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ABSTRACT Software-Defined Networking (SDN) controllers are nowadays expected to manage large
infrastructures and services in a practical, efficient, and optimized way. To achieve such control, SDN
networks should increase the automation of orchestration functions to fullfil both service and network
management lifecycles. However, network management applications have stringent resource demands that
orchestrators need to honor. Most of the available orchestrators focus on high-level approaches that rely
exclusively on the Northbound API (NB-API). A few strategies have also been designed to optimize the
controllers’ internal mechanisms through features enabled by the Southbound API (SB-API). However,
such solutions do not focus on optimal information delivery to the orchestrator, a crucial property to
provide prompt feedback in response to network events, and to potentially drive self-healing and auto-
scaling properties. To address such need, we present NOTORIETY, an orchestration system that provides an
abstraction for real-time SDN network controller event message handling. NOTORIETY is able to maximize
the orchestration capabilities of SDN controllers including innovative features for processing and delivering
network event information. NOTORIETY’s design consists of mechanisms that empower SDN-controlled
entities by applying filtering rules to efficiently control and optimize data flows provided by the SDN
controller. We implemented a testbed to assess our NOTORIETY proposal following the guidelines provided
in the RFC 8456, and we benchmark its performance over three SDN controllers (OpenDaylight, ONOS,
and Floodlight). The evaluation results reveal the effectiveness of NOTORIETY in reducing the execution
time of SDN requests, load processing, and overall data marshaling volume in several scenarios.

INDEX TERMS Software-defined networking, SDN controller, orchestration, network programmability.

I. INTRODUCTION
The advent of innovative paradigms such as Software-
Defined Networking (SDN) [1] has changed the way com-
puter network architectures and their services implement
and deliver applications [2], providing flexibility and agility.
In particular, network programmability through the use of
open communication interfaces has allowed the creation and
management of customized functionality, e.g., detection and
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reaction to meaningful network events [3]. Such evolution
enabled functionalities such as topology management or traf-
fic control mechanisms that increased performance efficiency
and programmability of the underlying network infrastruc-
ture [4].

The adoption of the SDN paradigm in scenarios consisting
of emerging technologies, such as Information-Centric Net-
works (ICN) [5], Cloud Computing [6], Internet of Things
(IoT) [7], 5G [8], among others, has proved to be a key
factor in making it possible tomeet the stringent requirements
of each provided service (e.g., ultra-low latency, reliability,
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and availability). In these challenging scenarios, the SDN
orchestration capabilities mean the perspectives provided by
the SDN approach by employing flexibility and dynamicity
by reducing the complexity imposed by several control plane
technologies [9].

The facilities that emerged through network softwarization
[10] have paved the way for Network Service Providers
(NSPs) to make their infrastructures more flexible, with a
high degree of scalability and elasticity, as well as offering
reactive mechanisms tailored to orchestrating the infrastruc-
ture [11]. Additionally, another advantage of this approach is
that it can lead to a reduction of Capital Expenses (CAPEX)
and Operating Expenses (OPEX) [12], and can enable new
networking services and applications to achieve a better time-
to-market [13].

The related literature highlights several cases of NSPs
adoption, along with other paradigms and emerging tech-
nologies. In [14], a self-adaptive and latency-sensitive system
is outlined, which uses state-of-the-art topology information
to assist in the intelligent management of network services
provided by the controllers – such as Quality of Service (QoS)
policy managers and traffic analyzers – as well as to fulfill the
minimum end-to-end communications latency requirements
for 5G scenarios. Another study [15] introduces a system
for real-time error correction in multimedia transmissions
through machine learning techniques and traffic analysis
applications provided by SDN controllers.

However, a key factor that is addressed by some of the
related studies concerns the overload on SDN controllers,
particularly when they are faced with scenarios where there
is a high degree of complexity and granularity in the devices
that can sometimes jeopardize the availability of the net-
work infrastructure [16]. In regards of scenarios considered
to be latency-sensitive, changing the topology or layout in
real-time (e.g., when the failure of a given link causes it),
together with the SDN controller overload, may result in
delaying the delivery of data that is crucial to the optimal
functioning of applications running atop, meaning those that
yield intelligence at the control of the network operation and
management [1], [17].

A recent survey of the literature shows that many works
seek to provide greater reliability in terms of availability
and performance for SDN-based ecosystems. However, most
studies only concentrate on higher-level solutions and rely on
NB-APIs provided by the controller to develop applications
that seek to optimize the control plane through particular
strategies, such as load balancing [18], controller placement
[19], and network orchestration [20].

A. PROBLEM STATEMENT
There is a gap in the literature that has not been widely
explored by previous studies, which concerns the optimiza-
tion of network event delivering at the southbound level, seek-
ing to increase network efficiency, allowing less volume of
receiving data, and, consequently, reduced processing time.

FIGURE 1. SDN architecture abstraction detailed by the main layers,
interfaces and standard protocols.

Currently, widely-used SDN controller solutions (i.e., Open-
Daylight, Floodlight, and ONOS) proceed by delivering all
incoming message content to the applications running atop.
This approach imposes all atop applications the challenging
task of selecting the incoming content and then triggering the
appropriate target procedure. The papers [21] and [22] high-
light the importance of performing optimizations on internal
components of SDN controllers to achieve improved perfor-
mance. These optimizations, which generally take place at
the level of algorithms and data structures involving intrinsic
procedures for control operations, are essential to maintain
data consistency and ensure higher levels of performance
by the remote applications and plugins developed for the
northbound (NB-API) and southbound interfaces (SB-API),
respectively. Figure 1 shows, in a high-level scheme, the SDN
architecture abstraction, detailing the main layers, interfaces,
and standard protocols [1].

