2020 8th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud)

Elastic Function Chain Control for Edge Networks
under Reconfiguration Delay and QoS Requirements

Michele Berno*

Flavio Esposito’

Michele Rossi*

*Dept. of Information Engineering, University of Padova, Italy
tDept. of Computer Science, Saint Louis University, Saint Louis (MO), USA
email: michele.berno@dei.unipd.it, flavio.esposito @slu.edu, rossi@dei.unipd.it

Abstract—Network Function Virtualization (NFV) allows net-
work providers to reconfigure their edge processing infrastruc-
ture in an online fashion, to adapt it to the changing traffic
demands (intensity and type of computation requests). In this
work, we consider the Virtual Network Function Placement and
Chaining (VNFPC) problem, whose aim is to elastically deploy
services (i.e., chains of multiple Virtual Functions, VFs) through
three phases: function placement, assignment, and chaining. For
this problem, a predictive control framework is proposed to
solve these three phases jointly by horizontally scaling VF
instances, adapting their number to current and predicted
demands, while ensuring that flows’ Quality of Service (QoS)
requirements (latency) are met. Our technique accounts for the
delays and costs incurred in reconfiguration operations and uses
a Gaussian Mixture Model, trained with real traces collected by
base stations across the city of Milan (Italy), to estimate future
computing demands. The proposed predictive control method is
tested against a heuristic policy for several meaningful metrics,
achieving up to 99% less edge control overhead and allowing a
reduction of the blocking probability by 95% with respect to the
heuristic (for the same energy consumption).

I. INTRODUCTION

The emergence of network function virtualization (NFV)
and software-defined networking (SDN) enables providers to
deploy network services in the form of interconnected software
functions instantiated over commercial off-the-shelf servers.
These services can be deployed on computationally large
cloud environments and resource-limited edge devices. The
elastic allocation of computing resources makes it possible to
reduce capital and operational expenses, while meeting Quality
of Service (QoS) requirements. The set of services includes
network management (control plane) and user applications
(user/data plane), composed and chained together via Virtu-
alized Functions (VFs).

To deploy such services, providers need to interconnect
and place VF instances, solving the so-called Virtual Network
Function Placement and Chaining (VNFPC) problem. The goal
of this problem is to ensure that ordered flows of computing
tasks are assigned to a suitable (possibly optimal) processing
chain described through a Directed Acyclic Graph (DAG).

The VNFPC problem can be decomposed into three phases:
(i) function placement, (ii) assignment, and (iii) chaining.
With the placement phase, the system determines the number
of Virtual Function Instances (VFIs) that are necessary to meet

This work has been partially supported by NSF awards CNS-1647084,
CNS-1836906, CNS-1908574, by the Italian PRIN project no. 2017NSOFEY
and by MIUR (Italian Ministry of Education, University and Research)
through the initiative “Departments of Excellence” (Law 232/2016).

the current computation demand and where VFIs should be
placed. The assignment phase selects which placed VFI will be
in charge of which flow (note that VF instances can be shared
by flows). Lastly, VFIs are chained: this process consists of
creating paths that interconnect the VFs that were placed and
assigned in the previous phases while guaranteeing that QoS
requirements are met (in this work, that the end-to-end latency
experienced by the flows does not exceed the flow-specific
deadlines). Efficient VF instance placement and processing
chain assignment are key to ensure that resource allocation is
carefully orchestrated, preventing over- or under-provisioning
of resources.
Our contribution. Our current focus is to control the edge
part of the network infrastructure, providing means for the
online assignment, placement, and chaining of VFs under
QoS constraints and in the presence of resource-constrained
devices. A distinctive trait of our work is that our algorithm
has predictive capabilities, i.e., future computing requests are
forecast and used to solve the VNFPC at runtime, while
meeting delay constraints. Also, existing works on this subject
usually ignore delays, i.e., virtual machines (VM) startup time,
and costs, i.e., the energy consumption of reconfiguration
operations. For example, starting up a VM can require up to
2 minutes [1]. The main contributions of the present paper
are: i) we expand the VNFPC problem to dynamic settings
(multi-period allocation), accounting for reconfiguration costs
and delays, with the objective of finding the right adapta-
tion/reconfiguration trade-off; ii) we train Gaussian Mixture
Models (GMM) to predict real-world flow intensities; iii) we
propose a novel Model Predictive Control (MPC) approach to
solve the multi-period VNFPC problem, tackling all the three
phases jointly, in an online fashion and exploiting GMM-based
demand forecasts; iv) we devise a tunable heuristic approach
with low complexity, which does not exploit demand forecasts
and solves the placement phase separately from the other two;
v) we evaluate the performance of iii) and iv) on base station
activity traces extracted from a publicly available dataset.
We remark that the heuristic control policy solves the
assignment and chaining phases optimally for the given avail-
able (deployed) virtual resources, but the placement phase is
solved independently from the other two and without using
information about future demands. Such policy is designed
to quantify the benefits of joint allocation and prediction
of computing demand. Our results reveal that the proposed
predictive approach can achieve up to 99% less edge control
overhead and allows reducing the blocking probability by up
to 95% with respect to the heuristic policy, while maintaining

978-1-7281-1035-6/20/$31.00 ©2020 IEEE
DOI 10.1109/MobileCloud48802.2020.00018

* @co[r%EEuter
psoaety

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on January 02,2021 at 00:50:39 UTC from IEEE Xplore. Restrictions apply.

the energy consumption of the edge network at a similar level.

The paper is organized as follows. In Section II, we summa-
rize the related work. Our system is described in Section III,
in Section IV we formulate our proposed solution strategies,
and in Section V we show some selected numerical results.
Future research avenues are discussed in Section VI.

