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Abstract—Membership testing has many networking applica-
tions like distributed caching, peer to peer networks, or resource
routing, to name a few. Several studies have reported the
advantages of using membership testing in Software Defined
Networking, and Bloom Filters have been widely adopted for
that purpose. Cuckoo Filters is a recently proposed alternative
to Bloom that outperforms them in terms of speed and memory
efficiency, with some drawbacks. In this paper, we propose an
Optimized Cuckoo Filter (OCF) design that limits some of the
Cuckoo Filter drawbacks and gives a better-amortized search
time, with less false positives. We then present an implementa-
tion of Optimized Cuckoo Filter in distributed SDN and NFV
applications, with customizable parameters that enable the data
structure to adapt to different workloads. We discuss the use
cases of this data structure in SDN and show the performance
gain when using our solution with proper configuration. We also
show the benefits of this data structure in different SDN and NFV
applications by simulating real-world scenarios: content-centric
caching and Virtual Firewall as a Network Function and invoke
dialog for the widespread adoption of this data structure outside
academia through open-source collaboration.

Index Terms—Membership Testing, Cuckoo Filter, Software
Defined Networking, Generalized forwarding

I. INTRODUCTION

A Bloom filter is a simple space-efficient randomized
data structure for representing a set to support membership
queries. Bloom filters allow false positives, but the space
savings often surpass this drawback when the probability of
an error is controlled [2]. Bloom filters have been used in
database applications since the 1970s, but in recent years, they
have become popular in the networking literature, especially
for high-performance networking applications like NFV. This
adoption is due to their speed, higher than linear lookup or
binary search, and their practicalities at the scale in which
distributed applications operate. An excellent survey of the
many networking systems that use Bloom filters for high-speed
set membership tests can be found at [1].

Bloom filters permit a small fraction of false-positive an-
swers with excellent space efficiency. However, they do not
permit deletion of items from the set, and previous attempts
to extend “standard” Bloom filters to support deletion degrade
either space or lookup performance. Recently, Cuckoo filters
have been proposed as a new data structure to cope with the
limitations of standard Bloom filters [2].
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A Cuckoo Filter uses lightweight Cuckoo hashing [3], which
is constructed with two arrays of buckets, and each element
can be stored in either of the two buckets. The number of
arrays in the filter is constant, and of because this, the lookup
time of a cuckoo filter is O(1).

There are three major advantages of using Cuckoo filters
over Bloom filters [4]. 1) They support adding and removing
items, 2) They have higher lookup performance. 3) They are
easier to implement and give better space optimizations.

On the other hand, Cuckoo Filters have some limitations
[5] like — the need to know the total number of items to
be inserted beforehand, and the inability to delete previously
uninserted keys. In this paper, we address those limitations by
proposing an optimization of the cuckoo filter data structure to
make it more flexible in the workload of networked systems
such as Software-Defined Networking (SDN), Network
Function Virtualization (NFV), or other latency-sensitive
distributed systems.

Our Contributions. In particular, we present The Optimized
Cuckoo Filter (OCF), a data structure for membership testing
that has been designed to satisfy various requirements of
network applications. Our OCF has customizable policies that
can be tuned (programmed) to adapt to different NFV and
other distributed system requirements. We show that our opti-
mized Cuckoo filter performs better than the regular Cuckoo
filter in SDN use-cases like network caching, multicast, and
generalized forwarding. We discuss practical uses of this
data structure and implement several use cases on a virtual
network testbed to emulate real-world scenarios using OCF as
a proof of concept. We further discuss the tradeoffs of using
a particular configuration and what effect does a particular
parameter has on the end configuration.

The rest of the paper is organized as follows. In Section II,
we discuss the use cases of Optimized Cuckoo Filters in Net-
work Function Virtualization and Software Defined Network-
ing. Section III describes the limitations of traditional Cuckoo
Filters and a scenario where the original implementation fails.
Section IV contains our contribution - The Optimized Cuckoo
filter with its specifications and an overview of its parameters.
Section V has the evaluation results and the experimental
setup’s description that the results. In Section VI, we discuss
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related membership testing applications in Software Defined
Networking, and finally, we conclude our work in Section VII.

