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Abstract  

Uncovering the driving forces, strategic landscapes, and evolutionary mechanisms of China’s 

research systems is attracting rising interest around the globe. One such interest is to understand 

the problem-solving patterns in China’s research systems now and in the future. Targeting a 

set of high-quality research articles published by Chinese researchers between 2009 and 2018, 

and indexed in the Essential Science Indicators database, we developed an intelligent 

bibliometrics-based methodology for identifying the problem-solving patterns from scientific 

documents. Specifically, science overlay maps incorporating link prediction were used to 

profile China’s disciplinary interactions and predict potential cross-disciplinary innovation at 

a macro level. We proposed a function incorporating word embedding techniques to represent 

subjects, actions, and objects (SAO) retrieved from combined titles and abstracts into vectors 

and constructed a tri-layer SAO network to visualize SAOs and their semantic relationships. 

Then, at a micro level, we developed network analytics for identifying problems and solutions 

from the SAO network, and recommending potential solutions for existing problems. Empirical 

insights derived from this study provide clues to understand China’s research strengths and the 

science policies beneath them, along with the key research problems and solutions Chinese 

researchers are focusing on now and might pursue in the future.  

Keywords: Bibliometrics; Text analytics; Network analytics; Research evaluation; Chinese 

research policy. 
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1. Introduction 

China’s accelerating development in science, technology and innovation over the past decades 

has sparked interest in the driving forces, strategic landscapes, and evolutionary mechanisms 

behind it. Profiling China’s achievements in science and technology (Zhou & Leydesdorff, 

2006; Mu & Qu, 2008) and discussing issues and challenges for refining China’s research 

systems (Cao & Suttmeier, 2017; Tang, 2019) draw research policy analysis attention. 

Bibliometrics and bibliometric data sources (e.g., scientific publications and patents) are 

recognized as sturdy tools to identify and answer research questions about the research 

landscape – for example, the influence of national scientific funding on emerging research 

(Huang et al., 2016)] or empirical studies on examining the research strengths of China’s 

specific practical sectors (Huang et al., 2014). Further, with the big data boom and rise of 

artificial intelligence, bibliometrics has benefited greatly from advanced information tools. 

Zhang et al. (2020a) call these “development and applications of intelligent models for 

recognizing patterns in bibliometrics” Intelligent Bibliometrics, highlighting its tremendous 

capability and potential to lead a new research thread in bibliometrics. 

Returning to the rising interest in China’s far-reaching impact on global science, technology 

and the economy, one specific question is: What are the problem-solving patterns in China’s 

research systems now and in the future? Identifying such patterns will help us understand the 

mechanisms of China’s research systems and China’s competitive advantage on the 

international stage. Further, more knowledge of which problems Chinese researchers solve, 

and how, could support policy studies.  Those could help uncover potential driving forces in 

China’s science policy, and eventually benefit the global technological evolution and economic 

revolution. 

Some studies have touched on intelligent bibliometrics by combining semantic approaches and 

expert knowledge to identify insights from scientific documents. Some analysts have employed 

subject-action-object (SAO) analysis as an effective tool for extracting patterns (e.g., 

independent problems and solutions) (Heffernan & Teufel, 2018; Yang et al., 2018). However, 

how to develop bibliometric methods to recognize problem-solving patterns in a convincing 

and semi-automatic way remains elusive. Moreover, how to predict the directions of advance 

of such science policy patterns is a further challenge. 

To address these questions, we assembled a dataset of 27,971 research articles published by 

Chinese researchers between 2009 and 2018 and indexed as “top papers” in the Essential 

Science Indicators database on the Web of Science (ESI WoS). We then developed an 

intelligent bibliometric methodology to profile the problem-solving patterns of China’s 

research systems and predict potential solutions in the future. We analyzed the macro-level 

landscape and investigated China’s disciplinary interactions through science overlay maps 

(Rafols et al., 2010). The results revealed the evolution of disciplinary emphases in China’s 

research systems. At the micro-level, we followed the assumption raised in one of our pilot 

studies that problem-solving patterns are reflected in SAO structures (Zhang et al., 2014a), and, 

hence, we constructed a tri-layer SAO network with subjects, actions, and objects, each in their 

own layer. Word embedding techniques are incorporated for representing SAOs and network 

analytics, such as community detection and link prediction, are then used to identify the 
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problem-solving patterns and predict potential connections between existing problems and 

possible solutions. The empirical results from this study should provide insights into China’s 

research systems. They should be of interest to those studying, devising policies, managing, 

and/or engaging in China’s science, technology, and innovation processes. 

The rest of this paper is organized as follows. Section 2 reviews previous studies on advanced 

bibliometric techniques. Section 3 presents the intelligent bibliometrics-based methodology in 

detail. An empirical study on profiling the problem-solving patterns of China’s research 

systems and predicting potential solutions is given in Section 4. Section 5 discusses the 

technical implications and possible applications of the proposed method and concludes this 

study.  

2. Related work: Advanced bibliometric techniques 

Dating back to the 1990s, van Raan (1996) highlighted the benefits of advanced bibliometrics 

with publication and citation data to gain “insights into the international position of actors at 

the research front in terms of influence and specializations, as well as into patterns of scientific 

communication and processes of knowledge dissemination”, rather than “only numbers”. 

Compared to using the traditional bibliometric indicator -- citation statistics -- text 

segmentation, with the aid of natural language processing techniques has provided a new angle 

of conducting topic analysis in terms of semantics (Porter & Detampel, 1995). Interest in 

analyzing the full text of publications was raised in the early 2000s (Glenisson et al., 2005) and, 

together with sentiment analysis and behavior analysis, it is an emerging topic in the 

bibliometric community (Boyack et al., 2018).  

Along with the engagement of new data sources and indicators, such as technology opportunity 

analysis (Ma et al., 2014)1, technology roadmaps (Li et al., 2015), and triple helix models to 

describe university-industry-government collaborations (Leydesdorff & Zhou, 2014; Zhang et 

al., 2014b), the interactions between bibliometrics and information technologies are increasing. 

In turn, bibliometric solutions are becoming more effective – e.g., large-scale data analytics 

and mapping (Boyack et al., 2011; Börner et al., 2012), accurate knowledge extraction and 

representation (Zhang et al., 2018b; Zhang et al., 2019a), full-text analytics (Boyack et al., 

2018), and social network analytics (Yan & Guns, 2014; Rost et al., 2017). Driven by diverse 

practical needs, incorporating computational models, particularly artificial intelligence 

techniques, with bibliometric indicators and approaches is spearheading new research frontiers 

– for example, information visualization enhances the ability and adaptability of decision 

support (Chen, 2006; Waltman et al., 2010). This research route moves forward by either 

developing more effective algorithms, approaches and tools for visualization (Ping & Chen, 

2018; Chen & Song, 2019) or facilitating network analytics to uncover latent relationships by 

analyzing the topological structures of science maps (Rost et al., 2017; Zhang et al., 2018c). 

Specifically, SAO analysis with the capability of understanding syntax from sentences receives 

                                                             
1 Technology opportunity analysis was introduced by Porter and Detampel (1995), highlighting the identification 

of opportunities related to technological R&D (e.g., key technological components, inventors/owners of a 

technology, and key players of a technological area), and has been broadly extended to a wide range of studies in 

technology analysis, assessment, and forecasting. 
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great attention from the communities of bibliometrics and technology management. For 

instance, Zhang et al. (2014a) defined problem-solving patterns from scientific documents 

based on TRIZ theory2, SAO analysis, and a substantial amount of expert knowledge. Yang et 

al. (2018) followed a similar approach, constructing an SAO network and using indicators of 

the network’s topological structure to identify independent problems or solutions. Comparably, 

Heffernan and Teufel (2018) applied a set of classification approaches for distinguishing 

problems or solutions through supervised learning and a feature space specifically designed for 

the task. 

Topic analysis, as another stream in advanced bibliometrics, has gained from topic models, 

which exploit latent Dirichlet allocation and its extensions for performing unsupervised 

clustering tasks (Yau et al., 2014; Suominen & Toivanen, 2016). In parallel, community 

detection approaches, which are associated with network analytics, group similar nodes as 

topics based on their topological features (Waltman & Van Eck, 2013; Huang et al., 2018). 

