 256 n/a
matching 5e6 5e7 5 25 10 2.23
MIS 5e6 2.8e6 3 27 5.63 2.73
refine 4.8e7 1.2e7 0 27 0.26 0.56

The total column shows the total number of lock acquisitions across all locks during

execution. The min column shows the minimum number of lock acquisitions invoked

on a given lock across all locks; similarly, the max column shows the maximum. The

last two columns show the average number of lock acquisitions per lock and the stan-

dard deviation. The numbers of lock acquisitions when running on multiple workers

are the same for chess, dedup, and ferret but can differ slightly (albeit close) for

matching, MIS, and refine due to nondeterminism in the computations.

Table 2. Execution Times Running on One Worker
(Pbase = Pr ec = Pr ep = 1) for Six Benchmarks, in Seconds

application baseline record replay

chess 64.43 64.38 (1.00×) 65.11 (1.01×)
dedup 48.04 48.20 (1.00×) 48.16 (1.00×)
ferret 8.92 8.89 (1.00×) 9.10 (1.02×)
matching 3.06 9.64 (3.15×) 10.07 (3.29×)
MIS 1.01 3.42 (3.39×) 3.77 (3.73×)
refine 11.70 14.73 (1.26×) 13.63 (1.16×)

The replay column shows the replay execution time for replaying

the run recorded with one worker. The numbers shown in paren-

thesis indicate the overhead compared to the baseline.

are memory-bound (matching and MIS) have higher standard deviation during some replay, up to
12% for MIS.

Notation. We use the following notations in this section. The label baseline refers to executions
of the benchmarks with ordinary spin locks (i.e., without PORRidge). The label record refers to
the executions with recording enabled using PORRidge. The label replay refers to the executions
with replay enabled using PORRidge. We use Pbase to refer to the number of workers used during
baseline execution, Pr ec to refer to the number of workers used during record and Pr ep to refer to
the number of workers used during replay.

5.1 Overhead of Record

To evaluate the recording overhead, we compare the running time of PORRidge recording on one
worker with the baseline running on one worker. Table 2 shows the execution times of six bench-
mark for these configurations. The recording overhead ranges from 1–3.39× with a geometric
mean of 1.62×. Since PORRidge incurs overhead only upon lock operations, the overhead is in
part dictated by how much work is done per lock acquisition. For programs that perform suffi-
cient amount of work outside of critical sections, such as chess, dedup, and ferret, the overhead
is negligible. The graph algorithms, especially matching and MIS, incur higher overhead. For these
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Table 3. Execution Times, in Seconds, when Replaying on One Worker
Executions Recorded on Different Numbers of Workers

replay on one, recorded on P

application P = 1 P = 2 P = 4 P = 8 P = 12 P = 16

chess 65.14 (1.01×) 65.13 (1.01×) 65.11 (1.01×) 65.17 (1.01×) 65.20 (1.01×) 65.13 (1.01×)

dedup 48.16 (1.00×) 48.15 (1.00×) 48.16 (1.00×) 48.21 (1.00×) 48.11 (1.00×) 48.20 (1.00×)

ferret 9.10 (1.02×) 8.95 (1.01×) 8.95 (1.01×) 8.94 (1.01×) 8.93 (1.00×) 8.93 (1.00×)

matching 10.07 (1.04×) 10.13 (1.05×) 10.13 (1.05×) 10.17 (1.05×) 10.37 (1.08×) 10.43 (1.08×)

MIS 3.77 (1.11×) 3.90 (1.15×) 3.94 (1.16×) 3.93 (1.16×) 3.97 (1.17×) 4.04 (1.19×)

refine 13.63 (0.93×) 13.67 (0.93×) 13.47 (0.91×) 13.73 (0.93×) 13.70 (0.93×) 13.73 (0.93×)

The numbers shown in parenthesis indicate the overhead compared to the execution time of that recorded on one worker.

applications, almost all of the work occurs inside critical sections. In addition, each critical section
does a very small amount of work. Their executions mostly involve repeatedly traversing some
edge, acquiring a lock corresponding to the vertex at the end of the edge, updating a field in the
vertex, and releasing the lock. Hence, the execution time of these programs is dominated by the
cost of acquiring and releasing locks. Moreover, these applications are memory bound—they have
large working sets and display very little locality in accessing data. The additional space used
for logging during recording puts additional pressure on the memory hierarchy. In the initial im-
plementation, we have used a hash table to detect collisions of critical section IDs (discussed in
Section 3), and the additional cache misses incurred by accessing the hash table incurred much
larger overhead in these applications (8–9×). By reordering the bookkeeping data layout to obtain
better spatial locality and using a Bloom filter instead of a hash table, we were able to reduce the
overhead drastically.

5.2 Overhead of Replay

Replay has two types of overheads. Replay, like record, incurs overhead upon lock acquisitions and
releases. When a worker tries to acquire a lock, it must search the lock-acquisition array with the
current critical section ID to see if this lock acquisition is the next in line to obtain the lock. If so,
it can acquire the lock. Otherwise, it must suspend. Upon release, the worker advances the head
of the lock-acquisition list; if the next lock acquisition has been tried and suspended, the worker
suspends its current execution and resumes the execution of the next lock acquisition. In addition,
replay also incurs overheads due to maintaining more deques than the vanilla Cilk runtime system.