The control plane and the data plane communicates via
the SB-API, which enables the identification of new events
on the network and the installation and setup of flow rules
on the devices. In the topmost layer, the Application Plane
communicates with the control plane through the NB-API,
making it possible to extend the network’s programmability
capabilities to applications such as firewalls, admission con-
trol, and traffic control systems [23].

The current state-of-the-art does not act as a preset for
developing solutions designed to optimize controllers’ inter-
nal optimization. Having this in mind, different types of
control applications, which are those that reside in the Control
Plane [1] (e.g., orchestrators [24], traffic control mechanisms
[25] or load balancing [18]), that need constant access to
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network event data so that operating effectively, find that the
optimization levels of algorithms and internal mechanisms of
SDN controllers [26] have a direct influence on their levels
of performance.

In light of this, we claim that the employment of new
methods capable of allowing information about the state of
the network to be summarized so that remote applications
can use it, stands to a key need. For instance, a new method
can lead to the development of particular functionalities
(e.g., customized filters) that determine which data should be
selected during network events and sent to remote or con-
trol applications (e.g., for topology management). These
mechanisms should enable data to be delivered to network
operators with a minimum degree of complexity to aid in
processing and using the information in the infrastructure
orchestration systems [24]. An example of the critical nature
of such data can be seen in an Intrusion Detection System
(IDS) application for mitigating a Distributed Denial of
Service (DDoS) attack [27], where the retrieving time of
network events is a crucial factor when adopting strategies to
prevent any possible further attacks. In addition, the amount
of data generated by an event of this nature can impair the
performance of pattern matching search engines and affect
the storage of data in database systems because of the large
volume of information that controllers generate (and usually
unnecessary for specific applications).

Although the SDN paradigm provides numerous facili-
ties for the prototyping and implementation of innovative
mechanisms for network orchestration [28], the application
of the methods outlined above is not a trivial task, largely
because of the degree of complexity that characterizes SDN
controllers. The optimization or updating of algorithms and
the data structure that is an intrinsic part of the internal
components of the SDN controller is a costly and complex
task: this is particularly the case because there is a need to
fully understand (at least at a low level) the SB-API that
are offered by each controller, which requires an in-depth
knowledge of each implemented mechanism [21].

Our previous work [29] introduces the Network Orchestra-
tion Agent (NOA), a middleware running on top of the Open-
Daylight SDN controller. NOA acts as a filtering mechanism
placed above theOpenDaylight RESTAPI, which is designed
to optimizing in real-time the amount of network event
data sent by the SDN controller to the remote applications.
In summary, NOA does not optimize the SDN controller’s
internal mechanisms that it is designed for, but rather, carry
out data filtering procedures related to network events. Our
findings on NOA’s restricted employment to orchestration
scenarios with a high level of criticality reveal that it is not
capable of deciding what kind of optimization is required
to deal with the application context for meeting stringent
latency requirements.

B. OUR PROPOSAL
Based on the problem statement described hereinabove,
together with the limitations of earlier proposals (including

our previous work [29]), this research addresses the existing
gap of optimizing the volume of network event delivering
at the SB-API, previously unexplored for the best of our
knowledge. As a solution, we put forward the mechanism
designated to as NOTORIETY, which overcomes current
SDN controller approaches by assuming the charge of deliv-
ering specific knowledge about the underlying networking
infrastructure (e.g., link failure, OpenFlow device connec-
tion) to atop-running control plane applications, in an opti-
mizedmanner. The idea behindNOTORIETY stands to antic-
ipate itself the SDN controller at the southbound level to
intercept incoming network event-messages and deliver only
intent-matching content to atop-running control plane appli-
cations. To afford this, NOTORIETY implements a publish-
subscribe scheme that standardizes the way control plane
applications can express messages carrying data type of their
intent. As a result of such optimization, NOTORIETY yields
the prospect to deliver significantly less volume of network
event data for control plane applications to process in a more
agile way. Owing to its modular architecture, NOTORIETY
is entirely independent of the SDN controller’s procedures
design, which takes the system beyond the state-of-the-art.

A proof-of-concept (PoC) of the NOTORIETY proposal is
obtained from an OpenDaylight-based, currently one of the
most popular and widely used SDN controllers in the indus-
trial and academic premises, testbed implementation. The
evaluations are conducted through the virtualization of SDN
infrastructures using theMininet1 emulator tool, with the aim
to validate the NOTORIETY approach and assess its impact
on the native OpenDaylight controller workflows against the
widely used state-of-the-art SDN controllers, namely ONOS
and Floodlight. The proposal’s evaluation follows the guide-
lines provided in the RFC 8456 [30], to benchmark the perfor-
mance of SDN controllers, which include recommendations
ranging from topology configuration to data collection tech-
niques. The outcomes suggest the benefits that NOTORIETY
provides, both in terms of reducing the volume of network
event data (both generated and delivered) and the total pro-
cessing time of requests (measured from their receipt by the
controller until their delivery to the requesting application).

C. CONTRIBUTIONS
The main research contributions of this study are as follows:

1) A publish-subscribe in scheme that standardizes the
way remote control plane applications indicate themes-
sages carrying data type of their intent for NOTORI-
ETY filtering;

2) An enhanced filtering processor, which prevents con-
troller’s network-data load overhead even during
standby periods (i.e., if no application is requiring data
from the system);

3) Optimization of the delivery time of network events to
remote applications. This is achieved by standardizing
the delivering engines, which forward events (that are

1http://mininet.org/
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processed by the SB-API) directly to the subscribed
applications, thus avoiding the need for the additional
processing of other components in the top layers of the
controller;

4) A communication interface which is designed to update
configuration parameters of filtering mechanisms in
real-time, to provide a higher degree of configurability;

5) The validation of the system following the benchmark-
ing methodology guidelines of the IETF RFC 8456,
which provide the means of assessing the performance
of SDN controllers.

