Dynamic Multi-Robot Task Allocation under
Uncertainty and Temporal Constraints

Shushman Choudhury, Jayesh K. Gupta, Mykel J. Kochenderfer, Dorsa Sadigh, and Jeannette Bohg

Abstract—We consider the problem of dynamically allocating
tasks to multiple agents under time window constraints and task
completion uncertainty. Our objective is to minimize the number
of unsuccessful tasks at the end of the operation horizon. We
present a multi-robot allocation algorithm that decouples the key
computational challenges of sequential decision-making under
uncertainty and multi-agent coordination and addresses them in
a hierarchical manner. The lower layer computes policies for
individual agents using dynamic programming with tree search,
and the upper layer resolves conflicts in individual plans to
obtain a valid multi-agent allocation. Our algorithm, Stochastic
Conflict-Based Allocation (SCoBA), is optimal in expectation
and complete under some reasonable assumptions. In practice,
SCoBA is computationally efficient enough to interleave planning
and execution online. On the metric of successful task completion,
SCoBA consistently outperforms a number of baseline methods
and shows strong competitive performance against an oracle
with complete lookahead. It also scales well with the number
of tasks and agents. We validate our results over a wide range
of simulations on two distinct domains: multi-arm conveyor belt
pick-and-place and multi-drone delivery dispatch in a city.

I. INTRODUCTION

Efficient and high-quality task allocation is crucial for
modern cooperative multi-robot applications [1]. For ware-
house logistics, teams of mobile robots carry goods between
assigned locations [2]. Industrial and manufacturing operations
involve manipulators collaborating on assembly lines [3]. On-
demand ridesharing and delivery services dispatch agents to
incoming requests [4]. Multi-robot task allocation needs to be
computationally efficient and produce high-quality solutions
under the challenges of real-world robotics: uncertainty of task
execution success, temporal constraints such as ordering and
time windows, and tasks dynamically appearing online. For
instance, in one of our simulation domains, a team of robot
arms pick objects that appear on a conveyor belt from an
external loading process and place them in bins (Figure 1a).
With time window constraints induced by workspace limits,
and uncertainty due to imperfect grasping, the arms attempt to
pick-and-place as many objects as possible.

Multi-robot task allocation is a difficult problem; it inherits
the combinatorial optimization challenges of classical allocation
as well as the uncertainty and dynamic nature of robotics. Time-
extended tasks and time window constraints further require
algorithms to plan over horizons rather than instantaneously,
and account for spatio-temporal relationships among tasks [5].
The robotics community has worked on multi-agent task
allocation with Markov Decision Processes [6] and robust task

All authors are with Stanford University, CA, USA. Please send correspon-
dence to shushman@cs.stanford.edu

(a) Conveyor Belt Pick-and-Place

Depot [@ o)
p @MW

California Academy
of Sciences

[}

e

Golden
Gate Park

Y Mission
ﬁ Dolores Park
Del ? oistifer

[e Sloat Bivd ~

® o

(b) Multi-Drone Delivery Dispatch

Fig. 1: The above domains motivate our multi-robot task allocation
approach. We allocate robots (arms or drones) to tasks (pick-and-
place or delivery) that arrive online. Task completion is subject to
uncertainty (grasping or flight time) and time window constraints.

matching [7]. The classic multi-robot task allocation problem
has been classified extensively [1] and extended to account
for uncertainty [8], temporal and ordering constraints [5], and
dynamic task arrivals [9] (some of these will be baselines for
our method). The operations research community has developed
methods for task execution uncertainty [10, 11] and online
rescheduling [12]. However, their simplified agent models (such
as flow shops) do not address the spatial relationships between
tasks or the intersection of uncertainty and time constraints.

The algorithmic challenges for our allocation setting are
sequential planning under uncertainty and coordinating multi-
agent decisions. Prior works typically attempt the computa-
tionally intractable joint problem and thus require simplifying
approximations or heuristics for either planning or coordination.
Our key idea is to decouple these challenges and address them
hierarchically in an efficient two-layer approach. The lower
layer plans for individual agents, using dynamic programming
on a policy tree to reason about the uncertainty over task

completion. The upper layer uses optimal conflict resolution
logic from the path planning community to coordinate the
multi-agent allocation decisions [13]. Our overall algorithm,
Stochastic Conflict-Based Allocation (SCoBA), yields allocation
policies that minimize the expected cumulative penalty for
unsuccessful tasks; SCoBA can also seamlessly interleave
planning and execution online for new tasks.
The following are the contributions of our work:

o We propose a general formulation for multi-robot alloca-
tion under task uncertainty and temporal constraints.

o We present a hierarchical algorithm, SCoBA, which uses
multi-agent conflict resolution with single-agent policy
tree search. We prove that SCoBA is both optimal in
expectation and complete under mild assumptions.

o We demonstrate SCoBA’s strong competitive performance
against an oracle with complete lookahead, and its
performance advantage over four baseline methods for
successful task execution. Our results also show that
SCoBA scales with increasing numbers of agents and
tasks. We run simulations on two distinct robotics domains
(Figure 1); a team of robot arms picking and placing
objects from a conveyor belt and on-demand multi-drone
delivery of packages in a city-scale area.

II. BACKGROUND AND RELATED WORK

We briefly discuss three background areas: i) algorithms for
assignment and scheduling, ii) multi-agent decision-making,
and iii) relevant work in multi-robot task allocation.
Assignment and Scheduling: A major topic in discrete
optimization is assigning resources to tasks [14], for which
the Hungarian algorithm is a fundamental approach [15].
In temporal tasks, we use the scheduling model, where the
objective is a function of completed jobs [16]. Scheduling
problems with multiple resources and tasks are computationally
hard, even when deterministic [17]. In online scheduling, each
task is only observed when made available [18]. Hard real-
time tasks have a time window constraint for completion [19].
Approaches for scheduling under uncertainty address problems
where task execution is not fully deterministic [20, 21].
These approaches are either proactive in anticipating future
disruptions [22], reactive to changes [23, 24], or hybrid [25].
For scenarios with ordering constraints (such as assembly lines),
additional models like job shops [26] and flow shops [27] are
useful, particularly real-time flow shop scheduling [11, 28].
Iterative conflict resolution, which we adapt in our approach,
was used for scheduling [29], joint task assignment and
pathfinding [30], and diagnosis and repair [31]. This extensive
body of work provides valuable insights but does not consider
spatial relationships between tasks and their coupling with
temporal uncertainty.

Multi-Agent Sequential Decision-Making: The Markov De-
cision Process (MDP) is a mathematical model for our setting
of sequential decision making under uncertainty [32]. Different
solution techniques exist for MDPs, depending on available
information; dynamic programming [33] when the explicit
transition model is known, sample-based online planning [34]

when only a generative model exists, and reinforcement
learning [35] when no model is available. Our problem is
a multi-agent MDP (MMDP), where agents coordinate to
achieve a single shared objective; planning for MMDPs is
generally computationally intractable due to the exponentially
large decision space [36]. Although reinforcement learning
techniques are often employed to alleviate some tractability
issues [37, 38] by learning values of different states and
actions, model-free methods like Q-Learning face exploration
challenges [38]. Online tree search methods can fare better by
focusing on relevant states more effectively [39]. As we will
demonstrate, merely framing multi-robot task allocation as an
MMDP will not yield good quality solution strategies (due to
its computational challenges).

Multi-Robot Task Allocation: We outline a number of
domain-agnostic and domain-specific works on multi-robot
task allocation. MDP solvers have been used to generate
a sequential greedy strategy, but without accounting for
completion uncertainty [6]. The probability of task failure has
been considered by two-stage Stochastic Integer Programs and
network flow algorithms, which are exhaustive combinatorial
approaches unsuitable for tasks streaming in online [10, 40,
41]. A sensitivity analysis approach to optimal assignment
under uncertainty provides some insights on robustness but
has no notion of temporal constraints [7]. The taxonomies for
multi-robot task allocation under temporal constraints help us
characterize our problem’s difficulty [1, 42].

