
Computer Communications 160 (2020) 0–9

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

An architecture for adaptive task planning in support of IoT-based machine
learning applications for disaster scenarios
Alessio Sacco a,∗, Matteo Flocco b, Flavio Esposito b, Guido Marchetto a

a Department of Control and Computer Engineering, Politecnico di Torino, Italy
b Department of Computer Science, Saint Louis University, USA

A R T I C L E I N F O

Keywords:
Network of queues
Machine Learning

A B S T R A C T

The proliferation of the Internet of Things (IoT) in conjunction with edge computing has recently opened
up several possibilities for several new applications. Typical examples are Unmanned Aerial Vehicles (UAV)
that are deployed for rapid disaster response, photogrammetry, surveillance, and environmental monitoring.
To support the flourishing development of Machine Learning assisted applications across all these networked
applications, a common challenge is the provision of a persistent service, i.e., a service capable of consistently
maintaining a high level of performance, facing possible failures. To address these service resilient challenges,
we propose APRON, an edge solution for distributed and adaptive task planning management in a network
of IoT devices, e.g., drones. Exploiting Jackson’s network model, our architecture applies a novel planning
strategy to better support control and monitoring operations while the states of the network evolve.

To demonstrate the functionalities of our architecture, we also implemented a deep-learning based
audio-recognition application using the APRON NorthBound interface, to detect human voices in challenged
networks. The application’s logic uses Transfer Learning to improve the audio classification accuracy and the
runtime of the UAV-based rescue operations.

1. Introduction

Recent years have witnessed the proliferation of mobile computing
and Internet-of-Things (IoT), where billions of mobile and IoT devices
are connected to the Internet, generating large datasets to be consumed
by several (distributed) applications. A subset of these applications
requires IoT devices to be separately programmed to perform a mission
independently. Typical examples of such scenarios are heterogeneous
networks composed by Unmanned Aerial Vehicles (UAVs), e.g., drones,
and other IoT sensors, that together connect a plethora of sensors,
including hyperspectral cameras, microphones, or civilian tablets and
smartphones [1,2]. These systems have been employed in the past with
success to support first responders in man-made or natural disaster
scenarios [3–8]. The role of drones in the IoT in general, and in disaster
response in particular, could become even more prominent in the future
as they have the potential to enable, improve, and optimize novel
and existing rescue operations and services. More broadly, autonomous
and semi-autonomous drones will undoubtedly continue to help hu-
mans also in other tasks, spanning from industrial inspection to survey
operations to military operation support.

A network of drones can be used to collect large quantities of
data, that can then be uploaded at the edge of the network for heavy

∗ Corresponding author.
E-mail addresses: alessio_sacco@polito.it (A. Sacco), matteo.flocco@slu.edu (M. Flocco), flavio.esposito@slu.edu (F. Esposito), guido.marchetto@polito.it

(G. Marchetto).

audio/video processing, where resources to execute Machine Learning
(ML) algorithms are available [3,4].

In the conditions imposed by challenged networks such as those
present after a natural disaster scenario, keeping such IoT devices well-
functioning could be a challenge [3,9]. Although delay and disruption
tolerant protocols and architectures exist [10], the problem of main-
taining an acceptable quality of service with stringent delays for these
networks depends not only on the quality of the connectivity, but also
on the dynamic nature of the tasks that the drones are required to
accomplish.

Both centralized [11,12] and distributed [13,14] approaches that
allow an edge network of IoT devices, drones, or robots in general,
to provide a persistent and adaptive service already exist. Some of
them focus on the resilient mission planning problem [14], others on
agents’ health-aware solutions [13]. Others yet [12] concentrate on
the problem of enabling multi-agent teams to autonomously tackle
complex, large-scale missions, over long time periods in the presence
of actuator failures.

These solutions have sound design, and they address different fail-
ure models under specific applications, but a unique solution that
ensures a resilient drone mission execution, under all possible failure

https://doi.org/10.1016/j.comcom.2020.07.011
Received 1 December 2019; Received in revised form 6 July 2020; Accepted 7 July 2020
Available online 11 July 2020
0140-3664/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comcom.2020.07.011
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2020.07.011&domain=pdf
mailto:alessio_sacco@polito.it
mailto:matteo.flocco@slu.edu
mailto:flavio.esposito@slu.edu
mailto:guido.marchetto@polito.it
https://doi.org/10.1016/j.comcom.2020.07.011


A. Sacco, M. Flocco, F. Esposito et al. Computer Communications 160 (2020) 0–9

models and applications probably cannot exist. To this end, we pro-
pose an Architecture for the Programmability of RObotic Networks
(APRON), extending our preliminary results presented in [15] with a
more in-depth evaluation and a practical example of AI application
for UAVs. The architecture enables the programmability of different
mechanisms involved in the mission execution problem of UAVs or
other edge-based distributed agents. APRON is a software layer that
sits between the (robotic) operating system (e.g., ROS) [16]) and any
IoT software application. The APRON architecture contains classical
network management mechanisms, such as network monitoring, repair,
and control operations e.g., neighbor discovery, as well as mechanisms
specific to the resilient mission execution problem, 𝑒.𝑔., adaptive con-
trol, and neighbor failure estimation. Finally, it provides a NorthBound
interface for application programmers.

Our contribution in this paper is two-fold. First, we detail our
middleware architecture for IoT device management and propose an
optimization algorithm for task re-scheduling, in case of an IoT de-
vice experiencing a failure. Second, we introduce a disaster response
application as an AI use case application that uses APRON’s underlying
resilient network services. Our application is designed to detect sounds
generated by humans, for example, those that are victims of a natural
or man-made disaster to be rescued, or survivors to locate under
an avalanche, where video alone may be insufficient. In particular,
our edge audio processing application uses Deep Neural Networks
(DNNs) techniques to classify the audio sent from the drone fleet and
helps locate human sounds. The speed is crucial for rescue operations;
hence, we explored and exploited the properties of Transfer Learning
to reduce the training time and increase the classification accuracy
(human/non-human sound).

We also used a Mission Allocation Simulator [17], to test the scal-
ability of our approach, and deployed our solutions over a prototype
powered by virtual network testbed to evaluate the practicality of
APRON.

Throughout this paper, in Section 2 we describe some applications
where APRON can be used. Although inspired by the disaster response
use case, our approach has indeed broader applicability. We present
the problem in Section 3, then we describe in detail the load and failure
estimator component (Section 4), that leverages a Jackson’s network
model to support monitoring and control operations while the states
of the network evolve. The estimator computes a close form of the
average number of tasks in a mission, whether they are queued or in
execution. Such an estimator can then be manipulated by application
programmers to determine the utilization of each drone and the mean
queuing time (both waiting and execution time) for each task. Such
information can then be used (in conjunction with our APRON API) to
design controllers that adapt to specific applications. We overview the
components of our APRON architecture in Section 5, focusing on its
Controller component and how programmability is achieved.

The audio processing application is presented in Section 6, provid-
ing details about our enhanced DNNs model. We present our experi-
mental results in Section 7, while the presentation of the literature is
in Section 8 and Section 9 concludes our paper.