II. MOTIVATING APPLICATIONS AND USE CASES

In this section, we highlight some of the benefits that our
OCF could have when applied to some use cases of interest
within network (function) virtualization scenarios.

Efficient rule lookup in generalized forwarding. Advances
in Software-Defined Networking (SDN) have alleviated some
problems that network operators used to face, since having
separate middleboxes at different layers of the network is
suboptimal. In particular, generalized forwarding follows the
“match-plus-action” paradigm. Matching operations are done
on several fields of packet headers, based on values read
across different packet headers. A packet can be forwarded
to the desired action which can be blocking, load balancing,
rewriting header values, etc. Generalized forwarding could
be made more efficient by implementing an OCF in an
OpenFlow or other SDN controller. The OpenFlow protocol
has evolved to support generalized forwarding of over 40
header fields across the stack, and large data-center may see
a matching operation as often as a few milliseconds.

Loop detection in SDN-driven multicast. Using SDN to
manage multicast connections offers particular merits. Net-
work operators have a complete view of the topology [6].
Earlier on, multicast algorithms had to make routing decisions
without any central view of the network. We no longer need
to rely on local information [7]. Application-Aware SDN mul-
ticast Routing Algorithms can make more efficient multicast
decisions.

However, routing for multicast can be mapped to an NP-
hard graph matching problem that is usually solved in phases.
The underlying graph hosting the multipath connections has
to be analyzed for possible paths and forward loops. Our
Optimized Cuckoo Filter has a unique property that detects if
the filter is full and displaces keys. If the keys get displaced
for the entire round, that means a forwarding loop has been
incurred (efficiently).

Membership Testing in Content-Centric Caching at SDN.
Content-Centric Networking (CCN) [18] is a fairly recent
Internet architecture that has seen some early adopters thanks
to network virtualization. The paradigm’s main premise is to
decouple location from identity, and the main characteristic
of the architecture is to access and retrieve content by name,
without the need to use the IP protocol (that is known to have
multi-homing and mobility problems [8]). CCN Peers can
ping each other to check for missing content. This makes it
an interesting application for OCF as the peers who maintain
a filter of the keys stored at them can share them with others
to convey the files they have locally.

Virtual firewalls in VNF. Early adopters of Network Function
Virtualization technologies were primarily telecommunication
providers. Therefore, most of the original use cases relate
to firewalling, routing, VPN, NAT, DHCP, IPS/IDS, PBX,
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transcoders, or WAN optimization. Earlier firewalls on net-
works were physical devices that were positioned between the
uplink and the network. The shift to VNF enabled the devel-
opment of partially cloud-native VNFs. With more disposable
computing resources, it is possible to make cloud-native VNFs
that allow adding, removing, or modifying rules in the packet
filter ruleset on the go in virtual firewalls.

VINF - VlIrtual Firewall

Optimised Cuckoo FIlter
Hash Table Ruleset Management and
Rulesets ‘ Dispatcher Key State orchestration (MANO)
NFV Infrastructure

Software Defined

‘ Virtual Machines(Compute) ‘ Virtual Storage ‘ Networking Controller

‘ Virtual Networking/ Dataplane Acceleration

Virtualized
‘ Infrastructure Manager

‘ NFVI Hardware

Fig. 1: A reference NFV architecture showing the placement
of a firewall network function implemented using Optimized
Cuckoo Filter.

(Optimized) Cuckoo Filters allow writing of rule sets in
the form of hash tables that can store an extensive collection
of rule sets, and effectively match packets. The hash tables
can be trained for the required parameters, and the parameters
in the incoming packet can be matched with high speed
and accuracy. Moreover, dynamic mitigation strategies are
necessary to deal with the diversity of cyber-threats. Usually,
some of these threats are detected by deploying a large number
of firewall rules. An Optimized Cuckoo Filter can help here
as this advanced data structure can be configured for specific
scenarios.