Previous work on collaborative assembly lines includes
hierarchical planning frameworks, constraint programming, and
robust scheduling for robotic flowshops [3, 43, 44]. However,
they all simplify one or more key complexities such as task
completion uncertainty or multi-agent configuration models.
Dynamic vehicle dispatch problems have been explored in
work on vehicle routing algorithms with time windows and
trip assignment algorithms for ridesharing [45, 46]. However,
they make restrictive assumptions on the uncertainty and envi-
ronment dynamics [5]. Driver-task assignment with uncertain
durations and task windows do solve for a similar setting as
ours but assume some knowledge of future requests [47].

IIT. PROBLEM FORMULATION

We base our formulation on previous work for multi-robot
task allocation with temporal constraints [5]. There is a set of
N agents, denoted as [N] and K tasks, denoted as [K]; the
problem horizon is T" time-steps. For each agent n € [N] and
task k € [K], the service time window is W,,;, = (tilk,tzk),
where [and u are respectively the lower and upper time limits
within which n can attempt k. There may also be an additional
so-called downtime if the agent executes the task successfully,
e.g., the time for a robot arm to transfer the object to the bin.
We represent task duration uncertainty as

Tnk(t) = Prob [n completes k within ¢ time-steps | .

(D

We assume knowledge of this cumulative distribution as part
of the problem specification, typical for task scheduling under
uncertainty [20]; the particular model is domain-dependent.

Speed I I
00651
[]
. : Object :
0 005 0.35 0.65 0.95

X-axis

Fig. 2: The illustrated conveyor belt has N = 3 arms and K = 5
objects. The belt is of unit length, and each arm’s workspace spans 0.3
units (dashed lines are the limits). Given the belt speed, the agent-task
time window for any arm-object pair is at most 5s.

By definition, the conjunction of W and 7 imposes an upper
bound on task completion probability, i.e.,

2

For all unsuccessful tasks, the system incurs a penalty of
>, J (k) units. An agent can attempt only one task at a time.

We seek an allocation policy that minimizes the expected
cumulative penalty due to unsuccessful tasks. An allocation
policy 7 is a mapping from the agents to the tasks and their
respective attempt times, i.e. 7 : [N] — [K] x [T]. Since there
is uncertainty about task completion, a single-shot allocation is
insufficient. Of course, the attempt times for future tasks depend
on when the earlier tasks are actually executed (successfully
or unsuccessfully). Our optimization problem is

argmin E[T
guin B|), 1H-J(®)|
ke[K]

s.t. te Wor V (k1) en(n),

Prob [n completes k] < 7, (t%, —tl,).

A3)

where the indicator function 1[k] = 1 if the task k remains
incomplete at the end of the horizon, and II is the set of
all possible allocation policies. The constraint enforces that
an agent attempts a task within the valid time window. The
expectation is over the task execution success distribution for
the allocation policy. For the rest of the discussion, we will
assume that J(k) = 1, i.e., all tasks are equally important; this
objective is the unweighted tardy jobs penalty [16].

The discrete-time rolling horizon formulation described
above is fairly general and useful. We are concerned with
high-level allocation rather than the underlying task execution,
so we avoid the added complexity of continuous-time represen-
tations. The underlying tasks typically involve time-constrained
trajectory planning, for which there are well-established models
and methods [48]. Furthermore, we can interleave planning and
execution suitably and recompute an allocation policy when
new tasks appear online (and we do so in practice).
Motivating Examples: We describe two distinct robotics
settings to instantiate our formulation. First, consider the
previously introduced example of robot arms along a conveyor
belt (see Figure 2). Each arm has an associated collection bin
for objects picked up from the belt. The objects appear on
the belt through an external process. The arms take varying
amounts of time for picking, depending on the quality of the

grasp strategy or gripper attributes. Arms have finite reach, and
an object may not be picked up before it goes out of reach.
Objects missed by all arms must be sorted by hand afterwards.
The goal is to successfully pick-and-place as many objects, or
equivalently, miss as few objects as possible.

Second, consider on-demand multi-drone dispatch for pack-
age delivery in a city (note the underlying similarities to the
previous example). Delivery tasks arise through an external
process of customer requests. Drones take varying amounts of
time to travel from the product depot to the package delivery
location, depending on flight conditions. Requests arrive with
time windows, such that drones must wait until the window
starts to deliver the product to the customer, and late deliveries
are penalized. Over a certain time horizon, our objective is to
minimize the number of late deliveries.

Challenges: To motivate our approach, we briefly discuss
the problem complexity. By the multi-robot task allocation
taxonomy of Gerkey et al. [1], the deterministic version of
our problem is ST-SR-TA, i.e. a single robot (SR) executes a
single task (ST) at a time, where tasks are time-extended (TA)
rather than instantaneous. ST-SR-TA problems are an instance
of an NP-Hard scheduling problem, specifically multi-agent
scheduling with resource constraints [49]. The uncertainty
of task execution success exacerbates this difficulty. Time
windows make allocation harder by requiring algorithms to
account for spatio-temporal task relationships [5]. Finally, new
tasks streaming in require our approach to interleave planning
and execution effectively, e.g., by replanning at task arrivals [9].

IV. HIERARCHICAL MULTI-ROBOT TASK ALLOCATION

Our key algorithmic challenges are sequential planning under
uncertainty (of task completion) and multi-agent coordination
(of allocations). The joint multi-agent planning problem is
computationally prohibitive for large settings [36]; most closely
related previous works either use simplifying approximations
for planning and optimization [4, 41] or simple coordination
heuristics [8, 50]. In contrast, we address the challenges
hierarchically in a two-layer approach called Stochastic
Conflict-Based Allocation (SCoBA). At the low level, we
independently determine the optimal task attempt sequence
for each individual agent, ignoring other agents. At the high
level, we resolve potential conflicts in assigned tasks across
multiple agents to obtain a valid multi-robot allocation. In this
section, we will discuss in detail the two layers and how they
come together in SCoBA. We will then briefly mention how
we interleave planning and execution online and how SCoBA
can exploit sparse agent interactions using coordination graphs.

A. Low-Level: Single Agent Policy

We consider the perspective of an individual agent, inde-
pendent of the other ones. From the definition in Section III,
we have the set of current tasks, corresponding time windows,
and task completion uncertainty distribution, and we want a
task attempt policy tree for the agent. Since task execution is
stochastic, the first possible attempt time of a task depends

k, too far Attempt &,

—> Sweep (

Time Windows
(Start
) Finish
| Downtime

Leave k;

Fig. 3: The low-level routine of SCoBA generates the policy tree over valid tasks for an individual agent, specifically, by sweeping along the
time axis and branching on the start or finish of a task’s time window. At the start of a window, two new decision nodes (ovals) are introduced:
to attempt (<) or to leave (¥) the task respectively. At the end of a time window and the downtime, the outcome nodes (rectangles) depict
failure or success. After the tree generation, dynamic programming propagates the values from the leaves to the root. The probability values
p=0.03, p’ = 0.09, p” = 0.3 are just hypothetical values that illustrate how the same attempt node (n1 <+ k2) has three different copies,
with different outcome probabilities (depending on the branch of the tree).

on the tasks attempted before it. We make a simplifying
approximation — the agent attempts a task as soon as possible
and observes the outcome at the end of the window. This
approximation collapses the temporal dimension by treating
tasks as discrete events rather than extended ones.