2. Motivating applications

Although we mainly focus on the disaster response scenario, we
argue this solution can be utilized in many other use cases, which are
affected by comparable problems. In the following, we briefly describe
two applications whose requirements can be satisfied by using the
presented approach.
Disaster Response. Unmanned Aerial System (UAS, i.e., drone)
swarms for disaster area search and rescue are important examples
of intelligent physical systems that could benefit from APRON: they
can autonomously support high-level semantic interface capabilities
in uncertain work environments with a minimum of operator super-
vision. UAS search swarms are ideal for quickly locating survivors and

identifying emergent threats following earthquakes or other natural (or
man-made) disasters that render structures damaged and potentially
unsafe to enter. Search swarm techniques are also broadly applicable
to other surveillance applications such as structural inspection, agri-
cultural surveillance, and post-disaster family reunification via facial
recognition, to name a few. The need for skilled operators limits how
current generation UAS platforms can be further integrated alongside
first responders, while training and budgetary constraints prevent
existing lifesaving organizations from adopting this technology broadly.
Autonomous search swarms will integrate with and be usable by orga-
nizations of any size and capability. For such a system to be effective,
a variety of technical challenges must be addressed; UAS platforms are
dramatically resource-constrained with flight times of tens of minutes,
limited on-board computational capacity, power and weight limitations
for sensing, and often unreliable radio links to ground operator sta-
tions. Deploying a truly intuitive tasking mechanism for such a system
requires: (1) interpreting high-level semantic commands such as hand
gestures or natural language, and the autonomy to execute such orders
with little to no operator intervention; (2) continuous communication
of the swarms’ present capability to execute orders, depending on
the availability of resources such as power and current computational
capacity; and (3) automatic management and maximization of those
resources subject to mission objectives.
Intelligent Transportation Systems. The application of Information
and Communication Technologies (ICT) to the transport sector made
the classic transportation systems evolving towards an Intelligent Trans-
portation System (ITS). Sensing, analysis, control, and communica-
tions technologies are applied to transportation in order to improve
efficiency, sustainability, safety, mobility, environment impact, and
comfort. Examples of ICT where APRON could be helpful are Ad-
vanced Driving Assistance Systems technologies that provide collision
avoidance and driver aids, such as night vision, driver alertness, and
adaptive cruise control or even fully autonomous driving systems.
The reason why APRON can be useful lays in the characteristic of
these systems: (𝑖) high number of devices and produced data; (𝑖𝑖)
wireless communications among vehicles, and between vehicles and the
roadside infrastructure are inherently unstable and exacerbated by the
high mobility of the (IoT) agents; (𝑖𝑖𝑖) collaboration among agents to
exploit the sensory data; (𝑖𝑣) real-time, event-triggered, asynchronous
and periodic generated traffic; (v) reliability and safety; (vi) cost-
effective and user-friendly. In case of low-latency and location-aware
services, the on-board processing of the data implies a significant
processing power that is not suitable for resource-constraint devices;
the processing on a centralized and far cloud implies problems due to
bandwidth and latency; while, a more viable option is the delegation
of the computation to the edge system, because the collection and
processing of the data closer to its source reduce latencies and traffic
loads to the cloud.

3. Problem definition: Mobile task offloading

One example of a harsh environment where frequent connectivity
losses occur due to infrastructure problems is natural or man-made
disaster scenarios. We define in this section the general problem of tasks
offloading from a fleet of nodes or agents, e.g., drones, to a close edge
computing server. While more specific scenarios affected by the same
issues are mentioned in Section 2, and Section 6 describes the applica-
tion that we developed to provide the required heavy computation for
the audio processing.

3.1. Problem definition

The task offloading solutions enable the execution of complex jobs
in nearby surrogate machines, often called cloudlets, instead of running
them on a mobile node [18]. Typically the cloudlets are near the mobile

1



A. Sacco, M. Flocco, F. Esposito et al. Computer Communications 160 (2020) 0–9

Fig. 1. Example of mission planning paths followed by three drones to complete their
tasks. Migration occurs among nodes to balance the overall load. We use this figure
with only a few drones to clarify the migration process and workflow, but we tested
APRON’s scalability in subsequent experiments.

devices and are reachable via a small edge network, to ensure low-
latency connections. However, in critical scenarios, such as for disaster
response, two problems need to be addressed: (i) a large number
of failures occur because of hostile conditions, (ii) edge nodes are
scarce and often overloaded. For these reasons, it is likely to observe
unacceptable delays and significant losses, leading to an increase in
average job completion time. We hence face the following challenge:

Problem 3.1. Given a set of devices offloading a set of computation-
ally intensive jobs on an edge computing server, e.g., Ground Control
System (GCS), we define the Task Offloading Problem as the edge
network management problem minimizing the average completion time
of an offloaded set of tasks by effectively orchestrating the load on the
underlying infrastructure.

The programmable edge computing load orchestration entails two
main processes: (i) enforcing a given load profile on edge agents, (ii)
migrating the tasks whose expected running time is considerably high
to another node that most likely completes it within a shorter time.
Enforcing the load profile means that the solution aims to balance
the load among the nodes of the infrastructure so that similar nodes
have identical target loads. However, load balancing techniques are
inappropriate when severe failures may occur, hence we design the
migration process by using a self-adapting mechanism.

3.2. Task migration properties

To solve Problem 3.1, two questions need to be addressed: when is it
opportune to offload (both from the mobile device to a GCS and among
mobile nodes), and where should the task migrate to? The solution
presented leverages a proactive, self-adjusting adaptation mechanism
that migrates a given task when its hosting node reaches a threshold.
Such a threshold can be customized due to the architecture of the
solution (Section 5), but as default, it is set as the average number of
jobs queued and running across the entire edge system.
When do we migrate a job to another edge agent? Each edge agent
computes such a threshold independently, using Jackson’s network
model. This model can be exploited to estimate the average number
of tasks on each edge computing node 𝑖, denoting such a quantity as
𝑛̂ = 𝐸[𝑛𝑖].
Where do we migrate the job? The destination node of the job migra-
tion schema is chosen by modeling the network as a network of queues.
Task can migrate from the queue of the source node to the queue of
the destination node. Let 𝑝𝑖𝑖′ the probability of the migration between
the source 𝑖 and the destination 𝑖′. Mathematically, our strategy can be
formalized as follows: let the system be composed of 𝑄 nodes (queues);

Fig. 2. Example of open Jackson queue with two agents (𝑒.𝑔. drones): tasks belonging
to failing agents are reassigned.

the destination node 𝑑𝑒𝑠𝑡 where the tasks are offloaded, is chosen by
solving the following equation:

𝑑𝑒𝑠𝑡 = argmax
𝑖′

𝑝𝑖𝑖′ (1)

The probability is computed to guarantee efficiency in the offload-
ing procedure, after an evaluation phase about the migration delay
overhead calculated according to the model presented in Section 4.
Example. Fig. 1 shows an example of the task schedule of three agents.
Each drone receives the set of tasks and moves from one location to
the next where it has to accomplish the task. For instance, agent 𝑣2
migrates its original tasks 𝑡2 and 𝑡7 to the drone 𝑣1 and 𝑡10 to 𝑣3 in
order to balance the overall load.

4. Mission planning via network of queues

The IoT application usually affects the failure models, hence it is
considered as impossible to find a failure model fitting all scenarios.
For this reason, instead of predicting the failure of nodes or links, we
leverage the service component to compute the probability of having a
given number of tasks still to be completed. Thus, the goal is to obtain
the average number of tasks in execution and in the queue. Such a
piece of information can, in turn, be manipulated by the application
to establish the instantaneous utilization of each agent and the mean
queuing time for each task. Finally, this knowledge can be used to
design a controller that adapts to the application.

We model the set of potentially failing nodes as a network of queues,
according to Jackson network class [19]. The effect of an agent’s fault
is the migration of all its tasks to a different queue. In this context, the
completion time of a task in a non-failing agent is the mere waiting time
that the task spends in the queue. On the other hand, the completion
time of a migrated task is the sum of all the waiting times across
the visited agents, plus the time spent in the queue of the agent that
executes it (holding time). In fact, when a node fails, all its tasks still
to be executed are migrated and reassigned to a new node. Potentially,
a task can be reassigned more than once to nodes if the agent’s failure
occurs before its execution.