Modern NFV architectures are implemented on top of cloud
operating systems, that have functionalities like compute,
orchestration, and infrastructure managers. In figure 1 we show
a reference data center with a single network function (for
clarity) — a virtual firewall that matches packets using the
hash table created using the in-memory stateful Optimized
Cuckoo Filter. The Key State serves as a buffer for all the
rulesets that will be used to create the filter, and ruleset
dispatcher updates the hashtable.

Some of the applications described can be implemented
using traditional Cuckoo filters, despite their limitations. Meth-
ods such as membership testing in content-centric or SDN
caching require inserting an undefined number of keys in
a node; therefore, any implementation that uses traditional
cuckoo filters or bloom filters would require reconstructing
the internal data-structure when the filter gets full, which may
result in downtimes, depending on the implementation.
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ITI. PROBLEMS WITH EXISTING (CUCKOO) FILTERS

Cuckoo Filter Background. Cuckoo filter is a data struc-
ture for membership testing proposed by Fan et al. [2]. It
is an improvement over the widely used Bloom filter as it
supports deletions while keeping higher performance. Cuckoo
filters and its applications have been widely examined, but
their adoption in commercial software has been slow. Cuckoo
filters are (arguably) more straightforward to implement than
many alternatives, and they use less space than Bloom Filters.

Cuckoo filters are based on cuckoo hashing [24], it is a
hash-based data structure that handles hash collisions. When
a key is hashed to a bucket that is not empty, a collision
occurs. Such collision triggers the displacement of the already
present key. A cuckoo hash has two logical buckets, each
assigned to a hash function. The key is first sent to a first
bucket; in case of a collision, the displaced key is moved to
the second bucket. If the second key further displaces a key,
such a key tries to find a spot in the first bucket. This process
can go on for a long time if the hash is approaching its full
capacity. Formally, the Cuckoo filter has two hash functions:
hi(z) and ho(x); each hash maps a potential set member to
the filter. A lightweight fingerprint ¢(x) is generated from
the key. Each element is stored in a cell hy or hy @ ha(9)
in the hash table. The xor operation in the second possible
location ensures hj(x) can also be calculated from hy(x) and
¢(x), using the same formula. When the filter starts to get
filled, the probability of false positives increases.

What problem are we solving? Despite having clear ad-
vantages over Bloom Filters, Cuckoo Filters do not perform
efficiently in some distributed applications, such as SDN
and NFV, because they lack policy programmability. Delete
operations are not fail-safe, and operating at full capacity can
trigger too many rehashes thus deteriorating the performance.

Even with a high fault tolerance rate, the faults per query
increases exponentially. Factors like sudden changes in traffic,
can lead to over or under-utilization of resources [10], [11].
Consider sets T',U, & V stored in different nodes in a data-
center. We need to find Cartesian product 7' x U
{t, w) |t €T AN u €U} stVy,>uTVTxU. This
query will first create a set of size, s = size(T) * size(U) .
Then it will trigger s queries in V' to filter results in 1" x U.
In this case, the number of look-ups on the node containing
T is much greater. This problem becomes even more severe
when the number of queries grows.

IV. OUR SOLUTION: OPTIMIZED CUCKOO FILTERS

A limitation of the conventional bloom filters is that it does
not support deletes. Several proposals extend the traditional
Bloom Filter, but Hash Table based approaches make filter
less space-efficient. Also, the number of elements to be stored
must be known before the filter creation. The traditional
Cuckoo filter provides a higher lookup performance than
Bloom Filters, and it also consumes less space as long as
that the false positive rate remains below 3% [12], [13].