We illustrate the policy tree search process for a single robot
n1 and three tasks (objects) k1, ko, k3 in Figure 3. First, we sort
tasks in increasing order of the start of their time window. Then,
we sweep along the time axis and update the tree at every event
point, i.e., the start or finish of the window (and the end of the
downtime if the task were to be successful). The updates to the
policy tree depends on the event point (start/finish/downtime).
For the start of a time window, we introduce two new decision

nodes (ovals) to attempt (<) or leave (¥4) the task respectively.

At the end of a time window and the downtime, we introduce
outcome nodes (rectangles) respectively for failure or success,
where the outcome probability p depends on the minimum
feasible start time for the attempt, which in turn depends on
the specific branch of the tree. For instance, notice in Figure 3
the three copies of the decision node (n1 <> ko), with different
probabilities, depending on whether it was attempted after the
failure, success or non-attempt of task k;.

The leaves of the binary policy tree contain the cumulative
penalty along their branches, e.g., a penalty of 1 for each
unsuccessful task. We then use dynamic programming to
propagate values upwards from the leaves to the root. For
a pair of outcome node siblings, we set the parent’s value
(denoted as V) to the expected value of its children,

V(parent) := p-V(Fail) + (1 —p) - V(Succ). (4)

For a pair of decision node siblings, the parent’s value is

the minimum of the children’s, i.e.,

V(parent) := min{V(childl), V(child2)}; 5)

in the running example in Figure 3, we have V(root) =
min{V(n; < k1), V(n1 ¢ ki1)}. The resulting tree encodes
the policy that minimizes the agent’s expected penalty for all
tasks up to the planning horizon, and V' (root) is the value of
this expected penalty. We obtain the next task assigned to the
agent by following child nodes of minimum value until the
first attempt node (e.g., ny1 <> k1).

B. High-Level: Multi-Agent Coordination

The policy tree determines the approximately optimal task
attempt sequence for an individual agent (approximate due
to the temporal simplification mentioned earlier). The tree
searches are independent of each other, so two agents may have
conflicting allocations. Since our objective function depends
on all agents, breaking ties naively could yield arbitrarily poor
global allocations. Multi-agent pathfinding algorithms face
a similar challenge and have to resolve inter-agent conflicts
between shortest paths [51]. Conflict-Based Search is an
effective strategy for this problem [13]; by decoupling single-
agent path planning and inter-path conflict resolution, it is
efficient in practice without losing optimality.

We leverage the idea of inter-agent conflict resolution from
Conflict-Based Search. The high level of our algorithm, SCoBA,
searches a binary constraint tree (Figure 4) generated from
conflicts between solutions for individual agents obtained from
the low level, i.e., the policy tree search. Two agents n; and
ng are in conflict if they are allocated the same task k in
overlapping time windows, i.e., if (k,t1) € w(n1), (k,t2) €
m(n2) and either to € W, or t; € Wy, . A constraint
for an agent is a task excluded from consideration by the tree

’ Conflict

Cost: 2.3

PlanTree(ns, [K1\k;) PlanTree(n;, [K]\k;)

n, <k,
n, < k3

n; < k;
Cost: 2.9

Solution

Fig. 4: A constraint tree node with a conflict in the allocation generates
two children with corresponding constraints on the conflicting agents
(nq1 and ng) and task (k:l). Best-first search on the constraint tree
returns the first high-level node with a conflict-free allocation.

search for that agent. Each node in the constraint tree maintains
(i) a set of constraints, i.e., tasks to ignore, for each agent, (ii) a
multi-agent allocation that respects all constraints, and (iii) the
cost of the allocation. For SCoBA, the cost of the allocation
is the sum of expected penalties for each agent, where the
expected penalty for each agent is the value of the root node
of its policy tree. The allocation cost is used as the criteria for
best-first search on the constraint tree; this best first search
continues until it finds a conflict-free allocation.

C. Stochastic Conflict-Based Allocation (SCoBA)

Algorithm 1 describes SCoBA, using the tree search of Sec-
tion IV-A as the PLANTREE subroutine. Its structure is similar
to a presentation of Conflict-Based Search by Felner et al.
[51]. The constraint tree is initialized with the root node,
which has an empty constraint set and the allocation from
running PLANTREE for each individual agent (lines 2—6). When
a high-level node is expanded, the corresponding allocation
is checked for validity (line 9). If there is no conflict, this
allocation is returned as the solution. Otherwise, for every
conflict between two or more agents, new child nodes are
added, where constraints are imposed on the agents involved
(line 14). A child constraint tree node inherits its parent’s
constraints and adds one more constraint for a particular agent.

Consider the simple illustrative example in Figure 4. The
root node has agents n; and ng both assigned to task k;. This
conflict yields two constraints, one inherited by each of the
two child nodes. The first constraint excludes k; from the
recomputed policy tree search for n;. The second constraint
does the same for n3. For each new (non-root) node, the low
level tree search is only re-run on the agent for which the
constraint is added (line 18). Both of the resulting child nodes
are conflict-free, but the left one, with a lower allocation cost
of 2.6, is returned as the solution.

Our problem setting is both online and stochastic. However,
under some simplifying assumptions, we can establish
optimality and completeness properties for SCoBA.

Proposition 1. If (i) no new tasks are added online, (ii) the tree
search is executed to the full horizon, and (iii) task completion
is determined at the end of the time window, then SCoBA is

Algorithm 1 Stochastic Conflict-Based Allocation

procedure MAIN([N], [K], T, W, i, Tni V 1, k)
: Initialize A as the root

1:

2

3 A.soln < PLANTREE(n, [K]|,T,W,7) ¥V n

4 A.constr + {} > Empty constraint set
5: A.cost < SumOfIndividualCosts(A.solution)

6 Insert A into OPEN > Open list of Constraint Tree
7 while OPEN not empty

8

S < PopBest(OPEN) > Min. Cost Allocation

9: if S.soln is valid > No conflicts
10: return S.soln

11 C' < find-conflicts(.5) > Inter-agent conflicts
12: for all conflicts (n, k) € C

13: A < GENERATECHILD(S, n, k)

14: Insert A into OPEN

15: procedure GENERATECHILD(S, n, k)
16: A.constr < S.constr Uk

17: A.soln < S.soln

18: A.soln + PLANTREE(n, [K] \ A.constr,T, W, 1)
19: A.cost + SumOfiIndividualCosts(A.soln)

20: return A

> Task to exclude

optimal in expectation, i.e. SCoBA minimizes in expectation
the number of incomplete tasks at the end of the time horizon.

Proposition 2. Under the assumptions of Proposition 1, SCoBA
is complete. If a valid allocation exists, SCoBA returns it.

We provide detailed proofs in the appendix. We derive
them from the corresponding optimality and completeness
proofs of the Conflict-Based Search algorithm for multi-agent
pathfinding [13]. For optimality, we use existing results in
sequential decision-making to show that SCoBA’s low-level
routine, i.e., policy tree generation, is optimal in expectation
for an individual agent [32]. We then prove that SCoBA’s high-
level multi-agent coordination satisfies the sufficient condition
to inherit the multi-agent optimality of Conflict-Based Search.
For completeness, we show how the high-level constraint tree
of SCoBA, as in Conflict-Based Search, has a finite number
of nodes. Therefore, systematic best-first search on it will find
a valid solution if one exists.

Interleaving Planning and Execution: To account for new
tasks beyond the horizon, we interleave planning and execution
online. SCoBA’s elegant representation makes interleaving
straightforward at both levels. For the single agent policy tree
search, we truncate the search horizon based on computation
requirements. In our implementation, we run the sweep until
the first task whose time window begins after the downtime
of all tasks before it (ks in Figure 3). For the multi-agent
coordination, we set a threshold on the number of high-level
conflicts, once again based on real-time computation constraints.
If the threshold is exceeded, we return the current high-level
solution. For agents allocated to the same task, we break ties
arbitrarily and keep the unassigned agents for allocation to
new tasks at the next timestep.