Incorporating community detection with word embedding techniques has led to novel solutions 

for knowledge representation and topic extraction (Zhang et al., 2018b). Further, as a key sub-

area of topic analysis, topic detection and tracking can be traced back decades (Allan, 2002), 

but investigating changes in topics over time has long been a challenge to not only the 

bibliometric community but also a wide range of practical sectors. Machine learning techniques 

and advanced data analytics are bringing new thoughts and tools for handling these issues – for 

example, Tang & Popp (2016) studied technological change through a learning process, while 

Zhang et al. (2017) identified predecessor-descendant relationship over time through streaming 

data analytics. 

Referring to the description of advanced bibliometrics given by van Raan (1996), we define 

these techniques, approaches, and methodologies of advanced bibliometrics based on 

computational models (particularly advanced data analytic techniques and artificial 

intelligence techniques, such as network analytics, streaming data analytics, fuzzy systems, and 

machine learning) as intelligent bibliometrics, highlighting “the development and application 

of intelligent models for recognizing patterns in bibliometrics” (Zhang et al., 2020a).  

3. Methodology 

The purpose of this study is to propose an intelligent bibliometrics-based methodology for 

profiling the problem-solving patterns in China’s research systems and predicting possible 

solutions in future. The framework of this method is given in Figure 1. 

The data used in the analysis are the bibliographical information in scientific articles retrieved 

from WoS, such as titles, abstracts, author keywords, keywords plus (a unique field in the WoS 

database3 containing terms that frequently appear in the titles of an article’s references), WoS 

categories, and affiliations. Note that the methodology is adaptable to other bibliometric 

                                                             
2 TRIZ stands for the theory of inventive problem solving. Specifically, Zhang et al. (2014a) projected problems, 

solutions, and the type of solutions as objects, subjects, and actions (i.e., verbs) respectively, and thus, profiled 

problem-solving patterns in a semantic way.  
3 More information on KeyWords Plus could be found on the website: 

https://support.clarivate.com/ScientificandAcademicResearch/s/article/KeyWords-Plus-generation-creation-and-

changes?language=en_US 



 

5 

 

databases by adapting the specific tags. For example, WoS categories can be, to some extent, 

replaced by International Patent Classification codes, and keywords retrieved from titles and 

abstracts can take the place of keywords plus. 

 

  

Figure 1. Research framework 

3.1. Macro-level investigation: Science overlay maps for profiling disciplinary interactions 

Science overlay maps, known as an effective tool for illustrating relationships among scientific 

disciplines (Rafols et al., 2010), can reveal empirical insights and strategic emphases (Rotolo 

et al., 2017). Thus, profiling the interactions between scientific disciplines, as well as the 

diverse policy emphases within China’s research systems, and predicting potential cross-

disciplinary innovation could benefit individual researchers in reviewing the landscape of 

related disciplines and extending their knowledge bases for further innovative activities. More 

importantly, in terms of science policy, these insights could support decisions of governments 

and their agencies to act pre-emptively (e.g., scoping national R&D and strategic plans by 

identifying emerging disciplines/directions and allocating research investments). Given these 

circumstances, we design this macro-level investigation incorporating science overlay maps 

with an approach of link prediction. Specifically, based on WoS categories and their co-

occurrence statistics, we construct a base map that illustrates China’s disciplinary interactions 

from a bird’s eye view, and then conduct three tasks: 

 Compare the emphasis of policies between research institutions and university systems: 

Targeting the most representative entities at the top levels of research, we generate a science 
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overlay map for each selected institution. We compare these maps to gain empirical insights 

for understanding the diverse emphases among China’s research institutions and university 

systems in terms of science policy. 

 Track the evolution of scientific disciplines: We can divide the entire dataset into a set of 

smaller sequential datasets and generate a science overlay map for each time period. From 

changes in the nodes on the map, we can track the evolution of various disciplines.   

 Predict disciplinary interactions: We introduce an algorithm of link prediction with an 

index of resource allocation (Zhang et al., 2020b) to make predictions by considering the 

base map as a complex network where each node represents a discipline, and each weighted 

edge represents the co-occurrence frequency between connected nodes. This process infers 

missing links between existing nodes, which represent potential interactions between 

disciplines, and results in a ranked list of discipline pairs based on the weights of their edges. 

High ranking pairs indicate likely cross-disciplinary directions in the future based on 

China’s current scientific strengths.  

3.2. Micro-level investigation: Subject-action-object analysis for recognizing and predicting 

problem-solving patterns 

The subject-action-object (SAO) structure of a sentence is key to translating free text into 

structured formats (Zhang et al., 2014a). SAO is the most basic grammatical syntax in English, 

following the form “someone [subject] did [action] something [object]”. Our micro-level 

investigation concentrates on SAO strings retrieved from raw text in the combined title and 

abstract fields of the articles. However, this SAO analysis includes two novel techniques: 1) 

enhancing the representation of SAOs by incorporating word embedding techniques; and 2) 

constructing a tri-layer SAO network and exploiting network analytics to uncover insights from 

the network’s topological structures. The assumptions and steps of the method follow. 

Definition 1: 𝛵(𝑠, 𝑎, 𝑜) denotes an SAO structure consisting of three components 𝑐: a subject 𝑠, 

an action 𝑎, and an object 𝑜. 

Definition 2: A tri-layer SAO network is represented as 𝐺(𝐺𝑠 , 𝐺𝑎 , 𝐺𝑜 , 𝐸
𝐺), in which 𝐺𝑠, 𝐺𝑎 and 

𝐺𝑜 represent the subject, action, and object layers, respectively, and 𝐸𝐺  is the set of edges 

among those layers.  

Definition 3: Each layer of the network ( 𝐺𝑠  as an example) is described as 𝐺𝑠(𝑁𝑠, 𝐸𝑠), in 

which 𝑁𝑠 is the set of nodes and 𝐸𝑠 is the set of edges on that layer.       

Step 1: Retrieve raw SAO structures 𝛵(𝑠, 𝑎, 𝑜) from the raw text via OpenIE (Angeli et al., 

2015) – a well-recognized and popular tool developed by the Stanford Natural 

Language Processing Group. 

Step 2: Filter the raw SAO structures by matching against a combined list of author keywords 

and keywords plus. That is, SAOs that do not contain any keywords from the 

combined list will be removed.  

Step 3: Identify core SAOs 𝛵′(𝑠, 𝑎, 𝑜) by matching with core actions (i.e., verbs), and the 

stepwise results of refining core actions are given in Table 1. 

Table 1. Stepwise results of ‘action’ cleaning and consolidation 
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 Step 

3.1 Actions retrieved from the filtered SAOs 

3.2 Rules-based cleaning and consolidation - i.e., consolidating verbs with the same stem (e.g., 

increase/increases/increased); removing copulas and modal verbs; and removing general verbs (e.g., 

suggest, introduce, and study)1 

3.3 Removing actions with a frequency of less than 5 

3.4 Dictionary-based refinement - i.e., consolidating actions based on knowledge and rules summarized in the 

literature2 

3.5 Screening and selecting core actions with human intervention 

Notes: 1) This is based on a thesaurus summarized from our previous experiments and knowledge. 2) Two key 

sources are applied to help summarize key verbs: a project Semantic Knowledge Representation granted by the 

US National Library of Medicine summarized 30 key ontological predicate definitions as a semantic predication 

gold standard for the biomedical literature (Kilicoglu et al., 2011); and a platform provided by AULIVE Inc. based 

on patent analysis summarized 37 key functional verbs4. 

Step 4: Apply a Word2Vec approach (Mikolov et al., 2013) to the raw text to represent each 

individual word as an abstract vector 𝜃𝑤
⃗⃗ ⃗⃗  . 

Step 5: Assemble the abstract vectors of individual words into SAO components, and then, 

assemble all components into an SAO. Assembling strategies are required.  

𝑐 → 𝑐 = ∑𝛼𝑖𝜃𝑖
⃗⃗⃗  

𝑖

 

𝑇 → 𝑇⃗ = 𝛽𝑠𝑐 𝑠 + 𝛽𝑎𝑐 𝑎 + 𝛽𝑜𝑐 𝑜 

where 𝜃  represents a word vector that comprises the vector of a component 𝑐 , 𝛼 and 

𝛽  represent the weights of the word vector 𝜃  and the component vector 𝑐  , 

respectively, and ∑𝛼 = 1 and ∑ 𝛽 = 1. 