II. RELATED WORK

The VNFPC problem bears some similarities with the
Virtual Network Embedding (VNE) problem, which investi-
gates how to deploy virtual network requests atop a physi-
cal substrate [2]-[4]. Usually, VNFPC problems consider a
two-level mapping of resources, namely, mapping process-
ing chain requests (flows) onto VF instances, that are in
turn mapped onto a physical network, while VNE assumes
one-level resource mapping, i.e., virtual network requests on
a physical network [2], [5]. The authors of [6] formulate
the problem of VNF placement (without chaining nor QoS
requirements) considering a two-level resource mapping as
a generalization of Facility Location and Generalized As-
signment Problems (FLP and GAP). The authors of [5], [7]
investigate how to ensure that resources are correctly allocated
and orchestrated, preventing their over- or under-provisioning
and keeping end-to-end delays comparable to those observed
in traditional middlebox-based networks. In [8], hybrid net-
works also containing physical hardware (middleboxes) are
considered. In [7], a proof of the NP-hardness of the VNFPC
problem is given. The authors of [9] solve the VNFPC
problem with one-level resource mapping for distributed cloud
networks, formulating it as a novel multi-commodity-chain
(MCC) queuing system. The authors of [10] also consider the
delay and cost associated with reconfiguration operations.

To best utilize resources, NFV providers need to dynami-
cally scale the VNF deployments and reroute traffic demands
for their customers. There are several techniques to implement
resource elasticity (for example, see [11] and [12]). The two
most prominent mechanisms to achieve it are: i) horizontal
scaling of VFIs and ii) vertical scaling. The first consists in
the creation/removal (scale-out/in) of multiple virtual function
instance replicas, while the latter scales up or down (increasing
or reducing) the amount of computing resources that are
allocated to a particular VFI based on varying demands.

While most existing works are reactive, the authors of [13]
seek a proactive approach to provision new instances for
overloaded VFIs ahead of time-based on the estimated flows
intensity. [14] optimizes the amount of computation resources
that are purchased across different timescales from the public
cloud. [15] introduces an energy-aware consolidation strategy
based on predictive control for cloud infrastructures.

III. SYSTEM MODEL
A. Network Infrastructure (Substrate)

The underlying physical infrastructure is described by
the attibuted and directed graph G = (N, &, AN, A?),
where the set N collects physical network nodes, while
the set £ contains the existing (directed) physical links
connecting them. The sets AY = {AY = (T;,V;), i € N'}

70

TABLE I: List of symbols used in the paper

Name Definition
G Network infrastructure (directed) graph
N, AN Physical nodes and their attributes
£, AF Physical links and their attributes
Ti . Vi Node type and max. parallel VFI
bij, dij Bandwidth and delay of phy. link (¢, j) € €
k, Ak Time slot index and duration
M, S Sets of Virtual Functions and Processing chains
q = (aq,sq,7q) PC of type sq originated in aq € N'® (flow 74)
Ok Processing chain requests generated at time k
GPe(sq) DAG associated with PC g = (aq, 3¢, 7q)
/\/S’ZC, E;ZC Stages and virtual paths of PC ¢
x;”l(k) (0/1) PCq’s I-th stage assigned to ES i
s (k) (0/1) virtual path (u,v) € £7° to link (i,5) € £
Yi,m (k) (Integer) Type m VFI being deployed on i € N¢
Fi,m (k) (Integer) Type m VFI being removed from i € N'¢
Dy Tolerated E2E-latency for a type-s (€ S) PC

and A" = {Af; = (bij, dij), (4,j) € E} contain nodes’
and links’ attributes, respectively. Node type attributes
T; € {access, router, edge, cloud, sink} induce a partition
over set NV, i.e., N2 U NT U N® U NC. Every access node
is connected to a sink node collecting rejected processing
requests through a 0-latency uncapacitated link. The sink
is an artificial node that is added to the model to track
computation requests that are to be rejected due to the lack
of resources. V; defines the maximum number of parallel
Virtual Function Instances (VFIs) supported by node i € N
(e.g. number of CPU cores). Note that, for router nodes it
holds V; = 0, while for cloud and sink nodes we assume
Vi = o0, i.e., they always have enough available resources for
the assigned processing chains. Lastly, link attributes b;; and
d;; respectively define capacity and delay of link (4, j) € €.

B. Virtual Function Instances and Processing Chains

Computational resources distributed over the network (at the
edge and cloud) can be used to execute computing tasks. A
Directed Acyclic Graph (DAG) is used to describe the set of
ordered Virtualized Functions (VFs) that need to be applied to
an offloaded task requesting a given service. We refer to flows
of tasks requesting specific services as Processing Chains
(PC). As shown in Fig. 1, we assume a two-level mapping
between processing chain requests (i.e., demands) and physical
resources: i) Virtual Function Instances (VFIs) are dynam-
ically deployed on physical nodes and ii) Processing chain
requests are dynamically assigned to active VFIs and links
(i.e., routing-awareness). Our main focus is on controlling the
edge infrastructure. Thus, we assume that the cloud has always
enough VFIs to support the incoming load. As anticipated, for
computing-enabled edge nodes i € N, V; upper bounds the
number of supported parallel VFIs. Usually, such V; is small
for edge networks, and this renders an optimal orchestration
of VFs and their chaining especially important. The system
evolves at discrete increments k£ = 0,1, ... of length Ak.

Virtual functions (VF): VFs can offer type m
processing, where m € M (finite). The set
AT = {47 = (RYE, 1), m € M} specifies VF attributes.