We model each agent as a single queue storing all the tasks that will
be eventually executed. Thus, the network is modeled with a network
of 𝑄 queues, and there is a (directed) edge from queue 𝑖 to queue
𝑞 if a task ‘‘migrates" to agent 𝑞 after agent 𝑖’s failure (Fig. 2). The
system is assumed to be an open task replanning process constituted
by  = {1, 2,… , 𝑄} agent’s queues, a vector 𝐧 = {𝑛1, 𝑛2,… , 𝑛𝑄} that
indicates the number of tasks belonging to each of the  queues, and
an operator 𝑇𝑖𝑖′ on 𝐧:

𝑇𝑖𝑖′ = (… , 𝑛𝑖 − 1,… , 𝑛′𝑖 + 1,…) (2)

that removes one element from the agent’s queue 𝑖 and adds it to queue
𝑖, or exits the system. The term open denotes that tasks may enter or
exit the system. We denote by 𝜆𝑞 the external arrival to queue 𝑞, if any.
The vector 𝐧 is assumed to be a Markov process with state space:

 = {𝐧 ∶ 𝑛𝑞 ≥ 0, 𝑞 = 1,… , 𝑄} (3)

2



A. Sacco, M. Flocco, F. Esposito et al. Computer Communications 160 (2020) 0–9

and transition rates given by:

𝑞(𝐧, 𝑇𝑖𝑖′ (𝐧)) = 𝑝𝑖𝑖′ , (4)

where 𝑝𝑖𝑖′ is the probability of a task to migrate from agent’s queue 𝑖
to queue 𝑖′ after agent 𝑖’s failure. The Markov process 𝐧 is irreducible
for 𝑛 > 0, in other words, each task can potentially migrate from one
agent’s queue to any other queue, and aperiodic, that is, an agent can
be only temporarily unavailable, and hence a task can return to a state
𝑖 at any (irregular) time. Ultimately, we are able to show that, at the
steady state, the distribution of the number of tasks in each queue, or
being executed, obeys the ‘‘product form" distribution, 𝑖.𝑒. , it can be
written as the product of the probability functions depending on the
single agent’s queues:

Proposition 4.1. For each agent 𝑞, the average arrival rate of a task in
its queue is given by 𝛬𝑞 = 𝜆𝑞 +

∑𝑄
𝑘=1 𝑝𝑘𝑞𝛬𝑘. In addition, if we denote with

𝑝(𝑛1, 𝑛2,… , 𝑛𝑄) the steady state probability that there are 𝑛𝑞 tasks in the 𝑞th
agent’s queue for 𝑞 = 1, 2,… , 𝑄, and if 𝛬𝑘 < 𝜇𝑞 for 𝑞 = 1, 2,… , 𝑄, that
is, we assumed that each agent can execute at most one task at the time,
and that the arrival rate is smaller than the departure rate of task from the
system, and so there is a steady state distribution, then such steady state
probability is computed as:

𝑝(𝑛1, 𝑛2,… , 𝑛𝑄) = 𝑝1(𝑛1)𝑝2(𝑛2)⋯ 𝑝𝑄(𝑛𝑄), (5)

where 𝑝𝑞(𝑛𝑞) is the steady state probability that there are 𝑛𝑞 tasks in the 𝑞th
agent’s queue, if such queue is treated as a 𝑀∕𝑀∕1 queuing system with an
average arrival rate 𝛬𝑞 , and average task execution time 1

𝜇𝑞
for each agent.

Furthermore, each agent’s queue 𝑞 behaves as if it were an independent
𝑀∕𝑀∕1 queuing system with average arrival rate 𝛬𝑞 .

Proof. Proposition 4.1 is a straightforward corollary of the Jackson’s
theorem [19], in case of a single server per queue.

Based on Proposition 4.1 and Little’s law [20], hence, we estimate
the number of tasks in each queue at the steady state according to the
formula: 𝑛̂ = 𝐸[𝑛𝑖] =

𝜌𝑖
1−𝜌𝑖

, where 𝜌𝑖 is the utilization factor of agent 𝑖’s
queue, defined by: 𝜌𝑖 =

𝛬𝑖
𝜇𝑖

.
In accordance with this result, the ultimate goal of the controller

algorithm is to balance the utilization of all queues. Consequently,
when the utilization of queue 𝑖 becomes too low with respect to the av-
erage of the system, the agent may request a task migration from other
agents. When instead the queue utilization, or the estimated utilization,
becomes too high, it means the system of agents is experiencing a
high failure rate. In such a situation, the algorithm can proactively
redistribute the load by increasing the replan frequency and migrating
tasks to under-loaded nodes. Along with the proactive migration, when
a failure occurs, the system can react by assigning the remaining tasks
to another agent, thanks to a continuous monitoring function imple-
mented by the architecture. Further details about APRON architecture
are explained in the following section.

5. APRON architecture

In this section, we present our proposed management layer amongst
the Operating System (at the bottom), e.g., Robotic Operating System
(ROS) [16], and the IoT application (at the top). Fig. 3 shows the
management architecture, whose mechanisms allow establishing and
monitoring the network connectivity, to estimate the link and node
failures, and to replan the mission via a customizable controller logic.
Application atop can take advantage of the provided API to customize
the logic of such controllers, adapting to different failure models, as
well as to customize the mission planning logic, in a centralized or
distributed fashion.

In the following, we summarize the network components of the
solution, including the API, and the agent mission services offered,
while the next section is about the mission replanning component.

Fig. 3. APRON Architecture: a management layer between the IoT application and the
operating system to establish and monitor network connectivity, to estimate failures
and to adapt the task (re-)planning based on the customizable controller logic.

Network Monitoring. Inspired by the vast majority of networked
systems, the connectivity management component runs a network dis-
covery protocol, and a watchdog process running a heartbeat protocol
to monitor alive connections. The architecture does not require an
IP address and hence does not inherit the multihoming and mobility
shortcomings of the TCP/IP architecture. As in recently proposed clean-
slate Internet architectures [21,22], we bind the agent addresses to the
application names, not to the network interfaces.

TLS Socket & Identity Manager. Since each agent may belong to
multiple overlays, it is necessary to be authenticated ahead of the com-
munication establishment. This component is responsible for the man-
agement of agent identities across multiple overlay networks and pro-
vides secure connectivity through the Transport Layer Security (TLS)
protocol.

State Cache Manager. This component handles the partially replicated
database while maintaining network states. The database entries are
related either to static states 𝑖.𝑒., states that depend merely on the agent,
or dynamic states 𝑖.𝑒., states that depend on the network, configuration,
and connectivity condition. The state cache is also used as a log to store
application states, for example, IoT device battery usage.

Service API. This service supports the customization of two main
components: (𝑖) the controller logic, that can fit multiple (failure)
scenarios, (𝑖𝑖) the logic of the mission planning algorithm, either in a
centralized or distributed fashion. In such a way, the same program
suits different contexts, adapting to different requirements and network
conditions.

Message Parser and Object Model. To define our object model, as
well as to implement the logic of message delimiting, serializing and
deserializing, we use Google Protocol Buffers [23], since it is more
efficient than other text-based abstract syntax notation languages as
JSON and XML.