D. PAPER ORGANIZATION
The remainder of this article is structured as follows:
Section II examines relevant research studies that are related
to the NOTORIETY proposal, and draws attention to our
research contribution. Section III introduces the NOTORI-
ETY modular architecture, together with main participating
components and supporting functionalities, as well as points
out how it differs from our previous work. Section IV outlines
in detail the workflows of NOTORIETY’s main operational
procedures. Section V explains the assessment methodology,
setup of the evaluation testbed, and conducts an analysis of
the PoC outcomes. Finally, Section VI wraps-up our paper
through final considerations and future work suggestions.

II. RELATED WORK
The optimization of the internal SDN controller’s architecture
is a cutting-edge research area, which seeks to achieve high-
performance levels, especially with regard to customization,
flexibility, and agility perspectives. In this section, we survey
the most significant and relevant research efforts launched
by the scientific community, focusing on the enhancements
at the NB-API and SB-API architectural levels.

A. NB-API BASED PROPOSALS
Some approaches [18], [31], and [32] make use of the
NB-API to carry out load-balancing procedures aiming to
alleviate the system when confronted with unforeseen sit-
uations (e.g., overload and operational failure). However,
these schemes do not provide perspectives of configuration
management (e.g., changing the multiple parameters related
to the triggers that activate the balancing mechanisms or even
switching the multiple load-balancing algorithms imple-
mented by each project). In addition, the solutions have to
change the architecture of the controllers to synchronize and
enter into the negotiation at the time of the load balancing
between the different controllers.

Another group of studies provides individual optimizations
for each SDN controller regarding several different aspects
such as network monitoring optimization [33], control plane
fault tolerance [21], and traffic engineering [25]. However,
those proposals lack several management features which can
restrict their employment in large scale network systems, such
as (i) configuration perspectives for the planned mechanisms
and other entities (e.g., application and service orchestrators,

load balancers, etc.); (ii) need for architectural modifications
to the upper layers of the controller to provide a newmidpoint
of communication between the applications and the controller
through the system API; and (iii) lack of communication
interfaces to ensure a better degree of orchestration for other
available resource management solutions.

B. SB-API BASED PROPOSALS
The decoupling of SDN controller mechanisms has been
employed as a feature of some proposals for optimizing the
SB-API performance. In [34], the authors design a data filter-
ing system which is positioned outside the SDN controller,
aiming to replace its native functionalities, such as those
that ensure processing the data delivered by the SB-API.
The authors in [35] introduce an approach for the data pro-
cessing carried out at the SB-API to reduce the volume of
traffic between the controller and orchestration applications
and provide an application perspective of data filtering for
each involved entity. By using the entity outside of the SDN
controller, the solutions significantly increase the processing
time, and consequently, the whole delivery time that network
events take to be delivered to remote applications running
atop the SDN controller. Along with, the solutions require
the controller applications (both remote and local) to be re-
implemented to receive the events directly filtered by them.

A group of proposals [36], [37] are designed to optimize
resource management processes in mobile network infras-
tructures through latency reduction in the communication
between the entities involved (i.e., wireless access points,
mobile devices, vehicles, etc.). In all cases, the proposed
schemes lack providing compatibility evidence with the other
available controllers and, likewise, does not address the
implementation features of the solution.

Although the review of the related literature reveals several
attempts devoted to optimize SDN controllers, it was found
that only a few studies deal with optimizing the internal
mechanisms of these SDN controllers, especially with regard
to the respective SB-API. References [11] and [21] state that,
despite the numerous benefits expected from optimizing the
controller’s SB-API, this process raises a number of chal-
lenges, particularly in terms of implementation complexity
and the need for in-depth knowledge of the low-level layers.

C. RELATED WORK WRAP UP
The literature analysis reveal that most of the previous studies
use the NB-APIs of the controllers concerned with making
improvements for controller load distribution, traffic engi-
neering optimizations, and control plane fault tolerance. Few
works stand tomechanisms proposals aimed at optimizing the
internal components of the SDN controller (e.g., algorithms
and data structure), in particular with regard to the SB-API,
due to the complexity involved, as [11] and [21] explain.
As Table 1 raises, three parameters are used for making a
comparison between most relevant related solutions in the
state-of-the-art and the NOTORIETY proposal:
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1) Multi controller abstraction: provides enforcement per-
spectives (e.g., modular architecture, communication
with the controller via native API’s) regardless of the
type of controller(s) that the underlying system sup-
ports;

2) Management interfaces: provides support for multi-
ple well-defined interfaces (e.g., communication –
socket or REST, configuration, etc.) enabling real-time
customization of the operating parameters according
with the underlying controller(s) particularities;

3) Real-time system: offers mechanisms that can react to
network events, on-demand and in real-time.

The definition of the comparison parameters that Table 1
uses as reference to discuss the solutions set out here,
is based on the analysis of the state-of-the-art. Aside of that,
it takes into account the main features adopted by each of the
related solutions which have functionalities that are essen-
tial for the implementation, deployment and compatibility
of the solutions with regard to the respective controllers.
In the following, we provide a brief discussion about each
of the parameters.