Step 6: Construct the tri-layer SAO network 𝐺  according to Definition 2, in which non-

weighted edges 𝐸𝐺  among layers represent their original SAO relationships, and 

edges 𝐸 within one layer are the semantic relationships between nodes (e.g., subjects 

and subjects). The semantic relationships are weighted by Salton’s cosine similarity 

between the vectors of related components, i.e.,  

𝑒𝐺(𝑛𝑥, 𝑛𝑦) = {
1 if nx and ny belong to any same SAOs

0                                                                else
 

where 𝑒𝐺(𝑛𝑥 , 𝑛𝑦) is the weight of an edge between any two nodes  𝑛𝑥  and 𝑛𝑦  in 

different layers of the network 𝐺. 

𝑒𝑠(𝑛𝑠
𝑥, 𝑛𝑠

𝑦) = cos(𝑐 𝑛𝑠
𝑥 , 𝑐 𝑛𝑠

𝑦) =
𝑐 𝑛𝑠

𝑥 ∙ 𝑐 𝑛𝑠
𝑦

|𝑐 𝑛𝑠
𝑥| |𝑐 𝑛𝑠

𝑦|
 

where 𝑒𝑠(𝑛𝑠
𝑥 , 𝑛𝑠

𝑦) is the weight of an edge between any two nodes 𝑛𝑠
𝑥 and 𝑛𝑠

𝑦
 in the 

network 𝐺𝑠, and 𝑒𝑎(𝑛𝑎
𝑥 , 𝑛𝑎

𝑦) is calculated in the same way. 

Step 7: Follow an approach of fluid community detection (Parés et al., 2017) to group the 

subject and object layers of the network 𝐺 into communities (i.e., research topics). 

More specifically, initialize 𝑘 communities randomly with a density 𝑑(𝑐) in the range 

                                                             
4 More information could be found on the website: http://www.productioninspiration.com/ 
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(0, 1]. Then, apply the modularity approach (Newman, 2006) to help decide the 

optimal number 𝑘  of communities. Here, a larger modularity indicates a better 

division of the network’s communities: 

𝑑(𝑐) =
1

𝑛 ∈ 𝑐
 

where 𝑛 ∈ 𝑐 is the number of nodes in community 𝑐 . 

Then maximize the aggregated density of each node to update its community 

information: 

ℒ′𝑛𝑥
= 𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈ℒ ∑ 𝑑(𝑐) × 𝛿(𝑐(𝑛𝑦), 𝑐)

𝑛𝑦∈𝛤(𝑛𝑥)

 

𝛿(𝑐(𝑛𝑦), 𝑐) = {
1, 𝑖𝑓 𝑐(𝑛𝑦) = 𝑐

0, 𝑖𝑓 𝑐(𝑛𝑦) ≠ 𝑐
 

where 𝑛𝑥 is the node being updated, ℒ′𝑛𝑥
 is the set of new candidate communities for 

𝑛𝑥, 𝛤(𝑛𝑥) represents the set of nodes neighboring 𝑛𝑥, and 𝑎𝑟𝑔𝑚𝑎𝑥 is the abbreviation 

of the arguments of the maxima, representing an operation that seeks an argument to 

achieve the maximum value from a target function in a learning process. 

This process iterates until the community structure of the network converges. 

Ultimately, each community takes on the label of the node with the highest weighted 

centrality (Freeman, 1978), i.e., 

𝐶𝑇𝑛𝑥
=

∑ 𝑒(𝑛𝑥 ,𝑛𝑦)𝑛𝑦∈𝛤(𝑛𝑥)

𝑁 − 1
  

where 𝛤(𝑛𝑥) denotes the set of nodes neighboring 𝑛𝑥, 𝑒(𝑛𝑥 ,𝑛𝑦) is the weight of the 

edge between 𝑛𝑥 and 𝑛𝑦, and 𝑁 is the total number of nodes in the layer. 

Step 8: Assuming that subjects may relate to solutions and objects may relate to problems, 

apply the algorithm of link prediction with a weighted index of resource allocation 

(Zhang et al., 2019b) over the tri-layer SAO network to infer missing edges between 

the two layers 𝐸𝑆𝑂
𝐺 . We choose this algorithm on the assumption that every node owns 

a unit of unspecified resource, and the neighbors shared between two nodes are 

resource transmitters that allocate the resource to each node connected to it. The 

weight of the edge replaces the number of resource units needed to improve accuracy 

for the task of link prediction. The formula to predict the weight of the link 𝑊𝑅𝐴𝑛𝑠,𝑛𝑜
 

between the given subject node 𝑛𝑠 and the object node 𝑛𝑜 is calculated as: 

𝑊𝑅𝐴𝑛𝑠,𝑛𝑜
= ∑

𝑒(𝑛𝑐𝑛 ,𝑛𝑠) + 𝑒(𝑛𝑐𝑛 ,𝑛𝑜)

∑ 𝑒(𝑛𝑐𝑛 ,𝑛𝑘)𝑛𝑘∈𝛤(𝑛𝑐𝑛)
𝑛𝑐𝑛∈𝛤(𝑛𝑠)∩𝛤(𝑛𝑜)

 

where 𝛤(𝑛𝑠) denotes the set of nodes neighboring 𝑛𝑠, and 𝑒(𝑛𝑐𝑛 ,𝑛𝑠) is the weight of 

the edge between 𝑛𝑐𝑛  and 𝑛𝑠 . The larger the value of 𝑊𝑅𝐴𝑛𝑠,𝑛𝑜
, the higher the 

possibility that a link will form between the two nodes in future. 

The raw outputs of this procedure include a list of predicted subject-object pairs ranked by the 

weight of the predicted edges 𝐸𝑆𝑂
𝐺  and a set of similarity matrices between problems, between 

solutions, and between problems and solutions.  
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4. Empirical study: What are the problem-solving patterns of China’s research 

systems? 

The Essential Science Indicators (ESI) database in the Web of Science (WoS) is designed to 

reveal emerging science trends and influential entities (e.g., papers, journals, individuals, 

institutions, and countries), covering a 10-year rolling file5. It collects two types of papers: (1) 

highly cited papers are the top 1% papers in a given discipline in a specific year, based on 

citation counts received from the WoS database, indicating their permanent impact; and (2) hot 

papers are the top 0.1% papers in a given discipline in the most recent two-month period, based 

on citation counts received from the WoS database, indicating the emerging interests of related 

communities. Top papers in the ESI database contain both types, representing a set of well-

recognized and high-quality research articles in a discipline. Thus, the ESI database has been 

widely used for profiling research disciplines and areas (Zhang et al., 2018a; Liao et al., 2019) 

and evaluating the research performance of a given entity (Csajbók et al., 2007; Fu et al., 2011). 

Aiming to focus on high-quality research conducted by Chinese researchers, this case study 

exploited the WoS ESI database, and, on November 15, 2019, assembled a dataset of 27,971 

highly cited articles published by Chinese researchers between 1 January, 2009, and 31 

December, 2018, with the following search criteria: 

Countries/Regions = China AND Results = Top Papers 

Note that considering the setting of the ESI database, Chinese researchers are affiliated with at 

least one Chinese institution, and both first authors and co-authors are counted. Moreover, since 

the strict selection criterion (e.g., top 1% of the citation counts) of those top papers in the ESI 

database, ESI in total contains approximately 155,000 top papers from the globe, and thus, the 

coverage of the 27,971-article dataset could be convincing for portraying the research 

landscape of the Chinese research system. Brief information about the dataset is given in Table 

2. 

Table 2. General information of the collected dataset 

Indicator Number Indicator Number 

Records 27,971 Author keywords 44,263 

Authors 164,445 Keywords Plus 54,801 

Affiliations 17,160 WoS categories 211 

Countries 175 Journals 2,427 

Note: 1) WoS categories were refined by Clarivate Analytics as “research areas” in early 2019, but we used the 

finer grain version of the WoS Categories, given the period of study ends in 2018; and 2) the numbers provided 

above are all raw numbers prior to cleaning. 

In addition to our main task of profiling the problem-solving patterns in China’s research 

systems, we make overall observations from the data, which could be of interest to stakeholders 

in science policy and related academic researchers, or be investigated in further studies.  

1) On average, each article has 5.9 authors, indicating that Chinese researchers might 

prefer relatively large research teams. 

                                                             
5 More information on the WoS ESI could be found at the website: 

https://clarivate.com/webofsciencegroup/solutions/essential-science-indicators/ 
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2) China’s researchers have established collaborations with researchers from 174 

countries and regions, demonstrating a high degree of collaborative diversity.  

