
Optimized Cuckoo Filters for Efficient Distributed
SDN and NFV Applications

Aman Khalid Flavio Esposito
Computer Science Department

Saint Louis University
St. Louis, USA

{first.last}@slu.edu

Abstract—Membership testing has many networking applica-
tions like distributed caching, peer to peer networks, or resource
routing, to name a few. Several studies have reported the
advantages of using membership testing in Software Defined
Networking, and Bloom Filters have been widely adopted for
that purpose. Cuckoo Filters is a recently proposed alternative
to Bloom that outperforms them in terms of speed and memory
efficiency, with some drawbacks. In this paper, we propose an
Optimized Cuckoo Filter (OCF) design that limits some of the
Cuckoo Filter drawbacks and gives a better-amortized search
time, with less false positives. We then present an implementa-
tion of Optimized Cuckoo Filter in distributed SDN and NFV
applications, with customizable parameters that enable the data
structure to adapt to different workloads. We discuss the use
cases of this data structure in SDN and show the performance
gain when using our solution with proper configuration. We also
show the benefits of this data structure in different SDN and NFV
applications by simulating real-world scenarios: content-centric
caching and Virtual Firewall as a Network Function and invoke
dialog for the widespread adoption of this data structure outside
academia through open-source collaboration.

Index Terms—Membership Testing, Cuckoo Filter, Software
Defined Networking, Generalized forwarding

I. INTRODUCTION

A Bloom filter is a simple space-efficient randomized

data structure for representing a set to support membership

queries. Bloom filters allow false positives, but the space

savings often surpass this drawback when the probability of

an error is controlled [2]. Bloom filters have been used in

database applications since the 1970s, but in recent years, they

have become popular in the networking literature, especially

for high-performance networking applications like NFV. This

adoption is due to their speed, higher than linear lookup or

binary search, and their practicalities at the scale in which

distributed applications operate. An excellent survey of the

many networking systems that use Bloom filters for high-speed

set membership tests can be found at [1].

Bloom filters permit a small fraction of false-positive an-

swers with excellent space efficiency. However, they do not

permit deletion of items from the set, and previous attempts

to extend “standard” Bloom filters to support deletion degrade

either space or lookup performance. Recently, Cuckoo filters

have been proposed as a new data structure to cope with the

limitations of standard Bloom filters [2].

A Cuckoo Filter uses lightweight Cuckoo hashing [3], which

is constructed with two arrays of buckets, and each element

can be stored in either of the two buckets. The number of

arrays in the filter is constant, and of because this, the lookup

time of a cuckoo filter is O(1).

There are three major advantages of using Cuckoo filters

over Bloom filters [4]. 1) They support adding and removing

items, 2) They have higher lookup performance. 3) They are

easier to implement and give better space optimizations.

On the other hand, Cuckoo Filters have some limitations

[5] like — the need to know the total number of items to

be inserted beforehand, and the inability to delete previously

uninserted keys. In this paper, we address those limitations by

proposing an optimization of the cuckoo filter data structure to

make it more flexible in the workload of networked systems

such as Software-Defined Networking (SDN), Network

Function Virtualization (NFV), or other latency-sensitive

distributed systems.

Our Contributions. In particular, we present The Optimized

Cuckoo Filter (OCF), a data structure for membership testing

that has been designed to satisfy various requirements of

network applications. Our OCF has customizable policies that

can be tuned (programmed) to adapt to different NFV and

other distributed system requirements. We show that our opti-

mized Cuckoo filter performs better than the regular Cuckoo

filter in SDN use-cases like network caching, multicast, and

generalized forwarding. We discuss practical uses of this

data structure and implement several use cases on a virtual

network testbed to emulate real-world scenarios using OCF as

a proof of concept. We further discuss the tradeoffs of using

a particular configuration and what effect does a particular

parameter has on the end configuration.

The rest of the paper is organized as follows. In Section II,

we discuss the use cases of Optimized Cuckoo Filters in Net-

work Function Virtualization and Software Defined Network-

ing. Section III describes the limitations of traditional Cuckoo

Filters and a scenario where the original implementation fails.

Section IV contains our contribution - The Optimized Cuckoo

filter with its specifications and an overview of its parameters.

Section V has the evaluation results and the experimental

setup’s description that the results. In Section VI, we discuss

2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)

978-1-7281-8159-2/20/$31.00 c©2020 IEEE 77

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on January 02,2021 at 00:47:54 UTC from IEEE Xplore. Restrictions apply.

related membership testing applications in Software Defined

Networking, and finally, we conclude our work in Section VII.