If we record on one worker and replay on one worker, the record and replay executions proceeds
in exactly the same order. Therefore, the replay execution never has to suspend. Essentially, the
work done by replay is the same as the work done by record except that replay may need to search
through the lock-acquisition arrays if there is a collision in the critical section IDs. Thus, for most
benchmarks, replay exhibits similar overhead as in recorded run when Pr ec = Pr ep = 1 as shown
in Table 3.

The more interesting case is when we record on more than one worker and replay on one worker
(Pr ec > 1 and Pr ep = 1). In this case, process-oblivious replay has additional overheads—namely
the overhead of suspending and resuming lock acquisitions. Note that when we replay (on one
worker) an execution recorded on multiple workers, the worker likely encounters critical sections
in a different order than the recorded execution did. When a worker encounters a critical section
that it cannot execute yet, it must suspend its current deque and work steal. In addition, since it
steals work at random, the next critical section it acquires may again not be ready. Therefore, the
worker may suspend many deques before encountering a critical section it can execute.
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We can gauge such an overhead by comparing the overhead of executions with Pr ec > 1 and
Pr ep = 1 with the overhead of executions with Pr ec = Pr ep = 1 shown in Table 3. It turns out that
for the most part, the additional overhead incurred by suspending and resuming lock acquisitions
is negligible—at most a few percent increase for the memory-bound benchmarks.

5.3 Scalability of Record

To analyze the scalability of PORRidge for recording, we compare the speedup of record to the
baseline’s. The speedup is computed with respect to their respective one-worker execution coun-
terpart. Table 4 shows scalability of both the baseline and recorded runs across benchmarks (the
first two columns). The scalability profile for record tracks that of the baseline closely across all
benchmarks. This is especially surprising for memory-bound benchmarks since the workers spend
longer within critical sections during recording compared to the baseline. In spite if this, it appears
that the additional overhead is distributed across processors evenly and did not reduce the overall
parallelism by much.

5.4 Scalability of Replay

Table 4 also shows scalability of replay runs that replay executions recorded on Pr ec = 1, 2, 4, 8,
12, 16 processors. Here, we measure the speedup of a replay run by comparing it against the time
replaying the same recorded execution on one worker (i.e., Pr ec = 1).

Recall the time bound for replay: its expected execution time on P workers isO (W /P + S ′ lg P ),
whereW is the overall work in the computation and the S ′ is the span in the augmented DAG. Since
S ≤ S ′ ≤ S + B, replay should scale as long as record scales if we ignore the lg P term. For most
benchmarks, we do see that the replay scales similarly to the recorded execution when Pr ec = Pr ep

(the highlighted cells in Table 4), indicating that it is generally safe to ignore the lg P term and that
the overheads of suspending and restarting in replay is small.

The two exceptions are data points in matching and MIS. There are two possible explanations.
The first is that the augmented DAG is running out parallelism. We don’t believe that this is the
case, since if replay uses more workers Pr ep > Pr ec , we continue to see the execution scaling (i.e.,
by looking at the scalability of data points below the highlighted cells). The more likely explana-
tion is the following: these benchmarks are already memory bound, and replay has a much larger
memory footprint than record, causing additional cache misses, and the higher memory latency
slows down the parallel execution. Indeed, these executions incur higher cache misses during re-
play than during record. There are two reasons for these additional cache misses. First, during
replay, workers suspend their current deque from time to time (discussed in Section 3) and thus
can create large number of suspended deques. Second, while record can use a Bloom filter and
do without a hash table, replay must use either an array or a hash table. While arrays have fewer
cache misses than the hash list, both of these have a larger memory footprint than the Bloom filter.
The overhead of replay was much higher when we used a hash table in our initial implementation,
which requires even more memory than the array.

The additional memory footprint also in part explains the data points with higher standard
deviation. The number of additional deques created during replay is a function of scheduling, and
the number of suspended deques can differ from run to run. Execution times for benchmarks that
are already memory bound will be more sensitive to this changes in the number of suspended
deques.