3) Articles published by China’s researchers span 211 of the 254 WoS categories, 

indicating a high coverage of disciplines in China’s research systems, which may be 

supported by the central government’s national strategies and science policies.  

Note that this statistical information is based on top papers. An analysis of all articles may 

produce different results. 

4.1. Macro-level investigation: Science overlay maps for profiling disciplinary interactions 

Science overlay maps specifically focus on the WoS Categories and profile disciplinary 

interactions to help uncover and understand the science policies behind those patterns. The top 

30 WoS Categories in which Chinese researchers publish articles are listed in Table 3.  

Table 3. Top 30 WoS categories in which Chinese researchers published articles 

No. WoS category #A No. WoS category #A 

1 Chemistry, Multidisciplinary 5812 15 Automation & Control Systems 1099 

2 Materials Science, Multidisciplinary 4451 17 Plant Sciences 729 

3 Chemistry, Physical 3953 18 Biochemistry & Molecular Biology 624 

4 Nanoscience & Nanotechnology 3270 19 Telecommunications 609 

5 Physics, Applied 2815 20 Oncology 605 

6 Engineering, Electrical & Electronic 2281 21 Computer Science, Info. Systems 543 

7 Multidisciplinary Sciences 1983 22 Physics, Multidisciplinary 524 

8 Physics, Condensed Matter 1978 23 Mathematics 523 

9 Energy & Fuels 1969 24 Mechanics 494 

10 Engineering, Chemical 1921 25 Food Science & Technology 486 

11 Environmental Sciences 1862 26 Geosciences, Multidisciplinary 456 

12 Engineering, Environmental 1780 27 Engineering, Mechanical 405 

13 Mathematics, Applied 1225 28 Biotech. & Applied Microbiology 393 

14 Computer Science, Artificial Intel. 1194 29 Green & Sustainable Science & Tech. 389 

15 Automation & Control Systems 1099 30 Cell Biology 388 

Note that since one journal may belong to multiple WoS categories, the set of articles assigned to WoS categories 

may overlap. 

As shown, science disciplines, such as chemistry, physics, and biology, lead the list, followed 

by engineering and computer science. These rankings may reflect two drivers: 1) China has a 

long history of establishing policies that make the natural sciences a priority. Thus China’s 

research systems provide more funding in those disciplines than to the social sciences 

(including arts and humanities); and 2) the global publication systems follow Western 

traditions, which can mean it is difficult for Chinese researchers to publish in high-quality 

social science journals due to language barriers and differences in culture and values. However, 

the balance between the two areas is potentially changing. We generated a science overlay map 

for China’s research systems in Figure 2, in which China’s specific research interests in 

chemistry, electrical and electronic engineering, applied mathematics, and multidisciplinary 

sciences are observed.  
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Further, in Appendix A, we profiled the interactions between disciplines and uncovered reasons 

for the observed patterns through two sets of science overlay maps and a forecasting study 

based on an approach of link prediction.  

 Affiliation-based maps (see Appendix A-1): we generated science overlay maps for the 

Chinese Academy of Sciences (CAS), Tsinghua University, and Peking University, 

respectively, and particularly tracked the outputs of Chinese researchers in social sciences 

from top Chinese journals indexed by the Chinese Academy of Social Sciences (CASS). 

This study revealed the diversity of science policies in China’s research systems between 

universities and government-funded research institutions. 

 Time-based maps (see Appendix A-2): we zoomed in on two time periods -- an earlier 

period between 2009 and 2011, and a later period between 2016 and 2018 to analyze the 

evolution of disciplinary interactions of China’s research systems. 

 Link prediction (see Appendix A-3): we applied an approach of link prediction to the base 

map of China’s research systems (i.e., Figure 2) to foresee potential cross-disciplinary 

interactions.  

 

Figure 2. Science overlay map for China’s research systems 

We concluded our key findings from this macro-level analysis as follows: 

 Over the past decade, China has pursued a balanced strategy of encouraging academic 

research in all scientific disciplines, but China’s efforts in social science disciplines are not 

as advanced as that of natural sciences on the global stage.  

 Interactions within natural sciences can be clearly traced for each of the three affiliations, 

as well as the base map.  However, how Chinese researchers will conduct cross-disciplinary 

studies between the natural and social sciences, where gaps still exist, is elusive so far.  

 Computer science and related disciplines are one of China’s research strengths, and driven 

by artificial intelligence techniques and the visionary applications of internet of things, as 

well as 5G and robotics, interactions between computer science (e.g., artificial intelligence, 

information systems, and cybersecurity) and its applications in engineering areas, such as 
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electrical and electronic engineering, telecommunications, and automation are rapidly 

spearheading a cutting-edge direction. 

 With research strengths in chemistry, biology, and material sciences, also, a cutting-edge 

area that holds strong interest with China’s researchers is sustainable technologies -- e.g., 

3D printing. New materials and novel manufacturing processes in the areas of chemical 

engineering and biological engineering are among the most significant innovations these 

days, and nanotechnologies should further enhance the practical capability of those 

inventions. 

 

4.2. Micro-level investigation: Subject-action-object analysis for recognizing and predicting 

problem-solving patterns 

With the aid of OpenIE (Angeli et al., 2015), we extracted 195,188 raw SAO structures from 

our corpus and then conducted the cleaning and consolidation process (Steps 1-3 in Section 

3.2) to identify 4,528 core SAOs, including 35 core actions (i.e., verbs), 4,308 subjects (i.e., 

phrases and terms), and 4,409 objects (i.e., phrases and terms). Then, based on the 145,265 

word-vectors trained by the Word2Vec model, these core SAOs were represented by SAO 

vectors (Steps 4-5 in Section 3.2). 

The tri-layer network was constructed from the 4,528 SAOs. 1) The subject and object layers 

consisted of 4,308 nodes and 4,409 nodes, respectively. An edge between two nodes in the 

same layer was only created if the cosine similarity between the two corresponding SAO 

vectors was above average and the similarity was then set as the weight of the edge. 2) The 

action layer with the 35 core verbs was treated as a virtual layer with no edges. 3) The natural 

connections within each SAO structure were used as non-weighted edges among the three 

layers. The descriptive statistics of the tri-layer SAO network are given in Table 4. 

Table 4. Descriptive statistics of the tri-layer SAO network 

 No. of nodes No. of edges 
Distribution of the weights of edges 

Max. Min. Mean Std. Dev. 

Subject layer 4,308 4,273,606 0.999 9.2e-9 0.293 0.186 

Object layer 4,409 4,707,372 0.999 3.0e-7 0.348 0.185 

 

Subsequent to establishing the current network, we conducted community detection to identify 

the key problems and solutions in China’s research systems, followed by the link prediction 

for predicting the potential problem-solving patterns that Chinese researchers could be 

contributing to in the near future. 

4.2.1. Community detection for identifying key problems and solutions 

Given the relatively large number of subjects and objects, cluster analysis provided a way to 

explore representative subjects and objects and then identify key problems and solutions. Thus, 

we applied a fluid community detection approach to the subject and object layers of the network. 

To identify the optimal number k of communities over an interval of [2, 150], we plotted the 
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resulting modularity values in a series of experiments and then selected the optimal number of 

communities based on the two criteria: 1) since the subjects and objects were retrieved from 

more than 200 WoS categories, a relatively large number of communities may better reflect 

reality; and 2) a higher modularity value may indicate a better result. Hence, we chose 80 and 

90 as the numbers of communities for the subject and object layers, respectively.  

The weighted centrality of each subject/object was calculated, and the subject/object with the 

highest value of the centrality was selected as the label for its community. It may be criticized, 

but, we employed these labels to represent the entire community and linked those communities 

with actions of those labels - i.e., when community CA was labeled with a subject S, the actions 

connected with subject S were considered to be actions associated with the community CA. 22 

clumps were collected, in which one action acts as the core and is connected to either a set of 

subjects or a set of objects. Considering that clumps with missing subjects or objects do not 

adequately reflect a complete problem-solving pattern, 7 clumps were discarded, leaving 15 

complete clumps with 68 subjects and 78 objects6. These might represent the key problems and 

solutions achieved by China’s research systems over the past decade. It is intriguing that among 

those identified subjects and objects, the following seven WoS categories cover 71.19% of the 

combined set. They are: “chemistry, multidisciplinary”, “chemistry, physical”, “materials 

science”, “multidisciplinary”, “physics, applied”, “nanoscience & nanotechnology”, and 

“engineering, environmental”. 