While the original Cuckoo filter outperforms the bloom
filter in terms of memory and lookup speed, it fails when
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Fig. 2: Visual Representation of Optimized Cuckoo Filter’s
Bucket Occupancy O. In congestion aware (CON) mode the
filter operates normally (blue region). OCF starts monitoring
the rate of inserts or deletes when O reaches a certain value,
when the Maximum Occupancy is reached the filter is resized
based on these observations.

the maximum load goes beyond 0.9 [14], [15]. There have
been adaptations of the Cuckoo filter in distributed databases,
which suffer from this issue. The community also observed an
occasional false negative when operating at this threshold [16],
which breaks membership testing. Therefore to run reliably in
the cloud, Cuckoo filters need to account for the unpredictable
nature of traffic.

The design of our OCF is inspired by congestion in network
switches. The ability to adapt based on the extent of the load
is the prime focus of our design and implementation [17].
OCF can be fine-tuned for different requirements. OCF can
operate in two modes, selected during an initialization phase:
Congestion Aware (CON) mode and Primitive mode (PRI).
In the rest of this section, we detail the functionality of both
modes.

Primitive. The primitive mode of operation (PRI) of OCF
adjusts the size of the filter based on static parameters. The
user can choose the minimum and maximum thresholds for
the size of the filter. The filter is resized when the occupancy
rate reaches the preset threshold. Using the PRI mode,
performance levels are acceptable if the number of keys is
smaller than a million records; however, it is not advisable to
use PRI when the number of keys is larger than one million.
At that scale, subsequent deletes cause the filter to shrink
linearly. This is because, if the number of elements falls
below a minimum threshold, the filter is resized. However, if
the occupancy O remains above the safe limit, this mode can
result in undesirable false negatives.

Congestion Aware. The Congestion Aware mode (CON)
changes the filter based on the rate of insertion or deletion
in the filter. This dynamic nature is implemented by marking
all the insertions and deletions beyond a value k. In Fig. 2,
the area between Min Occupancy O,,;, and Max occupancy
Omaz represents the value of occupancy.

If the filter occupancy remains between the two thresholds,
kmin and k.. no resize is triggered. In CON mode, when
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O < kpmin or O > kyyae, OCF starts monitoring the changes
in the filter occupancy. The new size of the filter is determined
based on the rate and number of entries that are added or
removed from the filter. Using this mode is safer when the
number of records is larger than one million as each increase
or decrease takes into account the factors that caused the
previous resize. It is not recommended to use this mode for
smaller workloads as PRI performs better while consuming
comparatively low memory.

A. OCF Policies and Parameters

In this section, we discuss the programmable policies of our
Optimized Cuckoo Filter and their tradeoffs. These policies
are critical to our Optimized Cuckoo Filter’s design. Setting
the right parameters for a particular use case is essential
to benefit from this data structure. For example, for some
NFV workloads, such as firewalls and deep packet inspection
for identification of malicious IP addresses, it is desirable to
optimize false-positive rates while compromising memory. In
other NFV applications, for example, load balancing, operators
might prefer tighter memory utilization.

We define the capacity c¢ of the OCF filter as the number
of elements a filter is meant to store. We recommend setting
such capacity to a value at least twice as large as the number
of elements inserted; this is because as the filters get full, the
number of false positives increases. The capacity of OCF can
be set to be dynamic, which means the size of the filter can be
reduced or increased based on the number of elements being
inserted or deleted. Such intelligence can be gathered from
and implemented within an SDN controller.

Another tunable policy of our OCF is the Bucket size: the
size of individual buckets in the filter. In our implementation,
we have set this policy to a value of 4, noting that this is
enough to trigger evictions and consume a reasonable amount
of space in our tests. For performance, it is not recommended
to reset this policy dynamically after the bucket has been
created. Another policy that should not be changed after the
OCF initialization is the fingerprint size: the length of the
fingerprints that will be stored in all buckets. The value of this
policy should be chosen based on the total expected number
of items to be stored in the node. Choosing a lower value
can cause collisions. If the fingerprint size is set to 6, we
have (10)% possible unique fingerprints, that is, the number of
unique keys that can be stored in the OCF before reinitializing
is (10)°.