Coordination Graphs: SCoBA works with any arbitrary

configuration of agents and inter-agent constraints. We also use
coordination graphs (CGs) from multi-agent decision-making
for greater efficiency [52]. In CGs, each node represents
an agent, and each edge encodes a (potentially directed)
dependency between agents, such that only connected agents
need to coordinate actions (or allocations in our case). The
choice of coordination graph for a problem is domain-dependent
and often quite natural. For instance, in the conveyor belt
example, the arms are ordered along the belt and their
workspaces are mutually exclusive, therefore the coordination
graph is a directed chain from the first arm to the last.

The CG structure impacts the high-level multi-agent coordi-
nation stage of SCoBA. The absence of an edge between two
agents implies that their sets of possible tasks are disjoint, i.e.,
they cannot have conflicting allocations. Therefore, in practice,
SCoBA need not consider dependencies between all the agents.
If the CG is directed (as in the conveyor belt), we run the
tree search for agents along a topological ordering of the CG.
For any agent, we exclude the tasks already assigned to its
predecessors. By construction, we will obtain a conflict-free
allocation at the end (without any child nodes being generated
in the high-level constraint tree). If the CG is undirected (as in
our multi-drone delivery domain), such a topological ordering
is not feasible, and conflicts may be unavoidable. However, if
the CG has multiple connected components, then nodes (agents)
in different components cannot conflict with each other, so we
can run SCoBA on each component in parallel.

V. EVALUATION

The primary metric for evaluating SCoBA is the accumulated
penalty for unsuccessful tasks. We will also evaluate its
scalability to tasks and agents via computation time. We first
outline the range of methods we use to baseline SCoBA. We
then present and discuss the results for both performance
metrics on simulations for each of our two distinct robotics-
inspired domains: conveyor belt pick-and-place and on-demand
multi-drone delivery dispatch. We use Julia [53] on a 16 GiB
RAM machine and a 6-core 3.7 GHz CPU for all simulations'.

A. Baselines for Unsuccessful Task Penalty

We use multiple complementary methods to baseline SCoBA
on our primary metric of unsuccessful task penalty:

1) EDD: The Earliest Due Date heuristic assigns each agent
to the task with the nearest time window deadline and is
a common heuristic for scheduling [16].

2) Hungarian: An unbalanced Hungarian algorithm, where
the edge weight for an agent-task pair is the probability of
successful task completion [15]. This method is a special
case of a general purpose network-flow approach, where
only one task is assigned at a time [41].

3) Q-Learning: We frame the multi-robot task allocation
problem as a discrete-time Markov Decision Process and
pre-compute a policy with Q-Learning.

IThe code is available at https://github.com/sisl/SCoBA.jl

4) MCTS: A recent Monte-Carlo Tree Search approach
specifically for multi-robot task allocation [S0]. The
tree search is conceptually similar to ours (albeit with
Monte Carlo sampling of outcomes) but it uses arbitrary
priority orderings among agents to coordinate decisions
and control the tree branching factor.

For the baselines, we cover a range of approaches for multi-
robot allocation from scheduling to sequential decision-making
under uncertainty. Both EDD and Hungarian are reactive, i.e.,
do not plan sequentially. The latter optimizes for multiple
agents, unlike the former. Both Q-Learning and MCTS plan
sequentially by framing an MDP, but the former is model-free
and offline while the latter is model-based and online.

B. Conveyor Belt: Experiments and Results

Three robot arms are arranged along a moving conveyor belt,
picking objects from the belt and placing them in collection
bins (Figure la). We design an abstracted simulation of the
scenario (Figure 2), scaled along an X-axis of unit length.
The arms have mutually exclusive adjacent workspaces of 0.3
units each, from x = 0.05 to x = 0.95. New tasks arrive as
new objects appear at the head of the belt. Three scenario
parameters instantiate the problem and affect the difficulty:

o Grasp Success Probability: We model uncertainty over
task completion due to imperfect grasping with a Bernoulli
process where p; is the probability of a successful pick
by the ith arm. Accordingly, the cumulative distribution
from Equation (1) is

Toe(t) =1—(1—p;)", teN. (6)

We expect performance to improve as p; increases.

e Belt Speed: The speed of the belt determines the effective
time window for each arm-object pair, e.g., 5 s in Figure 2.
If task execution is successful, each arm has a downtime
of At = 25 to deposit the object in the bin. We expect
the performance to degrade as speed increases.

e New Object Probability: We briefly describe how new
objects arrive (more details in the appendix). We reflect
the setup in space (about Y-axis) and time, with virtual
arms operating in reverse, transferring objects from virtual
bins to a virtual belt. Upon crossing the Y-axis, the virtual
belt becomes the true belt and virtual objects appear as
real ones. The new object probability parameter is the
per-timestep Bernoulli probability with which a virtual
arm drops its object onto the virtual belt (all virtual arms
have the same such probability). The drop location is
sampled uniformly within the virtual arm’s workspace. As
soon as the virtual arm drops an object , it moves to the
virtual bin to collect the next one. We expect performance
to degrade as new object probability increases.

Competitive Performance against Oracle: A standard metric
for online algorithms is the competitive performance against an
oracle with complete lookahead. The task generation process
allows an ablation study for the effect of lookahead alone
(decoupled from the effect of uncertainty). If grasping is perfect,

https://github.com/sisl/SCoBA.jl

ik

0.6f

1

@
3 0.5
o]
S04l
Bos
S 0.2
801}
“ 00t
06 0.75 0.9

Grasp Success Probability

Bos
S 0.2
“ 00t
0.04

%]

Bos

o)

S 04!
Bo3

S 0.2

801 H

“ 00t

05

Belt Speed (units/s)

0.75 10
New Object Probability

0.07 0.1

Fig. 5: Legend: 0 EDD OO0 Hungarian @ MCTS B Q-Learning 1 SCoBA. On the metric of the fraction of unsuccessful tasks, i.e. objects
missed, SCoBA consistently outperforms all other baselines. All results are averaged over 100 trials, with 7" = 500 time-steps per trial.

TABLE I: Average proportions of objects lost per trial by SCoBA
when grasping is perfect. The two varied parameters affect SCoBA’s
lookahead. The negligible values demonstrate the strong competitive
performance of SCoBA relative to the oracle.

Belt Speed New Object Probability

(units/s) 0.5 0.75 1.0
0.04 0.0 0.0 0.0
0.07 27x107% 79x107% 1.3x10"¢%
0.1 1.7x107% 37x107% 52x10%

i.e., p; = 1 for all arms, there exists an oracle strategy that
can complete all tasks successfully. The oracle is that which
mirrors the generation sequence itself in space and time. We
compare SCoBA (without full lookahead) to this oracle by
evaluating the proportion of tasks it fails to complete with
this generation process. The smaller this number, the better
is SCoBA’s competitive performance. We set p; = 1 for all
arms and jointly vary the other two parameters, belt speed and
new object probability. We choose a maximum belt speed of
0.1 units/s so that each object spends at least 2s in an arm’s
workspace. For each trial in a setting, we simulate 1" = 500
time-steps (seconds) and evaluate the proportion of objects
missed by SCoBA relative to the total number of objects.
We compute the average of this proportion-per-trial over 100
trials (standard error negligible) in Table I. The low magnitudes
demonstrate SCoBA’s robustness to insufficient lookahead. With
increasing value of either parameter, performance degrades.
Unsuccessful Task Penalty: We vary all three scenario param-
eters independently and compare the fraction of missed objects
for SCoBA versus the other baselines. Figure 5 demonstrates
the results. For each subplot, only one parameter varies (the
x-label), while the other two stay at their default values — grasp
probability p; = 0.75 for all arms, 0.07 units/s for belt speed,
and 0.75 for new object probability. We average all numbers
over 100 trials (with standard error bars).