Figure 3 shows a visualization of the tri-layer (using a procedure developed in one of our pilot 

studies on knowledge discovery in biomedical research – see Hu et al., (2018)), which helped 

us to analyze the situation more deeply. It is clear that “affect”, “provide”, “present”, “promote”, 

and “construct” are the top 5 clumps. From a semantic perspective and together with concepts 

in technology management (Li et al., 2018), we classified these 15 clumps into the following 

three aspects: 

 Breakthrough technologies: the clumps of “provide”, “inhibit”, and “produces” may 

contain ideas for inventions, such as proposing new manufacturing processes, identifying 

new materials, and creating new products. These clumps contain 15 subjects and 16 objects, 

with a coverage of 21.23%. 

 Technological refinements: the clumps of “affect”, “combine”, “estimate”, “induce”, and 

“promote” may indicate improvements to existing solutions. These clumps involve 18 

subjects and 31 objects, with a coverage of 33.56%. 

 Potential innovative solutions: the remaining 7 clumps, covering 45.21% of the network, 

include “associate with”, “construct”, “involve”, “observe”, “process”, “present”, and 

“use”. Further investigation is needed to understand their contents in detail, but it is 

reasonable to consider that these solutions may be ancillary to potential innovation, e.g., 

general observations or the use of existing approaches, as well as possibly containing some 

significant findings -- e.g., an impactful recombination. 

                                                             
6 Available at https://github.com/IntelligentBibliometrics/QSS 
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Figure 3. The tri-layer SAO network of key research problems (bottom layer) and solutions (top layer) contributed by Chinese researchers 

Note: For readability, we have only included the key terms of subjects and objects. The size of actions (middle layer) indicates the number of connected subjects and objects. 

The color of the nodes indicates the clumps. A high-definition version could be found: https://github.com/IntelligentBibliometrics/QSS. 
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4.2.2. Link prediction for predicting potential problem-solving patterns 

We applied the refined link prediction approach to predict the links in the tri-layer SAO 

network. Based on the predicted weight of the connection between a subject and an object, 

10,000 problem-solving patterns (i.e., subject-object pairs) were identified 7  that could be 

considered as potential solutions (i.e., subjects) for certain problems (i.e., objects). Two sets of 

efforts were conducted to briefly demonstrate these 10,000 patterns: 1) a science map for 

visualizing the WoS-category co-occurrence among predicted solutions to review potential 

disciplinary interactions in China’s research systems; and 2) 19 highlighted problem-solving 

patterns to provide examples on how potential solutions are recommended to a specific problem. 

Given that we linked the subjects and objects with the WoS categories via their related journals 

and, hence, one solution (subject) may belong to multiple WoS categories. The breakdown of 

WoS categories in the predicted network closely follows the proportions given in Table 3. We 

also generated a co-occurrence matrix between categories, and then a science overlay map, as 

shown in Figure 4, to reveal the interactions between predicted solutions at a discipline level. 

Despite an outcome of the micro-level investigation based on network analytics on an SAO 

network, insights derived from this map could provide clues from a macro-level landscape as 

to how multiple disciplines might fuse based on China’s current research strengths. Such 

insights might be interesting in terms of science policy and strategic management. 

  

Figure 4. WoS-category co-occurrence map of predicted solutions 

Unlike our observations from the science overlay maps above (c.f., Figure 2 and Appendix A), 

Figure 4 emphasizes the predicted disciplinary interactions that may occur in China’s research 

systems in the near future, and thus, from this analysis, we glean the following insights. 

                                                             
7 Also available at https://github.com/IntelligentBibliometrics/QSS 
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 Computer science is bridging engineering disciplines (e.g., engineering, electrical & 

electronic) and business disciplines (e.g., management and economics). Such a 

combination is to be expected as a frontier that provides solutions for social sciences, with 

support of China’s research advantages in computer science disciplines. 

 Extensive fusions may occur with a broad range of engineering disciplines. Also, the 

strengths of the connections among disciplines, such as materials science, chemistry, 

biology, and neurosciences, might be further enhanced. 

 Genetics and heredity seem to be a key that could launch a cutting-edge direction in the 

medical and healthcare sciences. Similarly, the bridging role of public, environmental & 

occupational health in connecting disciplines, such as biology, neuroscience, clinical 

neurology and psychology, and economics is observed. 

As representative cases, we selectively highlighted 19 problem-solving patterns in Table 5, 

based on the following steps and criteria:  

1) According to the predicted value calculated by the link prediction method, which represents 

the potential strength of the connection between a subject and an object, each pattern could 

be ranked.  

2) The WoS category of the subject was set as a prior indicator, and for each category, we 

selected the top 3 high-ranked patterns.  

3) Duplicate subjects and objects were removed -- i.e., for each subject/object, only the pattern 

with the highest rank was retained. 

Following a traditional approach in literature-based discovery for seeking supportive evidence 

from the literature, we randomly picked a few patterns in Table 5:  

 Current research on “Plant sciences” (#4) is working toward proof that melatonin 

treatments protect antioxidant enzyme activities, which could regulate oxidative stress 

(Emamgholipour et al., 2016).  

 In #9, while t-distributed stochastic neighbor embedding is a machine learning technique 

for reducing dimensions and then visualization (Van der Maaten & Hinton, 2012) and 

measuring the uptake of carbon dioxide by leaves is an approach of representing gross 

primary production, the bridge of the two “apparently” irrelevant items is earth system 

modelling and visualization, a frontier area in plant sciences (Wang et al., 2017). 

 In Dermatology, #17, an acne-like skin rash is one of the most common side-effects of 

treating cancer with a combination of cetuximab and oxaliplatin, which has been reported 

in diseases such as cholangiocarcinoma (Gruenberger et al., 2008).  
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Table 5. Selected potential problem-solving patterns that may be achieved by Chinese researchers. 

 WoS category of subjects Subject (potential solutions) Object (possible problems) 

1 Engineering, environmental excellent microwave absorption (MA) performance a nonvolatile rewritable memory effect with the function of flash 

2 Thermodynamics The regional differences in impact factors on CO2 emissions CRISPR-Cas9 

3* Microbiology respiratory syncytial virus as a target of miR-448 

    

4 Plant sciences Melatonin significantly Increased activities of catalase 

5 Gastroenterology & hepatology Pin1 inhibition by API-1 for the MnO2/Mn/MnO2 sandwich-like nanotube arrays in 

solution of 1.0 M Na2SO4 

6 Medicine, research & experimental StarBase V2.0 to detect Pb2+ in practical samples 

7 Geochemistry & geophysics a deep convolutional neural network high-quality images 

8* Virology non-Latinized binomial species names species richness 

9 Computer science, artificial intelligence t-distributed stochastic neighbor accurate representation of gross primary production 

10 Biochemical research methods machine learning methods to identify feature-related wavebands for developing models for 

monitoring the oxidative damage of pork myofibrils during 

frozen storage 

    

11 Marine & freshwater biology Tris (1,3-dichloroisopropyl) phosphate exposure reactive oxygen species 

12* Agriculture, dairy & animal science Gene expressions of antioxidant enzymes by real-time polymerase chain reaction 

13 Peripheral vascular disease Human Induced pluripotent stem cells better durability under harsh hydrogen evolution reaction cycling 

conditions than commercial Ir/C 

14* Behavioral sciences enzyme-linked immunosorbent assay an improved photocatalytic performance under visible light 

irradiation 

15 Nuclear science & technology The analysis of Fourier transforms infrared spectroscopy in a thermogravimetry/differential scanning calorimetry coupled 

with Fourier transform infrared spectroscopy 
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16* Genetics & heredity hepatocellular carcinoma up-regulated long non-coding RNA hepatocellular carcinoma progression 

17 Dermatology acnes species the optical properties of the anticancer function of oxaliplatin 

18 Materials science, characterization & 

testing 

The results from the 3-D FE model statistical data concerning changes in the microenvironment of 

amide moieties in response to different doses of multi-walled 

carbon nanotubes 

19 Orthopedics Osteoblasts tyrosine kinase inhibitors resistance 

Note that 1) since one subject may  be connected with multiple WoS categories, the WoS category of subjects in this table only lists the category with the largest number of 

SAOs in the predicted 10,000 subject-object pairs; and 2) we do not provide the WoS category of objects since one solution can be easily assigned to a given research area but 

one problem may be a combination of multiple disciplines.