RY! is the processing capacity of a single instance of m-type

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on January 02,2021 at 00:50:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Edge physical infrastructure and virtual abstraction layers.
Processing stages of a PC are associated with available resources at the
underlying physical infrastructure. Edge server 1 and 2 need to have the
requested virtual function instances deployed on them to support the PC
request. Also, VFIs need to have sufficient computational resources available.

VF, measured in number of tasks (or Mb) per time slot.
Instead, T,an indicates the average execution time of tasks
requiring a type-m processing at node %.

Processing chains (PC): a processing chain demand
g = (aq, Sq,74) is a flow of tasks with an intensity of r, tasks
per time slot, requesting a given processing service s, € S
and injected by access node a, € N The set S collects
the processing services available (assumed to be finite). We
denote the PC requests present in the system during time step
k by the set Q. A service type s is characterized by its
processing graph (DAG) G*(s) = (NFe,EF¢) that specifies
i) the Ly > 1 processing stages composing the associated
service s (I € NFe), ii) all the directed virtual paths connecting
these stages, contained in (u,v) € £F°. Each processing stage
1 € NP indicates the type of processing (VF) required among
the existing ones (M). Moreover, each service imposes a
strict deadline of D, [millisecond] on the maximum tolerated
latency that a packet requesting service s can experience, from
the access node to the last stage in I € NFe. In this work,
we focus on linear sequences (chains) of processing stages,
leaving more complex graphs as a future work. PC requests
have to be placed during the time slot of their arrival, i.e., they
cannot be backlogged. Therefore, in the case of insufficient
resources they are rejected.

C. Decision Variables (Controls)

Managing VFIs requires time, and the limited computing
capabilities of edge devices require to wisely decide when,
where, and which type of VF to deploy, remove, or keep active.
Moreover, the resource scheduler must consider the latency
introduced by the deployment of a new VFI in task assignment
and scaling operations, towards supporting time-sensitive ap-
plications. Hence, at each time slot kK = 0,1,..., the VNFPC
problem involves the following interconnected phases:

i) VFI scaling agent: adapts the number of deployed VFI
instances within the edge to demand fluctuations (both across
access nodes and time slots). Variables y; , (k) and g; », (k),
both in {0,1,...,V;}, respectively represent the number of
VF instances of type m to be deployed on and removed from
node 7. Note that the deployment or removal of any VFI at
time k& will be into effect at time k£ + 1, i.e., a one-slot lag.

ii) PC scheduler: assigns PCs’ stages (NF°) to al-
ready deployed VFIs. The binary variables x?’l e {0,1},

71

le{l,....L;}, ¢ € Qk, i € N, indicate whether stage [
of PC ¢ is assigned to node 1.

iii) Chaining agent: has to build a suitable path connecting
access nodes with the ordered sequence of physical nodes
assigned to each stage of the considered PCs. The chaining
decision z/, assigns physical link (i,5) € £ to the virtual

17,Uuv

path (u,v) € £7 (of the DAG G"*(sq)), for every PC g € Q.

D. Processing Chain Generation Process

The generation process of processing chain requests of type
s € S is dynamic in time and could also vary across access
nodes. These exogenous processes are described through two
independent components, namely,

i) arrival process 0, (k), & = 0,1,... defines the time
slots in which a processing chain request of type s is gen-
erated by access node a € N Therefore, d, (k) 1
indicates that a processing chain request has arrived at the
system through access node a in time slot k. In this work,
to characterize the (time-correlated) arrival process we use
Markov Chains (MCs). By tuning MC transition probabilities
it is possible to obtain different generation behaviors. For
example, a two state MC (zero/one arrivals) with transition
probabilities po1, poo, P11, and p1g exhibits an average arrival
rate per time slot of A = pg1/(po1 +Pp10), and an average burst
length of b = 1/p1o (subsequent slots where arrivals occur).

ii) Flow intensity r, (k) specifies the flow intensity (comp.
tasks per time slot) for each type-s service and access node
a €N (ry = Ta,,s,(K)). We use real base station activity
traces (SMS, call, and Internet traffic) to model flow intensity
processes (varying across access nodes and over time). In
this way, we assume that processing chain flow intensity is
proportional to the traffic experienced by an access node (base
station). More details about this are given in Section V-A.

E. Exogenous Process Forecast

To exploit correlated patterns in the exogenous processes,
we use predictors for components i) and ii) of Section III-D.
i) Arrival process predictor knows the statistical model
governing PC arrival times for each access node a € Na
and PC type s € S. PC arrival time predictions 9, s(p)
for the future time slots p = k4 1,...,k + Wy, — 1 are
obtained unrolling the corresponding Markov Chain over these
time slots, starting from the current state d, s(k). Wpn is the
considered prediction horizon (see Section IV-D for details).
In the following, we refer to this predictor with the letter C.
ii) Flow intensity predictor is here implemented us-
ing Gaussian Mixture Models (GMMs), which are trained
to predict flow intensities 7, .(p) for future time slots
p=k+1,...,k+ Wy, — 1. After being trained in a super-
vised manner, GMMs take as input the sequence of past
flow intensity measurements 7, s(k — Wip),...,rq,s(k) of
length Wy, (lookback window). We train GMMs to predict
one-step-ahead, and then we use them recursively to obtain
multiple steps ahead predictions. See, e.g., [16] for more
details on how to train and use GMMs in the context of
time-series forecast. We refer to this predictor as GMM.
Beside predictors i) and ii), we can a use genie predictor,
which knows the whole sequence of future arrivals and flow

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on January 02,2021 at 00:50:39 UTC from IEEE Xplore. Restrictions apply.