II. MOTIVATING APPLICATIONS AND USE CASES

In this section, we highlight some of the benefits that our

OCF could have when applied to some use cases of interest

within network (function) virtualization scenarios.

Efficient rule lookup in generalized forwarding. Advances

in Software-Defined Networking (SDN) have alleviated some

problems that network operators used to face, since having

separate middleboxes at different layers of the network is

suboptimal. In particular, generalized forwarding follows the

“match-plus-action” paradigm. Matching operations are done

on several fields of packet headers, based on values read

across different packet headers. A packet can be forwarded

to the desired action which can be blocking, load balancing,

rewriting header values, etc. Generalized forwarding could

be made more efficient by implementing an OCF in an

OpenFlow or other SDN controller. The OpenFlow protocol

has evolved to support generalized forwarding of over 40

header fields across the stack, and large data-center may see

a matching operation as often as a few milliseconds.

Loop detection in SDN-driven multicast. Using SDN to

manage multicast connections offers particular merits. Net-

work operators have a complete view of the topology [6].

Earlier on, multicast algorithms had to make routing decisions

without any central view of the network. We no longer need

to rely on local information [7]. Application-Aware SDN mul-

ticast Routing Algorithms can make more efficient multicast

decisions.

However, routing for multicast can be mapped to an NP-

hard graph matching problem that is usually solved in phases.

The underlying graph hosting the multipath connections has

to be analyzed for possible paths and forward loops. Our

Optimized Cuckoo Filter has a unique property that detects if

the filter is full and displaces keys. If the keys get displaced

for the entire round, that means a forwarding loop has been

incurred (efficiently).

Membership Testing in Content-Centric Caching at SDN.
Content-Centric Networking (CCN) [18] is a fairly recent

Internet architecture that has seen some early adopters thanks

to network virtualization. The paradigm’s main premise is to

decouple location from identity, and the main characteristic

of the architecture is to access and retrieve content by name,

without the need to use the IP protocol (that is known to have

multi-homing and mobility problems [8]). CCN Peers can

ping each other to check for missing content. This makes it

an interesting application for OCF as the peers who maintain

a filter of the keys stored at them can share them with others

to convey the files they have locally.

Virtual firewalls in VNF. Early adopters of Network Function

Virtualization technologies were primarily telecommunication

providers. Therefore, most of the original use cases relate

to firewalling, routing, VPN, NAT, DHCP, IPS/IDS, PBX,

transcoders, or WAN optimization. Earlier firewalls on net-

works were physical devices that were positioned between the

uplink and the network. The shift to VNF enabled the devel-

opment of partially cloud-native VNFs. With more disposable

computing resources, it is possible to make cloud-native VNFs

that allow adding, removing, or modifying rules in the packet

filter ruleset on the go in virtual firewalls.

Fig. 1: A reference NFV architecture showing the placement

of a firewall network function implemented using Optimized

Cuckoo Filter.

(Optimized) Cuckoo Filters allow writing of rule sets in

the form of hash tables that can store an extensive collection

of rule sets, and effectively match packets. The hash tables

can be trained for the required parameters, and the parameters

in the incoming packet can be matched with high speed

and accuracy. Moreover, dynamic mitigation strategies are

necessary to deal with the diversity of cyber-threats. Usually,

some of these threats are detected by deploying a large number

of firewall rules. An Optimized Cuckoo Filter can help here

as this advanced data structure can be configured for specific

scenarios.

Modern NFV architectures are implemented on top of cloud

operating systems, that have functionalities like compute,

orchestration, and infrastructure managers. In figure 1 we show

a reference data center with a single network function (for

clarity) — a virtual firewall that matches packets using the

hash table created using the in-memory stateful Optimized

Cuckoo Filter. The Key State serves as a buffer for all the

rulesets that will be used to create the filter, and ruleset

dispatcher updates the hashtable.

Some of the applications described can be implemented

using traditional Cuckoo filters, despite their limitations. Meth-

ods such as membership testing in content-centric or SDN

caching require inserting an undefined number of keys in

a node; therefore, any implementation that uses traditional

cuckoo filters or bloom filters would require reconstructing

the internal data-structure when the filter gets full, which may

result in downtimes, depending on the implementation.

78

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on January 02,2021 at 00:47:54 UTC from IEEE Xplore. Restrictions apply.

