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Abstract

A strategy is proposed for characterizing the worst-case performance of algorithms for
solving nonconvex smooth optimization problems. Contemporary analyses character-
ize worst-case performance by providing, under certain assumptions on an objective
function, an upper bound on the number of iterations (or function or derivative evalua-
tions) required until a pth-order stationarity condition is approximately satisfied. This
arguably leads to conservative characterizations based on certain objectives rather than
on ones that are typically encountered in practice. By contrast, the strategy proposed
in this paper characterizes worst-case performance separately over regions comprising
a search space. These regions are defined generically based on properties of derivative
values. In this manner, one can analyze the worst-case performance of an algorithm
independently from any particular class of objectives. Then, once given a class of
objectives, one can obtain a tailored complexity analysis merely by delineating the
types of regions that comprise the search spaces for functions in the class. Regions
defined by first- and second-order derivatives are discussed in detail and example
complexity analyses are provided for a few standard first- and second-order algo-
rithms when employed to minimize convex and nonconvex objectives of interest. It is
also explained how the strategy can be generalized to regions defined by higher-order
derivatives and for analyzing the behavior of higher-order algorithms.
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1 Introduction

Users of optimization algorithms often choose to employ one algorithm instead of
another based on its theoretical properties. One such property of broad interest is
worst-case complexity, wherein one measures the resources that an algorithm will
require, in the worst case, to solve (approximately) a given problem. In the context
of convex optimization [31], such worst-case complexity has for many years been
stated in terms of an upper bound on the number of iterations (or function or derivative
evaluations') required until either the distance between an iterate and an element of the
set of minimizers, measured with a suitable norm, is less than a threshold €, € (0, c0),
or the difference between an iterate’s objective value and the optimal objective value
is less than a threshold € s € (0, 00).

In the context of nonconvex optimization, a similar strategy has been adopted.
However, since one generally cannot guarantee that a method for solving nonconvex
optimization problems will produce iterates that converge to a global minimizer, or at
least have corresponding objective values that converge to the global minimum, the
common approach has been to determine a worst-case upper bound on the number of
iterations until a pth-order stationarity measure is satisfied with error below a threshold
€p € (0, 00). For example, in a body of literature that has been growing in recent years
(see, e.g., [1,2,7,9,15,16,18,19,22,32,36]), the main measure of interest has been the
number of iterations required until an algorithm is guaranteed to produce an iterate
at which the norm of the gradient of the objective function—a first-order stationarity
measure—is below €] € (0, 00).

Unfortunately, when it comes to minimizing broad classes of nonconvex objective
functions satisfying loose assumptions—such as only Lipschitz continuity of some
low-order derivatives—these types of worst-case complexity guarantees are forced to
take into account exceptional objectives such that, when an algorithm is employed
to minimize them, its behavior might be considered atypical. For example, in [5,8],
Cartis, Gould, and Toint show that the worst-case guarantees for a few well-known
methods are tight, but this is done with objective functions that one can argue are not
representative of those encountered in regular practice.

One might attempt to overcome this resulting discrepancy between theory and
practice in various ways. Some argue that it would be ideal to be able to characterize
average-case behavior of an algorithm rather than worst-case, such as has been studied
for the simplex method for solving linear optimization problems; see [3,37,38]. How-
ever, it seems difficult to set forth a useful, valid, and widely accepted definition of an
average case when minimizing nonconvex objectives, even if one restricts attention to
a small class of functions of interest. Alternatively, one might consider analyzing the

! For the sake of brevity, we focus on worst-case complexity in terms of upper bounds on the number
of iterations required until a termination condition is satisfied, although in general one should also take
Jfunction and derivative evaluation complexity into account. These can be considered in the same manner
as iteration complexity in our proposed strategy.
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behavior of algorithms separately when they are employed to minimize functions in
different classes. However, this approach to worst-case performance guarantees limits
itself to certain classes of objectives.

The purpose of this paper is to propose a strategy for characterizing the worst-case
performance of algorithms for solving nonconvex smooth optimization problems. In
order to offer a characterization both (i) within contexts seen in typical practice and (i7)
without limiting attention to specific problem classes, we propose that an algorithm’s
behavior can be characterized using a regional complexity analysis (RC analysis, for
short) that involves the following two steps.

1. Given an algorithm, one can analyze its performance by characterizing the behavior
that it would exhibit within different regions in a search space (as defined in this
paper). This involves quantifying the decrease in the objective function that can
be guaranteed when the algorithm finds itself at (or near) a point at which an
objective’s derivative values satisfy certain generic properties.

2. After Step 1 is complete, one can combine results for an algorithm over combina-
tions of regions in order to derive tailored analyses that characterize the worst-case
performance of the algorithm when it is employed to minimize a function for which
the search space is covered by the combination of regions. For example, if one
combines the results for an algorithm corresponding to region I and region 2,
then one can derive a worst-case complexity bound for the algorithm when it is
employed to minimize functions for which the corresponding search space is cov-
ered completely by regions I and 2. For the same algorithm, this might lead to a
different complexity than for, say, functions for which the search space is covered
by points in regions 1, 2, and 3.

One way to motivate our proposed strategy is to consider the seminal work of Nes-
terov and Polyak in [32]. In this work, given a particular algorithm (namely, a cubicly
regularized Newton method) and a class of objective functions (e.g., star-convex or
gradient-dominated functions), the authors show that the algorithm progresses through
different phases as it converges to a solution set. As revealed by the analysis, whether
the algorithm is in a particular phase depends on the difference between the objective
function value at a given iterate and the optimal objective value. Our characteriza-
tion strategy differs from the approach in [32], most significantly in the way that we
decouple the analysis of the algorithm from consideration of a particular class of
functions. Rather than start with a class of functions, we start with generically defined
regions with which one can analyze the performance of an algorithm using the steps
above. In this manner, one does not consider a class of functions until the analysis of
the algorithm over a set of regions has been completed. A benefit of our approach is
that it leads to a consistent standard for comparing methods across different function
classes. This is demonstrated in this paper as we simultaneously analyze a set of first-
and second-order methods (rather than only one type, as in [32]). Also, by considering
regions defined by second- and higher-order derivatives, our strategy allows one to
consider classes of nonconvex objectives beyond those considered in [32].

Our strategy can also be seen as a more comprehensive approach than ones that can
be found in other recent papers. (Not to say that our work subsumes all ideas from
these other papers; they also discuss other issues not considered here.) For example,
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in [27] (resp. [4]), the authors show how gradient descent (resp. accelerated gradient
descent) exhibits a fast rate of convergence, even when minimizing a nonconvex func-
tion, if it happens to take a path through the search space along which the function
exhibits properties as if it were (strongly) convex. In the case of [4], if this behavior
is not exhibited, then it is shown that an alternative type of step can be computed that
would be beneficial to follow. These articles show that the behavior of an algorithm
can be better than that revealed by a contemporary worst-case analysis in a noncon-
vex setting, although neither paper sets forth a strategy for analyzing other types of
algorithms, as we do. Our strategy is also more comprehensive than approaches taken
by authors who have studied the performance of algorithms in neighborhoods about
strict saddle points and related concepts; see, e.g., [17,21,26,28-30,34]. Analyses in
these papers are similar to a special case of RC analysis, in particular with respect to
the manner in which they distinguish the behavior of an algorithm depending on the
properties of the function at a given iterate. However, the strategies in these papers
of characterizing points in a search space are limited to consideration of first- and
second-order derivatives, and only offer insight into one algorithm (or only a couple
related algorithms). By contrast, our definitions of regions according to gradient dom-
ination (Sect. 2) and negative curvature domination (Sect. 3) sets a natural stage for
regions defined by higher-order derivatives (Sect. 6), and for analyzing any algorithm.

1.1 Contributions

Our contributions relate to our proposed RC analysis for characterizing the perfor-
mance of algorithms for solving nonconvex smooth optimization problems. Benefits
of our strategy and our related contributions can be summarized as the following.

Our proposed RC analysis of the performance of a given algorithm can be per-
formed independently from any particular class of functions.

Given a class of functions, an RC analysis can offer a more tailored worst-case
performance analysis than the contemporary approach that only considers the
number of iterations until pth-order stationarity is attained (approximately).

We demonstrate the use of RC analysis for analyzing first-, second-, and higher-
order algorithms when employed to minimize functions in various classes of
interest. By tying the definitions for regions to properties of derivative values,
RC analysis appropriately reveals performance guarantees that are representative
of what can be expected in practice by derivative-based algorithms.

RC analysis can be used to guide the design of new algorithms. For example, as
demonstrated in this paper, an adaptive algorithm that computes different types of
steps depending on properties of derivative values at a given iterate can achieve
better RC analysis results than an algorithm that is not adaptive. By contrast, using
the contemporary approach to worst-case performance analysis, one often finds
that certain static algorithms—such as gradient descent with a fixed stepsize or
a cubicly regularized Newton method with a fixed regularization parameter—are
optimal with respect to worst-case performance [5,8] despite the fact that adaptive
algorithms often perform better in practice.

@ Springer



Regional complexity analysis of algorithms for nonconvex...

1.2 Preliminaries

We use R to denote the set of real numbers (i.e., scalars), R_ , (resp., R_)) to denote the
set of nonnegative (resp., positive) real numbers, R” to denote the set of n-dimensional
real vectors, and R”*" to denote the set of m-by-n-dimensional real matrices. The
set of natural numbers is denoted as N := {0, 1, 2, ...}. We write A(M) to denote
the least eigenvalue of a real symmetric matrix M. Given a € R, we define (a)_ =
max{0, —a}, which is a nonnegative scalar that is strictly positive if and only if a is
strictly negative. We let || - || :== || - ||2-

If {a} and {b} are sequences of nonnegative scalars (i.e., elements of R_ ), then
we write ar = O(by) to indicate that there exists a positive constant ¢ € R_, such
that a; < cby for all k € N. On the other hand, we write a; = £2(b;) to indicate that
there exists ¢ € R_; such that ax > cby forall k € N.