It is also possible to tune the number of evictions that
occur in the Optimized Cuckoo Filter by setting the maximum
displacements. This policy sets the number of times a filter
will try to find a place to store the newly arrived item. After
the number of retires is reached, the filter is full. Setting
large values for this policy is desired when the filter’s size
is expected to be significant.

The maximum and minimum occupancy can be configured
for both modes of operations of our Optimized Cuckoo Filter.
These two parameters are crucial to tune the filter’s memory
usage. The maximum value for occupancy is 1, so to have
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fewer false positives, the occupancy should be kept low. In
our implementation, the value of Maximum occupancy has
been set to 0.85. Note that the filter’s size will increase once
this threshold has been reached. This is because a resize is
triggered when the occupancy reaches the set threshold.

The following policies are only available in the Congestion
aware mode (CON) of our Optimized Cuckoo Filter. The
K-marker defines the minimum and maximum threshold at
which the Optimized Cuckoo Filter starts monitoring the rate
at which keys are being added or deleted from the filter. This
information is useful to know how much the filter size should
be increased or reduced instead of doubling it or reducing it
to half as in the primitive mode (PRI). The Estimation Gain
g sets the rate at which growth factor « increases. In our
implementation, we set a default value of g = 1/16. Choosing
a value closer to one causes « to increase at a larger rate. The
tradeoff is between memory usage and fewer resizes.

B. Optimized Cuckoo Filter Resizing Algorithm

In PRI mode the OCF does not account for the rate at
which the filter gets filled. The occupancy of the filter is the
prime factor that decides when will the filter be resized. O is
calculated by Number of Items in the bucket s and Capacity
¢, O =s/c where 0 < O < 1. When O > O,,4. the bucket
is doubled in size. In case when the items in bucket decrease
below O,,;,, the bucket size cannot be simply reduced to half,
instead the new size is calculated by ¢ = (¢ — (¢/10)).

Algorithm 1 Algorithm to resize bucket in CON mode
1 When O > kjaq | O < kpmin mark the consecutive items
2 Once O reaches the threshold:
3 Set: M =(dx*t)/(cxt)
Set: a=ax(l—g)+gxM
IF O < Oz
c=c—cx*x(1l—a)
ELSE

c=c+cx*(a)

O 0 W

The CON mode, OCF starts marking items when bucket
occupancy goes beyond k. Once O becomes greater than
Oz or less than O,,;,. Growth factor « is calculated. The
value of « is directly proportional to g and the ratio of the
previous and current rates which is capacity and time before
reset ¢ & t/, and the capacity and time during reset ¢ and ¢
respectively.

V. EVALUATION RESULTS
A. Membership Testing

We ran our implementation on different key sizes ranging
from 10,000 - 1,000,000. We test both the modes of Op-
timized Cuckoo Filter (OCF) for throughput and accuracy.
We observed that the average number of false positives for
Congestion Aware (CON) and Primitive (PRI) modes were
49 and 32 at 100,000 keys. Also, CON mode maintains a
higher value of occupancy than PRI, thus having better space
utilization. However, PRI has a better false positive count as
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(b) Unused bucket space of CON and PRI modes. (c) Packet state of the OPNFV network, using
PRI gives better performance when number of keys virtual firewalls implemented using OCF, during a
is less, however it starts over-utilizing memory at sequence of DDoS attacks.
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Fig. 3: Dataset and forecasts: in (a), OCF in PRI mode re-scales the filter fewer times as it doubles in size when the load
increases. In (b), CON mode utilizes the available memory more effectively as ratio of the number of elements to total capacity
remains close to one. In (¢), the number of breaches reduce as packets from unknown sources get blacklisted and dropped over
the course of the test. In (d), CON mode outperforms PRI in look-up speed, while having a lower memory footprint. Lastly,
in (e), PRI mode gives better false positive rates, while having a higher memory footprint for storing names in the nodes.

its occupancy is below 50%. On the other hand, this policy
configuration consumes a lot more space, and the filter is
mostly underutilized.