IoT Application. Atop the APRON architecture, the application can
run exploiting the services offered by the architecture. Examples of
these applications are in Section 2. Among them, this paper presents
an application of live audio analytic where is present the concept of
Transfer Learning, as described in Section 6.
NorthBound Interface. The application can communicate with the
APRON Architecture via the APIs that constitute the NorthBound In-
terface. All the offered services are indeed accessed through the REST
APIs, a standard de-facto, which exposes the resources by using a
uniform and predefined set of stateless operations.
Load and Failure Estimator. This component is the core of the ar-
chitecture as it provides the information required to perform the task
migration. By leveraging the methodology presented in Section 4, it

3



A. Sacco, M. Flocco, F. Esposito et al. Computer Communications 160 (2020) 0–9

Fig. 4. Overview of the drone system realized exploiting the APRON underlying
architecture. The computation is offloaded to the Ground Control System (GCS) that
performs computationally intensive task.

computes the expected average number of tasks and compares the
current state to estimate the failure rate. The load is redistributed
proactively in order to prevent the failure, and, when the failure occurs,
the tasks previously on the failed queue are migrated to another agent.
Mission Planning Controller. The framework supports a class of
controllers to tailor the mission replanning rate 𝑅(𝑡) of the network
of IoT devices, e.g., drones. However, our architecture is modular and
pluggable, hence it can be extended with other user-defined controllers.
By controller, we do not mean a Software-Defined Networking (SDN)
controller, but feedback controller. We already implemented some
controllers herein presented, whose rate depends on 𝑛̂(𝑡) that denotes
the estimated number of tasks currently into the network and discussed
in Section 4.

Adaptive Naive (AN) controller. The replanning rate varies with the
ratio between 𝑛̂(𝑡) and ń that represents the desired number of tasks
in the system at the steady state, based to the following equation:

𝑅(𝑡 + 1) =
𝑛̂(𝑡)
𝑛́

𝑅(𝑡) (6)

Adaptive Simple (AS) controller. The replanning rate varies with 𝑛̂(𝑡) and
𝑛′ according to the following equation:

𝑅(𝑡 + 1) = 𝑘(𝑛̂(𝑡) − 𝑛́) (7)
where 𝑘 is the gain term.

Adaptive Additive and Multiplicative (AAM) controller. The replanning
rate varies with 𝑛̃ and 𝑚̂ that are number of completed tasks and
estimated number of tasks missing the deadline at time 𝑡, respectively:

𝑅(𝑡 + 1) =

{

𝑘 𝑚̂(𝑡)
𝑛̃(𝑡)+1 𝑚̂∕(𝑛̃ + 1) > 0

−𝛼 otherwise
(8)

where 𝛼 is a positive constant.

Customizable controller. Aside from the provided strategies that the
architecture is equipped with, the replanning rate can follow other
policies defined by the user, for example via the NorthBound Interface.

6. Drone-sourced live audio analytic

By exploiting the management layer aforementioned, it is possible
to develop applications with resilient drone mission execution in chal-
lenged networks. We implemented a novel application in the context of
disaster response scenario, where a distributed set of drones is managed
in a straightforward way.

Specifically, humans control the swarm of drones to monitor the
area after a disaster. The drones continuously record the audio of the
environment sending it to the GCS. This machine processes the received
audio, and if a human presence is detected, it sends the approximated
human location to the drone. The task of the drone is hence reaching

the specified position so that it is possible for the human to help
survivors if necessary. When drones are used to predict and assess
disaster [24] or supply emergency commodities [25] to survivors,
operations must proceed as quickly and efficiently as possible. The
heavy computation of feature extraction and audio processing, which
is based on Neural Networks(NNs), is hence performed by a powerful
machine, and the drone agent just records the audio and executes the
specific commands.

In addition, the user may control a specific drone using speech
instead of a computer or a physical drone controller. The human speaks
directly to the personal device, where an application utilizes Natu-
ral Language Processing (NLP) and Natural Language Understanding
(NLU) techniques to discover the intent behind users’ words. NLU is
instrumental in this process because it allows the user to speak conver-
sationally to the program rather than memorize specific commands that
are trivially passed on to the drone. These benefits are most observable
when there are multiple kinds of drones that need to coordinate to solve
a single mission. The personal device, e.g., mobile phone, elaborates it
and sends the proper commands to the selected drone. When the drone
receives the instructions, it starts a new task to perform the requested
operation.

Fig. 4 sketches the main components of the system, highlighting
the functionalities of the elements. The whole fleet is managed by the
operator who can easily instruct drones, fundamental in challenged
networked environments, such as in response missions following a
natural disaster.

These situations also require resilient mission systems to manage
tasks in case of failure. However, this complex supervision is hidden
from the human that can only focus on the execution of high-level
jobs. On the other hand, the management layer ensures a resilient
distributed system by monitoring and estimating the failures for each
network component. When failures occur, tasks running or queued
on the damaged node are reassigned to a new agent, and the user is
notified of the update and the estimated effects.

This level of abstraction facilitates the rising of resilient IoT ap-
plications. In the next subsection, we describe the audio processing
needed by a disaster response application; however, edge computing
applications that can benefit from this processing are not limited to the
presented application.

6.1. Human activity detector

As a use case, we implemented a binary classifier that predicts the
human-nature of an audio file. We decided to adopt a transfer learning
technique because it can speed up the time it takes to develop and
train a model by reusing the knowledge of a complex model extensively
trained on a comprehensive dataset. This helps speed up the model
training process and accelerate results. Our use case does not strictly
require online training, but it can be implemented in our architecture
thanks to the benefit of transfer learning. We have also studied the
work required to train a model to prove that online training is possible.
We trained our model on the ESC-50 dataset [26], a collection of
2000 environment recordings. This dataset consists of five-seconds-long
recordings organized into 50 semantical classes (with 40 examples per
class) arranged into five major categories. Among these categories, the
one labeled as ‘‘Human, non-speech sounds’’, represents the set of audio
files that should be recognized by a drone when it is monitoring a
disaster scene. Instead, the other classes refer to animals, natural and
water sounds, domestic sounds, and urban noises.

We address the limited size of our dataset and the complexity of
audio data by utilizing the concept of transfer learning. This technique
aims to improve a learner from one domain by transferring knowledge
from a related domain. We choose VGGish [27] as our pre-trained
model, a Convolutional Neural Network trained on Audio Set [28].
Audio Set is a dataset of generic audio events released in 2017, com-
prising an ontology of 632 audio event categories and a collection

4



A. Sacco, M. Flocco, F. Esposito et al. Computer Communications 160 (2020) 0–9

Fig. 5. Task completion time of a fleet of drones using APRON with different replanning policies: (i) no task migration, (ii) random task migration, (iii) closest task migration.
The graphs represent the task completion time at different conditions: (a) number of drones, (b) task distance, (c) percentage of node failures.

Fig. 6. The graphs depicts the endurance, i.e., number of completed tasks before the
first failure, for (a) random policy, and (b) closest policy.

of 1,789,621 labeled ten-seconds-long excerpts from YouTube videos.
VGGish is a variant of the VGG model, a model used for large-scale
image classification. We chose this model because it is trained on a
dataset that comprehends most of the classes that are present in the
ESC-50 dataset. Then, the knowledge acquired by the VGGish model
during its training is useful to generate an internal representation of
the audio data that is employed by our final model. The changes to this
model concern the input size, to make it suitable for audio features, and
the final portion of the model: the last group of convolutional layers has
been dropped, and a 128-wide fully connected layer acts as a compact
embedding layer at the very end of the model.

We use VGGish as part of a bigger model: we append a set of
convolutional layers on top of it, and we train them on the ESC-50
dataset.

7. Evaluation results

In this section, we evaluate the performance of our solution with
the development of a C++ event-driven simulator able to run in every
machine. Throughout this evaluation, we consider the use case of a net-
worked fleet of drones deployed to accomplish a mission, constituted
by a set of actions ordered by the GCS. Examples of these actions can
be geo-locations to reach in order to explore the area via camera and
microphone, sending the streaming that will be elaborated to locate
survivors in disaster response. Each drone receives the instructions and
tries to execute them; at the same time, it determines whether migra-
tion is necessary by computing a threshold. This value is estimated by
using our Jackson network model and triggers the migration of tasks on
board. To this end, all agents cooperate to complete the assigned jobs in
the shortest possible time. We summarize in Table 1 the configuration
parameters utilized during the following evaluation, where the default
values are reported in bold.