Our problem of interest is to minimize f (x) with respect tox € R”. For simplicity,
we assume that f is real-valued and that one is interested in analyzing the behavior
of a (monotone) descent algorithm, i.e., one for which, given an initial point xg € R”,
the sequence { f (xx)} is monotonically nonincreasing over £ := {x € R" : f(x) <
f (x0)}. (Our strategies could also be extended to situations in which f is extended-real-
valued and for analyzing nonmonotone methods; see Sect. 7.) We append a natural
number as a subscript for a quantity to denote its value during an iteration of an
algorithm; e.g., henceforth, we let fi := f(xx).

We make the following Assumption 1 throughout the paper and add Assumption 2
when analyzing second-order methods.

Assumption 1 The function f : R” — R is continuously differentiable and bounded
below by finf := inf,ecre f(x) € R. In addition, over some open convex set LT
containing £, the gradient function g := V f : R" — R" is bounded in norm by
M; € R_ and Lipschitz continuous with Lipschitz constant L € R_; i.e.,

lg)ll <M and Jg(x) — g@®) < Lillx — ¥|| forall (x, %) € LT x L.

Assumption 2 Along with the conditions in Assumption 1, the function f : R — R
is twice continuously differentiable and, over the set L1 defined in Assumption 1, the
Hessian function H := V> f : R" — R™*" is Lipschitz continuous with Lipschitz
constant Ly € R_,. With Lipschitz continuity of g from Assumption 1, the Hessian
function is bounded in norm over £ by M, € R_ ), meaning that, overall,

|Hx)| <My and |H(x) — HX)| < Lo|lx — x| forall (x,X) e LT x L.

In Sect. 6, assumptions pertaining to higher-order continuous differentiability of f
and Lipschitz continuity of higher-order derivatives of f will be introduced.

1.3 Algorithms

We analyze a few algorithms throughout the paper. This is done for demonstrative
purposes only; RC analysis is not limited to these algorithms.
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Regularized gradient methods We analyze two first-order methods, one static and
one adaptive. We refer to the static method as the regularized gradient (RG) method.
(It is often simply called gradient descent.) At any iterate xi, this method produces
the subsequent iterate as xx4+1 < xx + Sk, where, with /1 € (L1, 00), one sets

: T l 2 1
Sk < arg min Jet+ 8 s+ 7lIsll” = Xiq1 < xk — 18k
s

A similar, but adaptive first-order method, which we refer to as the adaptive regularized
gradient (RG-2) method, computes a trial step at x; as s < —gi/vx for some
vk € R_ . If this step yields a reduction in f that is proportional to the reduction that
it yields in the model f; + ngs + (e /2)|Is]I?, ie.,

fio= f O+ 50 = 1 (=gl s = $lsel?) = el (M
for some n € (0, 1), then the algorithm accepts the step by setting xx4+1 < xx + Sk;
otherwise, it rejects it and x4 < xx. As for setting {v;}, fork = 0 and any k£ > 1

such that x; # xi—1, the value v is chosen from an interval [Vmin, Vmax] C R_;
otherwise, if sy is rejected, then the method sets vi41 < Y vg for some ¢ € (1, 00).

Second-order trust region methods Our next two algorithms are adaptive second-
order trust region methods for which each trial step is computed as

Sk € arg n;]gl fr + ngs + %STHks subject to ||s|| < &. 2)
S

The two methods that we consider merely differ in the manner in which {;} is deter-
mined. Both were studied in [13, Sect. 2.3-Sect. 2.4]. In the method we refer to
as TR-G, we let 8y = ||gk||/vk. In the method we refer to as TR-H, we let

_ 1 Nl if lgell® = (A(Hi)2
% | (M(Hp))—  otherwise.

For TR-G and TR-H, {vx} is determined as in the RG-A method [for simplicity, using
the same 1 € (0, 1) and ¥ € (1, 00)], except that in place of (1) the methods observe

Je— Ok +s6) = n <_ngSk - %SkTHkSk) , 3)

which compares the reduction that the step offers in f to the reduction that it offers
in the second-order model fj + ngs + (1/2)sT Hys.

Regularized Newton methods We also consider two other second-order algorithms,
but with different properties than the trust region methods stated above. The first, a
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static second-order method that we refer to as the regularized Newton (RN) method,
uses the update xi1 <— xx + sg, where, with [, € (L2/2, 00), it computes

sk € argmin fi+gf's + 35" Hes + F s, “)
s

A similar, but adaptive method, which we refer to as the adaptive regularized New-
ton (RN-2) method, computes trial steps as in (4), but with I replaced by vi. The
sequence {vy} is determined as in the RG-2A, TR-G, and TR-H methods, except that
for the RN-A method the employed sufficient decrease condition is

Jo— Ok +s0) = (—ngSk — Ls{ Hesy — %"IISkII‘Q’) ;

which compares the reduction that the step offers in f with the reduction that it offers
in the regularized second-order model f; + ngs +(1/2)sT Hys + (v /3) |Is |1 (Again,
we let RN-A use the same prescribed € (0, 1) and ¥ € (1, 00).)

We analyze the performance of other methods along with our discussion of higher-
order RC analysis in Sect. 6. We leave our description of those methods and the notation
needed to state them for that section.

The algorithms described above as well as other similar methods have appeared in
the literature; see, e.g., [1,6,7,12,13,20,23-25,32,33,39]. For convenience, we draw
from the literature when certain properties of these methods are needed.

1.4 Organization

In Sect. 2, we define regions based on first-order derivatives for our RC analysis
framework, then analyze the behavior of the methods from Sect. 1.3 when an iterate
lies in these regions. We continue in Sect. 3 to define regions based on second-order
derivatives, then analyze the performance of these algorithms when an iterate lies
in these regions. In Sect. 4, we summarize our RC analysis results for these first-
and second-order algorithms and provide complete perspectives on their behavior
when minimizing functions in a few classes of interest. Further discussion about, and
possible variations on, the results in Sect. 4 are presented in Sect. 5. In Sect. 6, we
show how our framework can be generalized to regions defined according to higher-
order derivatives and to analyze methods that employ such higher-order derivatives.
Concluding remarks and ideas for extending RC analysis to other settings are provided
in Sect. 7.

2 First-order regions: points with gradient domination
We start to introduce our notion of regions with the following definition. For this

definition, recall that the first-order necessary condition for stationarity with respect
to a continuously differentiable function f is that g(x) = 0.
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Definition 2.1 (Region R = R1(f, k, fref)) For an objective f : R" — R, scalar
k € (0, L], and reference objective value fier € [ finf, 00), let

Ri={xeL: g = «k(f(x) — fref) = 0 for some € [1, 2]}. )

Further, let R% be the subset of R such that the inequality in (5) holds with T = 2
and let R} := R\R? so that Ry = Rl UR? with Rl N R? = 0.

For flexibility in this definition, we have introduced frf € [ fint, 00). Generally
speaking, when analyzing the performance of an algorithm, one can imagine f.f as
a placeholder for the limiting value limg_, o fx, where the possibility of this value
being strictly larger than fi,r might be inevitable due to nonconvexity of f. On the
other hand, if one can ensure—for a particular class of functions that will ultimately
be considered—that the algorithm of interest will converge to global optimality, then
one can consider the reference value to be fier = finr. We discuss the role played by
this value, and issues related to it, further in Sect. 5.

Nesterov and Polyak [32] discuss a notion similar to that in Definition 2.1; in
particular, they refer to a function as gradient-dominated of degree t if, for any x € L,
the inequality in (5) holds for fief = finr and some fixed 7 € [1, 2].2 This range for ©
can be justified in various ways. For one thing, t € (0, 1) disproportionately weighs
the norm of the gradient (as a measure of first-order stationarity) at points where it
is small in norm. On the other hand, allowing 7 € (2, co) would cause certain nice
functions (such as strongly convex quadratics) not to have R; = L, which would
be undesirable. We discuss in Sect. 4 that certain well-known classes of functions—
some convex and some nonconvex—have the property that R = L. For example,
this property holds for convex functions when £ is compact.

For an RC analysis pertaining to /2 1, one is not restricting attention only to gradient-
dominated functions. Rather, by analyzing the behavior of algorithms with respect to
‘R1, one obtains results that are relevant for gradient-dominated functions as well as
for any nonconvex function for which points in a search space satisfy the inequality in
(5), whether or not this includes the entire search space. For example, for the function
illustrated in Fig. 1, the region R covers most of the search space, but not quite all
of it. This means that an RC analysis over R for a given algorithm will capture the
worst-case performance of the algorithm over most of the domain, though it would
not provide guarantees on the number of iterations it might spend in £L\R . (For this,
an analysis over a region defined according to higher-order derivatives might fill in
the gap; see Sect. 3 and Sect. 6.) More generally, examples include any function with
a saddle point; no matter the value for « € R_,, the region R would not include a
neighborhood of a saddle point, although it might include the remainder of the search
space.

Given this definition of %1, one can provide insight into the performance of an
algorithm merely by tying the reduction obtained with an accepted step to some

2 Some authors take the term gradient-dominated to mean gradient-dominated of degree 2. We do not take
this meaning since, as seen in [32] and in this paper, functions that are only gradient-dominated of degree 1
offer different and interesting results.
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Fig.1 Plot of the continuously differentiable function f where f(x) = %xz — % ifx <1l,and f(x) = (x —

2)3 + 2 otherwise. The bolded segments in the domain indicate R for « = 0.05 and fref = finf = —1/2.
No matter the value for k € R>0, the region never includes some interval about x = 2

gradient-related measure. We formalize this with the following instruction, which
should be understood as part of the first step introduced on page 3.

Step 1 (Region R 1) Attempt to prove that for any accepted step sy the decrease in
the objective function from xj to xXx4+1 = X + Sk satisfies

fe — fre1 = 21g) ") for some x € {xp, xjy1} withx € Ry andr > 0. (6)

If such (x, r) exists, then one can combine (5) and (6) to prove a reduction in the
objective gap to frer, i.e., an upper bound for fi11 — fref as a function of fi — fret.