Exogenous process forecasting

Load Intensity Load Intensity

i — [GMM | —» i\
Arrivals k

TN

Fig. 2: Exogenous process forecasting. Arrival times and flow intensity
forecasts are used by the MPC-based optimizer.

intensities, for all time slots k. We refer to the genie predictor
with the letter GG. Therefore, we can consider the follow-
ing combination of the just described predictors GG, CG,
GGMM, and CGMM. Our goal is to show that even using
estimates about future PC arrivals can substantially improve
the performance of VFI instantiation, chaining and scheduling,
leading to an effective edge infrastructure control.

IV. PROBLEM FORMULATION

Next, we formulate the edge control problem via Integer
Linear Programming (ILP). First, we define the open-loop
control problem for our system over a finite time horizon of T’
slots. Then, we close the control loop using a Model Predictive
Control approach (receding horizon). We start by defining the
edge server state.

Edge Server State: the state of an edge server i € N° is
described by the number of VF instances of type m,

Sism(k+ 1) = 8;m (k) + yim (k) — Gim(k), Ym € M. (1)

State equation (1) is used to track the state evolution from
the current time slot k to a future time slot k + p, with

pe{l,..., T —1}. Using (1), the evolution from slot k to
slot k£ + p is described as
k+p—1
sim(k +p) = sim(k) + Z (Yi,m(G) = Jim(3)) - ()
j=k

A. System Constraints

Here, we specify the system constraints over the time
horizon, ie., k=0,1,..., 7T — 1.
VFI placement: constraint sets (3) bounds the number of VFIs
that can be deployed on a given edge node i € N¢, i.e., they
can never be negative or exceed V;.

3 simlk) <V i€ N me M,
meM

0<sim(k) <V,ieN ,meM, 3)

where state variable s; ,,, (k) is expressed according to (2).
Processing chain assignment: to ease the notation, we define
the map t(sq,1) : S x {1,..., L, } — M, mapping stages
I €1,...,Ls, of processing chain ¢ onto the corresponding
virtual function m € M. The following constraints (4) ensures
that the total number of flows requiring type-m processing
that are assigned to node ¢ do not exceed the amount of VF
processing capabilities of type-m at this node (number of tasks
per time slot), i.e.,

>

q€Qy,
lE./VSIzC: t(sq,l)=m

rqe?t < R¥Es; o (k),)

for i € N¢, m € M. The set of constraint (5) avoids partial
assignment of processing chain stages to the sink node,

al _ o ql+l I=1,...,L,, — 1 5)

Lgink — Lsink
VFIs chaining: set (6) ensures that demands of any virtual
link (u,v) € £ assigned to physical link (4, j) € € never
exceed its capacity,

2. > v

qEQk (u,v)egic

zj,uv > bij: (Z,]) cé. 6)

Flow conservation constraints (7) ensure that packets are
correctly routed between the assigned VF instances, without
exceeding the link capacities. Indicating with v; = (1,1 + 1)
the virtual link connecting stages [and [+ 1 of PC ¢, we have

§ : § : — il q,l+1
zy vy sz v T, — & ’ (7)

JEN JEN

where ¢ € Qi,i € N, I =1,... Ly, — 1. Along with (7), we
define flow conservation constraints for the first virtual link
Va, = (aq, 1) connecting the generating access node a, € N*
to the node hosting the first processing stage for PC g,

Z xgj.,vaq - Z $?i,vaq = X(L aq)) (®)

JEN JEN
where x(x,y) returns the value 1 if z =y, and 0 otherwise.

Load conservation: constraints (9) ensure that any PC stage
is assigned either to an edge, the cloud or the sink node,

d all=1,VYg€ Q, k=0,1,....T—1.)
ieN
Quality of Service guarantees: moreover, we enforce
end-to-end latency constraints to provide some guarantees
on the latency experienced by the tasks flowing through
processing chain g € Q.

Z Z z]uvd1J+Z Z T(I[V)E(s l)<D
(i,9)€€ (u, 71)65};‘: ZENZGN};C

(10)
Constraints (10) accumulate all the latency contributions along
the selected path for PC ¢ from its access node a € N
to its last processing stage, due to both transmissions and
processing. With 7. f(s(b we indicate the execution time
required by stage [of PC ¢ assigned to node ¢ that requires a
type-m virtual function, with m = t(sg, 1).
Integer variables: contraints (11) force decision variables to
be integer,

yi,’m(k)v gi,m(k) V} -CL P
Note that (11) makes the problem hard to solve.

€{0,1,.. e {0,1}. (11)

z] uv

B. Objective Functions

To optimize system operations, we need to properly define
all the operating costs. We collect the decision variables in z =
(z,y), where and y collect PC assignment and chaining,
and edge control decision variables, respectively. The overall
costs for time slot kK =0,1,...,7T —1is

J(k) = J7(k) + J0l k), (12)

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on January 02,2021 at 00:50:39 UTC from IEEE Xplore. Restrictions apply.

where J7e(k) = JP°(k) + J™(k) accounts for PC
related costs (processing and transmission), while
Jeontrol(ky — jidle(g) 4+ Jd(k) + J"(k) encodes the costs
due to the management of the edge infrastructure (i.e.,
deployment, removal and idling of VF instances).

Edge control cost: collects the costs associated with the edge
infrastructure management operations

JCtrl(k) = E (;jirf *Sim + 5225 *Yim + f,l;[?lzv) gi,m) (k)
ieN®,
meM

13)
The idling cost Ji4!¢(k) of VF instances is due to the reser-
vation of resources on edge nodes to keep the considered VF
active, i.e., the cost incurred in leasing memory space on edge
devices. The VFI deployment and the VFI removal costs for
time slot k& are J4(k) and J*(k), respectively.
Processing chain execution and transmission costs: the
processing cost incurred in the processing stages and in the
transmission of the flow of PC ¢ € Oy,

JPC(k): Z Z

q€Qk ZENSZ“

proc
i,t(sq,l)

) x
l’:] + Z gzt] : x?j,uv
(u,v)égs}::z‘i
(14)
Note that, the assignment of a stage to the sink node is highly

penalized (£59°, > 1) to discourage PCs rejection.