We run experiments on a fleet of different sizes, namely consisting
of 10, 50 100, or 150 drones. Tests also consider varying the average

Fig. 7. (a) Bytes exchanged per node for increasing number of agents in the network.
(b) Comparison with different architectures, in terms of time to complete tasks.

Table 1
Parameters setting.

Parameter Values

Number of nodes 10, 50, 100, 150
Nodes’ Average Distance [m] 1, 2, 3, 5, 10
Node failure [%] 0, 10, 50, 90
Number of Trials 30
Confidence Interval [%] 90

distance between two consecutive geo-location needed to be visited by
a drone, which has been 1, 2, 3, 5, or 10 meters. Moreover, we evaluate
the performance in case of three distinct task migration policies: (i)
no replanning (task migration): agents in the system do not cooperate,
but each one tries to accomplish all and only the tasks in its own
queue; (ii) random task replanning : when an agent’s queue exceeds a
set threshold, the next drone which will receive the tasks in excess is
selected randomly; (iii) closest task replanning : when an agent’s queue
overcomes the threshold, the system reassigns its tasks to the closest
node. In case there are two or more agents at the same distance from
the task, the destination node is the one with fewer tasks in its queue;
ties are split at random if two queues have the same number of tasks.

The results demonstrate how this framework is an effective tool
for the policy-based reallocation problem. A few observation can be
deducted from Figs. 5–6–7 regarding the overall system performance:
(1) Task migration policies show shorter mission completion time. As can
be seen in Fig. 5a, the enforcement of (any) reallocation policy permits
the agents to terminate their tasks in a shorter time. Both migration
policies, i.e., random and closest policy, exploit all the available agents
without overloading them. In particular, the advantage of the migration
policies is higher when the number of nodes in the topology increases
because tasks can be managed by more drones. (2) The closest agent
policy achieves lower completion time with respect to the random task
replanning policy. Fig. 5a–b–c exhibit that the closest migration policy
provides better performance taking advantage of all agent geo-location,
hence a more efficient mission plan. The advantages of the closest
policy are even larger in case of failures, as demonstrated in Fig. 5c.

5



A. Sacco, M. Flocco, F. Esposito et al. Computer Communications 160 (2020) 0–9

This confirms how the selection of the closest agent produces lower
completion time than the migration of the task to a random one.
Nonetheless, when the percentage of failures is high, the two policies
exhibit similar results. Evidence for this is in the same Fig. 5c, since
the confidence intervals of the two policies are slightly overlapped.
(3) The task completion time decreases with the agent travel distance. As
expected, by increasing the average distance among two consecutive
tasks, the completion time increases as well, as shown in Fig. 5b. (4)
The completion time increases when the drone failure increases. As evident
from Fig. 5c, when the number of available drones decreases, fewer
agents are available for completing the tasks, therefore the queue’s size
increases, leading to an increase of the time to complete the tasks.
(5) The number of failures does not affect the performance when the
number of drones is reasonably low. The evaluation of the number of
tasks accomplished before the failure of the first task shows that the
performance does not significantly change when the number of drones
is lower than 100. In fact, the points of the random policy for a small 𝑄
(Fig. 6a) have the same order of the corresponding values obtained with
the closest policy (Fig. 6b). (6) The improved performance of closest policy
involves a larger, yet reasonable, amount of messages exchanged. Fig. 7a
shows the messages exchanged in a centralized configuration, where
the controller receives information from the agents about their status
and location. For the closest task migration, more frequent packets
are sent to the controller compared to the random policy, respectively
every 2 s and every 4 s.

Furthermore, we compared APRON against HAP [13], a solution
aiming to anticipate failures at the planning level by establishing close
feedback between the high-level planning based on Markov Decision
Processes (MDP) and the execution level learning capable adaptive
controllers. This model is used for replanning to account for failures
and degradation. We report in Fig. 7b the time to complete tasks for the
two algorithms (closest policy for APRON) at varying the percentage of
failures, when 50 drones are utilized. We can notice how APRON can
shorten completion time w.r.t. HAP, due to its ability to control a large
number of agents. On the other hand, HAP can tackle more complex
environments, but at the cost of a more complex model to threat.

7.1. Audio detector accuracy

Part of our contribution is the development of an audio speech
detector to detect the presence of possible survivors after a disaster.
To evaluate the performance of each classifier, we plot the ROC curve,
a standard tool used for visual comparison, which shows the trade-off
between the true positive and the false positive rate. The area beneath
the ROC curve measures the accuracy of the model. A model with
perfect accuracy would have an area of 1.0, while a model closer to
the diagonal is less accurate.

A key requirement for an audio surveillance system is the ability
to detect events of interest, even in the presence of different back-
ground sounds at different energy levels. In order to address this
problem, we have selected a dataset where environmental recordings
are available in a unified format, 5-second-long clips, 44.1 kHz [26].
The ESC-50 dataset consists of 2000 labeled environmental recordings
equally balanced between 50 classes (40 clips per class), grouped in
5 loosely defined major categories (10 classes per category): animal
sounds, natural soundscapes, and water sounds, human (non-speech)
sounds, interior/domestic sounds, exterior/urban noises. This dataset
has been extensively studied in the literature [29–31], hence a com-
parison among different proposed classifiers is straightforward and one
of the main advantages of such a dataset.

To reflect the real scenario, the classes are not balanced, rather the
number of samples for the Human sounds class is less than the samples
for the Non-Human sounds. Due to the underlying class distribution,
we cannot simply compute the accuracy to check the correctness of
results. Thus, we employ Receiver Operating Characteristics (ROC)
curve and Area Under the Curve (AUC) metrics to measure the accuracy

Fig. 8. The graphs shows the advantages of Transfer Learning usage in terms of (a)
training time and (b) AUC of the classifier.

of algorithms. Specifically, AUC is the probability that a classifier will
rank a randomly chosen positive instance higher than a randomly
chosen negative example. It tells how much the model is capable of
distinguishing between classes, and the higher AUC, the better the
model is at predicting 0s as 0s and 1s as 1s.

Over such a dataset, we compared several classifiers: Random Forest
Classifier (RF), k-Nearest Neighbors (KNN), Bagging Classifier, Deep
Neural Networks (DNNs). These classifiers are compared against a
DNNs enriched with Transfer Learning (Tran-DNNs). Two models are
combined for the classification problem, where the first model applied
was already trained on a different dataset. VGGish [27] is our pre-
trained model, which outputs an array of 128 values for each second of
the file audio. These features are the input of our model, which can now
receive less but more meaningful information about the original audio.
In Fig. 8a we demonstrate how this approach can provide a higher AUC
compared to other methods where the Transfer Learning is not applied.
Although the pre-trained model was validated on different data, it is
extremely useful in pre-processing the audio file and providing a set
of features that simplify further processing. As shown in the graph,
the transferred DNNs achieves an improved AUC w.r.t. the same DNNs
without the usage of the prior model.

The number of hidden layers and the number of neurons of DNNs
and Tran-DNNs is obtained via cross-validation. The optimal config-
uration is composed of 3-layers with 128-128-64 neurons, where the
output is a binary representation where ‘‘0’’ means ‘‘Human sound’’,
‘‘1’’ otherwise. We can hence conclude that by using Transfer Learning,
we can use a simple network for the classification problem.

The second benefit brought by the transfer learning technique is
the training time reduction, as can be seen in Fig. 8b. Results refer
to a training process performed on Ubuntu, Intel(R) Core(TM) i7-3770
CPU @ 3.40 GHz. The model receives as input a simpler version of
features, with a reduced dimensionality but higher meaningfulness.
The transferred model does not need to be re-trained, but produces
as output an effective set of features, that are the input of the new
classifier.