It is implicit in (6) that one considers the performance of an algorithm over R only
when {x, xx+1} N R1 # @. This is reasonable since this is precisely when the size of
the gradient at x; and/or x4 gives information about the size of a potential reduction
in the objective through the inequality (5) that defines R ;.

In the remainder of this section, we provide two examples of following this instruc-
tion, which we refer to as Step 1-R;. These will allow us to state results for the
algorithms from Sect. 1.3. For our first theorem, we state a result pertaining to algo-
rithms that, with an accepted step, yield a reduction in the objective that is proportional
to the squared norm of the gradient at the current iterate. This will allow us to charac-
terize the behavior of RG, RG-A, TR-G, and TR-H over R 1.

Theorem 2.1 Suppose Assumption 1 holds. For any algorithm such that x; € R
implies that (6) holds with x = xj and r = 2 in that

1
fi = fis1 > Engkn2 for some ¢ € [Ly, 00), (7
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the following statements hold true.

(@) If x; € R3, then {fy — fret} decreases as in a linear rate; specifically,
K K
Jir1 = frer < <1 - E) (fx = fret) where E € (0, 1]. (8)

(b) If xx € R1, then K (fx — fref) < 1 and { fx — frer} decreases as in a sublinear rate;
specifically,

2
K
fk+1 - fref =< (1 - ?(fk - fref)) (fk - fref)- 9
Similarly, for any algorithm such that having xx € R implies that

1
Sk = fi4m = Ellgkll2 for some ¢ € [Ly,00) and m € N (10)

with m independent of k, then (a)—(b) hold with fi,1 replaced by fiym.>

Proof If x; € Ri, then (7) yields fi — fir1 = 1gkllI*/¢ = (c/E)(fk — frer). Adding
and subtracting fier on the left-hand side and rearranging gives (8).

If x; € Rl, which is to say that ||gx || = k(fx — frer) While ||gk||2 < k(frx — fref),
then it must be true that « (fx — fref) < 1. In this case, from (7),

1 1
fo— firr = 2lgl? = ~(fi — fru) where o = =
I's w K

Adding and subtracting frr on the left-hand side, one finds by defining the value
ar = (fx = fret)/@ = K> (fi = fre) /¢ €10, 1) forall k € N that

Jie = fret St = fref _ (fk = Jref)?

1) ) - w?
——
ai Aje+1 a}f

One finds from this inequality that ax4+1 < (1 — ax)ax, which gives (9).
If, with x; € R, an algorithm offers (10), then the desired conclusions hold using
the same arguments above with (10) in place of (7). O

Not all algorithms offer inequality (7) (or even (10)) while others offer an even
stronger bound. As our second example of following Step 1-R{, we prove the follow-
ing theorem, which will allow us to characterize the behavior of our other second-order
algorithms (i.e., RN and RN-2) over R 1. For the proof of this theorem, we use similar

3 In this case, the decrease in the objective would be indicative of an m-step linear (for part (a)) or m-step
sublinear (for part (b)) rate of convergence. We do not explicitly refer to such a multi-step aspect of a
convergence rate since it is always clear from the context.
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strategies as are used to prove [32, Theorem 6 and Theorem 7]. Interestingly, as for
these results in [32], one finds different behavior depending on whether fi — fref is
below a certain threshold. For our purposes, we also need to consider a couple cases
depending on properties of the iterates x; and xzq1.*

Theorem 2.2 Suppose Assumption 1 holds. For any algorithm such that xy4+1 € Ry
implies that (6) holds with x = xj4+1 and r = 3/2 in that

1
fi — fir1 = E||gk+l||3/2 for some ¢ € (0, 0), (11)

the following statements hold true.

(@) Ifxk4+1 € R% and fr — fref > /<3/§4, then { f — fret} has decreased as in a linear
rate; specifically,

(fO - fref)l/4
f - fre =
T (o — e

(fk _fref)' (12)

On the other hand, if xx4+1 € R% and fi — fret < k)%, then the sequence has
decreased as in a superlinear rate; specifically,

4 _ 1/3
M) (i — frep)- (13)

K3

fk+1 - fref =< (

(®) Ifxis1 € Ry, then & (fi1 = fret) < 1. Thus, if xx1 € R and fie— fret = €% /i,
then { fi — fref} has decreased as in a superlinear rate; specifically,

;-2

1/3
_ — fref)- 14
P fref)) (fe = fref) (14)

Jier1 = fref < (

On the other hand, if xx4+1 € R} and fi — fret < C2/K3, then the sequence has
decreased as in a sublinear rate; specifically,

2
1

Similarly, for an algorithm such that having X4, € R implies that

(fk _fref)- (15)

fk+1 - fref =<

1
Je — fk+m = E||gk+m||3/2 for some ¢ € (0,00) andm € N (16)

4 There arises an interesting scenario in this theorem for x;| € ’R} during which {f; — frer} might
initially decrease at a superlinear rate. However, this should not be overstated. After all, if this scenario
even occurs, then the number of iterations in which it will occur will be limited if the iterates remain at or
near points in R .
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withm independent of k, then (a)—(b) holdwith (xi+1, fr+1) replaced by (Xi+m, fr+m)-
Proof If x;41 € R?, then, with (11), it follows that

1 3
fi — fir1 = ankﬂ 132 > @ 4 (frs1 — fren)®* where w :=

e

Adding and subtracting fi.r on the left-hand side, one finds by defining the values
ay = (fx — fref)/w for all k € N that

i = fret _ firr = fret (w1 = fre) ™

> a7
w w w34
———
ak Aj+1 3/4

Ut
One finds from this inequality and monotonicity of {ay} that

Ak

1 1
>1+——F>14—7 € (1,00),
11 a/h ag*
which gives (12). That said, if a; < 1 (which is to say that fy — fref < @ = k3/¢%),
then one finds from (17) and ax41 > 0 that axy < a,””, from which (13) follows.

If x¢+1 € R}, which is to say that [|get1]l > & (fes1 — fref) While f|ger1]?> <
K (fr+1 — fref), then it must be true that x (fx4+1 — fref) < 1. Hence, with (11),

2

1 ~ ¢
fi = fes1 > Engkﬂ 12 > 0 2(fig1 — frer)¥? where w := >

Adding and subtracting frer on the left-hand side, one finds by defining the values
ay := (fx — fref)/w for all k € N that

fk - fref . fk+1 - fref - (fk+1 - fref)3/2

> (18)
w w (,()3/2
—_—
Ak Ak+1 a3/2
k+1

One obtains from this inequality that a; > aifl, which when a; > 1 (which is to say
that fi — fier = @ = £2 /%) gives (14). Otherwise, (18) also yields

1 1 - 1 1
12~ 172 =12 3/2
ak—/ﬁ—l @/ ak—/f—l (ar+1 +ak-/|—1)1/2
32 12 12
(@ +ak/+l)l/2 - ak/+1 _a +“ki1)1/2 —1
/2 32 =5 RS
e + D12 @+ g1
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The right-hand side above is a monotonically decreasing function of a,i fl over agy] €
(0, 1]. Hence, when a; < 1 (which is to say that fy — fief < @ = §2//<3), which
implies that a1 < 1, one finds from the above that

1 1 V2-1
= + .
Vs T Jak V2
Rearranging this inequality, one obtains (15).

If, with xz4+,, € R1, an algorithm offers (16), then the desired conclusions hold
using the same arguments above with (16) in place of (11). O

19)

With Theorems 2.1 and 2.2, we can characterize the behavior at points in R of
our algorithms from Sect. 1.3. This is captured in the following corollary. (For the
results for RG and RG-A in this corollary, only Assumption 1 is needed. We invoke
Assumption 2 for the sake of being concise as it is needed for the other methods.)

Corollary 2.1 Suppose Assumptions 1 and 2 hold. Then, the following hold true.

(a) For the RG method, inequality (7) holds for all k € N with ¢ = 2I;.

(b) For the RG-A, TR-G, and TR-H methods, inequality (10) holds for all k € N
with¢ € R_andm € N both sufficiently large relative to functions that depends
on Ly and the algorithm parameters but are independent of k.

(c) For the RN method, inequality (11) holds for all k € N with ¢ € R_, sufficiently
large relative to .

(d) For the RN-A method, inequality (16) holds for all k € N with ¢ € R_ and
m € N both sufficiently large relative to functions that depend on L» and the
algorithm parameters but are independent of k.

Hence, Theorem 2.1 reveals behavior of the RG, RG-A, TR-G, and TR-H methods,
whereas Theorem 2.2 reveals behavior of the RN and RN-A methods.

Proof The fact for RG that (7) holds with ¢ = 2/; follows from Lipschitz continuity
of g, the fact that /1 > L1, and the resulting well-known inequality

I
fis1 < fi + gl s + 5‘||sk||2 forall k € N.

Plugging in sy = —gi/I1 and rearranging yields (7). As for RG-A, for k = 0 and any
k € N such that s;_| was accepted, one finds that vy € [Vnin, Vmax], and, forany k € N
such that sy is rejected, one finds vg4 < Yvg. These facts, along with the fact that
the step will be accepted if vy > L1, implies that (10) holds for some sufficiently large
¢ and m, as claimed. Similarly, for TR-G and TR-H, the desired conclusions can be
derived from [13]; specifically, see Lemmas 2.5 and 2.6 in [13] and note that the trust
region radius update implies that an accepted step computed with §; = || g« ||/ vk leads
to fx — fie1 > llgkll?/¢ while an accepted step computed with 8 = (A(Hy))—/vk
leads to fi — fir1 = MCH/E = llgel*/¢.