The Multi-controller abstraction parameter refers to the
diversity of SDN controllers currently available and used
by the industry and academic community, as reported by
[38] and [39]. These studies discuss the importance of the
detachment of orchestration architectures from controllers to
the SDN ecosystem development. The Management inter-
faces parameter concerns about the automation of network
decisions and the management of the resources that are SDN
crictical Key Performance Indicators (KPIs) [40], [41]. Since
the controller is the central element of network administration
and decision making, it is expected that optimization solu-
tions for SDN controllers can provide means for changing
configuration parameters so that orchestrating mechanisms
can better enforce their functionality. The Real-time Sys-
tem refers to the ability to react to network events in real-
time, maximizing applications Quality of Experience (QoE).
As described in Section III, NOTORIETY’s architecture
design is based on several interworking modules integration
that enables network event handling without service interrup-
tion [42].

It is clear from Table 1 that although most of the propos-
als hold both different and independent controller architec-
tures perspectives, they have been negligent about enabling
adopting communication interfaces (e.g., NB-API and SB-
API) devoted to enforcing the configuration of the intended
mechanisms, as well as the ability to react to network events,
on-demand and in real-time. As a result, there is a reduction
in both ubiquity and orchestration perspectives that each of
them affords. Furthermore, only four out of ten analyzed
solutions were designed without imposing changes in the
controller architecture to implement the proposed optimiza-
tions. In essence, it should be emphasized that this constraint
reduces flexibility when seeking improvements (new solu-
tions and mechanisms) in the different SDN controllers and

TABLE 1. Analysis of contributions provided by NOTORIETY concerning
featured parameters with respect to plain related proposals.

affects the timescale of implementing and evaluating their
optimizations.

III. NOTORIETY PROPOSAL
This section examines NOTORIETY, which seeks to pro-
vide an optimization mechanism for SDN controllers with
enhanced data delivery and filtering capabilities, and thus
make improvements for applications that require real-time
network event data. The following subsections provide an
overview of NOTORIETY’s architecture and give a detailed
account of the functionalities of each component involved.
We also conduct a comparative analysis of the differences
between the components and functionalities of our previous
work [29] and the current scheme.

A. OVERVIEW
The main objective of NOTORIETY is to maximize the
capabilities of the SDN controllers with regard to the delivery
of network state information. By standardizing network event
messages, it enables them to be delivered to remote applica-
tions with a lower degree of data complexity. Figure 2 shows
the positioning of NOTORIETY in a reference architecture
for SDN controllers, that highlights native mechanisms and
communication interfaces.

The objectives outlined above are achieved by imple-
menting mechanisms connected to the SB-API of the SDN
controller. Thus, the system’s architecture consists of sev-
eral components that interoperate with the controller’s native
mechanisms during the network event detection process.
It means that NOTORIETY directs the controller’s SB-API
to forward the network events to the other components of
its architecture, which, in their turn, check the corresponding
type of event so that the existing filtering rules (previously
defined by applications subscribed to the system) can be
applied. In this way, remote applications select which types
of events they need to receive, and NOTORIETY takes care
of the necessary procedures for filtering and standardizing the
messages.
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FIGURE 2. Positioning of NOTORIETY on a reference architecture for SDN controllers.

From a high-level standpoint, the components of NOTORI-
ETY’s architecture can be described as (i) Event Listener; (ii)
Filters; and (iii) Application Handler. Figure 2 displays the
modular architecture of the NOTORIETY system and high-
lights its main components, control functions, and interfaces.
The following subsection supplies details of the functionality
of each of its components.

B. EVENT LISTENER
The Event Listener is the component responsible for receiv-
ing network events processed by the southbound SDN con-
troller interface and forwarding them to the NOTORIETY
architecture’s filtering components. The Event Listener con-
sists of a set of functions that retrieve the network events
processed by the SB-API (by the OpenFlow protocol plugin)
of the SDN controllers and detects the type (e.g., OpenFlow
device connection and disconnection, PacketIn, etc.) of the
retrieved event converting it into a data structure based on
hash tables.When the SB-API processes a new network event
of the SDN controller, an instance of the Event Listener is
created, and the processed event is received as data input.

The Event Listener implementation and the entire NOTO-
RIETY occur at a lower level in the architecture. This is
because when a networking event (e.g., the connection of
a new device) happens, and the SDN controller retrieves it,
it is necessary to operate at the same level as the native
mechanisms of the SDN controller (e.g., OpenFlow Protocol
Plugin) in order to retrieve the processed event as fast as pos-
sible (implemented on the SB-API). This makes it possible
to ensure a shorter data delivery time in the communication
between the controller and the remote applications since the
events can be processed by a minimum number of layers and
controller components.

Another critical factor in its operation concerns the SB-
API of the SDN controllers: these have functionalities in their
implementations that provide the crucial data that is usually
requested by applications (e.g., DatapathId of the device,
IPv4 address of hosts, MAC address of devices, statistics of

links, etc.) for network orchestration. It enables the Event
Listener to acquire all this information without the need
to request it from higher-level applications and controller’s
components (an approach that involves adding more process-
ing layers).

C. FILTERS
The Filters component manages the life cycle of the network
events during the process of filtering the data received by the
Event Listener to abstract the data’s complexity. This com-
ponent associate, based on the data forwarded by the Event
Listener, the type of network event to which the message is
related. This association is made through a previous mapping
of OpenFlow2 messages for connection and disconnection
of devices and communication links. In addition, the Filters
store a set of rules (filters customized by the remote appli-
cations subscribed to NOTORIETY) that are responsible for
delineating how to deliver network events to remote applica-
tions.