This demonstrates how Transfer Learning can be used to saving
time or getting better performance, achieving the same performance of
other methods in a shorter amount of time. The same model (DNNs),
if applied in conjunction with a transferred model, provides higher
accuracy and in a shorter amount of time. The training time of the
standard model is indeed more than five-times the time for the model
in the Transfer Learning case.

7.2. Noise reduction

The task of audio detection also entails a noise reduction processing,
which is crucial for mitigating the noise originated by the drone rotors.
To treat this aspect, we evaluate performance over a dataset where
the background noise is prominent, similarly to the audio recorded by
drones. The data are publicly available at [32]. Although these samples
are not obtained directly from drones, this dataset is of great value,
due to the similar context wherein the events are generally mixed with
a complex background. Moreover, the availability of the source makes

6



A. Sacco, M. Flocco, F. Esposito et al. Computer Communications 160 (2020) 0–9

Fig. 9. The graphs show the (a) training time and (b) AUC of the classifier applied
after a noise redaction processing that is needed to mitigate the effect of drone rotors
noise. The figures point out advantages of Transfer Learning usage.

the reproducibility easier. The set comprises three classes, namely glass
breaking, gun shots, and screams, for a total of 6000 events. Further,
these events are available at 6 different values of signal-to-noise ratio
(namely 5 dB, 10 dB, 15 dB, 20 dB, 25 dB and 30 dB).

Fig. 9 shows how the Transfer Learning approach is beneficial also
when a pre-processing for reducing the effect of drone rotors noise is
applied. After the filter for removing such audio noises is applied, the
classifier is trained to correctly detect the scream class. In this case,
the training time encompasses the filtering process too, leading to an
increased time compared to Fig. 8b. However, the advantages brought
by Transfer Learning are even more pronounced than in Fig. 8, where
the effects of noise were neglected.

7.3. Application advantages

In addition to the estimation of the system performance and the
comparison of different policies of APRON, we evaluate the tangible
benefits for an edge computing application. We tested specifically the
proposed application (Section 6), in cases where APRON is deployed
and not. In this scenario, the drones are performing the task of reaching
a geo-location as in the previous examples, and the audio recording
task in the background. The adverse conditions of challenged networks
impose to face tasks that are lost because the node that was hosting
them failed. The system is able to reassign these tasks, but the delay
perceived by the user drastically increases. For this reason, a layer
such as APRON is effective in mitigating the effects upon a failure.
Fig. 10 highlights the main 2 advantages of APRON: (i) efficient fault
response, (ii) accurate failure estimation; the management layer offered
by APRON allows a smaller number of lost tasks in different scenarios.
The presence of APRON is evident especially in critical conditions, i.e.,
high percentage of node failures, a high number of drones to control.
On the other hand, the distance between nodes does not notably affect
the number of completed tasks.

8. Related work

Delivering adaptive and resilient to failures services is crucial in
almost every IoT network, especially for robotics and drones fleet.
To tackle this problem, several solutions have been proposed due to
the relevance of the problem and the many scenarios affected. We
describe a few representative solutions to clarify our contributions
to the resilient task planning problem, as well as equivalent audio
processing applications.
IoT at the edge. The proliferation of IoT devices led to the generation
of a massive amount of data. The processing of collected data and
the decisions making could be performed onboard, but this approach
inevitably drains the battery of the IoT device. On the other hand,
central cloud servers are inefficient at handling all the collected data
because of limited computing, communication, storage, high overall
energy, and, most importantly, latency. To better address this problem,
recent solutions have proposed the offloading of data processing at the
edge of the network. The proximity to the IoT devices is the key enabler

of several advantages such as low and predictable latency, reduction of
bandwidth consumption, context awareness.

When an edge computing service is deployed, several challenges
have to be faced, such as the implementation of an offloading strategy
to efficiently distribute the workload in the system, handle the mobility
(or communication disconnection) while reliable cooperation is guaran-
teed [33–35]. In this context, the drone itself may be considered as a
fog node.
Resilient and Adaptive IoT Systems. Critical applications and the
surrounding environment can be affected by problems, e.g., interfer-
ence, medium access conflicts, multipath fading, shadowing, which can
cause significant packet losses. More specifically, the disaster response
scenario is tied to edge offloading and its effectiveness is crucial for
some applications. We could mention the real-time video conferencing
with the incident commander featuring face recognition of disaster
victims [36], or the detection of children in an attempt to reunite them
with their guardians [37], whereas virtual beacons can be mainly used
to track their location. In this scenario, the reliability is essential for
the effectiveness of the applications [38]. [39] and [13] focus on the
prediction of failures, where the former applies a Bayesian-inference
probabilistic for the computation of the estimate failure probability
in case of monitored batteries. In the latter, the authors present close
feedback between the high-level planning based on Markov Decision
Processes (MDP) and the execution level learning-focused adaptive
controllers. By exploiting this feedback, the framework anticipates the
failures and reassesses vehicle capabilities after the failures. This proac-
tive behavior allows an efficient replanning to account for changing
capabilities. However, our solution does not predict the failure of links
or agents, but it computes a close form of the average number of tasks
in a mission, that can be used to adapt to the situation of the system.

Moreover, the adaptability and the persistence of distributed IoT
systems can exploit decentralized approaches [11–13,40]. In [41] the
authors faced the problem of task allocation and scheduling over a
heterogeneous team of human operators and robotic agents. The hu-
man operator acts as the centralized component that interacts with
unmanned agents. Operator, vehicle, and task are selected according
to a multi-objective optimization function that depends on a reward as-
signed when the task is completed, the cost of the vehicle to perform the
task, and the cost of the operator to supervise the task assignment. As
in [41], our solution can also be used to distribute workload efficiently
among agents, but our predictive system is based on a Jackson network
approach. Our solution is indeed agnostic to the agent architecture and
can manage both centralized and distributed management approaches.
Prediction with a network of queues. The network services have also
been studied for shared (peer-to-peer) storage networks, with the aim
of checking the robustness. For example, a theoretical control approach
to modeling and predicting data availability through redundancy is
proposed in [42]. New redundant fragments need to be introduced in
order to ensure a given level of availability in the event of storage node
failures.

Inspired by [42], we leverage a network queuing model to estimate
objects (tasks) that will temporarily or permanently disappear from the
agent’s (peer to peer) network; however, our failure prediction model
is different, as we model an agent failure and the reassignment of its
task with a Jackson network of queues [19].
Machine Learning for Audio Detection. A key assumption for ma-
chine learning and data mining algorithm is that the training data must
be in the same feature space and have the same distribution of the pre-
dicted data. However, in certain real-world scenarios, this assumption
does not hold. Indeed, collecting the needed training data that provide
the characteristics of the test data can be difficult and expensive. Thus,
related data is usually added to the dataset to prevent this problem, but
the difference in data affects the prediction of the learner. In such cases,
transfer learning techniques would greatly improve the performance of
the model avoiding many expensive data-labeling efforts [43].

Recent research has widely studied the effectiveness of transfer
learning applied to image classification. Moreover, many pre-trained

7



A. Sacco, M. Flocco, F. Esposito et al. Computer Communications 160 (2020) 0–9

Fig. 10. Comparison of application performance using the closest task migration replanning policies. The graphs represent the percentage of lost tasks when 500 tasks are completed
at different conditions: (a) number of drones, (b) task distance, (c) percentage of node failures.

models ready to be used for knowledge transfer are available. For
example, Keras, one of the most popular deep learning library, pro-
vides model definitions and pre-trained weights for many popular
architectures, such as VGG16 [44], ResNet50 [45], Xception [46],
MobileNet [47], and more.