SCoBA considerably outperforms the other baselines across
all settings. Furthermore, its performance degrades or improves
as expected relative to the change in each problem parameter
(e.g., more objects missed with increasing new object probabil-
ity). Among the baselines, the reactive Hungarian method has
the best performance, likely because sequential deliberation
is not as crucial with non-overlapping workspaces and small
downtime (unlike in the next domain). For Q-Learning and

TABLE II: The low computation time values demonstrate that the
tree search for an individual arm is quite scalable with respect to the
number of objects in the arm’s workspace.

Objects Tree Size Comp. Time
40 640.9 9x107%s
80 2215.3 0.004 s
120 5102.3 0.013s
160 8791.7 0.029s
200 13028.4 0.051s

MCTS, the performance depends on how finely the conveyor
belt is discretized. In Q-Learning, the entire state space also
needs to be explicitly enumerated. We used a discretization of
0.05 units for Q-Learning and 0.02 units for MCTS; too much
finer would result in a prohibitively large state space due to
the curse of dimensionality [32].

Scalability: In this domain, the Coordination Graph is a
directed chain (see Section IV), so the computational bottleneck
for SCoBA is the policy tree search (multi-agent coordination
is trivial). In Table II we report average tree search computation
times for a single arm with an increasing number of objects
(scattered throughout the arm workspace). Empirically, we
observe that the number of tree nodes is roughly quadratic, and
the computation time roughly cubic in the number of objects,
and the wall clock times are quite reasonable. The appendix
has further timing results for the applicable baselines.

C. Drone Delivery: Experiments and Results

In the second domain, we dispatch drones to deliver packages
around a city-scale area, subject to delivery time window
constraints. Our setup is based on our recent work for multi-
drone delivery over ground transit [54]. We use the location-
to-location travel time estimates from its North San Francisco
scenario, which simulates deliveries over an area of 150 km?
(see Figure 1b). We handpick locations for up to 5 depots
scattered around the city to ensure good coverage. Drones
have a maximum flight range of 10 km, which restricts the set
of possible package deliveries for each drone. Two scenario
parameters affect the performance here:

e Drones and Depots: The number of depots and the ratio
of drones to depots both impact the ability of the system
to dispatch agents to a given delivery location in time.
We distribute drones equally across depots. With better
coverage, we expect performance to improve.

3 Depots, 18 Drones

g 04 g 04/ g 041
g%0.3 gos gi%10.3

5 0.2 s 0.2 502

5 0.1 S 0.1 ﬂ 3 0.1 H‘

5 Depots, 15 Drones

5 Depots, 30 Drones

05 0.75 10
New Request Probability

0.5

New Request Probability

0.75 1.0 0.5 0.75 10

New Request Probability

Fig. 6: Legend: 0 EDD O Hungarian @ MCTS O SCoBA. For the drone delivery domain, on the primary metric of the fraction of late
package deliveries, SCoBA outperforms the baselines on all but one setting. Results are averaged over 100 trials each of 7' = 100 time-steps.

o New Request Probability: A new delivery request arrives
per minute with some probability. Each delivery location
is sampled uniformly within a bounding box. We start
with a number of packages roughly 1.5 times the number
of drones in the scenario. With higher probability, we
expect performance to degrade. Each request has a window
duration sampled uniformly between 15 and 30 minutes.

Our reference framework gives us deterministic drone travel-

time estimates between a depot d and package location p,
say TT'(d,p). We model travel time uncertainty with a finite-
support Epanechnikov distribution around T7(d, p), i.e.,

Tnk(t) ~ Epan(y = TT(d,p),r =TT (d,p)/3.0). (7)

The true travel time is drawn from Equation (7). This choice
of a synthetic distribution is arbitrary but reasonable because
a high mean travel time is likely to have higher variance, due
to more opportunities for delays or speedups.

1) Unsuccessful Task Penalty: We vary the scenario param-
eters and compare the fraction of late package deliveries for
SCoBA versus the other baselines in Figure 6. We choose three
sets of depot-and-drone numbers with complementary coverage
properties, e.g., (3, 18) has fewer depots and a higher drone-
depot ratio while (5,15) has more depots but a smaller ratio.
We vary the new request probability, simulate 7" = 100 time-
steps (minutes) per trial, and average results over 100 trials. We
omit Q-Learning because the enumeration of the multi-agent
MDP state space is unacceptably large for any useful time-axis
discretization. SCoBA is generally the best across all settings
except in one (5 depots, 15 drones, probability 1.0) where
MCTS is slightly better. The vast improvement in relative
performance of the MCTS baseline [50] is not surprising. It is
tailored for vehicle dispatch problems, with search heuristics
that exploit the domain structure, e.g., agents have longer
downtime to return to their depots; the per-agent action space
is a subset of valid tasks rather than a discretization of a
conveyor belt into slots. For the coverage parameter, having
more drones per depot appears to be more influential than
having more depots, e.g., the errors for (5,15) are higher than
the corresponding ones for (3, 18).

2) Scalability: In this domain, high-level conflicts may
occur, and SCoBA will invoke its multi-agent coordination
layer (over and above policy tree search) while computing
a valid multi-agent allocation. Therefore, in Table III we
report the mean and standard error for computation times

TABLE III: The mean and standard error (over 50 trials in each
setting) for SCoBA computation times on the multi-drone delivery
domain. All times are in seconds.

Number of Requests

(Depots,Drones) 20 50 100
(3,18) (0.02,0.003) (1.48,0.16) (2.55,0.23)
(5,15) (0.06,0.008) (2.13,0.2) (5.42,0.5)
(5,30) (0.17,0.003) (1.76,0.12) (7.08,0.47)

for the full SCoBA algorithm (over 50 different trials for each
setting). We vary the number of drones and depots and the
number of currently available tasks, i.e., the current package
delivery requests. The absolute wall clock values are quite
reasonable given that the time-scale of operation of the system
in the real world is minutes and hours. Some scenarios have
disproportionately high mean and variance because of more
high-level conflicts, a known behavioral property of Conflict-
Based Search algorithms [13]. The appendix has timing results
for other baselines.

VI. CONCLUSION

We presented SCoBA, a hierarchical approach for dynamic

multi-robot task allocation under uncertainty and temporal
constraints. In theory, SCoBA is optimal in expectation and
complete under mild technical assumptions. In practice, over
two distinct and realistic domains, it has strong competitive
performance against an oracle, consistently outperforms a
number of baselines, and is scalable in terms of computation
time to both agents and tasks.
Limitations and Future Work: We assume a known uncer-
tainty model, which is typical for multi-robot task allocation
research. However, since SCoBA is based on policy tree
search, we could use it in-the-loop with model-based RL
in case the uncertainty model needs to be estimated online.
SCoBA’s computation time is sensitive to the number of
high-level conflicts; future work could incorporate efficiency
improvements to Conflict-Based Search such as bounded sub-
optimal variants [55] and improved conflict resolution [56].
Finally, we focus on high-level allocation here, but we could
integrate SCoBA in a full pipeline for robotics applications.

ACKNOWLEDGMENTS

This work was supported by the Ford Motor Company, NSF
grant number 1241349 and NSF grant number 138329.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

B. P. Gerkey and M. J. Mataric, “A formal analysis
and taxonomy of task allocation in multi-robot systems,”
International Journal of Robotics Research, vol. 23,
no. 9, pp. 939-954, 2004.