Figure 2 describes the internal architecture of Filters and
displays the main functions responsible for filtering network
events, which can be categorized as follows:

• Rules Storage: hash table-type data structure, responsi-
ble for storing the filtering rules;

• Event Handler: function responsible for receiving net-
work events sent by the Event Listener;

• Event Mapper: function responsible for mapping the
type of network event received by the Event Handler
using tags, inserted within the event messages. This tag
is based on the identified event type;

• Event Filter: function responsible for performing the
filtering of the mapped event after checking the rules
stored in the Rules Storage and forwarding the filtered
event to remote applications through the Application
Handler.

2http://flowgrammable.org/sdn/openflow/message-layer/
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TABLE 2. Specification of filtering rules.

By adopting a standardized approach, which sets tem-
plates to meet the format of a filtering rule’s requirements,
remote applications only need to specify the customized filter,
as outlined in Table 2. The eventType field specifies the
type of event (e.g., connecting and disconnecting devices)
that must be processed by NOTORIETY, which is the first
method for filtering network events. Therefore, fields
specify a list of parameters to be filtered by the rule (e.g.,
IPv4 address, MAC address, DatapathID, flow tables, ports,
and links), being the second filtering method, excluding any
information present in areas that are not in the fields list. The
contextTag field informs the connection context of the
remote application responsible for inserting the filtering rule.
The status field determines the operating state of the rule
(whether it is active or not). By default, when an application
starts the subscription process to NOTORIETY, it does not
receive any network events. After its subscription, at least
one filtering rule must be defined to set in motion the process
of obtaining the network events specified by a filtering rule.
Finally, the id field is created at runtime for management
purposes.

D. APPLICATION HANDLER
The Application Handler serves as an intermediary between
network events (previously filtered) and applications outside
of the SDN controller, and is responsible for three key tasks:
(i) managing the connections of external applications that are
subscribed to NOTORIETY; (ii) forwarding network events
to subscribed applications; and (iii) managing the filtering
rules that are stored in the Rules Storage. It is also respon-
sible for assisting in the structuring of all the NOTORIETY
components and implementing a WebSocket server that acts
as the main point of communication between the external
applications and the other components of the architecture.
As shown in Figure 2, the Application Handler is structured
as follows:

• Rules Manager API: communication interface used by
subscribed applications to manage filtering rules (add,
modify, and remove). This function assigns a marker
tag of identification (based on the information contained
in the eventType and fields areas of the filtering
rules template) to the equivalent connection context pro-
vided by the Subscription Manager;

• Subscription Manager: a set of functions responsible
for managing the connection contexts of the applications
that are subscribed to NOTORIETY. A connection con-
text represents the link established between the NOTO-
RIETY and a remote application. This information is

stored in a hash table data structure called Subscription
Storage;

• Dispatcher: the function responsible for forwarding the
previously filtered events to subscribed applications,
based on a comparative analysis between the event iden-
tification tag (previously attached by the Event Mapper)
and the equivalent marker tag for the connection context
of subscribed applications (previously attached during
the filtering rule addition process).

E. EVOLVING THROUGH THE PREVIOUS APPROACH
Themain architectural differences between the previous work
and the new approach are set out to illustrate our system’s
research contribution:

1) DataStore Listener: uses the OpenDaylight REST
API to intercept network state data and then processes
information at each DataStores change. This compo-
nent was specially designed for the OpenDaylight,
while in the current version, the Event Listener can fit
into scenarios composed by any SDN controller.

2) Event Notifier: this component is not included in the
new approach since there is a need for optimization
when communicating with the subscribed applications,
now carried out by the Application Handler.

3) Topology Monitor: this component has become
unnecessary in the new architecture since maintaining
the network state for a network event analysis (e.g.,
check for data duplicity and consistency) can generate
overhead in the application (in large scale scenarios).
There is no need to store this data in the current
approach, where there is a direct connection to the SB-
API.

4) Network State Loader: like the Topology Monitor,
this component has become unnecessary because there
is no need to maintain information about the state of
the network, due to the new perspectives that have been
incorporated by employing the SB-API.

5) ConfigureLoader: this component has become unnec-
essary because there is a need to reduce complexity in
the current system,which uses aWebSocket connection
to manage the Filters component as well as improve the
communication logistics for the applications in a sin-
gle component (Application Handler). This approach
reduces the complexity by enabling the applications to
perform all the interactions (receiving network events,
controlling filters, and subscribing to NOTORIETY)
through a single instance.

6) Filters: the functionality of this component is enhanced
with real-time communication capabilities (through
WebSocket). As a result, it is no longer dependent on
static information provided in the configuration files.

IV. OPERATIONS AND WORKFLOW
This section examines the sequences of activities and oper-
ations carried out by the main mechanisms provided by
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NOTORIETY. The following subsections describe the activi-
ties carried out by NOTORIETY during the basic operational
process, which comprises the subscription of remote applica-
tions, the management of filtering rules, and the detection of
new network events.

A. SUBSCRIPTION MANAGEMENT
NOTORIETY meets the particular demands from external
applications by enabling the network operator to subscribe
to these applications to receive network events with a lower
degree of data complexity. Figure 3 displays the sequence
of messages involved during the subscription procedure exe-
cuted for a new application’s request. This process starts
when the application makes an HTTP request to the Web-
Socket server, which is implemented within the Application
Handler (Step 1.0).

During the process of establishing a connection, the Appli-
cation Handler is responsible for generating a connection
context that contains information about the communication
(e.g., IP address and TCP port) from the external application
(Step 1.1). Once this communication has been established,
the SubscriptionManager inserts this new connection context
into the Subscription Storage through an internal function
call (Step 1.2). Finally, a successful operation’s confirma-
tion response is returned to the subscribed application (Steps
1.3 and 1.4).