III. PROBLEMS WITH EXISTING (CUCKOO) FILTERS

Cuckoo Filter Background. Cuckoo filter is a data struc-

ture for membership testing proposed by Fan et al. [2]. It

is an improvement over the widely used Bloom filter as it

supports deletions while keeping higher performance. Cuckoo

filters and its applications have been widely examined, but

their adoption in commercial software has been slow. Cuckoo

filters are (arguably) more straightforward to implement than

many alternatives, and they use less space than Bloom Filters.
Cuckoo filters are based on cuckoo hashing [24], it is a

hash-based data structure that handles hash collisions. When

a key is hashed to a bucket that is not empty, a collision

occurs. Such collision triggers the displacement of the already

present key. A cuckoo hash has two logical buckets, each

assigned to a hash function. The key is first sent to a first

bucket; in case of a collision, the displaced key is moved to

the second bucket. If the second key further displaces a key,

such a key tries to find a spot in the first bucket. This process

can go on for a long time if the hash is approaching its full

capacity. Formally, the Cuckoo filter has two hash functions:

h1(x) and h2(x); each hash maps a potential set member to

the filter. A lightweight fingerprint φ(x) is generated from

the key. Each element is stored in a cell h1 or h1 ⊕ h2(φ)
in the hash table. The xor operation in the second possible

location ensures h1(x) can also be calculated from h2(x) and

φ(x), using the same formula. When the filter starts to get

filled, the probability of false positives increases.

What problem are we solving? Despite having clear ad-

vantages over Bloom Filters, Cuckoo Filters do not perform

efficiently in some distributed applications, such as SDN

and NFV, because they lack policy programmability. Delete

operations are not fail-safe, and operating at full capacity can

trigger too many rehashes thus deteriorating the performance.
Even with a high fault tolerance rate, the faults per query

increases exponentially. Factors like sudden changes in traffic,

can lead to over or under-utilization of resources [10], [11].

Consider sets T, U, & V stored in different nodes in a data-

center. We need to find Cartesian product T × U =
{(t, u) | t ∈ T ∧ u ∈ U} s.t Vα > u.T ∀ T × U . This

query will first create a set of size, s = size(T) ∗ size(U) .

Then it will trigger s queries in V to filter results in T × U .

In this case, the number of look-ups on the node containing

T is much greater. This problem becomes even more severe

when the number of queries grows.

IV. OUR SOLUTION: OPTIMIZED CUCKOO FILTERS

A limitation of the conventional bloom filters is that it does

not support deletes. Several proposals extend the traditional

Bloom Filter, but Hash Table based approaches make filter

less space-efficient. Also, the number of elements to be stored

must be known before the filter creation. The traditional

Cuckoo filter provides a higher lookup performance than

Bloom Filters, and it also consumes less space as long as

that the false positive rate remains below 3% [12], [13].
While the original Cuckoo filter outperforms the bloom

filter in terms of memory and lookup speed, it fails when

Fig. 2: Visual Representation of Optimized Cuckoo Filter’s

Bucket Occupancy O. In congestion aware (CON) mode the

filter operates normally (blue region). OCF starts monitoring

the rate of inserts or deletes when O reaches a certain value,

when the Maximum Occupancy is reached the filter is resized

based on these observations.

the maximum load goes beyond 0.9 [14], [15]. There have

been adaptations of the Cuckoo filter in distributed databases,

which suffer from this issue. The community also observed an

occasional false negative when operating at this threshold [16],

which breaks membership testing. Therefore to run reliably in

the cloud, Cuckoo filters need to account for the unpredictable

nature of traffic.

The design of our OCF is inspired by congestion in network

switches. The ability to adapt based on the extent of the load

is the prime focus of our design and implementation [17].

OCF can be fine-tuned for different requirements. OCF can

operate in two modes, selected during an initialization phase:

Congestion Aware (CON) mode and Primitive mode (PRI).

In the rest of this section, we detail the functionality of both

modes.

Primitive. The primitive mode of operation (PRI) of OCF

adjusts the size of the filter based on static parameters. The

user can choose the minimum and maximum thresholds for

the size of the filter. The filter is resized when the occupancy

rate reaches the preset threshold. Using the PRI mode,

performance levels are acceptable if the number of keys is

smaller than a million records; however, it is not advisable to

use PRI when the number of keys is larger than one million.

At that scale, subsequent deletes cause the filter to shrink

linearly. This is because, if the number of elements falls

below a minimum threshold, the filter is resized. However, if

the occupancy O remains above the safe limit, this mode can

result in undesirable false negatives.