C. Finite Horizon Open-loop Control Problem

Next, we formulate the open-loop problem to be solved over
a finite horizon of 7' time slots. Its solution returns control
actions (edge VFI deployment/removal operations), processing
chain assignments and chaining decisions.

T-1
minimize > J(k)
k=0

subject to: (3)—(11).

(15)

D. Predictive Control of Edge Computing Resources

To close the control loop, we use Model Predictive Control.
According to this technique, we need i) to solve the open-loop
problem with a prediction horizon Wy, < T for each time
step k=0, ...,T7 —1. Usually, a Wy, < T is selected. Note
that, PC arrival process for time slots k+1,...,k+ Wy, —1
is unknown, and therefore it needs to be estimated (see
Section III-E). ii) Apply the computed control and assign-
ment actions just for the current time slot k. iii) Move to
the next time slot k + 1, and iterate these three steps for
k=0,1,..., T — 1.

E. Heuristic Control of Edge Computing Resources

In what follows, we propose a heuristic edge control policy
(HEU (é¢n, €ny, Navg)) that separates the VF instance place-
ment phase from the assignment and chaining phases. The
VFIs placement (first phase) is carried out as follows.

Phase 1: to decide whether to scale out/in type m virtual
function instances or not, we propose the following algorithm.

> i

Fig. 3: Heuristic control. Where to place a new instance (double square) is
decided based on i) type-m function generation frequencies fa ;,m for access
nodes (triangles) a;, j = 1,2, and ii) distance between the selected edge node
and the access nodes. When access nodes have similar generation frequencies
fal,m =~ fas,m select server e1 (left), while in the case fay,m > fa;,m
the server to be picked is e2 (right).

>

el €2

Step 1: compute the blocking rate for the type-m virtual
function. For this, a sliding window of the past 7,y time slots
is used (7.vg = 1 indicates that the instantaneous blocking rate
is considered at each slot k).

Step 2: the blocking rate for every type-m VF, computed
in Step 1, is compared against a blocking rate threshold ey,
to decide whether to deploy a new m-type VFI, remove an
existing one, or do nothing. Note that, a hysteresis ey, on the
deployment/un-deployment cycle can be used.

Step 3: lastly, we need to compute where to deploy the
new VFI, or which one of the already existing VFIs has to be

“ removed by solving the scale-out PP and the scale-in Pi®

73

problems, respectively,

PP ign = argmin Y (fam(k) - dist(ia))
aeN

P) il = argmax gv:a(fa,m(k) - dist(i,a)),
a

(16)

where f, (k) represents the average generation frequency
of type-m processing stages at access node a € N, while
dist(i,) is the distance between node i and j of graph G
(on the shortest path). In Fig. 3, we show an example of
how the generation frequency of access nodes f, (k) can
affect deployment decisions. The two sets N°" and N/S®
collect those edge nodes that are respectively suitable for the
deployment or removal of a type-m virtual function instance.
Phase 2: the heuristic assigns PC requests and chains VF
instances jointly, by solving problem (15) without the edge
control variables y; ,, (k) and g; m, (k). Consequently, it heuris-
tically optimizes the VFIs placement without considering the
reconfiguration costs, and then optimally assigns processing
chain requests to the available resources. In the predictive
control case, instead, the placement, assignment, and chaining
phases are solved jointly.

V. NUMERICAL RESULTS
A. Flow Intensity Dataset

We use the Open Big Data Challenge dataset collected by
Telecom Italia from November 2013 to January 2014 [17]. It
features mobile user activities (SMS, calls, and Internet use)
over the city of Milan measured through Call Detail Records
(CDRs), which are used for billing purposes and network man-
agement. This Dataset contains: i) spatial aggregation, activity
measurements are provided for each square of a 100x 100 grid,
ii) temporal aggregation, activity measurements are obtained
by temporally aggregating CDRs in time slots of 10 minutes.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on January 02,2021 at 00:50:39 UTC from IEEE Xplore. Restrictions apply.

22 : |—Original signal
s |—Predicted signal

SMS activity per time slot
SMS activity per time slot

10

-4 1-step ahead
+-2-step ahead

Complementary CDF

- Vg

. . 0 .
12:00 00:00 12:00 00:00 12:00

hours (sampled every 10 minutes)

0
00:00 00:00

(a) Original and low-pass filtered signals

hours (sampled every 10 minutes)

(b) Real and predicted signals (one-step ahead)

0.15 0.2 0.25 0.3
|Prediction residuals|

(c) CCDF of residuals (multistep ahead)

00:00 12:00 00:00 0 005 0.1

Fig. 4: Dataset and forecasts: in (a), the original and filtered signals are showed for two subsequent days. In (), an examples of real and predicted signals
(1-step ahead GMM) are presented. In (c), the complementary CDF of prediction residuals for 1,2,3,5,7 and 10 time steps ahead are shown.

-+ | Cloud

Fig. 5: Test network example: the substrate is composed of edge nodes
(squares), access nodes generating traffic (triangles), and switch nodes for-
warding traffic (circles). PCs can be offloaded to the cloud (double square),
that is connected with the edge through a link with higher latency than the
others (dotted arrows). Every access node is connected to the sink node
through an artificial O-latency link (dashed arrows).