In Figure 3a we can see how the original Cuckoo gets filled
within the first few trials of the experiment. Both CON and PRI
perform well for the first 50 rounds; however, as the number
of elements increases, the size of the filter in PRI mode gets
exponentially larger, therefore, consuming more space than
necessary, whereas CON maintains an optimal size.

In Figure 3b, we show that the unused bucket space for
CON and PRI are similar in the initial trials; as the size of
the filters increases, CON tends to maintain size optimality
while utilizing the maximum possible space, hence doing
this is beneficial because memory constraints become more
prominent at that scale.

B. Content Centric Caching

To test the performance of OCF for content caching, we
created a virtual network testbed using Mininet [23]. We
simulated a scenario where a new virtual node queries for
cached names with the peers in its network. To simulate this
scenario, we created 50 nodes arranged in a fully connected
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network, communicating with each other using the gossip
protocol.

The total number of names or keys in the network is over
100,000 and each peer node has less than 12,000 keys stored
in its filter. The newcomer is searching for five thousand keys
and starts by asking the 50 peers in the network.

CON mode of OCF has a smaller memory footprint and
gives better runtime than PRI mode. As we can see in
Figure 3d OCF in CON mode took less time to finish the
search over 5000 keys. Both simulations were performed on
similar network conditions. Factors such as the memory of the
virtual node affect the overall time of a run. As expected, the
CON mode is faster than PRI as it takes up less memory on
the host node.

However, it is interesting to note that PRI performs better in
terms of false positives (Figure 3e). This better performance
is due to the better false-positive rates when the filter size is
twice as large as the number of elements present in the filter.
We ran these experiments on a machine with § GB RAM,
running Intel’s i7-8750H processor with 12 cores.
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C. Virtual firewalls for DDoS prevention

Network Function chaining is the method of passing end-
to-end data streams through a sequence of Network Functions.
Although having a service chain of multiple VNFs is harder
to manage, modular functions prevent a single point of failure
in the tunneling protocol between VNFs and keep logical
entities separate. This concept is adopted by modern Firewalls
[19] for service providers. Distributing the firewall task to
multiple network functions makes them better prepared to
defend against security threats to ensure their network is
always available, in case of DDoS attacks.

As proof of concept, we implemented a Virtual firewall
on OPNFV [20] reference architecture. In our implementa-
tion, we analyze the source and destination IPv6 headers of
each incoming packet and decide to forward or drop them.
VNFs consists of two virtual firewalls that prevent Denial of
Service attacks. The first firewall is responsible for detecting
packets originating from blacklisted sources. However, this
does not check for unknown or whitelisted sources, which are
forwarded to the next firewall. The second firewall checks if
the packet source and destination headers are present in the
whitelisted sources if a packet from an unknown source has
made it this far, it is added to the blacklisted sources to prevent
further requests from that address. Both firewalls contain hash
tables: the first firewall has the fingerprints of blacklisted
sources, and the second one has the whitelisted sources. The
source and destination, headers of an incoming packet are
being searched in the hash table of the Optimized Cuckoo
Filter, and the forwarding decision is based on that. The
filter has been configured for high throughput and low false
positives as it is desirable in this scenario while compromising
memory efficiency for better security.

The second firewall is installed with 1,000,000 trusted
sources. The first firewall initially contains 500,000 blacklisted
sources, which will increase throughout the experiment. To
simulate a DDoS attack on our network, we create modified
packets using Scapy [22]. The packets originate mostly from
blacklisted and unknown sources to simulate a DDoS attack
and a few regular network packets. If a packet from an un-
known or blacklisted source makes it to the second firewall, we
consider it a “breach” as this effects the regular packets passing
through the function chain. As seen in Figure 3c, the number
of breaches initially is high, as the network is attacked by
3,000,000 unknown sources and 500,000 blacklisted sources.
Once a packet reaches the second firewall, it is dropped, and
the filter in the first firewall is updated. Subsequent packets
from that source are then dropped. Hence the number of
breaches reaches almost zero.