Congestion Aware. The Congestion Aware mode (CON)

changes the filter based on the rate of insertion or deletion

in the filter. This dynamic nature is implemented by marking

all the insertions and deletions beyond a value k. In Fig. 2,

the area between Min Occupancy Omin and Max occupancy

Omax represents the value of occupancy.

If the filter occupancy remains between the two thresholds,

kmin and kmax no resize is triggered. In CON mode, when

79

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on January 02,2021 at 00:47:54 UTC from IEEE Xplore. Restrictions apply.

O < kmin or O > kmax, OCF starts monitoring the changes

in the filter occupancy. The new size of the filter is determined

based on the rate and number of entries that are added or

removed from the filter. Using this mode is safer when the

number of records is larger than one million as each increase

or decrease takes into account the factors that caused the

previous resize. It is not recommended to use this mode for

smaller workloads as PRI performs better while consuming

comparatively low memory.

A. OCF Policies and Parameters

In this section, we discuss the programmable policies of our

Optimized Cuckoo Filter and their tradeoffs. These policies

are critical to our Optimized Cuckoo Filter’s design. Setting

the right parameters for a particular use case is essential

to benefit from this data structure. For example, for some

NFV workloads, such as firewalls and deep packet inspection

for identification of malicious IP addresses, it is desirable to

optimize false-positive rates while compromising memory. In

other NFV applications, for example, load balancing, operators

might prefer tighter memory utilization.

We define the capacity c of the OCF filter as the number

of elements a filter is meant to store. We recommend setting

such capacity to a value at least twice as large as the number

of elements inserted; this is because as the filters get full, the

number of false positives increases. The capacity of OCF can

be set to be dynamic, which means the size of the filter can be

reduced or increased based on the number of elements being

inserted or deleted. Such intelligence can be gathered from

and implemented within an SDN controller.

Another tunable policy of our OCF is the Bucket size: the

size of individual buckets in the filter. In our implementation,

we have set this policy to a value of 4, noting that this is

enough to trigger evictions and consume a reasonable amount

of space in our tests. For performance, it is not recommended

to reset this policy dynamically after the bucket has been

created. Another policy that should not be changed after the

OCF initialization is the fingerprint size: the length of the

fingerprints that will be stored in all buckets. The value of this

policy should be chosen based on the total expected number

of items to be stored in the node. Choosing a lower value

can cause collisions. If the fingerprint size is set to 6, we

have (10)6 possible unique fingerprints, that is, the number of

unique keys that can be stored in the OCF before reinitializing
is (10)6.

It is also possible to tune the number of evictions that

occur in the Optimized Cuckoo Filter by setting the maximum

displacements. This policy sets the number of times a filter

will try to find a place to store the newly arrived item. After

the number of retires is reached, the filter is full. Setting

large values for this policy is desired when the filter’s size

is expected to be significant.

The maximum and minimum occupancy can be configured

for both modes of operations of our Optimized Cuckoo Filter.

These two parameters are crucial to tune the filter’s memory

usage. The maximum value for occupancy is 1, so to have

fewer false positives, the occupancy should be kept low. In

our implementation, the value of Maximum occupancy has

been set to 0.85. Note that the filter’s size will increase once

this threshold has been reached. This is because a resize is

triggered when the occupancy reaches the set threshold.

The following policies are only available in the Congestion

aware mode (CON) of our Optimized Cuckoo Filter. The

K-marker defines the minimum and maximum threshold at

which the Optimized Cuckoo Filter starts monitoring the rate

at which keys are being added or deleted from the filter. This

information is useful to know how much the filter size should

be increased or reduced instead of doubling it or reducing it

to half as in the primitive mode (PRI). The Estimation Gain

g sets the rate at which growth factor α increases. In our

implementation, we set a default value of g = 1/16. Choosing

a value closer to one causes α to increase at a larger rate. The

tradeoff is between memory usage and fewer resizes.

B. Optimized Cuckoo Filter Resizing Algorithm

In PRI mode the OCF does not account for the rate at

which the filter gets filled. The occupancy of the filter is the

prime factor that decides when will the filter be resized. O is

calculated by Number of Items in the bucket s and Capacity

c, O = s/c where 0 < O < 1. When O > Omax the bucket

is doubled in size. In case when the items in bucket decrease

below Omin the bucket size cannot be simply reduced to half,

instead the new size is calculated by c = (c− (c/10)).