6 COMPARISON BETWEEN PORRIDGE AND PARROT

To evaluate the benefit of processor-oblivious record and replay, we have developed a processor-
aware record-and-replay system designed for dynamic multithreaded computations, called
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Table 4. Execution Times on P = 1, 2, 4, 8, 12, 16, in Seconds, and
Their Scalability Profile for All Benchmarks

replay on P workers (Pr ep = P ) an execution recorded on P’ workers (Pr ec = P ′)

application P baseline record P’ = 1 P’ = 2 P’ = 4 P’ = 8 P’ = 12 P’ = 16

chess

1 64.49 (1.00×) 64.36 (1.00×) 65.14 (1.00×) 65.13 (1.00×) 65.11 (1.00×) 65.17 (1.00×) 65.20 (1.00×) 65.13 (1.00×)

2 32.20 (2.00×) 32.20 (2.00×) 32.60 (2.00×) 32.60 (2.00×) 32.61 (2.00×) 32.64 (2.00×) 32.63 (2.00×) 32.66 (1.99×)

4 16.11 (4.00×) 16.11 (4.00×) 16.50 (3.95×) 16.36 (3.98×) 16.35 (3.98×) 16.37 (3.98×) 16.35 (3.99×) 16.34 (3.99×)

8 8.15 (7.91×) 8.13 (7.92×) 8.55 (7.62×) 8.31 (7.84×) 8.42 (7.73×) 8.45 (7.71×) 8.34 (7.82×) 8.31 (7.84×)

12 5.38 (11.99×) 5.38 (11.96×) 5.91 (11.02×) 5.65 (11.53×) 5.75 (11.32×) 5.75 (11.33×) 5.66 (11.52×) 5.63 (11.57×)

16 4.04 (15.96×) 4.11 (15.66×) 4.52 (14.41×) 4.50 (14.47×) 4.47 (14.57×) 4.57 (14.26×) 4.32 (15.09×) 4.35 (14.97×)

dedup

1 48.04 (1.00×) 48.20 (1.00×) 48.16 (1.00×) 49.15 (1.00×) 48.16 (1.00×) 48.21 (1.00×) 48.11 (1.00×) 48.20 (1.00×)

2 24.43 (1.87×) 24.44 (1.94×) 24.58 (1.92×) 24.44 (1.88×) 24.44 (1.95×) 24.43 (1.95×) 24.45 (1.96×) 24.42 (1.94×)

4 12.43 (3.86×) 12.40 (3.89×) 12.61 (3.82×) 12.55 (3.84×) 12.51 (3.85×) 12.40 (3.89×) 12.40 (3.88×) 12.41 (3.88×)

8 6.43 (7.47×) 6.49 (7.43×) 6.72 (7.17×) 6.69 (7.20×) 6.61 (7.29×) 6.46 (7.47×) 6.45 (7.46×) 6.46 (7.46×)

12 4.52 (10.63×) 4.53 (10.64×) 4.88 (9.87×) 4.83 (9.97×) 4.75 (10.14×) 4.63 (10.41×) 4.55 (10.57×) 4.55 (10.59×)

16 3.61 (13.31×) 3.65 (13.32×) 3.95 (12.19×) 3.94 (12.22×) 3.89 (12.38×) 3.76 (12.82×) 3.69 (13.04×) 3.64 (13.24×)

ferret

1 8.92 (1.00×) 8.89 (1.00×) 9.10 (1.00×) 8.95 (1.00×) 8.95 (1.00×) 8.94 (1.00×) 8.93 (1.00×) 8.93 (1.00×)

2 4.52 (1.97×) 4.57 (1.95×) 4.53 (2.01×) 4.54 (1.97×) 4.56 (1.96×) 4.52 (1.98×) 4.53 (1.97×) 4.52 (1.98×)

4 2.31 (3.86×) 2.33 (3.82×) 2.32 (3.92×) 2.34 (3.82×) 2.32 (3.86×) 2.32 (3.85×) 2.31 (3.87×) 2.32 (3.85×)

8 1.27 (7.02×) 1.24 (7.17×) 1.24 (7.34×) 1.24 (7.22×) 1.27 (7.05×) 1.26 (7.10×) 1.26 (7.09×) 1.26 (7.09×)

12 0.91 (9.80×) 0.91 (9.77×) 0.93 (9.78×) 0.90 (9.94×) 0.91 (9.84×) 0.92 (9.72×) 0.92 (9.71×) 0.91 (9.81×)

16 0.76 (11.74×) 0.78 (11.40×) 0.75 (12.13×) 0.75 (11.93×) 0.75 (11.93×) 0.75 (11.92×) 0.75 (11.91×) 0.74 (12.07×)

matching

1 3.06 (1.00×) 9.64 (1.00×) 10.07 (1.00×) 10.13 (1.00×) 10.13 (1.00×) 10.17 (1.00×) 10.37 (1.00×) 10.43 (1.00×)

2 1.92 (1.67×) 5.78 (1.46×) 6.88 (1.49×) 6.82 (1.49×) 6.93 (1.46×) 6.64 (1.53×) 6.68 (1.55×) 6.63 (1.57×)

4 0.96 (3.19×) 3.03 (3.18×) 3.95 (2.55×) 3.90 (2.60×) 3.75 (2.70×) 3.64 (2.79×) 3.63 (2.86×) 3.62 (2.88×)

8 0.50 (6.12×) 1.68 (5.74×) 3.77 (4.31×) 3.99 (4.57×) 4.22 (4.61×) 2.22 (4.58×) 2.21 (4.69×) 2.11 (4.94×)

12 0.32 (9.56×) 1.13 (8.53×) 2.57 (3.92×) 2.42 (4.19×) 2.21 (4.58×) 1.89 (5.38×) 1.77 (5.86×) 1.68 (6.21×)