However, the success of transfer learning applied to the image do-
main has not been ported to the audio domain, due to the complexity of
the latter. Audio signals contain many more features compared to static
images. Thus, only a few complex pre-trained models are available to
the research community, and mostly they are an adaption of popular
models for image recognition, such as VGGish [27]. For this reason,
knowledge transfer has not been extensively employed in this field,
and most of the studies revolve on Music Information Retrieval [48–
50] rather than audio classification. In fact, sound detection has its own
uniqueness, which makes it hard to apply and port among different use
cases. Nevertheless, some attempts in voice recognition fields provide
very good results, as in [51] where the spherical k-means algorithm
for feature learning is adopted for audio signals. Xu et al. presented
an interesting work about the detection of semantic events in soccer
video by applying a heuristic mapping. This is done by means of
audio keywords, created from low-level audio features by using support
vector machine learning.

9. Conclusion

This paper exposes a novel edge computing application which,
leveraging Machine Learning algorithms, is able to detect the presence
of humans in disaster scenarios. To speed up the computation and
guarantee acceptable reliability of the application, we also deployed a
management architecture whose goal is to re-plan tasks in the presence
of challenged edge networks. Such a layer leverages Jackson’s network
queues model to estimate the number of tasks, queued or in execution.
Thus, the application can determine the instantaneous utilization of
each IoT device, and the mean queuing time (both waiting and exe-
cution time) for each task to be executed or offloaded to the edge of
the network. Our results demonstrate how this management layer is
an effective tool for policy programmability of the mission re-planning
problem for any IoT device deployed in challenged networked environ-
ments. Furthermore, the time for the audio processing is reduced when
the underlying service is running, since the application atop can exploit
functionalities able to improve the overall performance of the system.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This work has been partially supported by NSF under Award Num-
bers CNS1647084, CNS1836906, and CNS1908574.

References

[1] Y. Mao, C. You, J. Zhang, K. Huang, K.B. Letaief, A survey on mobile edge
computing: The communication perspective, IEEE Commun. Surv. Tutor. 19 (4)
(2017) 2322–2358.

[2] N. Abbas, Y. Zhang, A. Taherkordi, T. Skeie, Mobile edge computing: A survey,
IEEE Internet Things J. 5 (1) (2017) 450–465.

[3] D. Chemodanov, F. Esposito, A. Sukhov, P. Calyam, H. Trinh, Z. Oraibi, AGRA:
AI-augmented geographic routing approach for IoT-based incident-supporting
applications, Future Gener. Comput. Syst. 92 (2019) 1051–1065.

[4] A.V. Ventrella, F. Esposito, L.A. Grieco, Load profiling and migration for effective
cyber foraging in disaster scenarios with formica, in: 2018 4th IEEE Conference
on Network Softwarization and Workshops (NetSoft), IEEE, 2018, pp. 80–87.

[5] N.H. Motlagh, T. Taleb, O. Arouk, Low-altitude unmanned aerial vehicles-based
internet of things services: Comprehensive survey and future perspectives, IEEE
Internet Things J. 3 (6) (2016) 899–922.

[6] K. Coleman, F. Esposito, R. Charney, Speeding up children reunification in disas-
ter scenarios via serverless computing, in: Proceedings of the 2nd International
Workshop on Serverless Computing, in: WoSC ’17, 2017, p. 5.

[7] J. Franz, T. Nagasuri, A. Wartman, A.V. Ventrella, F. Esposito, Reunifying
families after a disaster via serverless computing and raspberry pis, in: 2018 IEEE
International Symposium on Local and Metropolitan Area Networks (LANMAN),
2018, pp. 131–132.

[8] R.L. Charney, T. Rebmann, F. Esposito, K. Schmid, S. Chung, Separated after a
disaster: Trust and privacy issues in sharing children’s personal information, in:
Disaster medicine and public health preparedness, Cambridge University Press,
2019, pp. 1–8.

[9] J. Franz, T. Nagasuri, A. Wartman, A.V. Ventrella, F. Esposito, Reunifying
families after a disaster via serverless computing and raspberry pis, in: 2018 IEEE
International Symposium on Local and Metropolitan Area Networks (LANMAN),
IEEE, 2018, pp. 131–132.

[10] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, H.
Weiss, RFC 4838, delay-tolerant networking architecture, irtf Dtn Res. Group
2 (4) (2007) 6.

[11] J.-S. Marier, C.A. Rabbath, N. Léchevin, Health-aware coverage control with
application to a team of small UAVs, IEEE Trans. Control Syst. Technol. 21
(5) (2013) 1719–1730.

[12] N.K. Ure, G. Chowdhary, Y.F. Chen, M. Cutler, J.P. How, J. Vian, Decentralized
learning-based planning for multiagent missions in the presence of actuator
failures, in: 2013 International Conference on Unmanned Aircraft Systems
(ICUAS), IEEE, 2013, pp. 1125–1134.

[13] N.K. Ure, G. Chowdhary, J.P. How, M.A. Vavrina, J. Vian, Health aware
planning under uncertainty for UAV missions with heterogeneous teams, in: 2013
European Control Conference (ECC), IEEE, 2013, pp. 3312–3319.

[14] H.-L. Choi, L. Brunet, J.P. How, Consensus-based decentralized auctions for
robust task allocation, IEEE Trans. Robot. 25 (4) (2009) 912–926.

[15] A.V. Ventrella, F. Esposito, A. Sacco, M. Flocco, G. Marchetto, S. Gururajan,
APRON: An Architecture for adaptive task planning of internet of things in
challenged edge networks, in: 2019 IEEE 8th International Conference on Cloud
Networking (CloudNet), IEEE, 2019, pp. 1–6.

[16] Robotic Operating System, http://www.ros.org/, online.
[17] Donato Di Paola, The Multi-Agent Robotic Simulator (MARS) https://github.com/

donatodipaola/mars, online.
[18] M. Satyanarayanan, A brief history of cloud offload: A personal journey from

odyssey through cyber foraging to cloudlets, GetMobile: Mob. Comput. Commun.
18 (4) (2015) 19–23.

[19] J.R. Jackson, Networks of waiting lines, Oper. Res. 5 (4) (1957) 518–521.
[20] K.S. Trivedi, Probability and Statistics with Reliability, Queuing, and Computer

Science Applications, vol. 13, Wiley Online Library, 1982.
[21] J. Day, I. Matta, K. Mattar, Networking is IPC: A guiding principle to a better

internet, in: Proceedings of the 2008 ACM CoNEXT Conference, 2008, pp. 1–6.

8

http://refhub.elsevier.com/S0140-3664(19)31677-9/sb1
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb1
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb1
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb1
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb1
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb2
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb2
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb2
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb3
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb3
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb3
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb3
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb3
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb4
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb4
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb4
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb4
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb4
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb5
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb5
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb5
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb5
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb5
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb6
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb6
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb6
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb6
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb6
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb8
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb8
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb8
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb8
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb8
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb8
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb8
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb9
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb9
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb9
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb9
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb9
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb9
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb9
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb10
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb10
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb10
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb10
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb10
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb11
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb11
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb11
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb11
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb11
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb12
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb12
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb12
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb12
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb12
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb12
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb12
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb13
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb13
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb13
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb13
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb13
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb14
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb14
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb14
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb15
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb15
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb15
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb15
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb15
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb15
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb15
http://www.ros.org/
https://github.com/donatodipaola/mars
https://github.com/donatodipaola/mars
https://github.com/donatodipaola/mars
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb18
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb18
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb18
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb18
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb18
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb19
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb20
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb20
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb20


A. Sacco, M. Flocco, F. Esposito et al. Computer Communications 160 (2020) 0–9

[22] I. Seskar, K. Nagaraja, S. Nelson, D. Raychaudhuri, Mobilityfirst future internet
architecture project, in: Proceedings of the 7th Asian Internet Engineering
Conference, 2011, pp. 1–3.