Algorithm 1 Algorithm to resize bucket in CON mode

1 When O > kmax | O < kmin mark the consecutive items

2 Once O reaches the threshold:

3 Set: M = (c′ ∗ t′)/(c ∗ t)
4 Set: α = α ∗ (1− g) + g ∗M
5 IF O < Omax

7 c = c− c ∗ (1− α)
8 ELSE
9 c = c+ c ∗ (α)

The CON mode, OCF starts marking items when bucket

occupancy goes beyond k. Once O becomes greater than

Omax or less than Omin. Growth factor α is calculated. The

value of α is directly proportional to g and the ratio of the

previous and current rates which is capacity and time before

reset c′ & t′, and the capacity and time during reset c and t
respectively.

V. EVALUATION RESULTS

A. Membership Testing

We ran our implementation on different key sizes ranging

from 10,000 - 1,000,000. We test both the modes of Op-

timized Cuckoo Filter (OCF) for throughput and accuracy.

We observed that the average number of false positives for

Congestion Aware (CON) and Primitive (PRI) modes were

49 and 32 at 100,000 keys. Also, CON mode maintains a

higher value of occupancy than PRI, thus having better space

utilization. However, PRI has a better false positive count as

80

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on January 02,2021 at 00:47:54 UTC from IEEE Xplore. Restrictions apply.

(a) Filter stress test. Both OCF modes manage the
filter occupancy (keep Occupancy below 1) well
as the number of keys grows, while the traditional
Cuckoo filter does not.

(b) Unused bucket space of CON and PRI modes.
PRI gives better performance when number of keys
is less, however it starts over-utilizing memory at
large scale

(c) Packet state of the OPNFV network, using
virtual firewalls implemented using OCF, during a
sequence of DDoS attacks.

(d) Time taken to search 5000 names in the Con-
tent Centric network by Congestion Aware(CON)
and Primitive(PRI) modes, for 100 test runs.

(e) Number of false positive observed over the
course of 100 test runs.

Fig. 3: Dataset and forecasts: in (a), OCF in PRI mode re-scales the filter fewer times as it doubles in size when the load

increases. In (b), CON mode utilizes the available memory more effectively as ratio of the number of elements to total capacity

remains close to one. In (c), the number of breaches reduce as packets from unknown sources get blacklisted and dropped over

the course of the test. In (d), CON mode outperforms PRI in look-up speed, while having a lower memory footprint. Lastly,

in (e), PRI mode gives better false positive rates, while having a higher memory footprint for storing names in the nodes.

its occupancy is below 50%. On the other hand, this policy

configuration consumes a lot more space, and the filter is

mostly underutilized.

In Figure 3a we can see how the original Cuckoo gets filled

within the first few trials of the experiment. Both CON and PRI

perform well for the first 50 rounds; however, as the number

of elements increases, the size of the filter in PRI mode gets

exponentially larger, therefore, consuming more space than

necessary, whereas CON maintains an optimal size.

In Figure 3b, we show that the unused bucket space for

CON and PRI are similar in the initial trials; as the size of

the filters increases, CON tends to maintain size optimality

while utilizing the maximum possible space, hence doing

this is beneficial because memory constraints become more

prominent at that scale.

B. Content Centric Caching

To test the performance of OCF for content caching, we

created a virtual network testbed using Mininet [23]. We

simulated a scenario where a new virtual node queries for

cached names with the peers in its network. To simulate this

scenario, we created 50 nodes arranged in a fully connected

network, communicating with each other using the gossip

protocol.

The total number of names or keys in the network is over

100,000 and each peer node has less than 12,000 keys stored

in its filter. The newcomer is searching for five thousand keys

and starts by asking the 50 peers in the network.

CON mode of OCF has a smaller memory footprint and

gives better runtime than PRI mode. As we can see in

Figure 3d OCF in CON mode took less time to finish the

search over 5000 keys. Both simulations were performed on

similar network conditions. Factors such as the memory of the

virtual node affect the overall time of a run. As expected, the

CON mode is faster than PRI as it takes up less memory on

the host node.

However, it is interesting to note that PRI performs better in

terms of false positives (Figure 3e). This better performance

is due to the better false-positive rates when the filter size is

twice as large as the number of elements present in the filter.

We ran these experiments on a machine with 8 GB RAM,

running Intel’s i7-8750H processor with 12 cores.