 

 

4.2.3. Empirical validation for the prediction of problem-solving patterns 

Aiming to evaluate the performance of the proposed method, an empirical validation was 

conducted to examine the predicted potential problem-solving patterns through link prediction. 

This design follows two reasons. 1) The retrieval of SAO structures was conducted by the 

software OpenIE, which is a popular tool for SAO analysis and has already been examined in 

the NLP area (Angeli et al., 2015). Thus, we assume the collected SAOs in our study (i.e., core 

SAOs retrieved in the data pre-processing) are acceptable. 2) Since the empirical dataset is 

unlabeled and previous SAO approaches are mostly case-driven and semi-automatic, expert 

knowledge-based empirical validation is the best option for us under these circumstances. 

Despite the other task of recognizing problem-solving patterns, the prediction of those patterns’ 

recombination is the final outcome of the micro-level investigation. Therefore, targeting to 

these predicted problem-solving patterns, empirical evaluation was conducted from two 

aspects: 1) the validation of selected problem-solving patterns in Table 5, and 2) the validation 

of problem-solving patterns predicted for a specific problem. 

(1) Validation of selected predicted problem-solving patterns 

These 19 problem-solving patterns cover a broad range of research disciplines, challenging the 

organization of a relevant expert panel for conducting the empirical evaluation. Thus, we 

specifically picked up 5 problem-solving patterns (marked with a “*” in Table 5) aligning with 

biology and life sciences. We formed an expert panel, including five early career researchers 

(e.g., Research Follows and PhD candidates) in related areas from two CAS’s institutes: the 

Institute of Zoology and the Guangzhou Institutes of Biomedicine and Health. We interviewed 

these five experts and requested them to mark the relevance of the solutions to problems against 

five levels, where A means ‘exactly relevant’ (equal to ‘1’), and ‘E’ means ‘totally irrelevant’ 

(equal to ‘0’). The scores for the five problem-solving patterns are given in Appendix B (see 

Supplementary Table 4). 

In general, an average score for the five patterns is 0.58, which could be acceptable, considering 

the two patterns (i.e., #3 and #14) with the lowest scores received one B score at least. Then, 

we arranged an online workshop gathering the five experts to delve into the three patterns (i.e., 

#8, #12, and #16) and empirically discussed their potential. We conclude as follows: 

 Pattern #8 refers to the naming issue in virology, raised by the irregularity of naming 

viruses in early days and the species richness, and then the International Committee on 

Taxonomy of Viruses (ICTV) introduced the rule of using non-Latinized binomial to name 

virus species in 2011 (Van Regenmortel et al., 2010). Thus, the connection between the 

subject and object of pattern #8 is promising, but considering this is not a potential problem-

solving pattern, rather than an existing one, it is reasonable to mark it with a score of 0.65. 

 Pattern #12 in fact exposes a shortage of SAO analysis, which could not effectively 

distinguish subjects and objects in a passive tense. In this case, detecting the gene 

expression of antioxidant enzymes is a problem in animal science, and the approach of real-

time polymerase chain reaction (RT-PCR) could be an effective and approvable solution 

(Yin et al., 2014). That is to say, the SAO analysis failed to clearly identify the roles of the 

two items, but, intriguingly, the preposition ‘by’ before RT-PCR could be such an excuse. 



 

 

However, considering this is an evaluation for link prediction – seeking the relationships 

between subjects and objects, we made a good hit. 

 Pattern #16 uncovers the correlation between long noncoding RNAs (IncRNA) and the 

hepatocellular carcinoma, and evidence for this potential pattern could be traced in some 

most recent papers published in related top-level journals (Xiong et al., 2017), considering 

the dataset only covers publications before January 1, 2019. Thus, we consider this pattern 

demonstrates good agreement between our prediction and expert knowledge. 

According to this workshop, the experts agreed that the proposed method could gain 

advantages in connecting problems and solutions, and such problem-solving patterns are the 

recombination of existing knowledge, which might be innovative for related research 

communities. However, the experts also pointed out that since these patterns were identified 

from scientific articles, if those predicted patterns were based on relatively old articles, such a 

recombination might be realized already (e.g., #8). We agree and anticipate that focusing on 

the most recent publications could increase the practical significance of the proposed method.   

(2) Validation of the problem-solving patterns predicted for a specific problem  

In this section, we targeted a specific problem and validated whether the set of potential 

solutions for this problem could be empirically feasible. Considering our own background, we 

noticed that “Computer science, artificial intelligence (AI)” contains 461 problem-solving 

patterns. Of these, the problem “to identify feature-related wavebands for developing models 

for monitoring the oxidative damage of pork myofibrils during frozen storage” in the “food 

science & technology” category had 15 potential solutions, as listed in Table 6. Evaluating each 

of these solutions may prove to be an interesting future empirical study we could undertake to 

demonstrate the feasibility of the link prediction approach for predicting problem-solving 

patterns. 

Table 6. 15 potential AI solutions for one specific problem in food science and technology  

 Subject (Potential Solution) Level Note 

1 nonlocal hierarchical dictionary learning A Methods for feature selection (Zhu et al., 2016a) 

2 a supervised inductive manifold hashing 

framework 

C Manifold hashing could be feasible for feature 

representation (Song et al., 2017) but may not be 

suitable for feature selection 

3 a manifold embedding algorithm A Methods for feature selection (Yao et al., 2017) 

4 a reinforcement learning algorithm E Inapplicable for this case 

5 hyperspectral images D Related to the problem but not a solution 

6 nonparametric manifold learning A Methods for feature selection (Cai et al., 2010) 

7 A deterministic learning technique C Methods in quantum computing, which may be 

theoretically applicable  

8 a multi-objective discrete particle swarm 

optimization algorithm 

A Widely applied methods for feature selection (a 

large number of articles have been published in 

journals such as Expert Systems with Applications)  



 

 

9 a multimodal deep support vector classification 

(MDSVC) approach 

B Support vector machine is one classical approach 

for feature selection, and the use of deep learning 

for extracting explicit features may be a challenge. 

10 a multi-kernel learning strategy A Classical methods for feature selection (Zeng & 

Cheung, 2010) 

11 a projection-based TODIM method with MVNSs 

for personnel selection 

A Classical optimization approaches, similar to #8 

12 new hashing techniques B Hashing techniques are well known for data storage 

and transmission, but some work could be traced in 

the literature (Zhang et al., 2015). 

13 existing sparse coding algorithms A Methods for image/graph feature selection (Zhu et 

al., 2016b) 

14 spectral embedding B Spectral analysis for feature selection could be 

traced in the literature (Li et al., 2012) 

15 a novel low-rank multi-view E Not a solution 

Note that the 15 solutions were ranked based on the predicted value calculated by the proposed approach of link 

prediction. 

The description of the problem suggests that the solution may be a task of feature selection for 

pattern recognition (i.e., waveband patterns). We followed the same approach and discussed 

these 15 solutions with researchers in the Australian Artificial Intelligence Institute at the 

University of Technology Sydney with particular expertise in machine learning and computer 

vision. Based on these discussions and scores marked by the experts, the average score over 

the entire set of 15 solutions was 0.7, which could be considered an “acceptable” result. 

Additionally, we added references to support the experts’ judgments, noting that all cited 

references are sourced from top-level journals and conferences in the area of artificial 

intelligence. 

As a conclusion, the empirical validation gained a score of 0.58 for the predicted high-ranked 

patterns in the area of biology and life science, and a score of 0.7 for the predicted AI solutions 

for a specific problem in food science and technology. Despite certain limitations raised by the 

experts, we all agreed that the performance of this prediction is acceptable, and the proposed 

method could have practical significance for actual uses.   

5. Discussion and conclusions 

In this paper, we present a methodology based on intelligent bibliometrics to investigate the 

problem-solving patterns in China’s research systems. The methodology leverages science 

overlay maps to profile the interactions among research disciplines, plus subject-action-object 

(SAO) analysis, with network analytics, to identify key problems and solutions, as well as to 

predict the potential solutions that Chinese researchers might achieve in future. We derive 

insights from an empirical study focusing on top papers published by Chinese researchers 

between 2009 and 2018, from which we derive evidence of China’s research strengths and 

conjectures about the science policies that drive these strengths, multidisciplinary interactions, 

key research problems and solutions, and potential solutions to existing problems.  