We normalize traces to express the percentage of VF instances
usage per time slot.

Original traces have been low-pass filtered (second-order
Butterworth filter with a normalized cut-off frequency of 0.8),
and then mapped onto a supervised learning problem, where
inputs are sequences of W), = 24 consecutive past measure-
ments 74 s(k — Wiy +1),...,74,5(k), and the target variable
is rq,s(k+ 1),k =0,1,..., (one-step-ahead prediction). As
anticipated in Section III-E, we use GMMs to predict flow
intensity processes 7, s(k), although the approach is general
and other forecasting techniques may be used. In Fig. 4b, a
qualitative evaluation of the GMM prediction accuracy over
a time span of two days is shown. Recalling that we are
interested in multistep-ahead forecasting, i.e., measurement
k+1,..., k4+Wpn, we use one-step ahead GMMs recursively to
obtain the desired number of future forecast values. Although
this approach accumulates error as the number of steps ahead
increases, it allows us to train a single GMM model per access
node and processing chain type. Fig. 4c quantifies how much
the prediction performance degrades as the number of predic-
tion steps ahead increases. The metric shown is the Comple-
mentary Cumulative Distribution Function (Complementary-
CDF) of the prediction residuals |rq s(k) — 74, 5(k)|, where
variables 7, ;(k) represent the predictions at time k.

B. Definition of Performance Metrics

To assess the performance of the two approaches, i.e.,
MPC-based and heuristic, in sections IV-E and IV-D, respec-
tively, we consider the following metrics.

i) The PC requests blocking rate Py, expressed as the
average rate of processing chain requests that the system is

not able to satisfy (i.e., that are assigned to the sink node):

1 -1 $?~’l
Pas T ¥ ¥

k=0 g€Qx lEN P Sa

a7

where x",’.lnk = 1 indicates an assignment of the [-th stage

of PC ¢ to the sink node. Similarly, we can compute edge
and cloud processing rates for PC stages Pyr and Py,
respectively.

ii) The overhead cost C. counts the average number of
control actions across the edge infrastructure (VF instances
deployments and removals) per time slot

Cov= 2 55 S WenlF) + o ().

k=0 ieNe meM

(18)

iii) The last metric quantifies the so called wasted energy
cost F,,. Let us define the cumulative amount of idling
VFI resources of type m for time slot & on edge node i as

; 1
u;drls(k) = R;I,fmslym(k) - quQk Zle/\[ﬁczt(sml):m qu‘g >

and the cumulative amount of Mb transmitted
over the link (i,j) € & during time step k as
Uz((k) — quQk Z(u,v)e&'f;c rqng,uv Then, the wasted

energy cost is defined as Fy, = Eipip + aFrx, where Eip g
represents the cost of idling VFI resources per time slot, Frx
is the transmission cost, and « is a weighting factor that is
used to prioritize one cost over the other.

T—-1
IV Y Y it

EIDLE
k=0 ieN®¢ meM
1 T—1
Enx = 7 > eruis(k). (19)
k=0 (i,j)€€&

C. Network Scenario

The test network has |[N¢| = 8 edge computing-enabled
devices, [N = 4 access nodes (injecting traffic), |N7| = 4
network switches, |A¢| = 1 cloud premises, and an artificial
sink node, see Fig. 5. Node positions within the grid are
randomly assigned for each generated network. A single link
connects the edge region (grid) to the cloud, and every access
node is connected to the artificial sink (to reject processing
chains that cannot be executed due to insufficient resources).
Since the edge is composed of resource-limited devices

74

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on January 02,2021 at 00:50:39 UTC from IEEE Xplore. Restrictions apply.

035 04

-A \=0.2, MPC-GG
-@ A=0.2, MPC-GGMM
-9 A=0.2, MPC-CG
-8 A=0.2, MPC-CGMM
_I"F A=0.2, HEU(0.05,0.5)
V|4 A=0.9, MPC-GG
-©-1=0.9, MPC-GGMM
-9-1=0.9, MPC-CG
-8 1=0.9, MPC-CGMM

PC Blocking rate Py, [%)

10 ¢ =0.9, HEU(0.05.,0.5) 7
‘ ‘ v,
8 8.2 8.4 8.6 8.8 9
Wasted energy Ey [J/time slot]
(a) Prediction methods
3 002 ‘ ‘ 153
5 A :
& #..4;)....,;...,v...4@.4@..@..4.‘....3‘ 2
20.015} / £
’g 0.01r "é
£ 105
it | ; =
ig 0.005 ﬁ B)1=0.9-MPC2-GG £
3 5 A\=0.9-MPC2-CGMM S
© & -4 A=0.9-HEU(0.05, 0. 5) 8
&) e B e X o
& o kF 0 Z
s 20 40 60 80 100 120 140 =

Tolerated latency [milliseconds]

(c) Control overhead (scales are different)

10°% , ,

-A2=0.9, HEU(0.05,0,1)
-@ A=0.9, HEU(0.1,0,1)
-9~ A=0.9, HEU(0.2,0,1)
-A-)\=0.9, HEU(0.05,0,5)
-6-1=0.9, HEU(0.1,0,5)
49-1=0.9, HEU(0.2,0.5)

PC Blocking rate Py [%)]

8.5 9

11

10.5
Wasted energy Ey [J/time slot]

9.5 10

(b) Different heuristic configurations

S

O G G G S S &

n

A)\ =0.9-HEU(0.05, 0.5)
-©-\ =0.9-HEU(0.2, 0,5)
-A)\ =0.9-HEU(0.05, 0,1)
-@ A =0.9-HEU(0.2, 0,1)

o
n

Control overhead C, [actions per slot]

b
140

d
20

60 80 100 120

Tolerated latency [milliseconds]

40

(d) Control overhead of heuristic configurations

Fig. 6: Control overhead and PC blocking rate: in (a) MPC performance (W = 2) is shown for increasingly relaxed latency requirements (from unfeasible
requirements (top-left corner) to cloud-feasible req.), for a low congested scenario A = 0.2 (dotted curve), and a highly congested one A = 0.9 (solid
curve). Moreover, the performance obtained with the heuristic approach HEU(0.05, 0, 5) is reported. In (b), heuristic performance for different parameters
configuration are outlined. In (c), the control overhead required by the MPC-based and the heuristic approaches are compared (note that axes have different
scales). In (d) the control overhead curves produced by different configurations of the heuristic method are compared.