81

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on January 02,2021 at 00:47:54 UTC from IEEE Xplore. Restrictions apply.

C. Virtual firewalls for DDoS prevention

Network Function chaining is the method of passing end-

to-end data streams through a sequence of Network Functions.

Although having a service chain of multiple VNFs is harder

to manage, modular functions prevent a single point of failure

in the tunneling protocol between VNFs and keep logical

entities separate. This concept is adopted by modern Firewalls

[19] for service providers. Distributing the firewall task to

multiple network functions makes them better prepared to

defend against security threats to ensure their network is

always available, in case of DDoS attacks.

As proof of concept, we implemented a Virtual firewall

on OPNFV [20] reference architecture. In our implementa-

tion, we analyze the source and destination IPv6 headers of

each incoming packet and decide to forward or drop them.

VNFs consists of two virtual firewalls that prevent Denial of

Service attacks. The first firewall is responsible for detecting

packets originating from blacklisted sources. However, this

does not check for unknown or whitelisted sources, which are

forwarded to the next firewall. The second firewall checks if

the packet source and destination headers are present in the

whitelisted sources if a packet from an unknown source has

made it this far, it is added to the blacklisted sources to prevent

further requests from that address. Both firewalls contain hash

tables: the first firewall has the fingerprints of blacklisted

sources, and the second one has the whitelisted sources. The

source and destination, headers of an incoming packet are

being searched in the hash table of the Optimized Cuckoo

Filter, and the forwarding decision is based on that. The

filter has been configured for high throughput and low false

positives as it is desirable in this scenario while compromising

memory efficiency for better security.

The second firewall is installed with 1,000,000 trusted

sources. The first firewall initially contains 500,000 blacklisted

sources, which will increase throughout the experiment. To

simulate a DDoS attack on our network, we create modified

packets using Scapy [22]. The packets originate mostly from

blacklisted and unknown sources to simulate a DDoS attack

and a few regular network packets. If a packet from an un-

known or blacklisted source makes it to the second firewall, we

consider it a “breach” as this effects the regular packets passing

through the function chain. As seen in Figure 3c, the number

of breaches initially is high, as the network is attacked by

3,000,000 unknown sources and 500,000 blacklisted sources.

Once a packet reaches the second firewall, it is dropped, and

the filter in the first firewall is updated. Subsequent packets

from that source are then dropped. Hence the number of

breaches reaches almost zero.

VI. RELATED WORK

Bloom Filters and its variants have been examined thor-

oughly over the years; they are still the industry standard

for commercial and open source applications. The literature

reveals that membership testing has novel applications in

software-defined networking [21].

Du and Wang [9] propose two-stage adaptive Bloom filters

that work collaboratively across the span of the network

in SDN. They address the issue of per-flow monitoring in

applications with varied monitoring requirements that cannot

be offered with generic traffic monitoring methods for coarse-

grained visibility. They provide this flexibility by adjusting the

number of filters in their action Bloom Filter, used for flow

classification. However, the individual filters are not dynamic,

and the number of filters is adjusted by the controller, which

has a global view of the network.

Bhattacharya et al. [25] improve upon the model for Learned

Bloom Filters (LBF) [26], [27] by offering improvements

to the existing learned model by supplementing it with an

adaptive bloom filter. The authors present a solution that deals

with the adaptability of LBF for incremental workloads. They

address the challenge of accommodating adaptability in the

static version of the learned set membership problem. The

tradeoff is the size of the filter and false-positive rates.

Ozisik et al. [28] propose Graphene to provide a protocol

for interactive set reconciliation among peers in distributed

systems. Their novel protocol uses 12% of the bandwidth of

existing deployed systems to provide synchronization among

replicas in a distributed system. They do so by exchanging

false-positive rates of the filters among the peers in a network

so the internal memtable can be corrected. They present a

novel combination of Bloom Filters and Invertible Bloom

Lookup Table which provides a solution to the case, where

one party is missing some or all of the subset.

Kalghoum et al. [29] propose Novel Forwarding Strategy for

Content-Centric Networking [30] based on SDN and Bloom

Filter. They use FIB bloom filter to check whether a key exists

to make decisions on how to how a packet would be routed

and in case of a miss, the request is redirected to a controller

to initiate a network-wide search.

Jinyuan, et al. [31] Propose a packet classification algorithm

in OpenFlow switching to address the problem of bottlenecks

in that area. They use counting bloom filters to predict the fail-

ures of mask probing without searching the flow table. They

show that their method maintains steady flow table lookups as

compared to the classical algorithm in Open vSwitch which

goes up rapidly with increasing flow table length.