Z. Yan, N. Jouandeau, and A. A. Chérif, “Multi-robot
heuristic goods transportation,” in IEEE International
Conference on Intelligent Systems, 2012, pp. 409-414.
L. Johannsmeier and S. Haddadin, “A hierarchical
human-robot interaction-planning framework for task
allocation in collaborative industrial assembly processes,”
IEEE Robotics and Automation Letters, vol. 2, no. 1,
pp. 41-48, 2016.

M. Hyland and H. S. Mahmassani, “Dynamic au-
tonomous vehicle fleet operations: Optimization-based
strategies to assign AVs to immediate traveler demand
requests,” Transportation Research Part C: Emerging
Technologies, vol. 92, pp. 278-297, 2018.

M. L. Gini, “Multi-robot allocation of tasks with
temporal and ordering constraints,” in AAAI Conference
on Artificial Intelligence (AAAI), 2017, pp. 4863—4869.
T. Campbell, L. Johnson, and J. P. How, “Multiagent al-
location of Markov decision process tasks,” in American
Control Conference (ACC), IEEE, 2013, pp. 2356-2361.
L. Liu and D. A. Shell, “Assessing optimal assignment
under uncertainty: An interval-based algorithm,” The
International Journal of Robotics Research, vol. 30,
no. 7, pp. 936-953, 2011.

M. J. Mataric, G. S. Sukhatme, and E. H. @stergaard,
“Multi-robot task allocation in uncertain environments,”
Autonomous Robots, vol. 14, no. 2-3, pp. 255-263, 2003.
J.-F. Cordeau and G. Laporte, “The dial-a-ride problem:
Models and algorithms,” Annals of Operations Research,
vol. 153, no. 1, pp. 29-46, 2007.

S. Timotheou, “Asset-task assignment algorithms in
the presence of execution uncertainty,” The Computer
Journal, vol. 54, no. 9, pp. 1514-1525, 2010.

D. Rahmani and M. Heydari, “Robust and stable flow
shop scheduling with unexpected arrivals of new jobs and
uncertain processing times,” Journal of Manufacturing
Systems, vol. 33, no. 1, pp. 84-92, 2014.

R. O’Donovan, R. Uzsoy, and K. N. McKay, “Predictable
scheduling of a single machine with breakdowns and
sensitive jobs,” International Journal of Production
Research, vol. 37, no. 18, pp. 4217-4233, 1999.

G. Sharon, R. Stern, A. Felner, and N. Sturtevant,
“Conflict-based search for optimal multi-agent path
finding,” in AAAI Conference on Artificial Intelligence
(AAAI), 2012.

R. E. Burkard, M. Dell’Amico, and S. Martello, Assign-
ment Problems. SIAM, 2009, ISBN: 978-0-89871-663-4.
J. Munkres, “Algorithms for the assignment and trans-
portation problems,” Journal of the society for industrial
and applied mathematics, vol. 5, no. 1, pp. 32-38, 1957.
M. Pinedo, Scheduling. Springer, 2012, vol. 29.

[20]

[22]

J. K. Lenstra, A. R. Kan, and P. Brucker, “Complexity
of machine scheduling problems,” in Annals of Discrete
Mathematics, vol. 1, Elsevier, 1977, pp. 343-362.

S. Albers, “Better bounds for online scheduling,” SIAM
Journal on Computing, vol. 29, no. 2, pp. 459473,
1999.

M. L. Dertouzos and A. K. Mok, “Multiprocessor online
scheduling of hard-real-time tasks,” IEEE Transactions
on Software Engineering, vol. 15, no. 12, pp. 1497-1506,
1989.

T. Chaari, S. Chaabane, N. Aissani, and D. Trentesaux,
“Scheduling under uncertainty: Survey and research
directions,” in International Conference on Advanced
Logistics and Transport, ICALT, 2014, pp. 229-234.
D. Sadigh and A. Kapoor, “Safe control under un-
certainty with probabilistic signal temporal logic,” in
Proceedings of Robotics: Science and Systems (RSS),
Jun. 2016.

X. Lin, S. L. Janak, and C. A. Floudas, “A new robust
optimization approach for scheduling under uncertainty::
I. bounded uncertainty,” Computers & Chemical Engi-
neering, vol. 28, no. 6-7, pp. 1069-1085, 2004.

E. Szelke and R. M. Kerr, “Knowledge-based reactive
scheduling,” Production Planning & Control, vol. 5,
no. 2, pp. 124-145, 1994.

V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A.
Seshia, “Reactive synthesis from signal temporal logic
specifications,” in Proceedings of the 18th international
conference on hybrid systems: Computation and control,
2015, pp. 239-248.

L. K. Church and R. Uzsoy, “Analysis of periodic and
event-driven rescheduling policies in dynamic shops,”
International Journal of Computer Integrated Manufac-
turing, vol. 5, no. 3, pp. 153-163, 1992.

N. Al-Hinai and T. Y. EIMekkawy, “Robust and stable
flexible job shop scheduling with random machine
breakdowns using a hybrid genetic algorithm,” Inter-
national Journal of Production Economics, vol. 132,
no. 2, pp. 279-291, 2011.

E. Gonzdlez-Neira, J. Montoya-Torres, and D. Barrera,
“Flow-shop scheduling problem under uncertainties:
Review and trends,” International Journal of Industrial
Engineering Computations, vol. 8, no. 4, pp. 399-426,
2017.

J. M. Framinan, V. Fernandez-Viagas, and P. Perez-
Gonzalez, “Using real-time information to reschedule
jobs in a flowshop with variable processing times,” Com-
puters & Industrial Engineering, vol. 129, pp. 113-125,
2019.

S. Gay, R. Hartert, C. Lecoutre, and P. Schaus, “Conflict
ordering search for scheduling problems,” in Inter-
national Conference on Principles and Practice of
Constraint Programming, Springer, 2015, pp. 140-148.
H. Ma and S. Koenig, “Optimal target assignment
and path finding for teams of agents,” in International

[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2016, pp. 1144-1152.

S. Ghosh, D. Sadigh, P. Nuzzo, V. Raman, A. Donzé,
A. L. Sangiovanni-Vincentelli, S. S. Sastry, and S. A.
Seshia, “Diagnosis and repair for synthesis from sig-
nal temporal logic specifications,” in Proceedings of
the 19th International Conference on Hybrid Systems:
Computation and Control, 2016, pp. 31-40.

M. J. Kochenderfer, Decision Making under Uncertainty:
Theory and Application. MIT Press, 2015.

D. P. Bertsekas, Dynamic Programming and Optimal
Control. Athena Scientific, 2005.

L. Péret and F. Garcia, “Online resolution techniques,”
Markov Decision Processes in Artificial Intelligence,
pp- 153-184, 2013.

R. S. Sutton and A. G. Barto, Reinforcement Learning:
An Introduction. MIT press, 2018.

C. Boutilier, “Planning, learning and coordination in
multiagent decision processes,” in Proceedings of the
6th conference on Theoretical aspects of rationality and
knowledge, Morgan Kaufmann Publishers Inc., 1996,
pp- 195-210.

M. L. Littman, “Markov games as a framework for multi-
agent reinforcement learning,” in Machine Learning,
Elsevier, 1994, pp. 157-163.

M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou,
K. Tuyls, J. Pérolat, D. Silver, and T. Graepel, “A unified
game-theoretic approach to multiagent reinforcement
learning,” in Advances in Neural Information Processing
Systems, 2017, pp. 4190-4203.

T. Vodopivec, S. Samothrakis, and B. Ster, “On Monte
Carlo tree search and reinforcement learning,” Journal
of Artificial Intelligence Research, vol. 60, pp. 881-936,
2017.

S. Ahmed and R. Garcia, “Dynamic capacity acquisition
and assignment under uncertainty,” Annals of Operations
Research, vol. 124, no. 1-4, pp. 267-283, 2003.