That inequality (11) holds as stated for the RN method follows as in [32, Eq. (4.10)].
That (16) holds as stated for RN-A follows as described in [32, Sect. 5.2]. O
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As we discuss in various specific examples in Sect. 4, the theorems that we have
proved in this section allow one to characterize the behavior of the algorithms from
Sect. 1.3 over much of the search spaces for various (potentially nonconvex) functions
of interest. However, rather than ignore points not included in R 1, we can capture the
behavior of algorithms at additional points by defining additional regions based on
higher-order derivatives. We do this for second-order derivatives next.

3 Second-order regions: points with negative curvature domination

Let us now introduce our notion of a second-order region. For this definition, recall
that the second-order necessary conditions for stationarity with respect to a twice
continuously differentiable function f are that g(x) = 0 and A(H (x)) > 0.

Definition 3.1 (Region Ry = Ra(f, k, fref)) For an objective f : R” — R, scalar
k € (0, L»], and reference objective value fier € [ finf, 00), let

Ry :={x € L\R: A(Hx))" > «(f(x) — fref) > 0 for some 7 € [, 3]}.
(20)

Further, let R% be the subset of R, such that the inequality in (20) holds with t = 3, let
R% be the subset of Rz\Rg such that the inequality in (20) holds with T = 2, and let
Rj = R\ (R3UR3) so Ry = RIURSURS and RINRS = RINR3 = R3NR3 = 0.

The range for the exponent t in this definition can again be justified by considering
the pitfalls of values outside of [1, 3]. In particular, T € (0, 1) disproportionately
weighs the negative part of the left-most eigenvalue of the Hessian (as part of a measure
of second-order stationarity) at points where it is small in magnitude. On the other hand,
as we shall remark in this section, one can achieve f(x) — f(x +s) = (A (H (x))3_ )
in certain algorithms, including TR-H, RN, and RN-A. This justifies allowing the
exponent 7 to extend up to 3.

At any point x € L with f(x) > fef, it follows from the definition of R,
that one must have A(H (x)) < 0 with ||g(x)] small relative to A(H (x))_, which
is to say that the norm of the gradient must be relatively small while the left-
most eigenvalue of the Hessian must be negative and relatively large in magnitude.
One can speak of a variety of functions such that Ry # L, yet R U Ry = L,
or at least functions for which R, # (. Figure 2 shows segments of domains
for two functions wherein one finds elements of R about first-order stationary
points.

Given this definition of R, one can provide insight into the performance of an
algorithm by tying the reduction obtained with an accepted step to some measure
related to the left-most eigenvalue of the Hessian at some point in R;.
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2
02yl
'gl';ll,’"'l

Stes s sy,

Fig.2 Illustration of R (black), R, (gray), and £\ (R UR;) (white) for the two-dimensional functions
Fx,y) =x% —y2 410 (left) and f(x) = x3 — y> + 22 (right)

Step 1 (Region R») Attempt to prove that for any accepted step sy the decrease in
the objective function from xj to xXx4+1 = Xk + Sk satisfies

S — fre1 = QA (H(x)))") forsome x € {xj, xx+1} withx € Ry andr > 0.
(21)

If such (x, r) exists, then one can combine (21) and (20) to prove a reduction in the
objective gap to fret, i.e., an upper bound for fi11 — fret as a function of fr — fret.

It is implicit in (21) that one considers the performance of an algorithm over R»
only when {xj, xx4+1} N R2 # . This is reasonable since this is precisely when the
size of (A(H(-)))— at x; and/or x;41 gives information about the size of a potential
reduction in the objective through the inequality (20) that defines R,.

Naturally, an algorithm should use (approximate) second-order derivative infor-
mation in order to attain good performance over R». To demonstrate the instruction
above, which we call Step 1-R,, we prove the following theorem, which will be useful
for characterizing the performance of methods TR-H, RN, and RN-A.

Theorem 3.1 Suppose Assumptions 1 and 2 hold. For any algorithm such that having
Xr € Ro implies that (21) holds with x = xy and r = 3 in that

1
fe = fir1 = E(A(Hk))i for some ¢ € [Lo, 00), (22)

the following statements hold true.

(@) Ifxp € R3, then { fx — fret) decreases as in a linear rate; specifically,

Jerr = Jret = <1 - g) (fk = fret) where g € (0,1]. (23)
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) If x € R2, then K(fr — fret) < 1 and {fi — fref} decreases as in a sublinear
rate; specifically,

32

fk+1 _freff <1_ <I(T>ka_fref> (fk _fref)~ (24)

©) If x € R;, then Kk (fi — fref) < 1 and {fx — fret} decreases as in a sublinear
rate; specifically,

3
Jier1 = fret < (1 - K?(fk - fref)2) (fx — fret)- (25)

Similarly, for any algorithm such that having xy € R, implies that
1
fe = fim = E(A(Hk»i for some ¢ € [Ly, 00) andm € N (26)

with m independent of k, then (a), (b), and (c) hold with fi41 replaced by fiym-

Proof If x; € R3, then (22) yields fx — fir1 = (W(HO)2/E = (/) (fi — feet)-
Adding and subtracting fr.r on the left-hand side and rearranging gives (23).

If x; € R3, which is to say that (\(Hy))2 > k(fx — frer) wWhile (A\(Hy))? <
K (frx — fret), then it must be true that k (fx — frer) < 1. With (22),

2

1
fi= i = ZOHD = 072~ f? where o= f:—3

Adding and subtracting fir on the left-hand side, one finds by defining the values
ar == (fi — fret) /@ = k(fi — freD)(/5)* €10, 1) forall k € N that

fi = fret _ ferr = fret _ (fe = fre)™?

= 27
) a) w3/?
——
ay Af+-1 a3/2
k

One finds from this inequality that a;41 < (1 — \/ax)ax, which gives (24).
If x, € Ré, which is to say that (A(Hg))— > k(fr — frer) While (MH))? <
Kk (fr — fret), then it must be true that k (fx — frer) < 1. In this case, from (22),

1 1
fe = fint = ~O(HOY = — (fi — fren)® where @ = [ .
¢ 10 K
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Adding and subtracting fir on the left-hand side, one finds by defining the values
ak = (fk — fref) /o = k(fi — fref)/k/C € [0, 1) forall k € N that

fk - fref . fk+1 - fref - (fk - fref)3 )

15 13 - 3
—
ay Afe+1 “2

One finds from this inequality that a;+1 < (1 — a,%)ak, which gives (25).
If, with x; € Ry, an algorithm offers (26), then the desired conclusions hold using
the same arguments above with (26) in place of (22). O

We have the following corollary to Theorem 3.1. As previously mentioned, we are
only able to state a meaningful result for a few of our second-order algorithms. After
all, one cannot guarantee the performance for the RG, RG-A, and TR-G methods at
points in R, since, at any k € N such that gy = 0 yet A(Hy) < 0, these methods
would produce zero-norm steps and make no further progress.

Corollary 3.1 Suppose Assumptions 1 and 2 hold. Then, the following hold true.

1. For the RN method, inequality (22) holds for all k € N with { € R_, sufficiently
large relative to I>.

2. Forthe TR-H and RN-Amethods, inequality (26) holds for allk € Nwith¢ € R_,
and m € N both sufficiently large relative to functions that depend on Ly and the
algorithm parameters but are independent of k.

Hence, Theorem 3.1 reveals behavior of TR-H, RN, and RN-A.

Proof That (22) holds as stated for RN, and (26) holds as stated for an accepted step
for RN-A follows from the optimality conditions of the subproblem (4); see, e.g., the
proof of [6, Theorem 5.4] or [7, Equation (5.28)]. That (26) holds as stated for an
accepted step for TR-H follows from [13, Lemma 2.5] and by the definition of R,.
Finally, the fact that (26) holds as stated for arbitrary k for RN-A and TR-H follows
from [32, Sect. 5.2] and [13, Lemma 2.6], respectively, which argue that the number
of rejected steps before the first accepted step or between consecutive accepted steps
is uniformly bounded independent of k. O

Tables 1 and 2 summarize the RC analysis results that we have presented for the
algorithms from Sect. 1.3. We emphasize that these results have not required referenc-
ing any function class. Rather, they offer insight into performance over the generically
defined regions R and R.

4 Complete RC analyses for first- and second-order methods when
minimizing gradient- and/or negative curvature-dominated
functions

One way in which RC analysis results may be compared across various algorithms
would be to state bounds as in Theorems 2.1, 2.2, and 3.1 (corresponding to algorithms
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Table 1 Objective decreases over region R| = R} @] R% where Afy := fir — fref- Each cell indicates the

implied rate and the proved upper bound for Afjy1/Afk

RG/RG-A/TR-G TR-H RN/RN-A
Superlinear
Afy> S | Sublinear | Sublinear (=5r )1/3
R1 = k3 5 5 KSAfE
1 1-— %Afk 1-— %Afk Sublinear s
2
Afy < &5 !
Tk w3 <1+NBC/2(\/§;1) /ATr
Linear
3 Af1/4
Afi > &p ; : __2Jo
R2 Jr = & nge%r ngeaﬁr < K3(/4 +asi/
¢ ¢ Superlinear
3 iap Y3
A< (554)

Table2 Objective decreases over region Ry = Ré ] ’R% ] ’R% where Afy := fr — fref- Each cell indicates
the implied rate and the proved upper bound for Afy41/Afk

RG/RG-A/TR—G TR-H RN/RN-A
Su’télinear Sul%linear
Rl — 1— 5 (Afi)? 1- % (Af)?
Sub/linear Sub/linear
3/2 3/2
R2 — 1—(“C )\/Tfk 1-(*@4 )\/Tfk
Linear Linear
RS — 1— 7 1%

as stated in Corollaries 2.1 and 3.1). Indeed, these have all been written in such a
way—indicating the reduction in { fy — fref} for a given iteration—that makes such
comparisons straightforward. That said, equipped with these results, one can also
derive complete worst-case performance bounds for algorithms when employed to
minimize a function in a class of interest. This can be done by fitting together results for
different regions. In this section, we demonstrate a few such worst-case performance
results for our algorithms from Sect. 1.3. Our task is to perform the following, which
should be understood as the second step on page 3.