[23] Google Protocol Buffers, http://code.google.com/apis/protocolbuffers. online.
[24] M. Erdelj, E. Natalizio, K.R. Chowdhury, I.F. Akyildiz, Help from the sky:

Leveraging UAVs for disaster management, IEEE Pervasive Comput. 16 (1) (2017)
24–32.

[25] S. Chowdhury, A. Emelogu, M. Marufuzzaman, S.G. Nurre, L. Bian, Drones for
disaster response and relief operations: A continuous approximation model, Int.
J. Prod. Econ. 188 (2017) 167–184.

[26] K.J. Piczak, ESC: Dataset for environmental sound classification, in: Proceedings
of the 23rd ACM International Conference on Multimedia, 2015, pp. 1015–1018.

[27] S. Hershey, S. Chaudhuri, D.P. Ellis, J.F. Gemmeke, A. Jansen, R.C. Moore, M.
Plakal, D. Platt, R.A. Saurous, B. Seybold, et al., CNN Architectures for large-scale
audio classification, in: 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), IEEE, 2017, pp. 131–135.

[28] J.F. Gemmeke, D.P. Ellis, D. Freedman, A. Jansen, W. Lawrence, R.C. Moore, M.
Plakal, M. Ritter, Audio set: An ontology and human-labeled dataset for audio
events, in: 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, 2017, pp. 776–780.

[29] A. Kumar, M. Khadkevich, C. Fügen, Knowledge transfer from weakly labeled
audio using convolutional neural network for sound events and scenes, in:
2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2018, pp. 326–330.

[30] Y. Tokozume, Y. Ushiku, T. Harada, Learning from between-class examples for
deep sound recognition, 2017, arXiv preprint arXiv:1711.10282.

[31] R.N. Tak, D.M. Agrawal, H.A. Patil, Novel phase encoded mel filterbank energies
for environmental sound classification, in: International Conference on Pattern
Recognition and Machine Intelligence, Springer, 2017, pp. 317–325.

[32] P. Foggia, N. Petkov, A. Saggese, N. Strisciuglio, M. Vento, Reliable detection
of audio events in highly noisy environments, Pattern Recognit. Lett. 65 (2015)
22–28.

[33] F. Samie, V. Tsoutsouras, L. Bauer, S. Xydis, D. Soudris, J. Henkel, Computation
offloading and resource allocation for low-power IoT edge devices, in: IEEE 3rd
World Forum on Internet of Things, IEEE, 2016, pp. 7–12.

[34] M. Chiang, T. Zhang, Fog and IoT: An overview of research opportunities, IEEE
Internet Things J. 3 (6) (2016) 854–864.

[35] C. Puliafito, E. Mingozzi, G. Anastasi, Fog computing for the internet of
mobile things: Issues and challenges, in: IEEE International Conference on Smart
Computing, IEEE, 2017, pp. 1–6.

[36] H. Trinh, D. Chemodanov, S. Yao, Q. Lei, B. Zhang, F. Gao, P. Calyam, K.
Palaniappan, Energy-aware mobile edge computing for low-latency visual data
processing, in: 2017 IEEE 5th International Conference on Future Internet of
Things and Cloud (FiCloud), IEEE, 2017, pp. 128–133.

[37] S. Chung, C. Mario Christoudias, T. Darrell, S.I. Ziniel, L.A. Kalish, A novel
image-based tool to reunite children with their families after disasters, Acad.
Emerg. Med. 19 (11) (2012) 1227–1234.

[38] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet
of things: A survey on enabling technologies, protocols, and applications, IEEE
Commun. Surv. Tutor. 17 (2015) 2347–2376.

[39] J. Yu, State-of-health monitoring and prediction of lithium-ion battery using
probabilistic indication and state-space model, IEEE Trans. Instrum. Meas. 64
(11) (2015) 2937–2949.

[40] S.S. Ponda, H.-L. Choi, J.P. How, Predictive planning for heterogeneous
human-robot teams, in: AIAA Infotech@Aerospace Conference, 2010, pp. 3349.

[41] C.J. Shannon, L.B. Johnson, K.F. Jackson, J.P. How, Adaptive mission planning
for coupled human-robot teams, in: American Control Conference (ACC), 2016,
IEEE, 2016, pp. 6164–6169.

[42] A. Duminuco, E. Biersack, T. En-Najjary, Proactive replication in distributed
storage systems using machine availability estimation, in: Proceedings of the
2007 ACM CoNEXT Conference, 2007, pp. 1–12.

[43] S.J. Pan, Q. Yang, A survey on transfer learning, IEEE Trans. Knowl. Data Eng.
22 (10) (2009) 1345–1359.

[44] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, 2014, arXiv preprint arXiv:1409.1556.

[45] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 770–778.

[46] F. Chollet, Xception: Deep learning with depthwise separable convolutions, in:
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017,
pp. 1251–1258.

[47] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M.
Andreetto, H. Adam, Mobilenets: Efficient convolutional neural networks for
mobile vision applications, 2017, arXiv preprint arXiv:1704.04861.

[48] P. Hamel, M.E.P. Davies, K. Yoshii, M. Goto, Transfer learning in MIR: Sharing
learned latent representations for music audio classification and similarity, in:
14th International Conference on Music Information Retrieval (ISMIR ’13), 2013,
pp. 9–14.

[49] A. Van Den Oord, S. Dieleman, B. Schrauwen, Transfer learning by super-
vised pre-training for audio-based music classification, in: Conference of the
International Society for Music Information Retrieval (ISMIR 2014), 2014, p.
6.

[50] K. Choi, G. Fazekas, M. Sandler, K. Cho, Transfer learning for music classification
and regression tasks, 2017, arXiv preprint arXiv:1703.09179.

[51] J. Salamon, J.P. Bello, Unsupervised feature learning for urban sound classifi-
cation, in: 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2015, pp. 171–175.

9

http://refhub.elsevier.com/S0140-3664(19)31677-9/sb22
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb22
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb22
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb22
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb22
http://code.google.com/apis/protocolbuffers
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb24
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb24
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb24
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb24
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb24
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb25
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb25
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb25
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb25
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb25
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb27
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb27
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb27
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb27
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb27
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb27
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb27
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb28
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb28
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb28
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb28
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb28
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb28
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb28
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb29
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb29
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb29
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb29
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb29
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb29
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb29
http://arxiv.org/abs/1711.10282
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb31
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb31
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb31
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb31
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb31
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb32
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb32
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb32
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb32
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb32
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb33
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb33
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb33
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb33
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb33
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb34
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb34
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb34
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb35
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb35
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb35
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb35
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb35
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb36
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb36
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb36
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb36
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb36
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb36
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb36
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb37
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb37
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb37
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb37
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb37
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb38
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb38
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb38
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb38
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb38
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb39
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb39
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb39
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb39
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb39
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb41
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb41
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb41
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb41
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb41
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb43
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb43
http://refhub.elsevier.com/S0140-3664(19)31677-9/sb43
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1703.09179

	An architecture for adaptive task planning in support of IoT-based machine learning applications for disaster scenarios
	Introduction
	Motivating applications
	Problem definition: Mobile task offloading
	Problem definition
	Task migration properties

	Mission planning via network of queues 
	APRON architecture
	Drone-sourced live audio analytic
	Human activity detector

	Evaluation results
	Audio detector accuracy
	Noise reduction
	Application advantages

	Related work
	Conclusion
	Declaration of competing interest
	Acknowledgment
	References