S. Timotheou, “Network flow approaches for an asset-
task assignment problem with execution uncertainty,”
in Computer and Information Sciences, Springer, 2011,
pp- 33-38.

E. Nunes, M. D. Manner, H. Mitiche, and M. L. Gini,
“A taxonomy for task allocation problems with temporal
and ordering constraints,” Robotics and Autonomous
Systems, vol. 90, pp. 55-70, 2017.

J. K. Behrens, R. Lange, and M. Mansouri, “A constraint
programming approach to simultaneous task allocation
and motion scheduling for industrial dual-arm manip-
ulation tasks,” in IEEE International Conference on
Robotics and Automation (ICRA), IEEE, 2019, pp. 8705-
8711.

A. Che, V. Kats, and E. Levner, “An efficient bicriteria
algorithm for stable robotic flow shop scheduling,”
European Journal of Operational Research, vol. 260,
no. 3, pp. 964-971, 2017.

[45]

H. C. Lau, M. Sim, and K. M. Teo, “Vehicle routing
problem with time windows and a limited number of
vehicles,” European Journal of Operational Research,
vol. 148, no. 3, pp. 559-569, 2003.

J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli,
and D. Rus, “On-demand high-capacity ride-sharing via
dynamic trip-vehicle assignment,” Proceedings of the
National Academy of Sciences, vol. 114, no. 3, pp. 462—
467, 2017.

R. K. Cheung, D. D. Hang, and N. Shi, “A labeling
method for dynamic driver-task assignment with uncer-
tain task durations,” Operations Research Letters, vol. 33,
no. 4, pp. 411-420, 2005.

J.-P. Laumond et al., Robot Motion Planning and Control.
Springer, 1998, vol. 229.

M. R. Garey and D. S. Johnson, “Complexity results for
multiprocessor scheduling under resource constraints,”
SIAM Journal on Computing, vol. 4, no. 4, pp. 397411,
1975.

B. Kartal, E. Nunes, J. Godoy, and M. L. Gini, “Monte
Carlo tree search for multi-robot task allocation,” in
AAAI Conference on Artificial Intelligence (AAAI), 2016,
pp. 4222-4223.

A. Felner, R. Stern, S. E. Shimony, E. Boyarski, M.
Goldenberg, G. Sharon, N. Sturtevant, G. Wagner, and
P. Surynek, “Search-based optimal solvers for the multi-
agent pathfinding problem: Summary and challenges,”
in Symposium on Combinatorial Search, 2017.

J. R. Kok, M. T. Spaan, and N. Vlassis, “Multi-
robot decision making using coordination graphs,” in
International Conference on Advanced Robotics (ICAR),
vol. 3, 2003, pp. 1124-1129.

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah,
“Julia: A fresh approach to numerical computing,” SIAM
Review, vol. 59, no. 1, pp. 65-98, 2017.

S. Choudhury, K. Solovey, M. J. Kochenderfer, and M.
Pavone, “Efficient large-scale multi-drone delivery using
transit networks,” in IEEE International Conference on
Robotics and Automation (ICRA), 2020.

M. Barer, G. Sharon, R. Stern, and A. Felner, “Sub-
optimal variants of the conflict-based search algorithm
for the multi-agent pathfinding problem,” in European
Conference on Artificial Intelligence (ECAI), 2014,
pp- 961-962.

E. Boyarski, A. Felner, R. Stern, G. Sharon, D. Tolpin, O.
Betzalel, and S. E. Shimony, “ICBS: improved conflict-
based search algorithm for multi-agent pathfinding,” in
International Joint Conference on Artificial Intelligence
(1IJCAI), 2015, pp. 740-746.

M. Egorov, Z. N. Sunberg, E. Balaban, T. A. Wheeler,
J. K. Gupta, and M. J. Kochenderfer, “POMDPs.jl:
A framework for sequential decision making under
uncertainty,” Journal of Machine Learning Research
(JMLR), vol. 18, no. 26, pp. 1-5, 2017.

APPENDIX
OPTIMALITY AND COMPLETENESS PROOFS

Proposition 1. If (i) no new tasks are added online, (ii) the tree
search is executed to the full horizon and (iii) task completion
is determined at the end of the time window, then SCoBA is
optimal in expectation, i.e. SCoBA minimizes in expectation
the number of incomplete tasks at the end of the time horizon.

Proof. Conflict-Based Search has been proved to yield optimal
multi-agent solutions (paths) if two conditions hold: (a) the
low-level routine yields optimal solutions for individual agents
and (b) the overall multi-agent objective is the sum-of-costs of
the individual agent solutions. SCoBA uses the same high-level
multi-agent conflict resolution logic as Conflict-Based Search,
and will inherit this optimality property if it satisfies the two
sufficient conditions.

We first show (a) is true for SCoBA. The low-level single-
agent routine uses dynamic programming with forward tree
search to obtain a policy tree. Such a method, by construction,
computes a policy from the initial state that is optimal under
expectation for a discrete, finite-horizon Markov Decision
Process (MDP) if the tree search is exhaustively conducted
up to the full horizon. The expectation is over the uncertainty
of the outcomes of actions. Assumption (i) ensures that all
information of future tasks is known at the initial state of the
agent and Assumption (ii) ensures the exhaustive tree search.

Recall the simplifying approximation we made along the
temporal dimension, by treating time-windows as discrete
events. With Assumption (iii), the temporal approximation
now becomes exact. i.e., by attempting each task at the first
possible time-step and continuing until the end of the window,
each task attempt has a single probability mass function over
the two possible outcomes, success or fail. Therefore, the
single agent problem can be framed as a discrete finite-horizon
MDP and the low-level policy tree search routine is optimal
in expectation for an individual agent. That is, for each agent
n, the policy 7*(n) obtained from PLANTREE satisfies

7 (n) = argmin E[» 1L[k]-J(k)|m(n)]

w(n)€Il(n) ken(n)

®)

subject to the constraints in Equation (3) of the main text,
where TI(n) is the set of all possible policy trees for agent n.
With some abuse of notation, we use k € 7(n) to denote all
the tasks allocated to agent n. Thus, SCoBA satisfies condition
(a) from above.

Now let us show (b) holds for SCoBA. The true overall
objective in SCoBA is the expected cumulative penalty of
unsuccessful tasks due to the computed multi-agent allocation
policy 7. For convenience, denote this objective as .J (7). Then,
once again from Equation (3) in the main text, we have

J(m)=E[Y 1[k]-J(k) |]

ke[K]

€))

By the linearity of expectation, we rewrite Equation (9) as

J(m)= > E[U[k]- J(k)|] (10)

kE[K]

By construction, SCoBA resolves conflicts between single-
agent allocation policies to ensure that no two agents are
allocated to the same task. Therefore, we can split the
summation over all tasks by the tasks allocated to agents
and rewrite Equation (10) as

J(m)y =Y > E[L[K-J(k)|x(n)].

n kem(n)

(1)

where, once again, we use k € w(n) to denote all the tasks
uniquely allocated to agent n.

Now, consider the objective function for the single-agent
policy in Equation (8). Recall from Section IV-A of the main
text that the minimizing value of the single-agent objective is
V (root,,) where root,, is the root of the single-agent optimal
plan tree 7*(n), i.e.

V (root,) = E[> 1k J(k) | w(n)].

kem(n)

min (12)
w(n)€ll(n)
By using linearity of expectation again, we can write Equa-

tion (12) as
V(root,) = min
w(n)€ll(n)

> E[[E] - (k) | 7(n)].

kem(n)

13)

Finally, using Equations (11)—(13) and that no two agents
are allocated to the same task, we have

min J(r) = miny 7 Z()E[ﬂ[k] - J(k) | w(n)]
n ken(n
>

= Z min
- 7(n)€Il(N) kem(n)

= Z V(rooty,)

E[1[k] - J (k) | 7(n)]

(14)
which is precisely the sum of costs of the individual agent
solutions. Thus, SCoBA satisfies condition (b) from above.