B. FILTERING RULES MANAGEMENT
After the subscription process, NOTORIETY enables the
application to adopt procedures for managing filtering rules
(creation, modification, and deletion). Figure 4 displays the
sequence of messages involved during the filtering rule cre-
ation procedure.

First of all, the remote application requests creating the fil-
tering rule for the WebSocket server and uses the rule model
described in the previous section (Step 2.1) as a parameter.
In this step, the Rule Manager API is triggered, and the
respective connection context of the requesting application
is added to the contextTag field of the rule template.
Subsequently, an internal function call is made by the Rules

Manager API to create a query rule in the Rules Storage and
check whether the filtering rule is already stored (Step 2.2).
Assuming the rule does not already exist, the Rules Storage
returns the answer with a notification that the requested rule is
missing (Step 2.3). Once the Rule Manager API receives the
confirmation response, an internal function call is performed
to create the filtering rule into the Rules Storage data structure
(Step 2.4). The Rules Storage, in turn, stores the rule in
the corresponding data structure and returns a confirmation
response to the Rules Manager API (Step 2.5).

The Rules Manager API then calls the Subscription Man-
ager, informing the connection context of the requesting
application and the values contained in the eventType and
fields of the object rule (Step 2.6). After this, the Sub-
scription Manager generates a tag from the available param-
eters and then combines it with the application’s respective

connection context. Once the combination has been made,
the Subscription Manager returns the confirmation of the
successful operation to the Rules Manager API (Step 2.7).
Finally, the Rules Manager API forwards the confirmation
that the filtering rule has been successfully created to the
remote application (Step 2.8).

C. DETECTION OF A NEW NETWORK EVENT
The life cycle of how a new network event is detected is
shown in detail in Figure 5. The Business Process Model and
Notation (BPMN)3 methodology is employed to document
the NOTORIETY workflow following the detection of a new
network event. This life cycle covers the activities from the
moment the network receives an event until the moment the
event is delivered, based on the assumption that at least one
application subscribed to NOTORIETY aims to receive it.

During the process of detecting a new network event
through the SB-API, the SDN controller forwards this event
by making a function call to the Event Listener instance. The
Event Listener then checks the event details for consistency,
which is undertaken by employing a function that verify the
information linked to the device related to the event for null
data (e.g., DPID = null). If no inconsistencies are detected,
the event delivery is effected to the Filters component, which
is instantiated by sending the event’s raw data as a parameter.

Once the Filters have been instantiated, the Event Handler
function is activated, and the data about the previously pro-
cessed event is received as input. After this, the Event Map-
per function is triggered, and, depending on the event type,
the identification tag attached to the event message is cre-
ated. Afterward, the Event Filter function checks with Rules
Storage, whether there are rules that have an eventType
that corresponds to the event tag of the event. If it does,
the message resulting from the filtering process is forwarded
to the Application Handler component via a function call to
the Dispatcher method.

In turn, the Dispatcher function queries the Subscription
Manager so that it can receive the connection contexts of the
applications subscribed to NOTORIETY. After this, it com-
pares the tag attached in the network event with the equivalent
tag linked to connection contexts. Hence, the eventmessage is
adapted to ensure it only contains the information specified
in the connection contextTag. If no field is specified in
this tag, the Dispatcher will send the entire event. Finally,
the events are sent through a WebSocket channel to all the
applications subscribed following the fields specified in the
context of the connection tag (contextTag).

V. EVALUATION OF THE NOTORIETY PROPOSAL
This section provides a detailed account of the procedures
employed to assess theNOTORIETYproposal’s performance
impact and effectiveness. On the basis that the NOTORI-
ETY proposal is designed to perform real-time network event
message handling seamlessly, the benchmarking methodol-

3https://www.omg.org/spec/BPMN/2.0/PDF
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FIGURE 3. Sequence diagram for the application subscription procedure in NOTORIETY.

FIGURE 4. Sequence Diagram of the Filtering Rules creation procedure in NOTORIETY.

ogy for SDN controller performance is set out in the RFC
8456 [30] is employed for an accurate assessment. With
this in mind, a whole NOTORIETY architecture (detailed
in Section III) implementation is put against the mainstream
SDN controllers OpenDaylight, Floodlight, and ONOS in
their native configuration denoted to as the baseline. In this
assessment, the NOTORIETY implementation is put forward
as an extension of the OpenDaylight controller.

The following subsection introduces the main concepts
of the OpenDaylight controller and investigates its architec-
tural components and limitations. Following this, there is a
description of the scenarios and methodology employed for
the evaluation and results obtained.

A. THE OPENDAYLIGHT SDN CONTROLLER
Themodular architecture of OpenDaylight is defined in terms
of the specifications provided by the Object Management
Group (OMG) [44], namely, Model Driven Architecture [45].
In this context, OpenDaylight has two main features related
to its architecture: (i) the internal components of its system

become independent from an implementation perspective and
are called modules or objects. Its concept can be defined
by Model-Driven (MD) architecture; (ii) the internal compo-
nents of the system communicate through predefined APIs
that make services available to other internal components.
This strategy is called the Service Abstraction Layer (SAL).

Although the OpenDaylight architecture provides a high
degree of modularity and scalability for internal controller
applications, a top-level domain for each internal system
component’s APIs is still required. OpenDaylight implements
data structures in its system called DataStores to provide
a more suitable means of delivering data from components
located at the NB-API and even external applications. These
structures keep information that has been processed by their
internal components (e.g., network status and details about
infrastructure devices) and, through REST APIs, provides
mechanisms that can enable applications to retrieve this data
in a static way or in real-time.