16 0.25 (12.24×) 0.89 (10.83×) 2.56 (3.93×) 2.41 (4.20×) 2.11 (4.80×) 1.79 (5.68×) 1.58 (6.56×) 1.57 (6.64×)

MIS

1 1.02 (1.00×) 3.40 (1.00×) 3.77 (1.00×) 3.90 (1.00×) 3.94 (1.00×) 3.93 (1.00×) 3.97 (1.00×) 4.04 (1.00×)

2 0.65 (1.57×) 2.03 (1.67×) 2.57 (1.47×) 2.54 (1.54×) 2.48 (1.59×) 2.47 (1.59×) 2.45 (1.62×) 2.52 (1.60×)

4 0.32 (3.19×) 1.03 (3.30×) 1.63 (2.31×) 1.52 (2.57×) 1.36 (2.90×) 1.34 (2.93×) 1.33 (2.98×) 1.32 (3.06×)

8 0.16 (6.38×) 0.58 (5.86×) 1.38 (2.73×) 1.14 (3.42×) 0.93 (4.24×) 0.79 (4.97×) 0.81 (4.90×) 0.79 (5.11×)

12 0.13 (7.85×) 0.22 (8.10×) 1.54 (2.45×) 1.26 (3.10×) 0.89 (4.43×) 0.69 (5.70×) 0.61 (6.51×) 0.67 (6.03×)

16 0.14 (7.29×) 0.38 (8.95×) 1.50 (2.51×) 1.28 (3.05×) 0.94 (4.19×) 0.73 (5.38×) 0.61 (6.51×) 0.63 (6.41×)

refine

1 11.70 (1.00×) 14.73 (1.00×) 13.63 (1.00×) 13.67 (1.00×) 13.47 (1.00×) 13.73 (1.00×) 13.70 (1.00×) 13.73 (1.00×)

2 7.36 (1.59×) 9.32 (1.58×) 9.38 (1.45×) 9.11 (1.50×) 9.19 (1.47×) 9.32 (1.47×) 9.13 (1.50×) 9.17 (1.50×)

4 4.40 (2.66×) 5.53 (2.66×) 5.60 (2.43×) 5.49 (2.49×) 5.35 (2.52×) 5.36 (2.56×) 5.26 (2.60×) 5.34 (2.57×)

8 3.15 (3.71×) 3.87 (3.81×) 4.29 (3.18×) 3.99 (3.43×) 3.90 (3.45×) 3.77 (3.64×) 3.74 (3.66×) 3.66 (3.75×)

12 2.73 (4.29×) 3.32 (4.44×) 3.91 (3.49×) 3.62 (3.78×) 3.44 (3.92×) 3.36 (4.09×) 3.36 (4.08×) 3.31 (4.15×)

16 2.45 (4.78×) 3.04 (4.86×) 3.61 (3.78×) 3.39 (4.03×) 3.21 (4.20×) 3.04 (4.52×) 3.00 (4.57×) 2.96 (4.64×)

Each of the replay columns shows the replay time with Pr ep = P workers replaying the same recorded execution (with

Pr ec = P ′, as shown in the column heading). The numbers in the parenthesis indicate the speedup comparing to its single-

worker execution counterpart, which has the 1.00 speedup. The highlighted cells indicate replay runs that uses the same

number of workers as in the recording.

PARRot. The design of PARRot is specifically tailored to target a work-stealing runtime system—
PARRot only records memory and lock accesses that can lead to nondeterministic scheduling
choices, and enforces those choices during replay. Moreover, PARRot shares the same well-
optimized data structures used by PORRidge for recording and replaying happened-before edges
among worker threads, thereby allowing a fair comparison.

This section describes the high-level design of PARRot, empirically evaluates its overhead, and
compares that against the overhead of PORRidge. The empirical results show that PORRidge not
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only consistently outperforms PARRot, it also obtains similar speedups as the baseline code (i.e.,
without record and replay), where PARRot fails to obtain similar speedups in some cases. Finally,
PARRot failed to record and replay chess (described in Section 5) on the hardware platform used
for evaluation due to out-of-memory errors, while PORRidge successfully records and replays it
while exhibiting similar speedups observed in the baseline code.

6.1 PARRot: A Processor-Aware Record-and-Replay System

Why Develop Our Own Processor-Aware Record-and-Replay System. We could have employed a
generic record-and-replay system designed for multithreaded C code. In fact, we have tried us-
ing PinPlay [60], a general record-and-replay system based on Pin [51], a popular dynamic binary
instrumentation framework. We used PinPlay to record and replay Delaunay Refinement (refine,
described in Section 5) and found that it has 96.8× overhead for recording and 16.1× overhead for
replay when executing the computation on one worker—1-2 orders of magnitude worse than the
PORRidge overheads of 1.26× and 1.16×, respectively. When we tried recording and replaying on
multiple workers, the executions with PinPlay slowed down and showed no speedup.