Graphlene is optimal when the block size grows, but is not

space optimized for a small number of elements. Du and Wang

predetermined false-positive rates. Size of filters is defined

with a fixed false-positive rate, however, the number of false

positives can get high if the traffic exceeds beyond what the

filter was optimized for. The iterative hash function approach

used by Kalghoum et al. for Content-Centric Networking gives

better runtime at the cost of speed. There is also a memory-

efficient approach for content-centric networking for SDN

proposed by Berto et al. [32] by using Spatial Bloom Filter.

The prime objective of these studies was not to optimize the

internal membership testing data structure to be customizable

based on the application. And all of them suffer from the

intrinsic limitations that affect Bloom Filter and its variants

by design.

82

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on January 02,2021 at 00:47:54 UTC from IEEE Xplore. Restrictions apply.

VII. CONCLUSION

In this paper, we presented an optimization of Cuckoo

Filters — a data structure for membership testing — and its

performance evaluation when applied to Distributed SDN and

NFV applications, highlighting the advantages of using this

data structure over alternative membership testing algorithms.

We discussed some practical use-cases for this data structure

in NFV and SDN and showed that the dynamic nature of

our Optimized Cuckoo Filter has the potential to improve

on a variety of networking applications. The adaptability of

OCF is primarily credited to its tune-able policies, which can

be adjusted depending on the application requirements. Our

results show how this data structure can be integrated with

several NFV applications, and we have discussed the trade-

offs associated with several filter policy configurations.

VIII. ACKNOWLEDGEMENT

We are grateful to Dr. Erin Chambers for her useful feed-

back on an initial version of this paper. This work has been

supported by the National Science Foundation, under Award

Numbers CNS1647084, CNS1836906, and CNS1908574.

REFERENCES

[1] Broder, Andrei, and Michael Mitzenmacher. “Network applications of
bloom filters: A survey.” Internet mathematics 1.4 (2004): 485-509.

[2] Bin Fan, David G. Andersen, Michael Kaminsky , Michael D. Mitzen-
macher. “Cuckoo filter: Practically better than bloom.” Proceedings of
the 10th ACM International on Conference on emerging Networking
Experiments and Technologies. 2014.

[3] Pagh Rasmus, and Flemming Friche Rodler. “Cuckoo hashing.” In
European Symposium on Algorithms, pp. 121-133. Springer, Berlin,
Heidelberg, 2001.

[4] Ivan Sičić, Karlo Slovenec, Lucija Petricioli, Miljenko Mikuc “Compar-
ison of Cuckoo Hash Table and Bloom Filter for Fast Packet Filtering
Using Data Plane Development Kit.” 2019 International Conference
on Software, Telecommunications and Computer Networks (SoftCOM).
IEEE, 2019.

[5] Minmei Wang, Mingxun Zhou, Shouqian Shi, and Chen Qian “Vacuum
filters: more space-efficient and faster replacement for bloom and cuckoo
filters.” Proceedings of the VLDB Endowment 13.2 (2019): 197-210.

[6] Almeida, P.S., Baquero, C., Preguiça, N.M.,& Hutchison, D. , “Scalable
Bloom Filters,” Inf. Process. Lett., pp. 255–261, 2007.

[7] Khandelwal, Anurag, Rachit Agarwal, and Ion Stoica. “Confluo: Dis-
tributed monitoring and diagnosis stack for high-speed networks.” In
16th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pp. 421-436. 2019.

[8] Vatche Ishakian, Joseph Akinwumi, Flavio Esposito, Ibrahim Matta “On
Supporting Mobility and Multihoming in Recursive Internet Architec-
tures.” In: Journal of Computer Communication, Vol. 35, Issue 13, pages
1561-1573, July 2012.

[9] Du, Yan, and Sheng Wang. “Two-stage adaptive bloom filters for per-
flow monitoring in software defined networks.” 2018 IEEE International
Conference on Communications (ICC), 2018.

[10] Islam, Salekul, Nasif Muslim, and J. William Atwood. “A survey on
multicasting in software-defined networking.” IEEE Communications
Surveys & Tutorials 20.1 (2017): 355-387.

[11] Jacobson V, Smetters DK, Thornton JD, Plass MF, Briggs NH, Braynard
RL, “Networking named content.” Proceedings of the 5th international
conference on Emerging networking experiments and technologies.
2009.