 

 

5.1. Key findings 

Research strengths and China’s science policies: The proportion of top papers in the WoS 

categories, as well as the distribution of identified problems and solutions, indicates that 

China’s science policies emphasize research in the natural more than the social sciences 

(including arts and humanities). However, it is also plausible the imbalance may be due to the 

difficulties Chinese researchers have with publishing in social science fields as a result of 

differences in knowledge bases, cultural backgrounds, and, of course, language barriers, which 

are much higher in social science journals. In general, China’s research strengths concentrate 

in disciplines like chemistry, materials science, applied physics, engineering, and computer 

science. In particular, “nanoscience and nanotechnology” stands forth as a multidisciplinary 

strength in China’s research systems. 

Multidisciplinary interactions: Following the trends in multidisciplinary interactions, China’s 

efforts are competitive internationally. China is spearheading two main cross-disciplinary 

directions: 1) Computer Science (highlighted by artificial intelligence techniques) and its 

applications in engineering areas; and 2) nanotechnology and its relevance to chemical and 

biological engineering. Solid evidence, in the form of affiliation-based science overlay maps, 

identify key research problems and solutions. Predicted patterns of problems and solutions 

build from the research outcomes to date.  

Problem-solving patterns: Arguably, the actions associated with the key problems and 

solutions indicate that around 20% of the research relates to breakthrough technologies, 30% 

to technological refinements, and the remaining 50% to extraneous research activity. While the 

disciplines of identified problems and solutions coincide with that of China’s research strengths, 

the predicted solutions that might be achievable for Chinese researchers are based on their 

current accomplishments, which demonstrate China’s extensive capabilities in spearheading 

cross-disciplinary research. 

5.2. Methodological implications and potential applications 

Intelligent bibliometrics could be an effective toolkit for a broad range of empirical studies, 

both in practical sectors and for specific research questions. The proposed methodology of 

intelligent bibliometrics emphasizes the use of certain advanced technologies in information 

retrieval -- i.e., word embedding, subject-action-object (SAO) analysis, and network analytics 

-- and the empirical results soundly demonstrate its feasibility and reliability. The proposed 

framework also has the potential for a high level of flexibility since it could easily be applied 

to many academic databases, such as PubMed and Scopus, or to patents, without major 

modifications. The main technical implications of the proposed methods are highlighted here.  

 Incorporating network analytics (e.g., community detection and link prediction) with 

bibliometric approaches (e.g., science overlay maps) offers benefits for further knowledge 

discovery. For example, this combination can help predict future interactions between 

disciplines and help identify potential solutions for existing problems. However, our 

experiences with this case study indicate that the complexity of the network analytics 

algorithms might be sensitive to network structures. Ways to maintain the balance between 

large networks and efficient analytics should be considered. 



 

 

 SAO analysis creates additional dimensions for understanding semantics and discovering 

latent relationships, compared to individual word- and term-based analysis. Involvement of 

word embedding techniques can further enhance the capability of measuring similarities 

among SAOs. However, we also acknowledge that the modularity of retrieved SAOs is 

much more scattered than that of terms. This substantially increases the complexity of 

further network analytics and may lead to reduced performance when directly applying 

some traditional approaches, e.g., clustering. 

5.3. Limitations and future directions 

We note limitations and potential refinements in four directions. 1) The SAO structures were 

represented as the means of their constituent word vectors built by Word2Vec. However, 

applying a machine learning technique to train a weighting strategy may better reflect actual 

situations. For instance, the term “data mining” may give a higher weight to “data” than to 

“mining”. 2) The validation of SAO network analytics, including identifying key problems and 

solutions based on SAO network analytics, and predicting potential problem-solving patterns 

might require quantitative approaches to complement expert knowledge to reduce potential 

biases. 3) Deciding on the optimal number of communities in the community detection step 

might be better handled with an optimization technique or techniques. 4) When investigating 

the problem-solving patterns of China’s research systems, the use of WoS categories may raise 

a concern that non-existent interactions may simply mean no journal covers those two 

disciplines, rather than no research articles covering topics in those disciplines. Thus, engaging 

multiple data sources and conducting further text analytics may provide a more comprehensive 

perspective on the landscape under study. 
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Appendix A Partial Results of The Macro-Level Analysis 

This appendix contains two sets of science overlay maps to profile the interactions between 

disciplines and further understand the reasons behind them: 

 Affiliation-based maps: These emphasize the differences between universities and research 

institutions, revealing the diversity of science policies in China’s research systems. 

 Time-based maps: These provide a way to trace the evolution of disciplinary interactions 

over the past decade. 

(1) Affiliation-based comparison 

In terms of basic record counts, the Chinese Academy of Sciences (CAS) published the most 

papers in the dataset with 5,449 articles. Tsinghua University and Peking University follow 

with 1,631 and 1,309 articles, respectively. Interestingly, these three entities are quite 

representative of two types of affiliations in China’s research systems - i.e., research 

institutions mainly supported by the government and universities. In terms of the QS World 

University Rankings 8 , as well as several Chinese ranking systems, Tsinghua University 

performs best in natural sciences while Peking University leads the social sciences in the 

country.  

With the aid of VantagePoint9, we generated a base science map of the entire dataset along 

with three further maps for each of these top performers, as illustrated in Supplementary Figure 

1. Our observations follow. 

 In general, these three affiliations have similar strengths in certain disciplines, such as 

“chemistry, multidisciplinary”, “multidisciplinary sciences”, and “engineering, electrical 

& electronic”, and considering the balance between natural sciences (e.g., the red, yellow, 

blue, and purple nodes), plus the social sciences (green). But strength in the former areas 

overwhelmingly exceeds the latter. This trend accords with the base map. 

 Despite having common interests, the three affiliations each have their own strengths in the 

natural sciences – i.e., CAS in “computer science, artificial intelligence” and “plant 

sciences”, Tsinghua University in “telecommunications” and “biotechnology & applied 

microbiology”, and Peking University in “automation & control systems”, “mathematics, 

applied”, “ecology” and “biochemistry & molecular biology.” 

 There is no solid evidence to judge the different preferences of Tsinghua University and 

Peking University in natural sciences and social sciences. However, compared to the other 

two, Peking University appears to have more strength in business disciplines, such as 

“economics” and “urban studies”, as well as disciplines such as “public, environmental & 

occupational health” and “psychology, clinical”. 

                                                             
8 More information can be found on the website: https://www.topuniversities.com/university-rankings/world-

university-rankings/2020 
9 More information can be found on the website: www.theVantagePoint.com 



 

 

 

Supplementary Figure 1. Science overlay maps for the Chinese Academy of Sciences (top-left), Tsinghua University (top-right), and Peking 

University (bottom-left), and the base map for China’s research systems (bottom-right). 

 

  



 

 

As we discussed above, due to language barriers and differences in culture and values, as well 

as certain internal criteria for performance evaluation (e.g., China’s central government starts 

to encourage researchers to publish papers in Chinese10), it is reasonable to track the outputs 

of Chinese researchers in social sciences from top Chinese journals and, specifically, take the 

Chinese Academy of Social Sciences (CASS), a government-funded research institution that 

specializes in the social science disciplines, into consideration. Given the circumstances, we 

conducted a search in the Chinese Social Sciences Citation Index (CSSCI) database11, the most 

reputable and recognized database for Chinese social science studies, with the following search 

strings (but in Chinese), and the results are given in Supplementary Table 1. 

Affiliation= (“Tsinghua University” OR “Peking University” OR “Chinese Academy of 

Sciences” OR “Chinese Academy of Social Sciences”) AND Publication Year= (2009-2018) 

AND Article Type= (Research Articles) 

Supplementary Table 1. Number of Chinese social science publications in the CSSCI  

No. Affiliation Num of Articles 

1 Tsinghua University 11,980 

2 Peking University 19,301 

3 Chinese Academy of Sciences 9,448 

4 Chinese Academy of Social Sciences 20,616 

 

Supplementary Table 1 reveals that CASS leads China’s social sciences, and Peking University 

is a competitive counterpart, both considerably exceeding Tsinghua University and CAS. This 

coincides with our observation from QS and other ranking systems. Even though CSSCI and 

ESI are not necessarily at the same stage, this ‘baby’ search provides an external indicator to 

understand the situation of China’s social science disciplines and could be complementary to 

the main body of this affiliation-based comparison. In general, at a macro level we observe:  

 Over the past decade, China has pursued a balanced strategy of encouraging academic 

research in all scientific disciplines, but China’s efforts in social science disciplines are not 

as advanced as that of natural sciences on the global stage.  