Comparing PORRidge with an out-of-the-box record-and-replay system such as PinPlay is not
fair, however, since PinPlay must capture all potential sources of non-determinism, including all
results from system calls and every memory access to nonlocal variables (since they could be
shared) even at the application level. PORRidge does not do this since it targets data-race free
(DRF) Cilk programs. Moreover, PinPlay is based on a binary instrumentation framework, which
is commonly thought to incur higher overhead than directly embedding instrumentation in the
compiled code [12, 68, 73], as PORRidge does. Finally, the back-end data structures used by PinPlay
and PORRidge to enforce thread interleavings may differ greatly, making it challenging to perform
an apples-to-apples comparison.

The Design and Implementation of PARRot. We developed PARRot, our own version of a
processor-aware record-and-replay system, to enable as fair a comparison to PORRidge as possible.

First, PARRot instruments the same set of events as PORRidge at the user application level.
Note that, even though PARRot records the scheduler’s non-determinism and enforces the same
scheduling decisions during replay, it must still record and enforce the same happened-before
relations due to lock acquisitions and releases performed in the application code. This is because
the order in which tasks enter critical sections is not visible to the scheduler, and hence is not
captured by recording the scheduler’s non-determinism.

Second, PARRot uses most of the same back-end infrastructure as PORRidge. We have imple-
mented PARRot based on the same Cilk Plus runtime system that PORRidge is based on. PARRot
uses the same well-optimized data structures used by PORRidge to enforce thread interleavings
(but does so at the scheduler level).

Finally, PARRot is specifically designed for dynamic multithreaded computations scheduled us-
ing work stealing. Even though many memory accesses to shared data structures are performed
within the scheduling code, recording every single access is unnecessary as long as we enforce the
same lock orderings used to protect accesses to these data structures. Thus, instead of recording
every access to shared variables (which is what a generic record-and-replay system would do), we
only record and enforce during replay a small subset of memory accesses, system calls, and lock
acquisitions/releases based on our knowledge of the work-stealing scheduler.

There are potentially racy memory accesses in the scheduling code, where the results of the
race, while not affecting correctness, could impact scheduling decisions.6 In PARRot, such racy

6An example of such racy accesses include the “THE” protocol [34] commonly used by a work-stealing scheduler to coor-

dinate accesses to a deque between a victim and a thief.
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Table 5. The Execution Characteristics of the Scheduling Code for Each Application

number of locks total number of lock acquisitions

config chess dedup ferret matching MIS refine chess dedup ferret matching MIS refine

rts, 1P 8 8 8 25 20 4.8e3 1.6e9 4.6e5 1.2e3 3.1e6 3.0e6 1.3e6

rts, 2P 45 2.8e5 182 114 102 1.3e4 1.6e9 2.0e6 1.2e5 3.2e6 3.1e6 4.0e6

rts, 4P 218 4.0e5 261 406 362 2.5e4 1.6e9 3.0e6 2.3e5 3.2e6 3.1e6 1.0e7

rts, 8P 696 4.6e5 305 1426 1089 5.5e4 1.6e9 6.4e6 7.6e5 3.2e6 3.1e6 2.0e7

rts, 12P 1040 4.9e5 330 2170 1817 8.7e4 1.6e9 9.9e6 1.4e6 3.3e6 3.3e6 2.9e7

rts, 16P 1712 5.0e5 354 3162 2516 1.0e5 1.6e9 1.4e7 2.1e6 3.3e6 3.2e6 4.1e7

user code 4 1 1 5e6 5e6 4.8e7 2.8e4 7.3e5 256 5.0e7 2.8e6 1.2e7

The rows with rts configuration show the the number of locks and lock acquisitions performed by the scheduling code for

each of P = 1, 2, 4, 8, 12, 16 processors in addition to the lock acquisitions done as part of the application code. The last

row (user code) shows the number of locks and lock acquisitions performed by the application code when running on one

processor (same values as shown in Section 5 Table 1).

memory accesses are protected by fine-grained locks. The inter-thread interactions induced by
these racy memory accesses are recorded via lock-acquisition ordering and enforced by replaying
the same orderings.

6.2 Empirical Evaluation of PARRot and Comparison to PORRidge

We have empirically evaluated PARRot using the same set of benchmarks and the same hardware
platform described in Section 5. Table 5 shows the execution characteristics of the scheduler, i.e.,
the number of locks and lock acquisitions performed by the scheduling code for each application
when executing on different number of workers. For ease of comparison, the last row also shows
the number of locks and lock acquisitions performed by the application code when running on
one worker (multiple-worker runs can differ slightly but have similar values).

As we increase the number of processors used, the number of locks and lock acquisitions within
the scheduling code increases, which is to be expected. As more workers are used, the scheduler
dynamically creates more bookkeeping data used to keep track of actual parallel execution, and
thus more lock acquisitions are performed to synchronize accesses to them.

One can compare the relative numbers of locks and lock acquisitions between the scheduling
code and the user code, which corresponds to the changes to the overhead of PARRot, which we
discuss next in the context of overhead evaluation.