However, the mechanisms provided by the OpenDay-
light REST APIs for applications to retrieve data stored
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FIGURE 5. Activity diagram for network event receiving.

in DataStores do not offer a way to determine which, and
how, these kinds of data should be delivered to applications.
Concerning this, a DataStore that is responsible for storing
network status contains all the information about the devices
connected to OpenDaylight at a given time and details of
each device (e.g., flow tables, device ports, DatapathID4, IP
address, and MAC). Hence, applications that request data
from these structures have to retrieve a large volume of
data that needs to be filtered before they can be extracted.
In this way, they impose additional processing overhead on
the applications, which can impair their performance. Addi-
tionally, from the standpoint of real-time information deliv-
ery, the approach adopted by the OpenDaylight architecture
compels a large number of internal components to process

the data received by the infrastructure until that data is stored
in the DataStores (owing to the high degree of modularity).
After this, the mechanisms provided by REST API, which
are responsible for delivering this data to interested appli-
cations, can operate. This restriction leads to an increase in
the recovery time of events by the applications connected to
OpenDaylight and imposes performance limitations on the
system as a whole.

B. SCENARIO CONFIGURATION
Figure 6 sketches the testbed evaluation scenario, where the
virtualized infrastructure setup corresponds to each experi-
mental set arranged by the several topology configurations
described in Table 3. The control plane of each experimen-
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tal set is managed by the different SDN controllers config-
urations described in Table 4. For computational resource
optimization purposes, the OpenDaylight with a native imple-
mentation and the one implemented with NOTORIETY do
not coexist during the experiments. Thus, each controller
can be assessed on an individual basis. A remote application
was developed to receive the network events generated by
each SDN controller during the assessment procedures. For
reasons of real-time network event accurate benchmarking,
our remote application is responsible for graphically plot the
network topology.

FIGURE 6. Example of the setup employed in the testbed evaluation
scenario.

The whole network infrastructure scenario is logically vir-
tualized into a physical host equipped with Intel(R) Xeon(R)
Silver 4114 CPU @ 2.20GHz (16 vCPUs), 32GB of RAM,
and Ubuntu Server (18.04) 64-Bit operating system harness-
ing the features of the Mininet4 emulator version 2.2.2. For
each configuration, connections between network devices are
made in a Leaf-spine topology arrangement. By aiming to
reproduce a real scenario, each topology configuration is
arranged in a pre-determined number of subnets, spines, and
leaves, as shown in Table 3.

We also developed an API to control the topologies’ oper-
ating life cycle during the experiments so that the evaluation
could be carried out more effectively. The API enables the
remote application to follow the initialization procedure and
shutdown of topologies following its needs.

The scenario configuration follows the test considerations
for network topology arrangement guidelines, outlined in the
item 4.15 of the RFC 8456.

4http://mininet.org/
5https://tools.ietf.org/html/rfc8456#section-4.1

TABLE 3. Configuration of the leaf-spine virtualized topology employed
in the evaluation.

TABLE 4. Setup of the SDN controllers employed in the assessment
testbed.

C. EVALUATION METHODOLOGY
The evaluation experiments mainly aim to (i) validate
whether the NOTORIETY architecture supports the list of
features that Section III details, along with (ii) assessing
the effectiveness and performance impact that NOTORIETY
features take to carry out real-time network SDN controller
event message handling.

With this goal in mind, we set a first experiment carrying
out the Network Topology Discovery Time (NTDT) proce-
dure following the benchmarking tests for network topology
discovery time guidelines provided by the RFC 8456 (item
5.1.16). The NTDT experiment aims to come up with the
total time spent in the SDN controller for converging topol-
ogy bootstrap information and generating the corresponding
network events. The NTDT interval is defined by the cumu-
lative time from the first OFPT-HELLO Exchange mes-
sage (sent by a topology-participating switch) that the SDN
controller receives until it finishes composing the underlying
topology graph state information.

To achieve this, we take into account the whole life cycle
that NOTORIETY and the baseline SDN controllers need to
perform the necessary operations to process all the network
event messages and adequately deliver it to the remote appli-
cation. With regard NOTORIETY, it includes the application
subscription and filtering rules creation (see Figures 3 and
4) procedures, as well as the network event receiving (see
Figure 5). For the goal of providing a graphical plotting of
the topology, the NOTORIETY subscription scheme includes
only the necessary information required by the remote appli-
cation to perform the topology plotting, namely OpenFlow
switches- (i) DPID, (ii) connected ports, and (iii) link status
descriptions. On the other hand, the baseline SDN controllers
send all available information generated through this process.

In order to obtain experiment outcomes in a 95% confi-
dence level, each of the four implementation trials (i.e., three
native SDN controllers and one NOTORIETY-aided version
of the OpenDaylight), topology, and network procedure were

6https://tools.ietf.org/html/rfc8456#section-5.1.1
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FIGURE 7. Delivery time for NTDT events of each controller compared to NOTORIETY’s delivery time.

executed ten times. At the end of each run, the remote
application books both network event delivery time spent
(in seconds), as well as the total volume of generating data
events (in bytes). Afterward, the averaging delivery time of
the ten trials’ network events is calculated so that reveal-
ing the standard deviation. Finally, the total data-collected
results obtained in the native versions of the OpenDaylight,
ONOS, and Floodlight SDN controllers are compared over
the NOTORIETY set of tests.