[12] Tarkoma, Sasu, Christian Esteve Rothenberg, and Eemil Lagerspetz.
“Theory and practice of bloom filters for distributed systems.” IEEE
Communications Surveys & Tutorials 14.1 (2011): 131-155.

[13] Graf, Thomas Mueller, and Daniel Lemire. “Xor Filters: Faster and
Smaller Than Bloom and Cuckoo Filters.” Journal of Experimental
Algorithmics (JEA) 25.1 (2020): 1-16.

[14] Eppstein, David. “Cuckoo filter: Simplification and analysis.” arXiv
preprint arXiv:1604.06067 (2016).

[15] Fleming, Noah. “Cuckoo Hashing and Cuckoo Filters.” (2018).
[16] Almeida, Paulo Sérgio, Carlos Baquero, Nuno Preguiça, and David

Hutchison “Scalable bloom filters.” Information Processing Letters 101.6
(2007): 255-261.

[17] Lang, Harald, Thomas Neumann, Alfons Kemper, and Peter Boncz.
“Performance-optimal filtering: Bloom overtakes cuckoo at high
throughput.” Proceedings of the VLDB Endowment 12.5 (2019): 502-
515.

[18] Lu, Yi, and Prabhakar, Balaji and Bonomi, Flavio, Bloom filters: Design
innovations and novel applications, January 2005.

[19] “S/Gi Firewall for Service Providers” F5 Incorporated Blog (2020)
https://www.f5.com/services/resources/use-cases/s-gi-firewall-for-
service-providers

[20] “Technical Overview of OPNFV platform” OPNFV Project a Series
of LF Projects, LLC (2018) https://www.opnfv.org/software/technical-
overview

[21] F. Esposito and W. Cerroni. “Integrating Peer and Piece Selection in
Content Distribution Networks.” In: Proc. of IEEE Global Comm. Conf.
(GLOBECOM ’15), San Diego, CA, 6-10 Dec 2015.

[22] P. Biondi and the Scapy community, “Scapy: Packet crafting for Python2
and Python3” (2020) https://scapy.net/

[23] Bob Lantz, Brandon Heller, and Nick McKeown (2010) “A network in a
laptop: rapid prototyping for software-defined networks”, In Proceedings
of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks
(Hotnets-IX), Association for Computing Machinery, New York, NY,
USA, Article 19, 1–6.

[24] Kao, Ming-Yang, “Encyclopedia of Algorithm”s, pp 212–215, Germany,
Springer, 2008.

[25] Bhattacharya, Arindam, Srikanta Bedathur, and Amitabha Bagchi.
“Adaptive Learned Bloom Filters under Incremental Workloads.” In
Proc. of the 7th ACM IKDD CoDS and 25th COMAD. 2020.

[26] Mitzenmacher, Michael. “A model for learned bloom filters and opti-
mizing by sandwiching.” Advances in Neural Information Processing
Systems. 2018.

[27] Kraska, Tim, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis
Polyzotis. “The case for learned index structures.” Proc. of the 2018
International Conference on Management of Data. 2018.

[28] Ozisik, A. Pinar, Gavin Andresen, Brian N. Levine, Darren Tapp,
George Bissias, and Sunny Katkuri. “Graphene: efficient interactive
set reconciliation applied to blockchain propagation.” Proc. of ACM
SIGCOMM. 2019.

[29] Kalghoum, Anwar, Sonia Mettali Gammar, and Leila Azouz Saidane.
“Towards a novel forwarding strategy for named data networking
based on SDN and bloom filter.” 2017 IEEE/ACS 14th International
Conference on Computer Systems and Applications (AICCSA).

[30] Amadeo, Marica, Claudia Campolo, Antonella Molinaro, and Giuseppe
Ruggeri “Content-centric wireless networking: A survey.” Computer
Networks 72 (2014): 1-13.

[31] Zhao, Jinyuan, Zhigang Hu, Bing Xiong, and Keqin Li. “Accelerating
packet classification with counting bloom filters for virtual openflow
switching.” China Communications 15.10 (2018): 117-128.

[32] Berto, Filippo, Luca Calderoni, Mauro Conti, and Eleonora Losiouk.
“Spatial bloom filter in named data networking: a memory efficient
solution.” Proc. of the 35th Annual ACM Symposium on Applied
Computing. 2020.

83

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on January 02,2021 at 00:47:54 UTC from IEEE Xplore. Restrictions apply.