Table 6 shows the execution times of recording and replaying using PARRot on P = 1, 2, 4, 8,
12, 16 cores and their overhead (in parentheses) compared to the baseline execution (i.e., without
record and replay). The numbers for PORRidge are shown as well (the same numbers as shown in
Section 5) for ease of comparison.

PORRidge outperforms PARRot for every configuration (i.e., across different applications and
number of workers used). Two factors contribute to this. First, PARRot must incur additional over-
head for recording non-determinism in the scheduling code. Second, with PARRot, the replay may
cause the workers to perform additional blocking in order to enforce the same scheduling deci-
sions, whereas PORRidge is free to perform dynamic load balancing depending on how the sched-
uling plays out. Due to this blocking, PARRot generally incurs higher overhead during replay than
during record, whereas for PORRidge the opposite is true.

The amount of additional overhead incurred by PARRot during recording, compared to that of
PORRidge, is not uniform across benchmarks, and can be explained by the execution character-
istics shown in Table 5. The higher the number of lock acquisitions performed in the schedul-
ing code relative to that in the application code, the higher the overhead PARRot incurs during
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Table 6. Execution Times in Seconds on P = 1, 2, 4, 8, 12, 16 and Their
Overheads Comparing to the Baseline for all benchmarks

PARRot PORRidge

application P baseline record replay record replay

chess

1 64.49 n/a n/a 64.36 (1.00×) 65.14 (1.01×)

2 32.20 n/a n/a 32.20 (1.00×) 32.60 (1.01×)

4 16.11 n/a n/a 16.11 (1.00×) 16.35 (1.01×)

8 8.15 n/a n/a 8.13 (1.00×) 8.45 (1.04×)

12 5.38 n/a n/a 5.38 (1.00×) 5.66 (1.05×)

16 4.04 n/a n/a 4.11 (1.02×) 4.35 (1.08×)

dedup

1 48.04 49.14 (1.02×) 76.60 (1.59×) 48.20 (1.00×) 48.16 (1.00×)

2 24.43 25.09 (1.03×) 46.94 (1.92×) 24.44 (1.00×) 24.44 (1.00×)

4 12.43 12.91 (1.04×) 34.16 (2.75×) 12.40 (1.00×) 12.51 (1.01×)

8 6.43 6.91 (1.07×) 29.74 (4.63×) 6.49 (1.01×) 6.46 (1.00×)

12 4.52 5.03 (1.11×) 29.75 (6.58×) 4.53 (1.00×) 4.55 (1.01×)

16 3.61 4.22 (1.17×) 32.10 (8.89×) 3.65 (1.01×) 3.64 (1.01×)

ferret

1 8.92 9.26 (1.04×) 9.29 (1.04×) 8.89 (1.00×) 9.10 (1.00×)

2 4.52 4.75 (1.05×) 4.82 (1.07×) 4.57 (1.01×) 4.54 (1.00×)

4 2.31 2.42 (1.05×) 2.66 (1.15×) 2.33 (1.01×) 2.32 (1.00×)

8 1.27 1.30 (1.02×) 1.80 (1.42×) 1.24 (0.98×) 1.26 (0.99×)

12 0.91 0.95 (1.04×) 1.94 (2.13×) 0.91 (1.00×) 0.92 (1.01×)

16 0.76 0.79 (1.04×) 1.90 (2.50×) 0.78 (1.03×) 0.74 (0.97×)

matching

1 3.06 11.80 (3.86×) 13.07 (4.27×) 9.64 (3.15×) 10.07 (3.29×)

2 1.92 7.17 (3.73×) 11.01 (5.73×) 5.78 (3.01×) 6.82 (3.55×)

4 0.96 3.82 (3.98×) 5.73 (5.97×) 3.03 (3.16×) 3.75 (3.91×)

8 0.50 2.34 (4.68×) 3.18 (6.36×) 1.68 (3.36×) 3.22 (4.44×)

12 0.32 1.45 (4.53×) 2.03 (6.34×) 1.13 (3.53×) 1.77 (5.53×)

16 0.25 0.99 (3.96×) 1.75 (7.00×) 0.89 (3.56×) 1.57 (6.28×)

MIS

1 1.02 4.92 (4.21×) 4.49 (4.40×) 3.40 (3.33×) 3.77 (3.70×)

2 0.65 2.61 (4.02×) 4.07 (6.26×) 2.03 (3.12×) 2.54 (3.91×)

4 0.32 1.56 (4.88×) 2.17 (6.78×) 1.03 (3.22×) 1.36 (4.25×)

8 0.16 0.74 (4.63×) 1.23 (7.69×) 0.58 (3.63×) 0.79 (4.94×)

12 0.13 0.48 (3.69×) 1.03 (7.92×) 0.42 (3.23×) 0.61 (4.69×)

16 0.14 0.40 (2.86×) 1.04 (7.43×) 0.38 (2.71×) 0.63 (4.50×)

refine

1 11.70 19.17 (1.64×) 17.87 (1.53×) 14.73 (1.26×) 13.63 (1.16×)