Step 2 For an algorithm and different combinations of regions (or subregions), com-
bine results from Step 1 corresponding to these (sub)regions in order to state complete
worst-case complexity bounds for the algorithm when it is employed to minimize an
objective function for which the search space is completely covered by the combina-
tion of regions. Such bounds hold immediately for functions from classes for which
it has been shown that the search space is covered by the combination of regions.

In order to demonstrate Step 2, we provide complete results for our algorithms
from Sect. 1.3 when employed to minimize functions from two related classes of
(potentially nonconvex) objective functions, defined as follows.
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Definition 4.1 ((g, H)-dominated function of degree (t1, t2)) A twice continuously
differentiable function f is (g, H)-dominated of degree (71, 72) € [1, 2] x [1, 3] over
L if for some constant k € (0, min{L, L,}] it holds that

max{[lg() ™, G.(H))Z) = . (f(x) = finr) forallx € L. (28)

Definition 4.2 (Gradient-dominated function of degree t) A continuously differen-
tiable function f is gradient-dominated of degree v € [1, 2] over L if for some
constant ¥ € (0, L] it holds that

llgCONIT =k (f(x) = finr) forallx € L. (29)

Observe that if f is twice continuously differentiable and gradient-dominated, then
itis also (g, H)-dominated since (28) holds with 71 = t and arbitrary 7. On the other
hand, not all (g, H)-dominated functions are gradient-dominated. For concreteness,
we provide the following examples for these types of functions.

Example 1 (See [26], specifically Assumptions A2 and A3.b, as well as Lemmas 6 and
7, and the surrounding discussions) Consider the matrix factorization problem with
fX) = $1XXT — M|%, where X € R¥" and M € R?*¢ has rank r, which has
the optimal value fiyr = 0. Letting o, denote the smallest positive singular value of
M, it follows that f has gradient and Hessian functions that are Lipschitz continuous
over L, all local minimizers are global minimizers (composing X*), and, over L\{X :

dist(X|X*) < %0,1/2}, f is (g, H)-dominated of degree (71, 72) with

K= (min{aﬁf””, o2}/ max{ fo, 1}) .

(A caveat here is that, since f is a fourth-degree polynomial, the Lipschitz constants
for the gradient and Hessian depend on the initial point, as does the constant . This
is not an issue as long as one can show that the iterates remain in a bounded set,

which indeed one can show for an algorithm such as gradient descent.) Moreover,
over LN {X : dist(X|X*) < %orl/ 2}, f satisfies a regularity condition over which an

algorithm such as gradient descent converges linearly.

Example 2 1f f satisfies the Polyak—}.ojasiewicz (PL) condition [35] for some constant
k € (0, Li]atall x € L, then it is gradient-dominated of degree 2. For such a function,
R = R% = L. Such functions do not necessarily have unique minimizers. However,
they do have the property that any stationary point is a global minimizer. The PL
condition holds at all x € £ when f is strongly convex, but this is also true for other
functions that are not convex. We refer the reader to [27] for a discussion on the
relationship between the PL and other types of conditions that have been employed in
the context of analyzing optimization methods.

Example 3 If f is convex and has a minimizer x,, then f is gradient-dominated of
degree 1 with x = 1/R over the Euclidean ball with radius R centered at x, [32,
Example 1]. For such a function, R includes this ball centered at x, and R% # @ if
f does not satisfy the PL condition over this domain.
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We can prove a variety of interesting worst-case performance results (with refer-
ence value fief = finr) for our algorithms from Sect. 1.3 when employed to minimize
(g, H)-dominated or gradient-dominated functions. The following theorems and cor-
responding corollaries represent a few examples, in which our main goal is to provide
an upper bound on the cardinality of the set of iteration numbers

/Cf(éf) = {kGN . fk—finf>€f}.

For each part of the following results, one might be able to improve the constants
involved in the stated convergence rates; however, for ease of comparison, we state
results with some common constants. Throughout this section, let € € (0, o) be a
fixed scalar value that we shall use as an upper bound for the accuracy tolerance €.
Our first two theorems offer complexity bounds for TR-H, RN, and RN-A when
they are employed to minimize (g, H)-dominated functions of different degrees.

Theorem 4.1 Suppose that Assumptions 1 and 2 hold and that TR-H, RN, or RN-A
is employed to minimize an objective function f such that L = R% U R% for some
constant k € (0, min{L1, Lo}] and fret = fint. For ¢ € [max{L1, L3}, 00) satisfying
the conditions in Corollaries 2.1 and 3.1 for these methods, let

(1 — §> for TR-H
£ e . (30)
max {(1 - %) : (M) } for RN and RN-2.,

L (fo— fad) 14

Then, the sequence { fx — fint} decreases at a linear rate with constant & € (0, 1) as
defined in (30) in the sense that, for some m € N independent of k,

Jeam — fint < E(fk — fin) forallk € N. 3D

Hence, for these methods and any €y € (0, €),

IKi(ep) =0 <log (M)) . (32)
€f

One can go further ifey € (0, k3/¢%) € (0, 1/max{L1, L»}) and there exists some
iteration number k € N such that X € T\’,% forall k > k. In this case, TR-H offers
(31) and consequently (32), but the convergence rate for RN and RN-A improves
to superlinear for k > k. In particular, assuming without loss of generality that
Ji = Jret < K3/ forall k > k, one finds that RN and RN-A yield, for the same m as
above,
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4 K/et ) ( K /et ) ;
0 —1 1 - Ik >k, 33
= o8 <fk - flnf = log fk+m - finf fora = %3)

in which case it follows for these methods that

_r 3.4
s -ofon (5 ) om0 o

Finally, if for any of these methods (i.e., TR-H, RN, or RN-2) a subsequence of
the iterate sequence {xi} converges to x, with g(x,) = 0 and A(H (x.)) > 0, then the
entire iterate sequence {xy} eventually converges quadratically to x.

Proof Since L = R% U R%, it follows from Theorems 2.1(a), 2.2(a), and 3.1(a) along
with Corollaries 2.1(b) and 3.1, all with fief = finf, that for TR-H, RN, and RN-A the
inequality (31) holds for some m € N for the values of & as stated in (30). (See also
Tables 1 and 2.) Applying this fact repeatedly, one finds that

EIM (fo — i) = fx — finr forallk € {m,2m,3m,...} € N.

It follows from this inequality that such k satisfy k ¢ IC 7 (e ) if

Sk/m(fo—finf)SGf — M Sé_k/m — m lOg(fO‘finf) <k
s “log(®) o

from which the bound (32) follows. In the special case that € y < k3/¢%and xy € R2

for all k > k, the first part of the sum in (34) follows using the same argument as
above with «3 /¢ in place of € 7~ Then, forall k > k, the fact that the convergence rate
for the RN and RN-A methods improves to superlinear follows from Theorem 2.2(a).
In particular, rearranging (13) (with k 4 1 generically replaced by k + m for the same
m € N as above) and taking logs yields (33). Then, applying this fact repeatedly, one
finds that

4\ k=ky/m 3,4 3.4
(_) log k”/¢ - 10g< k’/¢ )
3 Ji = fint Je = fint
forall k € {k+m,k+2m,k+3m,...} CN.

It follows from this inequality that such k satisfy k ¢ IC (e ) if

3t 4\ k=K /m 3/
il |
1%(€f> Q) %<@—m)
S/t O\ (3t k—k 4
(e (725 )) e (7)) = (55 e ().

from which the second term in (34) follows. Finally, the fact that the convergence
rate for TR-H, RN, and RN-A improves to quadratic if a subsequence of iterates
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converges to a strong minimizer has been shown in the literature; see [32, Theorem 3],
[6, Corollary 4.10], and [20, Theorem 4.1]. O

Corollary 4.1 If f is (g, H)-dominated of degree (2, 3), then L = R% U R; for some
constant k € (0, min{L{, Ly}] and fref = finf. Hence, when employed to minimize
such a function, the behavior of TR-H, RN, are RN-A is captured by Theorem 4.1.

One finds from Corollary 4.1 that when minimizing a (g, H)-dominated function
of degree (2, 3), the behavior of the second-order trust region method TR-H is often
the same as that of the regularized Newton methods RN and RN-A. The only difference
occurs in the special case that the accuracy tolerance is low (i.e., below «3/¢%) and
the gradient norms are such that x; € R% for all large k.

Let us now state a result that we shall see requires only that the objective satisfies
a weaker form of gradient or negative curvature domination.

Theorem 4.2 Suppose that Assumptions 1 and 2 hold and that TR-H, RN, or RN-A
is employed to minimize an objective function f such that L = R U R, for some
constant k € (0, min{L 1, Lo}] and fief = finf. For ¢ € [max{L1, L3}, 00) satisfying
the conditions in Corollaries 2.1 and 3.1 for these methods, let &€ € (0, 1) be defined
as in (30). Then, the sequence { fir — fint} initially decreases at a linear rate with
constant £ until, for some smallest k € N, one finds that S — fint < max{1/k, ef} If
€r < 1/k, then, for k > k, one of the following cases occurs for some m € N.

(a) If xy € R% U R% forall k > l%for some smallest k > k, then, as in Theorem 4.1,
the sequence {fr — finf} decreases linearly (along the lines of (31)) and, for
sufficiently small € ¢, might ultimately decrease superlinearly (along the lines of
(33)) for RN and RN-A. Specifically, assuming for simplicity that k = k, the
bound (32) holds for all of these methods and, if xj € R% for all large k and
er € (0, 3/¢*), the bound (34) holds for RN and RN-A. Moreover, for any of
these methods (i.e., TR-H, RN, and RN-2), if a subsequence of {xy} converges
to x4 with g(x,) = 0 and A(H (x4)) > 0, then the convergence rate of the entire
sequence {xi} to x, is ultimately quadratic.