Therefore, SCoBA is optimal in expectation under the given
assumptions. O

Proposition 2. Under the same assumptions as Proposition 1,
SCoBA is complete. If a conflict-free allocation exists, SCoBA
will return it.

Proof. As with the proof for optimality, our proof for com-
pleteness follows that for the original Conflict-Based Search
algorithm. In the case of Conflict-Based Search, completeness
was shown by establishing that the high-level constraint tree
has a finite number of nodes, i.e., an upper bound on how
many nodes can be generated, if a valid multi-agent path does
exist. Because Conflict-Based Search generates at least one
new constraint per new high-level node, and executes best-
first search with monotonically non-decreasing cost on the
constraint tree, it is guaranteed to find a valid solution in finite
time if one exists.

Let us now apply the same reasoning to SCoBA. First, every
new high-level node A in SCoBA’s constraint tree must have at
least one additional constraint as compared to its predecessor

-0.65 -0.35 -0.05

-0.95

Virtual Belt

> 2> 5

Y=0

0.05 0.35 0.65

Real Belt

Fig. 7: The task generation process for the conveyor belt domain is defined by reflecting the real setup in space and time to obtain a virtual

setup.

A’, derived from a conflict in the solution that A’ represents.

Second, the total number of possible constraints is finite.
Specifically, the maximum possible number of constraints is
the number of ways K tasks can be distributed across /V agents
(obtained from standard combinatorics results) multiplied by
the time horizon, i.e. % -T'. Therefore, the finite number
of possible constraints and the addition of at least one new
constraint per new node implies that there is a finite number
of nodes in the constraint tree. The high level routine in
SCoBA uses systematic best-first search over the constraint
tree, whose expanded nodes have monotonically non-decreasing
cost (by construction). Therefore, a conflict-free allocation, if
it exists, must be found after expanding a finite number of
SCoBA constraint tree nodes. Thus, SCoBA is a complete
algorithm. O

ADDITIONAL EVALUATION DETAILS
Conveyor Belt Task Generation Process

We discuss in more detail the conveyor belt task generation
process mentioned in Section V-B of the main text. Figure 7
provides a supporting illustration for the same. We reflect the
belt setup in both space and time and create a virtual assembly
line (on the left side of the figure) where arms pick up objects
from bins and place them on the virtual belt. When the virtual

belt crosses over, the virtual objects appear as new real objects.

Recall that the above task generation process, by construction,
implies the existence of at least one allocation strategy that is
perfect, i.e., that successfully executes all tasks when there is no
uncertainty. One perfect allocation strategy is that which reflects
the virtual setup that generates the tasks. By this strategy, for
instance, the first arm, i.e., the arm closest to the belt origin,
is allocated to pick up those real objects whose corresponding
virtual forms were placed on the belt by the arm’s reflection.
The attempt location is the reflection (on the real belt) of the
point in the virtual arm’s workspace where it drops the virtual
object.

In practice, of course, we would require complete access to
the virtual generator in order to obtain the perfect allocation
strategy (assuming no uncertainty) for a given problem instance.

TABLE IV: Timing comparisons — Conveyer Belt.

Objects SCoBA Hungarian
40 9x10~%s 1.7x 1075
80 0.004s 31x107%s
120 0.013s 43%x107%s
160 0.029s 5.7x 107 %s
200 0.052s 8.3 x107%s

However, note that evaluating the competitive performance of
an online algorithm with respect to an oracle (as we do in the
main text) only requires us to know the performance of an
oracle, which is an upper bound on the performance of any
other method. The existence of a perfect allocation strategy
implies that an oracle with access to all future information
would have full success rate for any task sequence generated by
our process. We can thus effectively compute the competitive
performance of SCoBA (or any other approach) simply by
evaluating the fraction of unsuccessful tasks (missed boxes) of
that approach.

Baseline Implementation Details

Like SCoBA, all baselines were implemented in the Julia
language [53]. For both MCTS and Q-Learning, we used
the implementations in the POMDPs.jl framework [57] for
modeling and solving Markov Decision Processes. For the
rollout policy of MCTS, we used the EDD heuristic itself,
which was better than random rollout. For Q-Learning, we
used e-greedy exploration with e scaled linearly with a decay
rate of 0.9995. The learning rate was 0.01 and the policy was
trained for 100000 steps.

Baseline Computation Time Results

As we had flagged in the main text, we now report the
computation times of some baseline approaches in our two
simulation domains. The comparison is not apples-to-apples,
because the baselines have different input interfaces that
impose different restrictions on the full problem size,
depending on the domain (for instance, the MDP approaches
in the conveyor belt domain are unaffected by the number of
tasks due to the action space being the belt slots obtained by
discretizing it). Furthermore, computation time for us is not

TABLE V: Timing comparisons — Drone Delivery. All times are in seconds.

20 Requests

50 Requests 100 Requests

(Depots,Drones) SCoBA Hungarian ~ MCTS SCoBA Hungarian MCTS SCoBA Hungarian MCTS
(3,18) 0.02 84x107° 0.007 148 1x107* 0.008 2,55 2x107* 0.009
(5,15) 0.06 83 x107% 0.006 2.13 1x107* 0.007 542 2x107* 0.009
(5,30) 0.17 2x 1074 0.01 176 2x107* 0.013 7.08 3x107* 0.016

an optimizing metric but rather a satisficing one; our objective
for SCoBA’s computation time is to be reasonable for the
requirements of the respective domains (which they are, as we
discuss in the main text).

Conveyor Belt: In Table IV we compare the computation
time of the Hungarian baselines with that of SCoBA’s policy
tree search, with varying objects. The times in the SCoBA
column are copied over from Table II. Clearly, Hungarian
approach is much faster than SCoBA, but unlike SCoBA it
does not plan sequentially and only matches an arm to objects
within the arm workspace (so the effective number of objects
considered per arm is about a third of the total number, for
each of the three arms). For MCTS, the action computation
time is independent of the number of the objects because the
action space is the discretization of the conveyor belt into 15
slots per agent. With 100 MCTS iterations and a search depth
of 20, the average action computation time is 0.1s.

The computation times for EDD and Q-Learning are not
informative; EDD is a simple heuristic that does not plan

jointly for all agents, and in Q-learning the tabular policy is
precomputed offline and simply looked up online (and like
MCTS the action space is a discretization of belt slots and
does not depend on the number of objects).

Drone Delivery: In Table V, we compare mean computation
times of the Hungarian and MCTS baselines to those of
the full SCoBA algorithm, with varying depots, drones, and
requests considered. The values in the SCoBA sub-columns
are copied over from the corresponding entries in Table III
(the first quantity of the mean and standard error tuple).
As expected, Hungarian is orders of magnitude faster than
SCoBA. For the MCTS baseline, the action space is now
directly proportional to the number of tasks, i.e., requests
considered, and the computation times do vary accordingly.
The absolute numbers are much lower than SCoBA primarily
due to the MCTS baseline circumventing the complexity of
multi-agent coordination by imposing an arbitrary ordering on
the assignment of agents.

	I Introduction
	II Background and Related Work
	III Problem Formulation
	IV Hierarchical Multi-Robot Task Allocation
	IV-A Low-Level: Single Agent Policy
	IV-B High-Level: Multi-Agent Coordination
	IV-C Stochastic Conflict-Based Allocation (SCoBA)

	V Evaluation
	V-A Baselines for Unsuccessful Task Penalty
	V-B Conveyor Belt: Experiments and Results
	V-C Drone Delivery: Experiments and Results
	V-C1 Unsuccessful Task Penalty
	V-C2 Scalability

	VI Conclusion
	Appendix