2 7.36 13.13 (1.78×) 14.87 (2.02×) 9.32 (1.27×) 9.11 (1.24×)

4 4.40 8.29 (1.88×) 11.27 (2.56×) 5.53 (1.26×) 5.35 (1.22×)

8 3.15 5.29 (1.68×) 9.92 (3.15×) 3.87 (1.23×) 3.77 (1.20×)

12 2.73 4.78 (1.75×) 9.96 (3.65×) 3.32 (1.22×) 3.36 (1.23×)

16 2.45 4.64 (1.89×) 12.53 (5.11×) 3.04 (1.22×) 2.96 (1.21×)

The baseline column shows the running times without any record replay using the original Cilk Plus run-

time. The PARRot columns show the running times for recording and replaying using the conventional

strategy that records all non-determinism within runtime and enforcing the same scheduling decision

in the runtime code during replay. The PORRidge columns show the running time for performing record

and replay using the PORRidge strategy. For both strategies, the same number of workers are used for

record and replay runs. The cells showing N/A indicate that the system failed to record/replay due to

out-of-memory errors.
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recording. For instance, the relative overhead incurred by PARRot during recording compared to
that of PORRidge is the smallest for MIS, which also has the smallest increase in lock acquisi-
tions in the scheduling code relative to the lock acquisitions already performed by the application
code.

The amount of additional overhead incurred by PARRot during replay, compared to that of
PORRidge, can be attributed to blocking due to the fact that certain scheduling decisions must be
enforced. Since the scheduler in PARRot has to exactly replicate the steal patterns of the recording,
it may cause a worker thread to spin-wait (instead of doing useful work) when it reaches a recorded
inter-thread interaction before the other thread gets there. Note that such inter-thread interactions
include all failed steal attempts between a thief and a victim worker, since a failed steal attempt is
communicated through shared memory accesses. In contrast, PORRidge never spins during replay
and uses suspension to explore all possible parallelism in the augmented DAG.

Finally, PARRot failed to record (and thus replay) chess due to out of memory errors; the process
quit when it reached 64 GByte memory usage, which is the size of the DRAM on the evaluation
platform. As shown in Table 5, chess has a large number of lock acquisitions in the scheduling
code, most of which are caused by spawn and sync statements that induce potentially racy mem-
ory accesses to the per-worker deque that keeps track of available work. In the baseline execution,
memory accesses to a worker’s deque may not always require synchronization; specifically the
“THE protocol” [34] employed by the Cilk Plus runtime uses a Dekker-like protocol and causes
the victim to acquire the lock on its own deque only if it is likely to conflict with a thief steal-
ing. These memory accesses are potentially racy and can impact scheduling decisions, however.
Therefore, such shared memory accesses must be recorded and replayed faithfully when using a
processor-aware record-and-replay strategy. Consequently, the recording using PARRot produced
an overwhelmingly large log that eventually caused the system to run out of memory. In contrast,
the processor-oblivious strategy used by PORRidge is not affected by this; it was able to record
and replay chess with little overhead while obtaining near-linear speedups.

6.3 Discussion: Benefits of Processor Obliviousness

As our experimental data indicates, processor-oblivious record and replay can be implemented
efficiently. The only time PORRidge exhibits non-negligible overhead is when the benchmark is
already memory bound (i.e., matching and MIS). Nevertheless, for such cases, a processor-aware
record-and-replay system such as PARRot needs to log additional information to record the inher-
ent non-determinism in the scheduler, which further increases the memory footprint and overhead
of the recording, as the data in Table 6 shows.

For replay, PARRot can incur high overhead due to the fact that it must exactly replicate the
steal patterns of the recording, potentially blocking and causing more idleness. If a recording is
done on P workers and takes x time, in a processor-aware system such as PARRot, the replay
cannot run in less than x time (asymptotically) no matter how many workers we give it. As the
data shows, the running time tends to be slower. In contrast, PORRidge never spins during replay
and uses suspension to explore all the possible parallelism in the augmented DAG. These results
in part speak to the performance advantage of PORRidge’s approach, because PORRidge does not
need to reproduce the runtime’s non-determinism while a processor-aware system such as PARRot
must.

Moreover, the strategy used by PORRidge has the additional benefit of scaling the replay beyond
the number workers used in record, which a processor-aware record-and-replay system such as
PARRot cannot provide. Therefore, as the experiments indicate, replay often runs just as fast as the
record when Pr ep = Pr ec , and can continue to scale when Pr ep > Pr ec (data shown in Section 5).
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7 RELATED WORK

Record and Replay. To our knowledge, all software-based record-and-replay systems are tied to
thread-based programming models: a runtime system records the behavior and interleaving of the
threads in the program, and on replay re-runs the same threads with the same behavior. Recording
and replaying on the same number of threads simplifies both the recording process (as thread-
based identifiers can be used to identify operations) and the replay process (as there is no need
to map operations from the recorded run onto a different number of threads). RecPlay [67] and
JaRec [35] do not handle racy accesses, and have reasonable overhead, but, as with PORRidge, are
unsound in the presence of races.