) If xx € R2 U (’R2 U R%) forall k > lzfor some smallest integer k > k, then, in
the worst case, the sequence { fi — fint} eventually decreases sublinearly in that
forallke{k k-+m, k+2m,k+3m,. ..} one finds

1

Je = fint < 1+(%>%(%)m

(fy = o) (39)

in which case (without loss of generality assuming k= k) it follows that

_ fO fmf 1/_K
|/cf(ef)|_o(1og< T ))—H’)(ﬁ) (36)
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(©) If xx € (R} U R%) U (R% U R%)for all k > IGfor some smallest k > k, then the
worst case behavior of TR-H is worse than that of RN and RN-A. In particular,
for TR-H, it follows for all k € {k,k +m, k +2m, k + 3m, ...} that

1

Sk = fint = L+ < ) (fk Fod)

(f; = fint) (37)

in which case (without loss of generality assuming k= k) it follows that

_ Jo — fint 1/k
|/cf(ef)|_o<1og< T ))+0<€f). (38)

On the other hand, for RN or RN-2, it follows for such k that (35) holds, in which
case (for simplicity assuming k= k) it follows that (36) holds.

(d) If xx € R; for an infinite number of k € N, then the worst case behavior for all
of these methods (i.e., TR-H, RN, and RN-2) is the same, i.e., one finds that

1
(f — fint)
(SR 20— fu? ) (39)

forall large k € {k,k +m, k +2m, k +3m, ...},

fk_finff

in which case it follows that

B Jo — fint 1/«
IKrep) =0 <1°g< 1/k )) o <?> .

Proof Since for x; € R} UR) UR3 it must be true that k' (fr — finf) < 1, it follows
that while «(fx — finf) > 1 one has that x; € R% U R% For such k € N with
k (fx — fint) > 1, it follows as in the proof of Theorem 4.1 that the sequence { fi — finf}
initially decreases at a linear rate with the constant £ as given in (30). Hence, for the
remainder of the proof, we may assume that k > k.

For part (a) with x; € R% U Rg for all £ > 12, the conclusions follow using
essentially the same arguments as in the proof of Theorem 4.1. (One need only also
account for iterations k € {l;, e, k— 1}, but of these there is only a finite number
due to the definition of k. We ignore these iterations also in the remaining cases of the
proof since they do not affect the complexity bounds for small € ¢.)

For part (b) with x; € R? U (R} UR3) for all k > £, it follows from (12),
(13), (23), (24), and the fact that {fy — finr} — O that eventually the loosest of
these bounds for fi,, — finf is given by that in (24). Hence, with w := ¢2/«3 and

= (fx — find)/® = k(fx — finp)(/0)* € [0, 1) for all k € N, it follows as in (27)
that for sufficiently large k > k one at least finds
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32 32
ag — Qk4+m = 45 = A im-

Thus, using the same argument as in the proof of Theorem 2.2 that lead from inequal-
ity (18) to inequality (19), it follows that

L1 +ﬁ—1
«/ak+m_\/a_k \/5 .

(40)

Applying this result repeatedly, it follows that

m\ V2

1 1 k—k (V2-1
—>—+
Jag ar m

) for all ke{l@,ﬁ+m,l€+2m,l€+3m,...},

which after rearrangement gives the conclusion in (35).

For part (c) with x; € (R} UR?) U (R} UR3) for all k > &, let us consider
TR-H separately from RN and RN-A. For TR-H, it follows from (9), (12), (13), (23),
(24), and the fact that { fy — finr} — O that eventually the loosest of these bounds for
Jfk+m — fint 1s given by that in (9). From this, it follows with a; := « (fx — finf) € (0, 1)
forall k € N and w := «/¢ € (0, 1] that one at least finds

1 1 w 1

> = —
aerm — ar(l —war) a1 —war ~ ai

Akrm < (1 — wap)ay =

which, after a repeated use, implies

k—k ~ . .
—>—+<7) forall k € {k, k +m, k+2m,k+3m,...}.

Rearranging this inequality leads to the conclusion for TR-H in (37). Now consider
the behavior of RN and RN-A. First, observe that

S = fint < for all k > k.

2
<&
3

x| =

Hence, it follows from (12), (13), (15), (23), (24), and { fx — fint} — O that eventually
the loosest of these bounds for fi4,, — finf is given by that in either (15) or (24), which
in either case (as seen above with respect to (24)) leads to (40). Hence, as in the proof
for part (b), one is led to the conclusion in (35), from which (36) follows.

For part (d), the worst case behavior of all methods is dictated by (25), which with
ay = k(fx — finr) € (0, 1) forall k € N and w := «/¢ € (0, 1] offers

2
akrm < (1 — wap)a.
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Hence, one finds that

1 - 1 - 1 1 w 1 n
=4+ ——> = 4w
a,&rm - a,%(l — a)a,%)2 - a,%(l — a)a,%) a,% 1 —wa; — a,%

Applying this result repeatedly, it follows that

11 k—k _ _ _
— =5+ |—|o forallk € {k,k+m, k+2m,k+3m,...},
ak al; m
which after rearrangement gives (39). O

Corollary 4.2 If f is (g, H)-dominated of degree (1, 1), then L = R U R» for some
constant k € (0, min{L1, L3}] and fref = fint. Hence, when employed to minimize
such a function, the behavior of TR-H, RN, and RN-A is captured by Theorem 4.2.

One finds from Theorem 4.2 that, as in Theorem 4.1, the behavior of TR-H is often
the same as that of RN and RN-A when minimizing (g, H)-dominated functions. The
differences only occur when the accuracy tolerance is small and the algorithm lands
on gradient-dominated points of any degree v € [1, 2] for large k. Let us also observe
that a stronger result than in Theorem 4.2 would be obtained if f were, e.g., assumed
to be (g, H)-dominated of degree (1, 2). Indeed, in such a situation, one would not
need to consider the situation in part (d) of the result.

For our remaining results, we consider gradient-dominated functions of different
degrees, about which we are also able to prove results about the first-order methods
RG and RG-2, as well as the second-order method TR-G. For the following theorems,
we are able to borrow from the proofs of Theorems 4.1 and 4.2.

Theorem 4.3 Suppose that Assumptions 1 and 2 hold and that any of the algorithms
from Sect. 1.3 is employed to minimize an objective function f such that L = R%
for some constant k € (0, min{L1, L2}] and fief = finf.- For ¢ € [max{L, Ly}, 00)
satisfying the conditions in Corollaries 2.1 and 3.1 for these methods, let

(1 — %) for RG, RG-A, TR-G, and TR-H

§:= , (41)
max :(1 - %) ; (M)} for RN and RN-A.

374
KT“‘(f()_fref)l/4

Then, the sequence { fi — fint} decreases at a linear rate with constant § € (0, 1)
as defined in (41) in the sense that, for some m € N independent of k, the lower
bound (31) holds. Hence, for any €y € (0, €), the bound (32) holds. In addition,
ifer € (0, k3/¢%) C (0, 1/max{L1, L»}), then the convergence rate for RN and
RN-A improves to superlinear for large k in the sense that (33) holds, leading to (34).
Finally, if for TR-G, TR-H, RN, or RN-A, a subsequence of the iterate sequence {xy}
converges to x4 with g(x,) = 0 and A(H(x4)) > O, then the entire sequence {xi}
eventually converges quadratically to x..
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Proof From Theorems 2.1, 2.2, and 3.1 along with Corollaries 2.1 and 3.1, all with
fret = finf, the conclusions of the theorem follow using the same arguments as in the
proof of Theorem 4.1. In addition, the fast local convergence rate for TR-G under the
stated conditions has been proved as [20, Theorem 4.1].

Corollary 4.3 If f is gradient-dominated of degree 2, then L = R% for some constant
k € (0,min{Ly, L2}] and firef = finr. Hence, when employed to minimize such a
function, the behavior of RG, RG-A, TR-G, TR-H, RN, and RN-A is captured by
Theorem 4.3.

In Theorem 4.3, we find a setting in which the behavior of all of the methods from
Sect. 1.3 behave similarly, except that RN and RN-A eventually converge superlinearly
if the accuracy tolerance is small. We also find that each of the second-order methods
ultimately converges quadratically if a strong minimizer is approached.

Theorem 4.4 Suppose that Assumptions 1 and 2 hold and that any of the algorithms
from Sect. 1.3 is employed to minimize an objective function f such that L = R
for some constant k € (0, min{L1, L2}] and fret = finf- For ¢ € [max{L1, L2}, 00)
satisfying the conditions in Corollaries 2.1 and 3.1 for these methods, let & € (0, 1) be
defined as in (41). Then, the sequence { fr — fint} initially decreases at a linear rate with
constant £ until, for some smallest k € N, one finds that S5 — fint < max{l/«k, e} If
€r < 1/k, then, for k > k, one of the following cases occurs for some m € N.

(@) If xi € ’R% for all k > l€f0r some smallest k > k, then, as in Theorem 4.3,
the sequence {fi — fint} decreases linearly (along the lines of (31)) and, for
sufficiently small €y, might ultimately decrease superlinearly (along the lines
of (33)) for RN and RN-A. Moreover, for TR-G, TR-H, RN, and RN-2, if a
subsequence of {xi} converges to x, with g(x,) = 0 and A(H,) > 0, then, for
these methods, the convergence rate of the entire sequence {xy} to x, is ultimately
quadratic.

(b) Ifx € ’R% for an infinite number of k € N, then the worst-case behavior of RG,
RG-A, TR-G, and TR-H is the same in that (37) holds, leading to (38). On the
other hand, for RN and RN-A, one finds that (35) holds, leading to (36).

Proof From Theorems 2.1, 2.2, and 3.1 along with Corollaries 2.1 and 3.1, all with
fret = finf, the conclusions of the theorem follow using the arguments as in the proofs
of Theorems 4.1, 4.2, and 4.3.

Corollary 4.4 If f is gradient-dominated of degree 1, then L = R for some constant
k € (0,min{L1, Ly}] and firef = finr. Hence, when employed to minimize such a
function, the behavior of RG, RG-A, TR-G, TR-H, RN, and RN-A is captured by
Theorem 4.4.