(Vi = 1 parallel VFIs), the controller has to route multistage
services through it, according to both the transmitting and
computing resources that are available, while ensuring that
QoS requirements are met. We consider processing chains
requests of type s € S, |S| = 1, composed of two stages. Each
stage can request one of the two virtual functions available
in M (J]M]| = 2). Edge link latencies are drawn uniformly
at random within the range [2,10] milliseconds, while the
link connecting the edge to the cloud has an average latency
of 100 milliseconds. Edge processing costs &7,°°, i € N°
are assumed to be 0, i.e., the operator does not consider
processing cost when exploiting deployed virtual functions at
the edge (the provider already pays to keep VFI active and
to deploy them). The cloud processing cost has been fixed
to &0¢ = 1,4 € N°. Idling, deployment, and removal costs
of VFI have been set to 1 (&idle = ¢f = ¢ = 1). We
tested two processing chain arrival rates (of the Markov Chain)
Aqe = 0.2 (low demand) and A\, = 0.9 (congested), and we
assume that all access nodes have the same arrival rate. Recall
that A\, represents the average number of arrivals per time slot
associated with the Markov Chain describing the PC arrival
process for an access node a (see Section III-D). Instead, flow
intensity traces differ from access node to access node, i.e.,
we select different dataset radio cells. The task processing
time 7%, is set to 10 milliseconds for all virtual functions
m € M, and VF instances capacity is normalized to RZme =1
For each generated network, we simulate T' 720 time
steps (5 days considering a 10-minute sampling interval,

75

TABLE II: Selected simulation parameters

Name Value Unit (for time slot Ak)
g;)dgs, gfjep, emy 1 J per {actv|dep|rmv} VF instance
roc .
gﬁm 0(1) J per unit of proc. res. at Edge (Cloud)
&x 1 J per unit of tx resource
ie., Ak = 10 minutes) and we average the metrics over

12 randomly generated networks. The remaining simulation
parameters are summarized in Table II.

D. Numerical Results

Next, we present three performance assessments: /) PC
blocking rate Py, vs. wasted energy cost F,,, 2) control
overhead Cyy vs. QoS requirements, and 3) PC blocking rate
Pp vs. QoS requirements. For all the curves, the prediction
horizon of the MPC-based approach is set to W, = 2 slots.
Case 1: we investigate how the optimal (ILP) and heuristic
allocation methods behave when using different configurations
on the (Psr, Ey)-plane, see Figs. 6a and 6b. These curves
have been obtained by simulating the system for increasing
values of the tolerated latency (most latency-sensitive require-
ments lie in the top-left corner). In Fig. 6a, we address how
the 4 different prediction methods described in Section III-E
affect the performance of the MPC-based algorithm, for low
and high arrival rates A, = 0.2 and)\, = 0.9, respectively.
As expected, the predictive approach always overcomes the
heuristic one. MPC using non-ideal predictors for both arrival
instants 0, +(k) and flow intensity 7, s(k), termed CGMM,

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on January 02,2021 at 00:50:39 UTC from IEEE Xplore. Restrictions apply.

exhibits oscillations in the blocking rate. A predictive control
policy, exploiting information about future demands, can re-
duce the blocking rate of PC requests by 95% with respect to
the heuristic policy while maintaining the wasted energy at a
similar level. In Fig. 6b, instead, we compare the performance
of heuristic method HEU (€, €pny, avg) With several combi-
nations of its parameters €, €ny, and 7,,,. We note that an
average window (on the blocking rate) 7.,; = 1 performs
worse than 7,,, = 5. For example, the heuristic policy
HEU(0.05,0,5) achieves a blocking rate of 0.1 wasting 9%
and 16% less energy than HEU(0.05, 0, 1) and HEU(0.2, 0, 5),
respectively. This result means that smoothing high-frequency
oscillations on the blocking probability signal (through a larger
Navg) helps the heuristic approach reduce its wasted energy
and that the blocking probability threshold e}, highly affects
heuristic policy performance. Note that smaller values of the
threshold €}, lead to a reduction of the PC blocking rate Pp.
Case 2: in Figs. 6c and 6d we assess the control overhead
induced on the edge infrastructure while varying the tolerated
latency of the processing chain requests from 20 to 140 mil-
liseconds (there is at least an average delay of 100 milliseconds
to reach the cloud). In Fig. 6c, the control overhead Coy
required by the MPC-based and the heuristic approaches are
compared. Note that the scale of the two axes is different,
and the MPC-based method induces a much lower control
overhead. At a tolerated latency of 30 and 70 milliseconds,
the predictive approach respectively leads to 87% and 99%
less control overhead than the heuristic one, HUE(0.05, 0, 5).
In Fig. 6d, multiple Co, curves obtained using different
configurations of the proposed heuristic are compared. We
observe that an average window 7),,; = 5 induces a smaller
overhead (up to 31%) than 7,,, = 1. This fact is due to the
higher frequency oscillations in the blocking rate signal used
to decide when reconfiguring the VFIs deployed on the edge
infrastructure, which are compensated for by a larger window.
Case 3: lastly, we report the processing chain blocking rates
Py as the tolerated latency by PC’s tasks increases. In Fig. 7,
MPC-based curves with a prediction horizon W, = 2 and
prediction methods GG (Genie predictors for both arrival and
flow intensities) and CG (MC unrolling arrivals and Genie
flow intensity predictors) are shown. These are the best and the
worst performing MPC-based schemes. Moreover, we display
Py curves for some selected heuristic configurations. The
MPC-based approach can better control the edge infrastructure
allowing the reduction of the PC blocking rate (by 93% at
a tolerated latency of 50 milliseconds) while wasting fewer
processing and transmission resources.