 Interactions within natural sciences can be clearly traced for each of the three affiliations 

as well as the base map, but how Chinese researchers will conduct cross-disciplinary 

studies between the natural and social sciences, where gaps still exist, is elusive so far.  

(2) The evolution of disciplinary interactions 

To analyze the evolution of disciplinary interactions of China’s research systems, we 

specifically zoom in on two time periods -- an earlier period between 2009 and 2011, and a 

later period between 2016 and 2018. We generate separate science overlay maps, as shown in 

Supplementary Figure 2. From the number of articles in each WoS category for each period, 

we find: 

                                                             
10 More information could be found at the website: https://scholarlykitchen.sspnet.org/2020/03/03/guest-post-

how-chinas-new-policy-may-change-researchers-publishing-behavior/ 
11 See its introduction on the WoS’s website: https://clarivate.com/webofsciencegroup/solutions/webofscience-

chinese-science-citation-index/ 



 

 

 The disciplinary layout of China’s research systems has enriched from 2009 to 2018, with 

an increase from 174 categories to 203. 

 Most established disciplines have been maintained and strengthened: 1) the top five 

categories remain the same, at 4,354 articles (30.5%) of the 14,279 articles in the later 

period. These are “chemistry, multidisciplinary”, “materials science, multidisciplinary”, 

“chemistry, physical”, “nanoscience & nanotechnology”, and “physics, applied”; and 2) 

publishing output in 172 categories (84.7%) of the 203 categories has increased at a rate 

higher than 1. 

 

Supplementary Figure 2. Science overlay maps for the periods 2009-2011 (top) and 2016-

2018 (bottom). 

 

To further explore the evolution in disciplines covered, we identified 16 emerging categories 

that met the following criteria: 1) a rate of increase in the number of articles is higher than 5; 

and 2) showing more than 100 articles in the later period. The categories are given in 



 

 

Supplementary Table 2. The differences across periods in these disciplines not only reflect the 

changing interests of the research community, but also changes in the driving forces behind, 

such as national strategies and science polices. Results show some interesting patterns. 

 Computer science and related disciplines are definitely one of China’s research strengths, 

and, motivated by the rise of artificial intelligence techniques, such strengths were further 

supported by China’s national strategy in 2017 12 . Driven by information technology, 

telecommunications (advancements like 5G) and robotics were boosted as well, which 

illustrates active interactions between computer sciences and engineering disciplines. 

 With research strengths in chemistry, biology, and material sciences also, a cutting-edge 

area that holds strong interest with China’s researchers is sustainable technologies -- e.g., 

3D printing. Investigating such sustainability is not only associated with multidisciplinary 

studies in natural sciences but also with social sciences. 

Supplementary Table 2. Sixteen emerging WoS categories in China (2009-2018) 

No. WoS category #L #E Inc. Rate 

1 Telecommunications 415 22 393 17.9 

2 Remote Sensing 130 8 122 15.3 

3 Green & Sustainable Science & Technology 280 26 254 9.8 

4 Mathematics, Interdisciplinary Applications 181 17 164 9.6 

5 Mechanics 313 30 283 9.4 

6 Imaging Science & Photographic Technology 113 11 102 9.3 

7 Computer Science, Information Systems 356 38 318 8.4 

8 Engineering, Mechanical 253 28 225 8 

9 Engineering, Multidisciplinary 128 15 113 7.5 

10 Instruments & Instrumentation 214 28 186 6.6 

11 Thermodynamics 195 28 167 6 

12 Engineering, Chemical 1142 167 975 5.8 

13 Medicine, Research & Experimental 146 22 124 5.6 

14 Energy & Fuels 1111 172 939 5.5 

15 Computer Science, Cybernetics 183 29 154 5.3 

16 Environmental Studies 159 26 133 5.1 

Note that #L and #E mean the number of articles in the later period and the earlier period, respectively, and Inc. 

stands for an increased number of articles between the two periods. 

Science overlay maps give a vivid solution for exploring the relationships among research 

disciplines and providing strategic insights for decision support. However, considering science 

maps are also a type of network, network analytics can be useful for further delving into their 

topological structures to deepen and expand our knowledge of those interactions (Zhang et al., 

2018c). Our following discussion is based on the following assumptions: 

 Science overlay maps describe disciplinary interactions through a network, in which a node 

represents a research discipline and an edge connecting two nodes represents the existing 

interactions between the two disciplines (e.g., the frequency of co-occurrence).  

                                                             
12 More information can be found on the website: https://www.cnas.org/publications/reports/understanding-

chinas-ai-strategy 



 

 

 It is reasonable to believe that if two disciplines do not interact with each other, yet are 

indirectly connected by a number of the same disciplines (i.e., common neighbors), the two 

disciplines will have a high probability of interacting with each other in the near future.   

Given these two assumptions, we applied a link prediction approach based on a weighted index 

of resource allocation to the base map in Supplementary Figure 1. The results, given in 

Supplementary Table 3, fall into two categories: cross-disciplinary interactions that are likely 

to be maintained and new cross-disciplinary interactions that are likely to emerge. 

Supplementary Table 3. Link prediction for cross-disciplinary interactions 

Type Interactive pairs between WoS categories 

Existing 

interactions 

Materials Science, Multidisciplinary Chemistry, Physical 

Engineering, Electrical & Electronic Computer Science, Artificial Intelligence 

Engineering, Electrical & Electronic Computer Science, Interdisciplinary Applications 

Chemistry, Physical Nanoscience & Nanotechnology 

Engineering, Electrical & Electronic Telecommunications 

Computer Science, Artificial Intelligence Automation & Control Systems 

Biochemistry & Molecular Biology Biotechnology & Applied Microbiology 

Materials Science, Multidisciplinary Nanoscience & Nanotechnology 

Engineering, Electrical & Electronic Automation & Control Systems 

Engineering, Electrical & Electronic Computer Science, Information Systems 

Potential 

interactions 

Oncology Neurosciences 

Engineering, Electrical & Electronic Statistics & Probability 

Economics Public, Environmental & Occupational Health 

Environmental Sciences Agronomy 

Cell Biology Pharmacology & Pharmacy 

Chemistry, Multidisciplinary Engineering, Electrical & Electronic 

Nanoscience & Nanotechnology Biochemistry & Molecular Biology 

Engineering, Electrical & Electronic Mechanics 

Chemistry, Multidisciplinary Engineering, Environmental 

Chemistry, Physical Optics 

 

Supplementary Table 3 highlights two sets of existing cross-disciplinary interactions that 

coincide with China’s research strengths and, pursuant to this, that are supported by national 

strategies:  

 Driven by artificial intelligence techniques and the visionary applications of internet of 

things, as well as 5G and robotics, interactions between computer science (e.g., artificial 

intelligence, information systems, and cybersecurity) and its applications in engineering 

areas, such as electrical and electronic engineering, telecommunications, and automation 

are rapidly spearheading a cutting-edge direction.  

 New materials and novel manufacturing processes in the areas of chemical engineering and 

biological engineering are among the most significant innovations these days, and 

nanotechnologies should further enhance the practical capability of those inventions. 



 

 

In terms of potential interactions, the predicted pairs of disciplines are all promising and 

explainable, such as oncology and neuroscience. However, an interesting observation is that 

some disciplines already appear to have established interactions. For example, statistical 

models and probability models are widely used in the area of electrical and electronic 

engineering, and economics has long been connected with public health and related disciplines. 

One note here is that WoS categories are based on the subject areas of journals. Hence, non-

existent interactions may simply mean no journal covers those two disciplines at the moment. 

In other words, there could be a number of existing studies and published papers covering 

topics in those disciplines, e.g., a study concerning economics and public health may have been 

published in a journal dedicated to economics. Therefore, the predicted interactions could be 

considered as either: 1) an interaction between two indirectly linked disciplines; or 2) a cutting-

edge research direction based on a relatively innovative idea. 

 

 

  



 

 

Appendix B Supplementary Tables 

Supplementary Table 4. Evaluation for the five problem-solving patterns in biology and life 

sciences. 

No. in Table 5 E1 E2 E3 E4 E5 Avg. 

#3 E D D B E 0.25 

#8 B D A B C 0.65 

#12 B B B A B 0.8 

#14 B E C D D 0.35 

#16 C B A A A 0.85 

Total  0.58 

Note that we calculated the average score by transferring the scale of A-E as 1, 0.75, 0.5, 0.25, and 0 respectively.  

 