5 Discussion

RC analysis has advantages and disadvantages. For putting these in perspective, let
us first recall known worst-case performance bounds for the algorithms in Sect. 1.3,
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as they are currently stated in the literature; see [1,7,13,32]. In particular, suppose
Assumptions 1 and 2 hold and, for any pair of constants (€1, €2) € (0, €) x (0, €), let

Ki(er) :={k e N: | gkl > €1} and Ka(er) :={k € N : L(Hy) < —ea}.

Then, one finds that

O <f°_2fi“f) for RG, RG-A, TR-G, and TR-H,

IKi(en| = (42)
@] <f°§/€i“f> for RN and RN-A.

and that

00 for RG, RG-A, and TR-G,

. - 43
| 2(62)| O <f0:3fmt> for TR_H, RN, and RN-A. ( )
2

While the bounds (42)—(43) hold under relatively loose assumptions, the conclu-
sions are often extremely pessimistic. Take the bound for RG in (42), for example.
It is based on the conclusion that with k € K(e;) and an accepted step, one finds
that fir — fi+1 > ||gk||2/2ll > 612/211; i.e., it only uses the fact that the reduction
in f attained at such an iterate is at least Q(e%), which is extremely conservative for
small €1! On the other hand, for many nonconvex functions, the search space includes
many points at which the gradient is significantly larger in norm relative to the objec-
tive suboptimality—e.g., points in Rj—from which the attained objective reduction
can be much more significant than the (squared) accuracy tolerance.

Another observation is that, with respect to attaining approximate first-order sta-
tionarity, (42) offers the same bound for the second-order method TR-H as it does
for the first-order methods RG and RG-A. This points to the disappointing con-
clusions that have been drawn for second-order trust region methods in terms of
worst-case performance; see, e.g., [8]. However, for many nonconvex functions, the
search space includes many points at which the gradient norm and/or negative curva-
ture is significant—e.g., points in R U R». For such functions, we have seen that RC
analysis offers bounds for the trust region method TR-H that are often more similar
to those for the regularized Newton methods RN and RN-A.

These comments highlight one of the main benefits of RC analysis, namely, that
it can offer less pessimistic perspectives on the performance of methods when mini-
mizing certain interesting classes of functions. However, RC analysis does have some
disadvantages. For one thing, towards attempting to tie the reduction fy — fi41 to
the global error between f; and some limiting value of the objective attained by an
algorithm, we have introduced the reference value fr.r that might be considered to
be strictly larger than the global minimum fi¢. This is useful so that one might be
able to use regions to describe the search spaces for functions that one might not be
able to minimize to global optimality from all starting points. Alternatively, if one
were only to consider fref = finf, then, e.g., R might not include points about local
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minimizers that are not global minimizers. All of this being said, it should be clear that
the introduction of this reference value puts RC analysis in no worse of a position than
a contemporary worst-case analysis focused on an algorithm attaining (approximate)
pth-order stationarity. After all, in the most extreme case for, say, p = 1, one can con-
sider the reference value fier to be a placeholder for sup, cp« { f(x) : lg(x)|| < €1} for
some €] € (0, 0o) so that R at least covers some points at which an algorithm seeking
(approximate) first-order stationarity would not yet have terminated. Put another way:
An analysis based on attaining ||gx|| < €1 also might not offer any guarantees about
the number of iterations required to obtain an objective value near the global minimum
finf .

Let us now discuss ways in which one can go beyond Theorems 4.1-4.4. In par-
ticular, using similar analyses, one could prove complete complexity bounds for
an algorithm employed to minimize other classes of functions. For example, if for
some class of coercive functions—not necessarily (g, H)-dominated—one has that
x € RiUR;y forall x € R” such that f(x) > 7for some ]_” € [ finf, fol, then one can
invoke the results of Theorems 4.1-4.4 to characterize the behavior of an algorithm
until f; < ]_‘ for some k € N. For all remaining k € N, one can invoke a more
conservative bound [e.g., from (42)—(43)] or more refined results depending on the
behavior of the algorithm about points with lower objective values.

One could also obtain different types of results by partitioning regions differently.
For example, if desired for potentially stronger results for a particular class of functions,
one could partition R = 7'\’,% U Rf_ where Rf is the largest subset of Rl\R% such
that the inequality in (5) holds with 7 = 7. One then could, e.g., include a separate
case along the lines in Theorem 2.1 to derive a certain rate of decrease for x; € Rf
The same could be done when partitioning R, as well.

We also remark that one might consider a gap left by RC analysis results to motivate
the design of modifications to an algorithm, such as to have the algorithm compute a
different type of step or modify some feature of the step computation in order to close
the gap. As an example of the former type of motivation, one can again refer to [4]
in which a negative curvature direction is computed if/when an accelerated gradient
descent method is not behaving as it would when applied to minimize a strongly
convex function. This helps such an algorithm escape neighborhoods about negative-
curvature-dominated points. Another example is the method from [14] that chooses
between two types of steps (a first- or a second-order step) depending on which offers
a larger predicted reduction in the objective. As for the second type of motivation,
one merely need consider our TR-H method, which chooses the trust region radius in
each step depending on properties of derivative values. By doing this, we have seen
that TR-H—more than the similar method TR-G—is able to attain some of the nice
features of both the first-order methods RG and RG-2, as well as of the second-order
methods RN and RN-A.

6 Higher-order regions, algorithms, and analysis

Let us now turn to setting out some fundamental concepts to extend RC analysis
to scenarios involving higher-order derivatives. Let us begin by stating the following

@ Springer



Regional complexity analysis of algorithms for nonconvex...

assumption, which we shall assume to hold throughout this section. We employ similar
notation as used, e.g., in [1]; in particular, the pth-order derivative of a function f
at x is given by the pth-order tensor V7 f(x), and the application of this tensor j € N
times to a vector s € R” is written as V” £ (x)[s]/.

Assumption 3 The function f : R" — R is p-times continuously differentiable and
bounded below by finf := inf,crr f(x) € R. In addition, over an open convex set £
containing £ and for each p € {1, ..., p}, the pth-order derivative of f is bounded
in norm by M, € R_ and Lipschitz continuous with Lipschitz constant L, € R_,
in that

IV? ) llip1 < Mp and
IVPfx) = VP fOllipy = (p — DILpllx — Xl2 forall (x,%) € R" x R,

where || - ||{ ) denotes the tensor norm recursively induced by || - ||; see [1, eq. (2.2)—

(2.3)].

Let us now generalize Definitions 2.1 and 3.1. To do this, let us show that the
left-hand side values with largest exponents, namely, ||g(x)||2 and (A\(H(x)))3, in
Definitions 2.1 and 3.1 are proportional to the reductions one attains by minimizing
a regularized function involving pth-order derivatives of the objective at x € L.
Specifically, for each p € {1,..., p}, let vp(x,-) : R" — R represent the sum of
the pth-order term of a Taylor series approximation of f centered at x € £ and a
(p + D)st-order regularization term, i.e., let v, (x, -) be defined for all s € R" by

lls|IPFL.

1
_ Lyr p
vp(x,s) = p!V fs1? + il

This model is coercive, so it has a minimum norm global minimizer s, » (x) € R" with
which we can define Av), : £ — R by Av,(x) = vp(x, 0) — vp(x, sy, (x)) = 0.
We claim that an appropriate generalization of Definitions 2.1 and 3.1 involves

Ap(x) := p(p+ DAv,(x) forany p e{l,..., p}.

In particular, we now introduce the following definition for R, forall p € {1, ..., p}.

Definition 6.1 (Region R, = R, (f, k, frr)) For an objective f : R" — R, scalar
k € (0, Lp], and reference objective value fref € [ fint, 00), let

Rp:={x € L\Rp—1: (Ap(x)" = k(f(x) — fref) = 0 for some 7 € [1, p + 1]}.
(44)

Further, let Rg“ be the subset of R, such that the inequality in (44) holds with
T = p + 1, and recursively for g € {p,p — 1,...,1} let R?, be the subset of

7'\’,,,\(735—H U RZ u.---u T\’,;I,H) such that the inequality in (44) holds with 7 = q.

This definition is consistent with Definitions 2.1 and 3.1, as the following shows.
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Lemma 6.1 For p > 2, it follows that, for any x € L,
A1(x) = [lg@)|I* and Ax(x) = (A(H(x)))? .

Proof Let x € L be arbitrary. Since vy (x,s) = g(x)Ts + %Ilsllz, one finds that the
global minimizer of vy (x, -) is sy, (x) = —g(x), meaning that

Avi(x) = v1(x, 0) — vi(x, 5y, (x))

1 1
= =800 50, (1) = Sllsw I = S,
as desired. Now consider vy (x,s) = $sTH(x)s + %|s|. If H(x) > 0, then the
minimum norm global minimizer of v2(x, -) is sy,(x) = 0. Otherwise, the global

minimum of vp(x, -) is achieved at an eigenvector s, (x) corresponding to the left-
most eigenvalue of H (x), scaled so that it satisfies the first-order condition

(H (x) + lIsv, () [11)s0, (x) = 0,
which in particular implies that ||sy, (x)|| = —A(H (x)). Thus,

Avz(x) = va(x, 0) — va(x, 59, (%))
_ 1)\ H 2 1 3
=-3 (H (X)) [s0, (O)I* — §||Sv2(x)||

= l|x(H( NI~ lM(H( WP = LHE)P
= 2 X 3 X = 6 X .

Combining the results of the two cases yields the desired conclusion. O

In order to demonstrate RC analysis results pertaining to R, let us consider a
pth-order extension of RG and RN. (The method here can be seen as a special case
of the ARp method from [1].) Let the pth-order Taylor series approximation of f at
x € Lbedenoted as 7, (x, -) : R" — R, which is given by

p
1 . .
tp(x,8) = )+ AR

j=1
We now define the Rp method as one that, for all k € N, sets xx41 < xx + Sw, (x1),
where sy, (xg) is the minimum-norm global minimizer of a regularized Taylor series
approximation function w, (x, -) : R" — R defined by

l
wp(x,s) =1,(x,5) + P_sIP*!, where I, € (
p

(p+ DL, )
TP o).
+1

p

One can draw useful conclusions about the behavior of the Rp method by using the
following two example results, which parallel Theorems 2.1, 2.2, and 3.1. Our first
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result can be used to analyze the behavior of Rp over R| using a known decrease
property related to its gradient at a point after an accepted step; see [1].