VI. CONCLUSIONS

The predictive control approach for virtual function place-
ment, assignment and chaining that has been presented and
evaluated in this paper confirms the effectiveness of exploiting
prediction of exogenous processes (computing demand) into
the allocation of edge computing resources in edge networks.
Despite the excellent performance, one limitation of such an
approach is its complexity (ILP problem). To effectively scale
up this allocation technique, work still has to be performed on
suitable relaxations to efficiently tackle the ILP formulation,

I ‘ ‘ ‘ ‘ ‘
— & \=0.2-MPC2-GG
X - \=0.2-MPC2-CG
=08 -A A=0.2-HEU(0.05, 0,5)| |
,f -3 A=0.2-HEU(0.1, 0, 5)
-9 A=0.2-HEU(0.2, 0, 5)
% 0.6 % \=0.2-HEU(0.1, 0, 1) J
s
Ex
-2 04 |
|9}
<
Q0
© 0.2 i
&

40 120

60 80 100
Tolerated latency [milliseconds]

140

Fig. 7: Results case 3: PC blocking rates are evaluated for increasing values
of the tolerated latency and for different heuristic configurations.

while retaining the advantages of the optimal solver.

REFERENCES

[11 K. Razavi, L. M. Razorea, and T. Kielmann, “Reducing VM Startup
Time and Storage Costs by VM Image Content Consolidation,” in Euro-
Par 2013: Parallel Processing Workshops, Berlin, Heidelberg, 2014.

F. Esposito, D. Di Paola, and I. Matta, “On Distributed Virtual Network
Embedding With Guarantees,” IEEE/ACM Transactions on Networking,
vol. 24, no. 1, 2016.

Y. Zhu and M. Ammar, “Algorithms for Assigning Substrate Net-
work Resources to Virtual Network Components,” in IEEE INFOCOM,
Barcelona, Spain, 2006.

M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking Virtual Network
Embedding: Substrate Support for Path Splitting and Migration,” SIG-
COMM Comput. Commun. Rev., vol. 38, no. 2, 2008.

M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gas-
pary, “Piecing together the nfv provisioning puzzle: Efficient placement
and chaining of virtual network functions,” in IFIP/IEEE International
Symposium on Integrated Network Management (IM), 2015.

R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in JEEE INFOCOM, 2015.
M. C. Luizelli, W. L. da Costa Cordeiro, L. S. Buriol, and L. P. Gas-
pary, “A fix-and-optimize approach for efficient and large scale virtual
network function placement and chaining,” Computer Communications,
vol. 102, 2017.

H. Moens and F. D. Turck, “VNF-P: A model for efficient placement of
virtualized network functions,” in International Conference on Network
and Service Management (CNSM), 2014.

H. Feng, J. Llorca, A. M. Tulino, and A. F. Molisch, “Optimal Dynamic
Cloud Network Control,” IEEE/ACM Transactions on Networking,
vol. 26, no. 5, 2018.

C. Wang, J. Llorca, A. M. Tulino, and T. Javidi, “Dynamic Cloud
Network Control Under Reconfiguration Delay and Cost,” IEEE/ACM
Transactions on Networking, vol. 27, no. 2, 2019.

M. D. de Assuncao, A. da Silva Veith, and R. Buyya, “Distributed data
stream processing and edge computing: A survey on resource elasticity
and future directions,” Journal of Network and Computer Applications,
vol. 103, 2018.

M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and
R. Boutaba, “Elastic virtual network function placement,” in /EEE 4th
International Conference on Cloud Networking (CloudNet), Niagara
Falls, Canada, 2015.

X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive VNF Scaling and
Flow Routing with Proactive Demand Prediction,” in IEEE INFOCOM,
Honolulu, HI, 2018.

R. Li, Z. Zhou, X. Chen, and Q. Ling, “Resource Price-Aware Offloading
for Edge-Cloud Collaboration: A Two-Timescale Online Control Ap-
proach,” IEEE Transactions on Cloud Computing, 2019.

M. Gaggero and L. Caviglione, “Predictive Control for Energy-Aware
Consolidation in Cloud Datacenters,” IEEE Transactions on Control
Systems Technology, vol. 24, no. 2, 2016.

M. Scalabrin, M. Gadaleta, R. Bonetto, and M. Rossi, “A Bayesian
forecasting and anomaly detection framework for vehicular monitoring
networks,” in IEEE 27th International Workshop on Machine Learning
for Signal Processing (MLSP), 2017.

Telecom Italia Mobile, “Open big data challenge.” [Online]. Available:
https://dandelion.eu/datamine/open-big-data/

[2]

[3]

[4]

[5]

[6]

[7]

[8]

9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

76

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on January 02,2021 at 00:50:39 UTC from IEEE Xplore. Restrictions apply.