VI. RELATED WORK

Bloom Filters and its variants have been examined thor-
oughly over the years; they are still the industry standard
for commercial and open source applications. The literature
reveals that membership testing has novel applications in
software-defined networking [21].
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Du and Wang [9] propose two-stage adaptive Bloom filters
that work collaboratively across the span of the network
in SDN. They address the issue of per-flow monitoring in
applications with varied monitoring requirements that cannot
be offered with generic traffic monitoring methods for coarse-
grained visibility. They provide this flexibility by adjusting the
number of filters in their action Bloom Filter, used for flow
classification. However, the individual filters are not dynamic,
and the number of filters is adjusted by the controller, which
has a global view of the network.

Bhattacharya et al. [25] improve upon the model for Learned
Bloom Filters (LBF) [26], [27] by offering improvements
to the existing learned model by supplementing it with an
adaptive bloom filter. The authors present a solution that deals
with the adaptability of LBF for incremental workloads. They
address the challenge of accommodating adaptability in the
static version of the learned set membership problem. The
tradeoff is the size of the filter and false-positive rates.

Ozisik et al. [28] propose Graphene to provide a protocol
for interactive set reconciliation among peers in distributed
systems. Their novel protocol uses 12% of the bandwidth of
existing deployed systems to provide synchronization among
replicas in a distributed system. They do so by exchanging
false-positive rates of the filters among the peers in a network
so the internal memtable can be corrected. They present a
novel combination of Bloom Filters and Invertible Bloom
Lookup Table which provides a solution to the case, where
one party is missing some or all of the subset.

Kalghoum et al. [29] propose Novel Forwarding Strategy for
Content-Centric Networking [30] based on SDN and Bloom
Filter. They use FIB bloom filter to check whether a key exists
to make decisions on how to how a packet would be routed
and in case of a miss, the request is redirected to a controller
to initiate a network-wide search.

Jinyuan, et al. [31] Propose a packet classification algorithm
in OpenFlow switching to address the problem of bottlenecks
in that area. They use counting bloom filters to predict the fail-
ures of mask probing without searching the flow table. They
show that their method maintains steady flow table lookups as
compared to the classical algorithm in Open vSwitch which
goes up rapidly with increasing flow table length.

Graphlene is optimal when the block size grows, but is not
space optimized for a small number of elements. Du and Wang
predetermined false-positive rates. Size of filters is defined
with a fixed false-positive rate, however, the number of false
positives can get high if the traffic exceeds beyond what the
filter was optimized for. The iterative hash function approach
used by Kalghoum et al. for Content-Centric Networking gives
better runtime at the cost of speed. There is also a memory-
efficient approach for content-centric networking for SDN
proposed by Berto et al. [32] by using Spatial Bloom Filter.

The prime objective of these studies was not to optimize the
internal membership testing data structure to be customizable
based on the application. And all of them suffer from the
intrinsic limitations that affect Bloom Filter and its variants
by design.
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VII. CONCLUSION

In this paper, we presented an optimization of Cuckoo
Filters — a data structure for membership testing — and its
performance evaluation when applied to Distributed SDN and
NFV applications, highlighting the advantages of using this
data structure over alternative membership testing algorithms.
We discussed some practical use-cases for this data structure
in NFV and SDN and showed that the dynamic nature of
our Optimized Cuckoo Filter has the potential to improve
on a variety of networking applications. The adaptability of
OCF is primarily credited to its tune-able policies, which can
be adjusted depending on the application requirements. Our
results show how this data structure can be integrated with
several NFV applications, and we have discussed the trade-
offs associated with several filter policy configurations.
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