Theorem 6.1 Suppose Assumption 3 holds. For any algorithm such that xy+1 € R
implies that (6) holds with x = xy+1 andr = (p + 1)/ p in that

1
fi = fre1 > E||gk+1||<f’+‘>“’ for some ¢ € (0, 00), (45)

the following statements hold true.

@) Ifxiv1 € Ry and fi— frer = P /e P then { fi — frer} has decreased
as in a linear rate; specifically,

(fo — fi f)(1!7—1)/(210)
Jit1 = fret < < (P+D/2p) = N0 (fic = fref)- (46)
— +(f0_fref)(p7 )/2p)

On the other hand, if xy4| € R% and fi— frer < (PT1/22P)VP=D then the sequence
has decreased as in a superlinear rate; specifically,

(p=1)/(p+1D

Jie = Jret (fe = fref)- (47)

prEa! 1/(p—1)
( ¢ )

®) Ifxp41 € R}, then it must be true that k (fi+1 — fret) < 1 and there are two cases:
If fc — fret = CP /P then { fy — fret) has decreased superlinearly; specifically,

fk+1 - fref =<

CP 1/(p+1)
Jir1 = fret < (m) (fx — fref)- (48)

On the other hand, if fi — fret < ¢P/kPTL, then the sequence has decreased as
in a sublinear rate; specifically,

p

1
(fk = frer)-  (49)

(p+1)/p 1/p_
L S (Z20) (fi = fren) P

Ji+1 = Sret <

Similarly, for an algorithm such that having Xy4, € R implies that

1
fi = feam = anHmn(!’“)“’ for some ¢ € (0,00) and m e N, (50)

withm independent of k, then (a)—(b) holdwith (xi+1, fr+1) replaced by (Xi+m» fr+m)-
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Proof If x;41 € R2, then, with (45), it follows that

1 -
fie= fin 21kt 1PF07 2 007D (g = frp P/

Kp+l )1/(17—1)

where w := (—
g2p

Adding and subtracting frr on the left-hand side, one finds by defining the values
ar = (fx — fret)/o for all k € N that

fk - fref _ fk+1 - fref - (fk-H - fref)(p+1)/(2p)

51
w w - w([""‘l)/(z[’) ( )
——
3 Ak+1 o PH/2p)
k+1

One finds from this inequality that

N N PR SR
arn 0 guren = e € 00

which gives (46). That said, if ax < 1 (which is to say that fy — fref < @), then one
finds from (51) that az 1 < a;”’ "™, from which (47) follows.

If x¢1 € R, which is to say that ||ges1l > k(fia1 — frer) while [lger1l*> <
K (fr+1 — fref), then it must be true that x ( fx4+1 — fref) < 1. Hence, with (45),

p

1 -
Je= fert 2 gt P 2 07 (fir = fr) PO where @ =

Adding and subtracting frr on the left-hand side, one finds by defining the values
ay = (fx — fref)/w for all k € N that

fk - fref . fk-H - fref - (fk-i—l - fref)(p+1)/p

52
w w - a)(P“‘U/p ( )
———
ag ag41 a(p+l)/p
k41

One obtains from this inequality that a;y > a ,Elrlrl)/ ? which when a; > 1 (which is to

say that fi — fref = @ = P /kPT1) gives (48). Otherwise, (52) also yields

1 1 - 1 1
\/p — 1/p = 1/p 1/p
Y1 % Yt 1 (ak+1 + a,(cflrl)/p)

1 1/p 1 1 1/p
(“k+1 + “liﬁ )/p) - ak—/i-li (1 + ak—/i-pl> -1

1/p I/p’
1/p (p+1)/p 1/p 1/p
41 <ak+1 +a ) gt (1 + ak+1>
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The right-hand side above is a monotonically decreasing function of a,i i’; over agy] €
(0, 1]. Hence, when a; < 1 (which is to say that fy — fief < @ = ;p//cp“), which
implies that ax4; < 1, one finds from the above that

1 1 2l/p — 1
7 = 1 T o
dryr 9

Rearranging this inequality, one obtains (49).
If, with x44,, € R1, an algorithm offers (50), then the desired conclusions hold
using the same arguments above with (50) in place of (45). O

Now let us turn to the following result for Rp. Consistent with our definitions in
Sects. 2 and 3, one may view this result as an example of following Step 1-R ,.

Theorem 6.2 Suppose Assumptions 1 and 2 hold. Then, for any algorithm such that
having x; € R, implies that the reduction in the objective with an accepted step
satisfies

1
fi = fes1 > E(Apuk))f’“ for some ¢ € [L,, 00), (53)

the following statements hold true.

(@) Ifxi € Rg“, then { fix — fret} decreases as in a linear rate; specifically,
K K
Je1 = fret = (1 - E) (fic = fref) where 7 € (0, 1]. (54)

() If x € R(;Ia for some q € {1,..., p}, then k(frx — fret) < 1 and {fi — fret}
decreases as in a sublinear rate; specifically,

k(P+D/q

fiert = fret = (1 i fref)@“q)/‘f) (fe = fre)- (55
Similarly, for any algorithm such that having x; € R, implies that
1
fe = fiam = E(A,;(m))!’“ for some ¢ € [Ly,00) and meN  (56)

with m independent of k, then (a)—(b) hold with fx11 replaced by fiim.

Proof 1f x; € RLT!, then, with (53), it follows that

1 K
fe = fiwr = E(A,,(xk))P+1 z 7 Ufic = fren).
Adding and subtracting frer on the left-hand side and rearranging gives (54).
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If x¢ € RY, which is to say that (A, (xx))4 > k(fi — frer) While (4, (xx)?H! <
K (fr — fref), then it must be true that k (fx — frer) < 1. In this case, from (53),

1
S — Jiet1 ZE(Ap(Xk))”“ > m(fk — fop)PHD/a

4 )1/(p+1q)

where w := (Kp+l

Adding and subtracting frer on the left-hand side, one finds by defining the values
ax = (fi — freD) /@ = k(fe — feen) e/ P19 € [0, 1) forall k € N that

Ji = fret _ fierr = fret _ (fi = Fref) T/

w w - wP+tD/q
———
ar ag+1 u(P+1)/¢1
k

One finds from this inequality that a1 < (1 — al’ ™'~/ gy, which is (55).
If, with x; € R, an algorithm offers (56), then the desired conclusions hold using
the same arguments above with (56) in place of (53). O

Observe that the implied sublinear rate in Theorem 6.2(b) improves with larger ¢g.
Indeed, with ¢ = 1 versus ¢ = p, one finds reduction factors in (55) of

p+1 «(P+D/p

c (fk - fref)p versus 1 — T(fk - fref)l/p-

K
1 —

For large p, the former can be very close to 1 even for relatively large fi; — frer (near
1/k), whereas the latter remains closer to zero due to the exponent on f; — fref.

Going further, one could explore results that suppose that an algorithm attains
Sk = fir1 = £2((Ay(x))7) forotherg € {1, ..., p} and some T > 1. Then, one could
combine results from different regions to produce complete RC analysis performance
results for different function classes of interest whose search spaces are composed of
{R1,...,Rp}, as was done in Sect. 4 for p € {1, 2}. Of interest in this context might
be a generalization of the TR-H method that, to compute s;, minimizes a pth-order
Taylor series approximation of f at x; subject to a trust region constraint whose radius
is given by Aj(xk)l/-i, where j = argmax eq1,..., py{Aqg (i)}

7 Conclusion

We have proposed a strategy for characterizing the worst-case performance of algo-
rithms for solving nonconvex smooth optimization problems. The strategy is based
on a two-step process: first, one analyzes the behavior of an algorithm over regions
defined by generic properties of derivative values, and second, one can combine results
from different regions to produce complete worst-case performance results, which in
turn can offer results for different function classes of interest. We have shown how
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this strategy leads to useful characterizations of a few first- and second-order algo-
rithms, and have demonstrated how to extend the strategy to regions defined by, and
for algorithms that make use of, higher-order derivatives.

Our approach for analyzing worst-case complexity can be generalized or adapted
to other settings. The following are some possibilities. (i) While Assumptions 1-3
require the pth-order derivatives of f to be Lipschitz continuous over £ for all p €
{1,..., p}forsome p € N, one might instead assume Holder continuity with exponent
o not necessarily equal to one; see, e.g., [10]. (ii) One might consider nonmonotone
methods and settings in which f is extended-real-valued as long as an algorithm can
guarantee that, after some number of iterations, a sufficient reduction in the objective
is produced. Indeed, with the flexibility introduced by m € N, this was all that was
required for our results. (iii) One might extend our strategy to offer probabilistic results
or to analyze stochastic algorithms. For example, while one is not able to supply a
deterministic upper bound for RG over R, one can establish probabilistic upper
bounds by introducing randomization into the starting point or the step computation;
see [26,29]. As another example, if one is able to ensure that over some number
of iterations an algorithm will offer a sufficiently large expected reduction in the
objective, then generalized forms of our results might involve fi — Eg[ fr4m] where
[ denotes the conditional expectation given that the algorithm has reached xy . Finally,
one might build results based on inequalities such as (7) that are only guaranteed to
hold with certain probability [11]. (iv) An extension of our strategy to nonsmooth
f might be based on replacing the measure ||g(x)|| in (5) in Definition 2.1 with the
norm of a proximal step computed at x € L. Similarly, one might extend our strategy
to constrained optimization if ||g(x)|| is replaced by the norm of a projected gradient
step.
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