Racy accesses are more challenging, since accesses to shared memory result in happened-before
edges that must be preserved during replay. For systems that handle racy accesses, there are several
approaches. Some speculate that races are infrequent or irrelevant to keep recording overhead
down [45, 75]. Some preserve a limited amount of information during record and rely on offline
search or constraint-solving approaches to generate the information required for replay [3, 38,
49, 59]. Some systems track racy interleavings directly, which either add large overhead [43, 78],
use coarse-granularity communication tracking (such as page-based conflict detection) that can
be overly conservative [30, 42], or rely on carefully modified virtual machines [21].

One could apply a traditional thread-based record-and-replay system on dynamic multithreaded
computation directly, and record all sources of nondeterminism in order to replay deterministi-
cally. PinPlay [60] is such a general record-and-replay system based on Pin, a popular dynamic
binary instrumentation framework [51], that captures all sources of nondeterminism including
racy memory accesses, thread interleavings, and results from system calls. Using such a general
purpose record-and-replay system on dynamic multithreaded computations can incur substantial
overhead, however, as we discussed in Section 6.

Chimera [44], another record-and-replay system for pthreaded code, on the other hand, uses
static race detection to identify potentially-racing pairs of accesses, and uses lightweight syn-
chronization, as well as lock coarsening, to enable a simple record and replay technique. Such an
approach, could be adapted to make PORRidge applicable to racy Cilk programs.

Another strategy is to record information at the hardware level [37, 56, 61, 76], by piggy-backing
on cache-coherence protocols to record communication between different hardware contexts.
While these systems could, in principle, be used to record the behavior of Cilk programs and to
capture the non-determinism introduced by the scheduler, they have two drawbacks: (1) like ex-
isting software-based models, their (hardware) context-based recording system constrains replay
to run with the same level of parallelism as record; (2) they require hardware modifications, and
hence do not work in any existing commodity systems.

Determinism. A related technique is deterministic execution, where a combination of program-
ming model constraints and runtime checks ensures that an application always produces the same
behavior when presented with the same input. Note that this is subtly different than record and
replay: in record and replay, different recorded runs can exhibit different behaviors; replay must
replicate whichever recorded run it is replaying. One approach to determinism is to mandate it
through programming model restrictions [11, 15, 20, 23, 57, 65] which generally preclude general
use of locks and other synchronization mechanisms. Moreover, while some of these approaches
can provide determinism independent of the number of threads [15, 57], most do not. Another
approach is to enforce determinism through hardware [27, 28], compiler [9], OS [5, 10] or runtime
approaches [50, 58]. While these techniques do not require specialized programming models, these
techniques are usually not processor oblivious.
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Dynamic Analyses for Dynamic Multithreading. The most common analysis tool for dynamic
multithreading programming models is on-the-fly race detection—for a given input, these tools run
the program on that input once while keeping track of enough information that allows them to
report a race if and only if the program contains a race on that input. Over the years, researchers
have proposed algorithms for doing this both sequentially [1, 31, 63] and in parallel [8, 53, 64, 74,
77]. Some of these have led to implementations [31, 64, 74, 77]. The parallel tools are generally
processor oblivious; a single run on any number of workers gives the correct answer. Another
important class of tools is performance profilers, that either measure work and span of the program
directly during execution [36, 69] or use sampling to determine where in the code causes workers
to be idle [72].

Work-Stealing Runtime with Multiple Deques. Prior work-stealing designs have used more than P
deques for supporting concurrent data structures [2, 74], blocking I/O operations [55, 79], or the use
of futures [71]; some provide theoretical scheduling bounds [2, 55, 71, 74], but their modifications
are for a different purpose and require different modifications and analyses.

8 CONCLUSIONS

This article presented the first processor-oblivious record and replay scheme for data race-free
dynamic multithreaded programs. This scheme is provably good, efficient in practice, and provides
good scalability.

There are many directions of future work. First, we could target a richer set of primitives that
induce happened-before relationships; for instance, try-lock and compare-and-swap. These re-
quire rethinking the exact semantics we want from a happened-before edge, since, in some cases,
programs use the non-determinism induced by these mechanisms to enable efficiency, compli-
cating which edges we want to record. Second, we could try to expand to programs with data
races—this would involve recording happened-before relationships not just between critical sec-
tions, but also between accesses to memory locations that could be involved in races. As mentioned
in the introduction, this does not require conceptual changes to PORRidge, just the ability to indi-
cate to PORRidge where non-determinism due to races might occur. Finally, we can explore other
mechanisms to enable processor-oblivious record and replay to see if some of them will give better
performance.

PORRidge is open source and currently available at https://github.com/wustl-pctg/porridge. The
library is provided under The MIT License, while the runtime modifications are licensed separately
under a BSD license. The repository contains complete instructions for compiling and using POR-
Ridge, in addition to scripts that reproduce most of the empirical results. Please send feedback or
file issues at our github repository to help us continually improve the project.
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