D. RESULTS
Figure 7 provides evidence of the NOTORIETY architecture
featuring network event message handling optimizations by

successfully reducing Network Topology Discovery Time
(NTDT) message delivery. The results depicted by Figure 7
reveals that NOTORIETY spends a lower network topology
delivery time for all topology configurations than the three
implementation trials with a great confidence level. It also
proves NOTORIETY’s system stability by confirming that it
outperforms the NTDT achieved by the three baseline native
controllers implementations in a scalable fashion. It means
that as the topology size rises (i.e., the number of devices
increase), the percentage of optimization of NOTORIETY
over the baseline implementation also grows.

For instance, as shown in Figure 7(f), NOTORIETY
reaches a great optimization level by reducing the NTDT of
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FIGURE 8. Volume of data from NTDT events, delivered for the remote application, on each controller scenario, compared to NOTORIETY’s volume of data.

TABLE 5. Summarization of NOTORIETY’S optimization over
OpenDaylight.

TABLE 6. Summarization of NOTORIETY’S optimization over ONOS.

OpenDaylight, ONOS, and Floodlight by 55.95%, 65.07%,
and 70.61%, respectively. Tables 5, 6 and 7 summarize the
NTDT optimization percentage of NOTORIETY over all the
three baseline controllers.

As can be inferred by the results, the performance of
NOTORIETY against the ONOS native implementation is
more effective than the other controllers. During the exper-
iments, we noticed that ONOS needed a higher number of
modules (total of 179, including those responsible for the
OpenFlowPlugin tasks) to deal with the controller system’s
basics, which creates an extra processing charge.

We now focus on assessing the effectiveness and per-
formance impacts that the NOTORIETY filtering mecha-

TABLE 7. Summarization of NOTORIETY’S optimization over floodlight.

nism lays over the volume of data processed during the
NTDT experiment, regarding the baseline solutions. Aiming
to assess how effective both NOTORIETY and the baseline
solutions come up in the experiments with the varying size
of topologies, we adopt the methodology of analyzing the
volume of data from NTDT events delivered for the remote
application on each controller at ending the experiment. Fig-
ure 8 presents a comparison of each baseline solution with
NOTORIETY’s delivered volume of data. Aiming to provide
a better understanding of the results, we split the results into
two graphs: (i) Figure 8(a) compare NOTORIETY’s volume
of data with OpenDaylight; and (ii) Figure 8(b) compare
NOTORIETY’s volume of data with ONOS and Floodlight.

As confirmed by the results outlined in Figure 8,
the implementation aided by NOTORIETY features achieves
considerable levels of optimization in the total volume of
data delivered to the remote application. Tables 5, 6 and 7
also show the percentage of optimization in the volume of
data delivered to the remote application by NOTORIETY
against the OpenDaylight, ONOS and Floodlight, respec-
tively. From our studies in these outcomes, we note that
even with the increase in the topology size, the capabilities
provided by NOTORIETY features fit the remote applica-
tion’s needs through the mechanisms described in Section III.
It means that NOTORIETY only forwards the information
required to the subscribed remote application, instead of the
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baseline solutions, which continues to forward all the pro-
duced data. This lack in the baseline native controllers mech-
anisms implementation result in additional network signaling
and application overhead since it is given the responsibility of
data filtering to the interested remote entity.

Although the approach introduced by NOTORIETY
entails adding extra complexity to the SDN controller ecosys-
tem (by including additional components), the results of the
assessment prove that the optimizations allow it to implement
the various stages that must be followed for classifying, pro-
cessing, and delivering the raw data of network events. More-
over, the implementation of filtering mechanisms improves
the efficiency of NOTORIETY by reducing the volume of
data delivered to external entities and avoids overlapping
those already in place at the SB-API.

The NOTORIETY approach’s promising benefits trig-
ger a discussion about how new network paradigms such
as Edge/Fog computing hosting emerging critical applica-
tions (e.g., disaster recovery) can raise service expectations
through the innovation introduced byNOTORIETY facilities.
In these scenarios, where it is expected that the network
infrastructure can keep a high-level QoS guarantee to provide
service reliability [46], [47], the applications shall benefit
from the real-time delivery messaging capabilities of the
NOTORIETY approach.

VI. CONCLUSION
In this study, NOTORIETY is examined as a mechanism
that can maximize the orchestration capabilities of SDN
controllers by including innovative features for processing
and delivering network event information. NOTORIETY’s
modular architecture provides a wide range of deploy-
ment perspectives regardless of controller type. Additionally,
it provides interfaces that allow flexible customization of
runtime operating parameters. By being provided with opti-
mizations, NOTORIETY can achieve better performance for
applications and tools designed for orchestrating SDN infras-
tructures that need real-time data to perform their functions
when faced with network events.

Evaluations were conducted through a Proof-of-Concept
(PoC) within the OpenDaylight controller and compared with
a native implementation of the mainstream SDN controllers
ONOS and Floodlight. The results reveal that NOTORIETY
can optimize data delivery of network events in a shorter time
and reduce the volume of data to remote applications.

Although all NOTORIETY advantages, some shortcom-
ings need to be addressed, such as the limitation in handling
the controller’s internal mechanisms to retrieve requests from
the applications and make decisions for specific network
procedures (e.g., flow installation).

We intend to carry out the validation of NOTORIETY for
large scale applications and network procedures in future
work. Moreover, we plan to conduct several new assessments
in experimental testing infrastructures (such as FIBRE7) to

7https://www.fibre.org.br/

determine whether it is feasible to deploy NOTORIETY in
production infrastructures. As well as this, alternative tech-
niques (e.g., data structures, parallel computing, etc.) will be
investigated to optimize the filtering rules’ processing for the
application’s needs.
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